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ABSTRACT

The new generation of radio interferometers is characterized by high sensitivity, wide fields of view and large fractional bandwidth. To
synthesize the deepest images enabled by the high dynamic range of these instruments requires us to take into account the direction-
dependent Jones matrices, while estimating the spectral properties of the sky in the imaging and deconvolution algorithms. In this
paper we discuss and implement a wideband wide-field spectral deconvolution framework (DDFacet) based on image plane faceting,
that takes into account generic direction-dependent effects. Specifically, we present a wide-field co-planar faceting scheme, and discuss
the various effects that need to be taken into account to solve for the deconvolution problem (image plane normalization, position-
dependent Point Spread Function, etc). We discuss two wideband spectral deconvolution algorithms based on hybrid matching pursuit
and sub-space optimisation respectively. A few interesting technical features incorporated in our imager are discussed, including base-
line dependent averaging, which has the effect of improving computing efficiency. The version of DDFacet presented here can account
for any externally defined Jones matrices and/or beam patterns.

Key words. instrumentation: adaptive optics – instrumentation: interferometers – methods: data analysis – techniques:
interferometric

1. Introduction

The new generation of interferometers is characterized by very
wide fields of view, large fractional bandwidth, high sensitiv-
ity, and high resolution. The cross-correlation between volt-
ages from pairs of antenna (the visibilities) are often affected
by severe baseline-time-frequency direction-dependent effects
(DDEs) such as the complex beam patterns (pointing errors,
dish deformation, antenna coupling within phased arrays), or
by the ionosphere and its associated Faraday rotation. The
dynamic range needed to achieve the deepest extragalactic sur-
veys involves calibrating for DDEs (see Noordam & Smirnov
2010; Kazemi et al. 2011; Tasse 2014b,a; Smirnov & Tasse 2015,
and references therein) and taking them into account in the
imaging and deconvolution algorithms.

The present paper discusses the issues associated with esti-
mating spatial and spectral properties of the sky in the pres-
ence of DDEs. Those can be taken into account (i) in the
Fourier domain using A-Projection (Bhatnagar et al. 2008;
Tasse et al. 2013), or (ii) in the image domain using a facet
approach (van Weeren et al. 2016; Williams et al. 2016). Algo-
rithms of type (i) have the advantage of giving a smooth image
plane correction, while (ii) can give rise to various discontinu-
ity effects. However, (i) is often impractical in the framework
of DDE calibration, since a continuous (analytic) image plane

description of the Jones matrices has to be provided, while most
calibration schemes estimate Jones matrices in a discrete set of
directions. An additional step would be to spatially interpolate
the DDE calibration solutions, but this often proves to be diffi-
cult due to the very nature of the Jones matrices (2 × 2 complex
valued), and to the unitary ambiguity (see Yatawatta 2013, for
a discussion on estimating beam pattern from sets of direction-
dependent Jones matrices). Instead, in this paper we address the
issue of imaging and deconvolution in the presence of generic
DDEs using the faceting approach.

In Sect. 2, we present a general method of imaging non-
coplanar data on a multi-facet single tangential plane using
modified W-projection kernels (FW kernels). This is a gener-
alization of the original idea presented by Kogan & Greisen
(2009). In Sect. 3, we describe the non-trivial effects that arise
when forming a dirty image from a set of visibilities and Jones
matrices. Specifically, the vast majority of modern interferom-
eters have large fractional bandwidth and, since the station (or
antenna1) beams scale with frequency, the effective PSF varies
across the field of view. We therefore stress here that even if (i)
the effect of decorrelation is minimized, and (ii) DDEs are cor-
rected for, all existing imagers will give biased morphological

1 Throughout the paper, we use the terms stations and antennas
interchangably to refer to the elements of an interferometer.
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results (unresolved sources will appear to be larger toward the
edge of the field, since higher-order spatial frequencies are pref-
erentially attenuated by the beam response). The imaging and
deconvolution framework presented here (DDFacet2) is the first
to take all these combined effects into account.

