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Abstract

This paper presents the results of an investigation into the performance of a new statically
scheduled multiple-instruction-issue architecture and its compiler. HARP is a Long Instruction
Word Architecture developed in conjunction with a simple compile-time scheduling technique
called conditional compaction. The architecture is characterised by a conditional execution
mechanism which is used by the scheduler to pack the instructions within a procedure into long
instruction words. The study compares the speedups obtained for the C and Modula-2 versions
of a set of short, general purpose, integer benchmarks, running on simulations of the
architecture with different functional unit configurations.

1.0 Introduction

Multiple-instruction-issue machines utilise the instruction level parallelism available in compiled
code to increase processor performance. Scalar RISC processors use compiler optimisations
and a single, streamlined instruction pipeline to achieve execution rates approaching the upper
limit of one instruction per cycle.! Multiple-instruction-issue machines2 provide multiple
pipelined functional units in order to fetch, decode and execute several instructions per cycle.
Multiple-instruction-issue processors can be divided into two categories: superscalar
processors, which provide hardware for the run-time detection of parallelism,3 and very long
instruction word (VLIW) machines, which rely on the compiler to schedule concurrent
instructions into very long instruction words*5,

The objective of the HARP (Hatfield Advanced RISC Processor) projecté7 is to develop a
VLIW processor/compiler system which will achieve sustained execution rates in excess of two
instructions per cycle for general-purpose code. The project began with the specification of a
machine model® and then continued with the development of compiler systems%10 and the
design and testing of iHARP, a VLSI integrated circuit implementation of the machine
model.11,12

This paper presents the essential features of HARP machine model and describes the
conditional compaction scheduling technique. It then gives the results of experiments to
compare the performance of the technique, for C and Modula-2 versions of the benchmarks,
when a maximum of four ALU and one Boolean instruction are scheduled in parallel with a
variable number of branch and memory reference instructions.

2.0 The Machine Model

The machine model8 describes a class of RISC architectures with a variable number of
instruction pipelines. Multiple ALUs, a Boolean Unit, a PC unit and a maximum of two address
units allow several ALU operations, one Boolean operation and a maximum of two memory
reference and two branch instructions to be executed in parallel. The compiler translates source
programs into short instructions which specify typical RISC operations; the instruction
scheduler then selects short instructions which can be executed in parallel and packs them into
long instruction words (LIWs). The model fetches LIWSs, one per cycle, from an instruction
cache and passes the component short instructions through the multiple pipelines.

Conventional condition codes are replaced by a set of one-bit Boolean registers which are
set explicitly by relational or Boolean instructions. The Boolean registers are tested by
conditional branch instructions, and are also used to control instruction execution. For example,
the instruction T B2 ADD R1,R2,R3 will only be executed if the Boolean register B2 holds the
value TRUE.

The model provides 64 general-purpose registers, R0-R63 (RO is hardwired to 0), 32
Boolean registers, BO-B31, and two addressing modes: register indirect with index, and register
indirect with displacement.




2.1 Instruction Latency

The HARP processor is specifically targeted at general-purpose applications. Such programs are
likely to contain relatively low amounts of instruction level parallelism compared with numeric
applications. It is therefore essential not to squander any of the parallelism, gained by the
compiler, on increased instruction latencies. This section discusses features of the HARP
~ architecture which have a major impact on instruction latency: the instruction pipeline and full
- register bypassing, ORed addressing, and the use of Boolean registers.

All HARP instructions are executed in the following four stage pipeline:

IF Fetch next instruction from instruction cache
RF Fetch register operands from register file
ALU/MEM Perform operation or access data cache