Another important aspect of the work presented in this paper
is wide-band spectral deconvolution: the large fractional band-
width of modern radio interferometers and the need for high
dynamic range images means deconvolution algorithms need
to estimate the intrinsic continuum sources spectral properties.
This is routinely done by the widely used wide band MTMS-
CLEAN deconvolution algorithm (Rau & Cornwell 2011). An
alternative approach has been implemented by Offringa et al.
(2014) in the WSCLEAN package. However, since the sources
are affected by frequency dependent DDEs, one needs to couple
wide-band and DDE deconvolution algorithms. To our knowl-
edge only Bhatnagar et al. (2013) have implemented such an
algorithm, but it is heavily reliant on the assumption that the
antennas are dishes, and most directly applicable to the VLA.
Also, it does not deal with baseline-time-frequency dependent
DDEs (which give rise to a direction-dependent PSF). We aim to
build a flexible framework that can solve the wide-band decon-
volution problem in the presence of generic DDEs. Specifically,
in Sect. 4, we present two wide-band deconvolution algorithms
that natively incorporate and compensate for the DDE effects
discussed above. The first uses a variation of a matching pursuit
algorithm to which we have added an optimisation step. The sec-
ond uses joint deconvolution on subsets of pixels, and we refer to
it as a subspace deconvolution. We have implemented one such
approach using a genetic algorithm.

In Sect. 5, we present an implementation of the ideas
presented in this paper. Our implementation includes baseline-
dependent averaging (Sect. 5.2), and irregular tessellation (Sect.
5.4). A simulation is discussed in detail in Sect. 6. We outline
the main results of this paper in Sect. 7.

2. Faceting for wide field imaging

The purpose of faceting is to approximate a wider field of view
with many small narrow-field images. Cornwell & Perley (1992)
have proposed a polyhedron-like faceting approach, where each
narrow-field facet is tangent to the celestial sphere at its own
phase center. One of the biggest drawbacks of the noncoplanar
polyhedron faceting approach is that the minor cycle deconvolu-
tion becomes complicated. Specifically, one needs to re-project
each noncoplanar facet into a single plane after synthesis (i.e.
in the image-space). Doing the necessary re-projections and
inevitable (and expensive) corrections for the areas where the
facets overlap can be done through astronomy mosaicing soft-
ware packages such as the Montage suite (Jacob et al. 2004).

Alternatively, Kogan & Greisen (2009) have described a fun-
damentally different technique allowing one to build the facets
onto a single, common tangential plane. This algorithm con-
sists in applying w-dependent (u, v) coordinate transformation.
However, phase errors due to noncoplanarity quickly become a
problem, and a W-projection type (Cornwell et al. 2008) correc-
tion needs to be applied. As shown in Sect. 2.2 the kernels we
are applying are facet-dependent, and differ from the classical
W-projection kernels (the gridding and degridding algorithms
are described in detail in Sect. 5.2).

2 DDFacet is an imager, implemented in C and Python. It will be made
publicly available shortly after the publication of this paper.

2.1. Formalism for the faceting

In order to model the complex direction-dependent effects
(DDE–station beams, ionosphere, Faraday rotation, etc), we use
the Radio Interferometry Measurement Equation (RIME) for-
malism, which provides a model of a generic interferometer
(for extensive discussions of the validity and limitations of the
measurement equation see Hamaker et al. 1996; Smirnov 2011).
Each of the physical phenomena that transform or convert the
electric field before the correlation is modeled by linear transfor-
mations (2 × 2 matrices). If s = [l,m, n =

√
1 − l2 − m2]T is a

sky direction, and MH stands for the Hermitian transpose opera-
tor of matrix M, then the 2× 2 correlation matrix V(pq)tν between
antennas p and q at time t and frequency ν can be written as:

V(pq),tν =

∫
s
(GpstνXs GH

qstν)k
s
(pq),tνds + n(pq),tν (1)

with ks
(pq),tν = exp

(
−2iπ

ν

c
(bT

pq,t(s − s0))
)

(2)

and bpq,t =

upq,t
vpq,t
wpq,t

 =

up,t
vp,t
wp,t

 −
uq,t
vq,t
wq,t

 (3)

and s =

 l
m
n

 and s0 =

00
1

 , (4)

where bpq,t is the baseline vector between antennas p and q.
The scalar term ks

(pq)tν describes the effect of the array geometry
and correlator on the observed phase shift of a coherent plane
wave between antennas p and q. The 2 × 2 matrix Gpstν is the
product of direction-dependent Jones matrices corresponding to
antenna p (e.g., beam, ionosphere phase screen and Faraday rota-
tion), and Xs is referred as the sky term in the direction s, and
is the true underlying source coherency matrix. The term n(pq),tν
is a random variable modeling the system noise. In the follow-
ing however, we will assume E

{
n(pq),tν

}
= 0 and implicitly work

on the expected values E {.} rather than on the random variables
(except in Sect. 3.4 and 3.5, where we describe the structure of
the noise in the image domain). Making the (tν) indices implicit,
we can transform Eq. (2) to:

Vpq =
∑
ϕ

∫
s∈Ωϕ

(GpXs GH
q )ks

pq,ϕ

 (5)

ks
pq,ϕ = exp

(
−2iπ

ν

c
bT

pq(sϕ − s0)
)

(6)

× exp
(
−2iπ

ν

c
bT

pqδsϕ
)
,

where sϕ = [lϕ,mϕ, nϕ]T is the direction of the facet phase center
and δsϕ = s − sϕ = [l − lϕ,m − mϕ, n − nϕ] = [δlϕ, δmϕ, δnϕ] are
the sky coordinates in the reference frame of facet ϕ.

Applying the term first exponential in Eq. (6) to the visibili-
ties, one still need to apply the position dependent term (second
exponential), which can be decomposed as:

exp
(
−2iπ

ν

c
bT

pqδsϕ
)

= exp
(
−2iπ

ν

c
(uδlϕ + vδmϕ)

)
(7)

× exp
(
−2iπ

ν

c
wδnϕ

)
.
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The second exponential term is the analog of the w-term cor-
rected for in the W-projection style algorithms. As pointed out
by Kogan & Greisen (2009), the first order Taylor expansion
approximation of δnϕ can be written as:

δnϕ ≈ −
1√

1 − l2ϕ − m2
ϕ

(lϕδlϕ + mϕδmϕ) (8)

which, conveniently, can be expressed in terms of a coordinate
change in uv:

exp
(
−2iπ

ν

c
bT

pqδsϕ
)
≈ exp

(
−2iπ

ν

c
(u′δlϕ + v′δmϕ)

)
(9)

with u′ = u − w lϕ√
1−l2ϕ−m2

ϕ

and v′ = v − w
mϕ√

1−l2ϕ−m2
ϕ

. The linear

approximation of δni (Eq. (8)) is plotted in Fig. 1.

2.2. Accurate noncoplanar faceting

As shown in Fig. 1, a more accurate approximation of the δnϕ =

f
{
δlϕ, δmϕ

}
term may be obtained by a fitting a low-order 2D

polynomial

δnϕ ≈(δlk
ϕ)T Pk,ϕ(δmk

ϕ) (10)

where δlk
ϕ =

[
1, δlϕ, δl2ϕ, . . . , δl

k
ϕ

]T
is a basis function vector for

the kth-order 2D polynomial, and Pk,ϕ is the matrix containing
the polynomial coefficients. We can then write

bT
pqδsϕ = uδlϕ + vδmϕ + w(δlk

ϕ)T Pk,ϕ(δmk
ϕ) (11)

defPk
=== (u + wP[10]

k,ϕ )δlϕ + (v + wP[01]
k,ϕ )δmϕ

+ w(δlk
ϕ)T Pk,ϕ(δmk

ϕ) (12)
def(u′,v′)
===== u′δlϕ + v′δmϕ + w(δlk

ϕ)T Pk,ϕ(δmk
ϕ) (13)