WB Return results to register file

A computational instruction uses all four stages: reading two operands in the second stage,
performing the computation in the third stage and returning a result to a register in the final
stage. The resulting computational delay of 2 cycles is removed by the provision of 32-bit
bypass paths from all ALU outputs to all ALU inputs which allows the immediate re-use of
data. A relational instruction uses one of the dedicated high-speed comparators provided in each
pipeline to compute a Boolean value during the first half of the ALU/MEM stage. This result can
then be bypassed to the RF stage of the next instruction for control purposes. A branch
instruction tests the branch condition and computes the branch target (using a dedicated adder)
in the RF stage of the pipeline.This timing results in a branch delay of one cycle. A memory
reference instruction computes the memory address in the RF stage, and accesses a separate
off-chip data cache in the ALU/MEM stage. Data loaded from the data cache can then be
bypassed directly to the ALU inputs of the next instruction.This timing has the advantage of
removing any load delay (recent simulations? suggest that introducing a one cycle load delay in
HARP would degrade the instruction-issue rate by approximately 25%) but relies on the
processor's ability to compute the memory addresses in the RF stage of the pipeline. However,
since there is not time to access the register file and perform a 32-bit addition of the address
components in a single cycle, some simplification of the addressing mechanism is essential.

HARP implements a distinctive ORed addressing mechanism, where a bitwise OR operation
is performed between the two address components to calculate the effective address.13 This
simple mechanism is equivalent to an addition, provided there is never a carry in the addition
(i.e. no two bits in the same position are both set to 1). HARP compilers enforce this
requirement by starting all procedure activation records on a power-of-two boundary.? The least
significant bits of the stack pointer are forced to zero on procedure entry and variables are
accessed relative to the stack pointer using ORed indexing. The power-of-two boundary used is
adjusted from procedure to procedure to avoid excessive memory fragmentation. Effectively a
new variable-sized 'page' is allocated on the stack on procedure entry.

Finally HARP's conditional execution mechanism can be viewed as a mechanism for
reducing branch latency. At run-time a conditionally executed instruction is only allowed to
change the machine state if its execution condition is true. Instructions which are normally
executed after a branch instruction can be conditionally executed on the value of the branch
condition which results in their execution, as soon as the value of the Boolean variable
governing the branch is computed.

3.0 Instruction Scheduling

The instruction scheduler takes the output from a sequential HARP compiler and packs the short
instructions within each procedure into LIWs. The scheduler is parameterised to produce LIWs
which match a particular functional unit configuration of the model. The scheduling process is
divided into two phases: local compaction and conditional compaction.

3.1 Local Compaction

Local compaction is used to schedule the short instructions within each basic block into LIWs.
Each LIW consists of a fixed number of branch, ALU, memory reference and Boolean
instruction slots. Slots which are not filled by the scheduler are packed with NOPs.
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For each basic block the local compaction program builds a directed acyclic graph (DAG) to
represent the partial ordering of short instructions which the scheduler maintains in order to
preserve data integrity. 14 Dependencies between data held in registers are detected by comparing
the input and output registers used by pairs of instructions. Memory reference disambiguation is
only performed between pairs of instructions which both use register indirect with offset
addressing relative to the stack pointer, the global pointer or RO (the value of the stack pointer
remains constant throughout the lifetime of a procedure, the values of the global data pointer and
RO remain constant throughout the program). Otherwise store instructions are considered to be
data dependent on all preceding load and stores, and load instructions are considered to be data
dependent on all preceding stores.

Having computed the DAG, the local compaction program generates an empty LIW, called
the current long instruction word (CLIW), and uses the information in the DAG to compute the
set of instructions which can be scheduled in the CLIW without violating data integrity (the data
available set). List scheduling!3, wherein each instruction is assigned a priority prior to
scheduling, is used to determine the order in which the instructions in the data available set are
considered for inclusion in the CLIW. A data available instruction can only be scheduled in the
CLIW if the CLIW contains enough compatible empty slots, such an instruction is said to be

“resource available with respect to the CLIW. If the data available instruction currently under
consideration is resource available with respect to the CLIW, it is scheduled in the CLIW and
the data available set is recalculated. If it is not, the data available instruction with the next
highest priority is considered for scheduling in the CLIW. This process is repeated until no
more instructions can be scheduled in the CLIW. A new LIW is then generated and the
algorithm is repeated until all the non-branch instructions in the block have been scheduled.
Finally any remaining branch instruction must, by definition, be scheduled in the penultimate
LIW of a compacted block. Hence a branch instruction and its associated NOP are scheduled
last, taking into account data and resource dependencies.