defCsϕ
===== (Csϕ bpq)Tδsϕ + w(δlk

ϕ)T Pk,ϕ(δmk
ϕ) (14)

where Pk,ϕ is equal to Pk,ϕ with the coefficients P[01]
k and P[10]

k
in cells [0, 1] and [1, 0] zeroed. Based on this polynomial fit,
we compute a series of convolutional kernels which we term
FW-kernels (for “fitted w kernels”), and apply them by exact
analogy with W-projection. As in Kogan & Greisen (2009), we
can see here that the first order coefficient of the polynomial
fit Pk,ϕ is equivalent to a w-dependent (u, v) coordinate scal-
ing. This has the effect of taking off the main component of the
w-related phase gradient, and thereby reducing the FW-kernels’
support size (step from Eq. (11) to Eq. (12)) that depends on
(i) the w-coordinate, (ii) the facet diameter and (iii) its loca-
tion. In practice, if the facets are small enough (as it is the case
when applying DDEs–see Sec. 3), the support of the FW-kernels
is only marginally larger than the spheroidal-only kernel. The
FW-kernels are computed per facet, per a given w-plane, as

WF

{
δlϕ, δmϕ

}
= exp

(
−2iπ

ν

c
w(δlk

ϕ)T Pk,ϕ(δmk
ϕ)

)
. (15)

In practice, a 3rd to 5th-order polynomial is sufficient to accu-
rately represent the w-related phase variation across a given
facet.

Fig. 1. Comparison between the true δni term, and the first-order
approximation (right), and residuals (left). The Kogan & Greisen (2009)
approximation breaks down away from the facet center (labeled as uv-
scaling, dotted line). Applying classical W-projection together with a
Kogan & Greisen (2009) style coordinate transformation works better
(dashed line), but a blind 3rd–5th-order polynomial works best (solid
line).

3. Imaging in the presence of direction dependent
effects

In this section, we describe, in terms of linear algebra, how
the DDEs are taken into account in the forward (gridding) and
backward (gridding) imaging steps.

Specifically, we describe how the dirty images and associated
PSFs are constructed from the set of direction-time-frequency
dependent Jones matrices. We show in Sect. 3.1 that, in general,
in the presence of baseline-time-frequency dependent effects,
the linear mapping T ν (Eq. (18) below) between the sky and
the dirty image is not a convolution operator. However, in
Sect. 3.5, we describe a first-order image correction that modifies
this function into a direction-dependent convolution operator,
under the condition that the Mueller matrices are approximately
baseline-time-frequency independent. As shown in Sect. 3.6, this
correction is not sufficient, and the effective PSF retains a direc-
tional variation. “Local” PSFs then have to be estimated per
facet. In this way, the normalized linear mapping T̃ ν (Eq. (30)
below) can be understood as a local convolution operator.

3.1. Forward and backward mappings

In order to study the properties of the linear function, it is con-
venient to describe this mapping from image to visibility space
and back performed by the algorithm using linear algebra. For a
given sample of 4 visibility products, Eq. (1) can be written in
terms of a series of linear transformations:

vbν = SbνFMbν xν
defAbν
=== Abν xν (16)

where vbν is the visibility 4-vector sampled by baseline
b = (p, q, t) at frequency ν (for most of this section, we assume
a narrow-band scenario). If nx is the number of pixels in
the sky model, the true sky image vector xν has a size of
4nx, and for each sky pixel i = 1 . . . nx, the four correspond-
ing correlations3 (XX,XY,YX,YY)i or (RR,RL,LR,LL)i are
packed into xν starting from index 4i. Then,Mbν represents the
DDEs, and is a (4nx) × (4nx) block diagonal matrix. For any
given image pixel i, the corresponding 4 × 4 block of Mbν is
the Mueller-like4 matrix associated with the pixel direction si:

3 In practice the gridder and degridder of DDFacet works on Stokes
quantities that can be constructed from measured visibilities.
4 A Mueller matrix proper operates on Stokes vectors rather than vis-
ibility vectors. The Mueller matrix in this case would be given by
S−1Mbν

si S, where S is the 4×4 conversion matrix mapping Stokes vectors
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Table 1. Overview of the mathematical notations used throughout this
paper.

nx . . number of pixels in the image domain.
nv . . number of visibilities (per single frequency).
np . . number of spatio-spectral parameters to model the

sky.
I . . The unit matrix.
〈wi fi〉Ω The mean weighted sum of fi over a set of indices

Ω. Weights are assumed to be normalized through-
out.

b . . Index representing a baseline-time, i.e. a pair of
antennas pq at time t.

bν . . Index representing a baseline-time-frequency
(BTF) point.

Ων The set of all BTFs bν (i.e. nv elements) for a given
frequency ν.

vbν . The 4-visibilities vector corresponding to bν.
xν . . The true sky vector (at frequency ν) of size (4nx).
yν . . The dirty image vector (at frequency ν) of size

(4nx).
F . . The Fourier transform matrix of size (nv × nx).

Each column is the Fourier kernel mapping a given
sky coordinate to all visibilities.

Sbν . The matrix of size (4 × 4nv) representing the opera-
tor that selects 4 out of 4nv visibilities.

Mbν
s . The 4 × 4 Mueller-like matrix of a given BTF point

bν, for direction s.
Mbν . A block diagonal matrix of size (4nx × 4nx), repre-

senting the DDE effect over the image domain for
BTF point bν. Each diagonal block i is a 4 × 4 Mbν

si

matrix.
T ν . The direction-dependent transfer function at fre-

quency ν, mapping the sky vector xν onto the dirty
image vector yν

M̃ν . The image plane normalisation used to tranform T ν

to a local convolution matrix.
(̃.) . . An object affected by the image plane normalisa-

tion M̃ν.
Wν . Diagonal matrix of size (4nv × 4nv) representing the

data weighting for frequency ν.
Cbν . The PSF corresponding to a single BTF bν.
Θ . . A transfer function mapping the spatio-spectral sky

model vector to the spectral dirty cube.
Πi
ν . A (nx × np) matrix describing the transfer func-

tion between the spatio-spectral sky model vec-
tor around pixel i to the spectral dirty cube at
frequency ν.

Mbν
si = G∗q(t, ν, si) ⊗ Gp(t, ν, si). F is the Fourier transform oper-

ator of size (4nv) × (4nx). Each of its (4 × 4) blocks is a scalar
matrix, the scalar being the kernel of the Fourier basis ksi

(pq),tν (see
Eq. (2)). The matrix Sbν is the sampling matrix, size 4 × (4nv),
which selects the 4 visibilities corresponding to bν

For the full set of nv 4-visibilities associated with channel ν,
which we designate as Ων, (bν ∈ Ων then means that the bν index
can be taken to represent a visibility index from 1 to nv), we can

to visibility vectors. See for example Hamaker et al. (1996); Smirnov
(2011).

stack nv instances of Eq. (16) to write the forward (image-to-
visibility) mapping as:

vν =


...
Abν
...

 xν
defAν
=== Aνxν. (17)

Note thatAν represents the “ideal” mapping from images to
visibilities, in the sense that a unique DDE is applied at every
pixel (ignoring the approximation inherent to pixelizing the sky,
we can say that Aν represents the true instrumental response).
Implementing Aν directly in the forward (modeling) step of an
imager would be computationally prohibitive: it is essentially
a DFT (Direct Fourier Transform) with pixel-by-pixel appli-
cation of DDEs. Existing approaches therefore construct some
FFT-based (Fast Fourier Transform) approximation to Aν. The
convolutional function approach, i.e. AW-projection, approxi-
mates Aν by a single FFT followed by convolutions in the
uv-plane during degridding. The facet-based approach of the
present work segments the sky xν into facets, then does an FFT
per-facet, while applying a constant DDE Mbν

sϕ (where sϕ is the
direction of facet ϕ). The resulting approximate forward opera-
tor, Âν, becomes exactly equal toAν in the limit of single-pixel
facets (see Sect. 3.7 for a further discussion).