3.2 Conditional Compaction

Non-numeric applications are characterised by a high proportion of data dependent branches,
small loop bodies, and low loop iteration counts. Hence the conditional compaction technique,
which is targeted at general purpose computations, aims to remove the dependencies caused by
branch instructions, rather than focusing on the parallelism available within loops.

Conditional compaction is a simple scheduling technique which uses HARP's conditional
execution mechanism to move instructions across basic block boundaries. A locally compacted
block is conditionally compacted by moving short instructions from its branch destination and
sequential successor blocks into the empty slots in its schedule. Instructions which are moved
across conditional branches are conditionally executed on the value of the Boolean variable
which would result in entry to their native block. This effectively removes the control
dependencies caused by branch instructions, and makes global scheduling relatively
straightforward.

The blocks in a procedure which are candidates for conditional compaction are held in a
list. Initially the ordering of the blocks in the list corresponds to their static ordering in the
locally compacted code. The scheduler removes the block from the head of the list, and
conditionally compacts this block, which is referred to as the C-block, with each of its
successors in the flow graph. Any block which is not already in the list is added to the list, if the
conditional compaction process results in the movement of instructions which may permit
further compaction to take place. The process of removing and conditionally compacting the
block at the head of the list is repeated until the list is empty.

A variation of the local compaction algorithm described above is used to move the
non-branch instructions from the C-block's branch destination or sequential successor block
into the C-block's locally compacted schedule. If all the non-branch instructions are moved out
of the C-block's successor, the scheduler then attempts to move any remaining branch
instruction(s) into the C-block's penultimate LIW. If the scheduler succeeds in moving
instructions from a successor block which has more than one predecessor, copies of the moved
instructions are introduced into the procedure's flow graph to preserve the correctness of the
program.

If the C-block ends in an unconditional branch code motion is limited only by data
dependencies and the availability of instruction slots in the C-block's locally compacted
schedule. If the C-block ends in a conditional branch the scheduler must first verify that the
instructions it attempts to move can be conditionally executed on the value of the Boolean
variable which governs the C-block's branch. A simple IF .. THEN..ELSE statement will
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illustrate the effect of conditional compaction:

EQ B1,R1,R2 /* Calculates a Boolean value */
BT B1, ELSE /* Branch IF Boolean TRUE */
NOP /* Branch delay slot */ Block 1

Instrl BRA OUT
Instr2 ' Block 2

ELSE: Instr3 Instr4
Instr5 : Block 3

OUT: Instr6
Instr7 Instr8

Block 4

Block 1 branches forwards. In the case of a forward branch the compaction program favours
the removal of short branches, by attempting to move instructions from the sequential
successor block (block 2) before considering the branch target block (block 3). In this example
all the instructions in block 2 can be conditionally executed on the value of B1 which governs
the branch. Conditionally executed copies of the non-branch instructions are successfully
moved into block 1's schedule, and the corresponding instructions are removed from block 2.
Similarly a conditionally executed copy of the remaining branch instruction, FB1 BRA OUT,
is then moved into block 1's penultimate LIW (where it is replaced by the equivalent
unconditionally executed instruction BF B1,0UT) and the corresponding instruction is
removed from block 2. Block 2, which can only be entered from block 1, is then empty, so it
is removed from the flow graph. This means that block 1's original branch, BT B1, ELSE, is
redundant (as block 3 is now block 1's sequential successor), so it is removed giving:

EQ B1,R1,R2
BF B1, OUT; F B1 Instrl;
F B1 Instr2; Block 1
Instr3 Instr4
Instr5 : Block 3
ouT Instr6
Instr7 Instr§
’ Block 4

Block 1 has thus acquired a new sequential successor block (block 3) and a new branch target
block (block 4), so it is returned to the compaction list where the process is repeated. In this
case one instruction is moved from the sequential successor block, and two instructions are
moved from the branch target block giving:

EQ B1,R1,R2
BF B1,0UT+2; FBllInstrl; T BI1 Instr3; F B1 Instr6;
FB1Instr2;, FBI1 Instr7; Block 1
Instr4
InstrS Block 3
OUT+2 Instr8
) Block 4

4.0 Investigation and Results

Our investigation was conducted using C and Modula-2 versions of a set of short,
general-purpose integer benchmarks, running on a simulation of the machine model. The C
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programs were translated into sequential HARP assembler by a GNU-CC generated compiler.