3.2. Forming the dirty image

Since Aν is generally noninvertible, imaging algorithms tend
to construct the adjoint operator AH

ν , or some approximation

thereof ÂH
ν , to go back from the visibility domain to the image

domain5. This amounts to forming the so-called dirty image.
In the framework of facets and DDE calibration, we obtain

what is at best an estimate Âν (due to finite facet sizes, and
also calibration errors), and therefore the adjoint operator being
applied is also an approximation. The same applies to convo-
lutional gridding approaches. For the purposes of this section,
however, let us assume that the approximation is perfect. We then
have the following for the dirty image vector yν:

yν =AH
νWνvν (18)

=AH
νWνAν xν

defT
=== T xν (19)

=
〈
wbνM

H
bνF

H
S

H
bνSbνFMbν

〉
Ων

xν (20)

defCbν
===

〈
wbνM

H
bνCbνMbν

〉
Ων

xν (21)

where Wν is a diagonal matrix containing the set of weights
wbν at frequency ν. Note that the weighted sum comes about
due to the block-column of Eq. (17) being left-multiplied by its
conjugate, a block-row.

For each bν, the matrix Cbν = FH
S

H
bνSbνF is a convolu-

tion, as a direct consequence of the Fourier convolution theorem.
This matrix represents the convolution of the sky by the PSF
corresponding to a single uv-point (i.e. a single fringe). In the
absence of DDEs (Mbν ≡ I), the linear mapping T ν can be writ-
ten as a a weighted sum of such matrices, and is therefore also a
convolution:

yν =
〈
wbνCbν

〉
Ων

xν
defC
=== Cxν. (22)

5 This can be motivated as follows: for any given matrix A, the null
spaces ker {A} and ker

{
AH A

}
are identical. Therefore, applying the

adjoint operator AH to go back to images from visibilities preserves
all information not destroyed byA.
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This is just the familiar result that in the absence of DDEs,
the dirty image is a convolution of the apparent sky by a PSF.

Below, we show that in the presence of DDEs (even
corrected-for DDEs), this relationship generally ceases to be a
true convolution. We will also show that, under certain con-
ditions, the mapping can be modified (at least approximately)
into a local convolution, i.e. one where the PSF varies only
slowly with direction. This distinction is important: most minor-
loop deconvolution algorithms such as CLEAN either assume
the problem is a true (global) convolution, or can be trivially
modified (at least in the faceted approach) to deal with a local
convolution problem, i.e. a position-dependent (per facet) PSF.

3.3. Toeplitz matrices and convolution

Any matrix C representing a one-dimensional convolution is
Toeplitz, and vice versa. A Toeplitz matrix is a matrix in which
each descending diagonal is constant, i.e. Ci j = Ci+1, j+1 ≡ ci− j.
We now show that a similar property, which we’ll call
Toeplitzian, can be defined for convolution of 2D, 4-polarization
images. We can then discuss how DDEs break the convolu-
tion relationship by making the matrix representing the tranfer
function less Toeplitzian.

First, consider matrices that represent 2D convolution of
scalar (unpolarized) images. The pixel ordering, i.e. the order in
which we stack the pixels of a 2D image into the image vectors
x and y, induces a mapping from vector index i to pixel coor-
dinates (li,mi). Given a fixed pixel ordering, consider a matrix
C whose its elements are constant with respect to a translation
of pixel coordinates, i.e. Ci j = Ci′ j′ for all i j and i′ j′ such that
li − l j = li′ − l j′ and mi − m j = mi′ − m j′ . There then exists a
function of pixel coodinates c(l,m) such that for all i j

Ci j = c(li − l j,mi − m j) = c(∆li j,∆mi j), (23)

and it is then easy to see that applying the C matrix to the image
vector x corresponds to a 2D convolution of the corresponding
image by c, and vice versa. For an n×n image, assuming the con-
ventional pixel ordering of stacked columns (or rows), the matrix
C is composed of n×n blocks, each block being an n × n Toeplitz
matrix. Each constant descending diagonal in each such block
represents a constant pixel separation ∆l,∆m. In other words, Ci j
is constant for any pair of pixels having the same pixel separation
∆l,∆m.

To generalize this to 4-polarization images, we simply
replace Ci j in Eq. (23) by a 4 × 4 scalar matrix. Our general
Toeplitzian matrix is then composed of n × n blocks, each block
being a 4n × 4n Toeplitz matrix composed of 4 × 4 scalar matri-
ces. Each column of such matrix represents the convolution
kernel (or PSF), shifted to the position of the appropriate image
pixel.

The linear function defined by the PSF Cbν or C is
Toeplitzian, with 1 on the main diagonal (corresponding to the
peak of the PSF). We focus on two regimes in which a matrix
becomes non-Toeplitzian. The first one is simple, when Ci j in
Eq. (23) is constant to within a 4 × 4 per-column scaling fac-
tor M j. This correponds to an attenuation of the image byMν,
followed by a convolution:

yν = CMνxν
defx̃ν
=== C x̃ν. (24)

This regime arises when trivial (i.e. non time-baseline depen-
dent) DDEs are present and not accounted for when forming the
dirty image.Mν can be factored out of the sum in Eq. (21) and

absorbed into the apparent sky x̃ν. In this case we can still talk
of the PSF shape being constant across the image.

The more complex regime arises when the mapping is non-
Toeplitizian in the sense that the shape of the PSF changes across
the image. This naturally arises when nontrival DDEs are present
and not accounted for, and the dirty image is the weighted sum
of the sky affected by baseline-dependent DDE

yν =
〈
wbνCbνMbν

〉
Ων

xν. (25)

More subtly, even if DDEs are perfectly known and
accounted for in AH , the resulting function is, generally, not
a convolution, in the sense that the shape of the PSF becomes
direction-depedent. This is obvious in the case of nonunitary
Mbν (since its amplitude essentially appears twice in Eq. (21),
and the resulting dirty image requires renormalization – we will
return to this again below). Less obvious is that this holds, gener-
ally, even for unitaryMbν . Consider the simple case of a scalar,
unitary DDE (i.e. a phase term affecting both polarizations
equally). This corresponds to a diagonalMbν with Mi = eıψi on
the diagonal. If the matrix elements of Cbν are given by Ci j, then
each element of MH

bνCbνMbν , i.e. the response at dirty image
pixel j to a source at pixel i (i.e. the PSF sidelobe response), is
given by

C′i j = M∗i Ci jM j = Ci jeı(ψ j−ψi). (26)

It is easy to see that the (Toeplitzian) condition of Eq. (23) is
only satisfied if ψ j − ψi is constant for any pair of pixels having
the same pixel separation ∆l,∆m. This condition is only true for
a linear phase slope over the image.

We have shown that here all nontrivial DDEs, including uni-
tary ones, with the exception of linear phase slopes, generally
result in a direction-dependent PSF even when perfectly known
and accounted for via Eq. (18). Note that this equation (or some
approximation thereof) is applied by all existing imagers. If we
consider the w-term as a DDE (see, e.g., Smirnov 2011), we can
see that W-projection and W-stacking also represent approxima-
tions of Eq. (18), and therefore still yield a direction-dependent
PSF.

3.4. Loss of local convolution property and nonuniform noise
reponse

Equations (23) and (26) give us a framework in which we can
reason about the degree of direction-dependence in the PSF.
The pixel separation ∆l,∆m corresponds to the PSF sidelobe
at Ci j. Thus, the direction-dependence of a particular PSF side-
lobe ∆l,∆m is determined by the variation of the Mueller matrix
across the image on a length scale of ∆l,∆m. For direction-
dependent effects that are locally approximately linear (i.e. close
to the form of Eq. (26)), the problem is locally a convolution. As
long as this is true, and assuming Mbν is known, one could in
principle incorporate knowledge of a local direction-dependent
PSF into the minor cycle deconvolution algorithm, using the lin-
ear function defined above to form up the dirty images. In the
context of facet imaging this seems straightfoward, as we can
simply compute a PSF per facet (see below). However, if the
Mueller matrices are nonunitary, T ν has two very undesirable
properties.