The Modula-2 versions were translated by an in-house Modula-2 compiler produced as part of

the project.? The simulator executes fixed length LIWs, containing any combination of short

instructions, subject to a maximum of two branch instructions per LIW. Table 1 describes the

- benchmark programs, and gives the dynamic cycle count for the conditionally compacted
sequential code for both sets of benchmarks. Conditional compaction was applied to the
sequential code in an attempt to fill the branch delay slots.

Tables 2-5 show the performance of the conditionally compacted code obtained for both sets
of benchmarks using configurations of the architecture which allow four ALU and one Boolean
instruction to be executed in parallel with one/two branch and one/two memory reference
instructions. Table 6 summaries the average speedups over the conditionally compacted

- sequential code obtained for these configurations. The results of a previous investigation!4 into
the performance of the scheduling technique for the C versions of the Stanford integer
benchmarks have shown that there is little to be gained by allowing more than four ALU
instructions to be executed in parallel.

As can be seen from the results in Table 6, the configuration which allows one branch and
one memory reference instruction to be scheduled in parallel achieves speedups of 1.75 and
2.25 for the C and Modula-2 code respectively. Allowing two branches to be scheduled in
parallel with a single memory reference increases these speedups by a factor of 2.9% for the C
and 4.0% for the Modula-2. (Although it should be noted that since concurrent branch
instructions are always executed, or taken, on opposite Boolean conditions only one branch is
actually taken). Greater improvements would be obtained by using procedure in-lining to
remove subroutine calls which inhibit the performance of the scheduler.14

In contrast, allowing two memory reference instructions to be scheduled in parallel with a
single branch increases the speedups obtained for the one branch, one memory reference
configuration by a factor of 7.4% for the C and 8.4% for the Modula-2. While allowing two
branch and two memory reference instructions to be scheduled in parallel achieves a speedup of
1.95 for the C, and 2.55 for the Modula-2. These results represent increases of 11.43% and
13.3% over the single branch, single memory reference configuration and imply that the
hardware required to executed two parallel memory reference instructions, principally a greater
data cache bandwidth and a dual ported data memory, is well worth considering.

Finally it can be seen that in all cases the speedups obtained for the Modula-2 programs are

- significantly greater than the speedups obtained for the C. This is due in part to differences in
the sequential compilers (the GNU_CC generated compiler produces slightly more optimised
code) but is mainly a reflection of the differences in the source languages. In particular C does
not have array bounds checking; and so translates to shorter basic blocks which have less
potential for compaction, particularly local compaction (Table 7 shows that average speedups of
1.44 and 1.97 were obtained for the locally compacted C and Modula-2 code scheduled for the
two branch, two memory reference configuration). These results highlight the effect that the
benchmark's source language, and the sequential compiler, can have on the performance of the
scheduling algorithm, and demonstrate that these factors need to be taken into account when
considering the results of any study of this nature.

5.0 Concluding Remarks

This paper presents the machine model for HARP, a LIW architecture characterised by a
streamlined four stage instruction pipeline, unrestricted register bypassing, an ORed addressing
mechanism, and conditional instruction execution. It then describes conditional compaction; a
simple instruction scheduling technique which uses HARP's conditional execution mechanism
to increase the scope of the scheduler beyond basic blocks. The paper gives the results of
experiments to compare the speedups of C and Modula-2 versions of a set of benchmark
programs, running on a simulation of the machine model which allows a maximum of one
Boolean and 4 ALU instructions to be scheduled in parallel with one/two branch instructions
and one/two memory reference instructions. These experiments result in maximum speedups of
1.95 and 2.55 respectively for the two branch, two memory reference model. These results are
in-line with the project objective of developing a processor-compiler system capable of
sustained execution rates in excess of two instructions per cycle for general-purpose code.
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Program  Dynamic Instr. Count for Description

Cond.Compacted Seq. Code

C Modula-2

Bubble 1315 2702 Bubble sort of 10 integers
Quick 1121 1937 Recursive quick sort of 10 integers
Perm 20013 29251 Recursive computation of all permutations of 5 elements
Queens 25067 49720 Recursive solution of the 8 queens chess problem
Intmm 3698 7419 Multiplies two 5x5 integer matrices
Binsearch 176 222 Iterative binary search of an array of 9 integers
Fib 1050 1207 Recursive computation of the first 6 Fibonacci nos.
Sieve 6034 8301 Computes the prime numbers between 3 and 43 using

the Sieve of Eratosthenes

Table 1. The Benchmark Programs




Program Dynamic Instruction Count Speedup Over Conditionally Compacted

Sequential Code
C Modula-2 C Modula-2
Bubble 634 1227 2.07 2.20
Quick 785 1061 1.43 1.83
Perm 12808 14192 1.56 2.06
Queens 16215 18034 1.55 2.76
Intmm 1808 2538 2.05 2.92
Binsearch 90 97 1.96 2.29
Fib 747 708 1.41 1.70
Sieve 3056 . 3767 1.97 2.20
Average 1.75 2.25

Table 2. Performance of the Conditionally Compacted Code for the 1 branch, 1
memory reference, 4 ALU, 1 Boolean Configuration of the Model

Program Dynamic Instruction Count Speedup Over Conditionally Compacted
Sequential Code
C Modula-2 C Modula-2
Bubble 632 1213 2.08 2.23
Quick 739 1041 1.52 1.86
Perm 12460 13700 1.61 2.14
Queens 15989 18017 1.57 2.76
Intmm 1754 2429 2.11 3.05
Binsearch 86 86 2.05 2.58
Fib 703 708 1.49 1.70
Sieve 3054 3415 1.98 2.43
Average 1.80 2.34

Table 3. Performance of the Conditionally Compacted Code for the 2 branch, 1
memory reference, 4 ALU, 1 Boolean Configuration of the Model

Program Dynamic Instruction Count Speedup Over Conditionally Compacted
Sequential Code
C Modula-2 C Modula-2
Bubble 608 1217 2.16 2.22
Quick 727 1001 1.54 1.94
Perm 9858 11414 2.03 2.56
Queens 14972 17131 1.67 2.90
Intmm 1803 2506 2.05 2.96
Binsearch 89 94 1.98 2.36
Fib 634 513 1.66 2.35
Sieve 3056 3767 1.97 2.20
Average 1.88 2.44

Table 4. Performance of the Conditionally Compacted Code for the 1 branch, 2
memory reference, 4 ALU, 1 Boolean Configuration of the Model




Program Dynamic Instruction Count Speedup Over Conditionally Compacted

Sequential Code
C Modula-2 C Modula-2
Bubble 606 1203 2.17 2.25
Quick ‘ 681 981 1.65 1.97
Perm 9510 10684 2.10 2.74
Queens 14746 - 17002 1.70 2.92
Intmm 1749 2397 2.11 3.10
Binsearch 85 83 2.07 - 2.67
Fib 590 513 1.78 2.35
Sieve 3054 3415 1.98 2.43
Average 1.95 2.55

Table 5. Performance of the Conditionally Compacted Code for the 2 branch, 2
memory reference, 4 ALU, 1 Boolean Configuration of the Model

Max no. of branch and mem. Average speedup over the conditionally
ref. instrs. scheduled in parallel compacted sequential code.

with 4 ALU and 1 Bool instr. C Modula -2

1 branch, 1 memory ref. 1.75 2.25

2 branch, 1 memory ref. 1.80 2.34

1 branch, 2 memory ref. 1.88 2.44

2 branch, 2 memory ref. 1.95 2.55

Table 6. Average Speedups of the Conditionally Compacted Benchmarks for
Different Configurations of the Machine Model.

Program Dynamic Instruction Count Speedup Over Conditionally Compacted
Sequential Code - :
C Modula-2 C Modula-2
Bubble 1075 1510 1.22 1.79
Quick 936 1209 1.20 1.60
Perm 10928 11091 1.83 2.64
Queens 21276 21526 1.18 2.31
Intmm 2116 3261 1.75 2.28
Binsearch 118 135 1.49 1.64
Fib 681 584 1.54 2.07
Sieve 4656 5696 1.30 1.46
Average : 1.44 1.97

Table 7. Performance of the Locally Compacted Code