Firstly, as is clear from Eq. (26), the PSF sidelobe response
C′i j is coupled to Mbν at both positions i and j. Ideally, we
would like to decouple the PSF sidelobe response from the DDE
at position i.
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Secondly, consider the thermal noise response in the dirty
image given by T ν. Thermal noise can be assumed to be
independent and identically distributed Gaussian in the visibil-
ities ubν . If a is a vector of random variables and b = Ba,
then the covariance matrices of the two vectors are related by
Cov{b} = BCov{a}BH . Applying this to Eq. (18), and using σ2

bν
for the variance of the real and imaginary parts of each visibility,
we get

Cov{yν} =
〈
w2

bνσ
2
bνM

H
bνCbνMbν

〉
Ων

, (27)

spatially uniform. In particular, the variance (of the
four polarization products) at each pixel i is given by〈
w2

bνσ
2
bνM

H
bν iMbν i

〉
Ων

.

3.5. Image-plane corrections

We show in this section that when Mbν is approximately
baseline-time independent (at a given frequency), we can find
a dirty image correction that brings T back to a direction-
dependent convolution operator. This is a reasonable assumption
in general if the fractional bandwith of the data chunk is small
enough6, and in this case we can write

T
defM̃ν
≈M̃ν

H 〈
wbCbν

〉
Ων
M̃ν (28)

defCS
=== M̃ν

H
CSM̃ν. (29)

We can see from Eq. (28) that we can construct a modified
normalized image

ỹν =

(
M̃ν

H
)−1
T νxν

defT̃ ν
=== T̃ νxν (30)

mapping. The columns i of T̃ ν are then the PSF of a source
centered on pixel i, and they only differ one to the other by a
matrix product. In other words, the PSF centered on pixel i is the
same as the PSF centered on pixel j to within a constant. Strictly
speaking T̃ ν is not a convolution matrix, but we will refer to it
as a direction-dependent convolution matrix. An alternative way
to look at this is to write ỹν = CS x̃ν where x̃ν = M̃νxν is the
apparent beam-attenuated sky.

In order to obtain M̃ν, we can see from Eq. (28) that although
T ν is not block diagonal, each ith (4 × 4) block on its diagonal
is

T ν[i, i] =
〈
wbM

H
b,iMb,i

〉
Ων
. (31)

Assuming approximate baseline-time independence at ν
of the direction-dependent local convolution function (i.e.
T ν[i, i] ≈ M̃i

H
M̃i), we get

M̃ν=̂

√〈
wbMbν

H
Mbν

〉
Ων
. (32)

If the assumption in Eq. (28) holds (definition of M̃ν), then
the image plane correction exists, and it is given by Eq. (32).
Furthermore we take into account the deviation from this approx-
imation by using the local PSF (Sect. 3.6) in our deconvolution
6 In DDFacet the data is internally imaged into frequency-chunked
spectral cubes, and the correction described here (Eq. (30)) is done on
a user-defined but ideally small bandwidth.

algorithms (Sect. 4). Applying the M̃ν correction in Eq. (27),
the normalized image-plane pixel covariance Cov{ỹν} becomes

Cov{ỹν} =
〈
w2

bνσ
2
bνCbν

〉
Ων

, (33)

and Cov{ỹν} is spatially uniform.
In practice, the Mueller blocks in Mbν are assumed to be

diagonally dominant and are reduced to scalar matrices when
computing M̃ν.

3.6. Direction-dependent PSFs

As shown above, the combined effects of (i) baseline-time-
frequency dependence of the DDEs, and (ii) decorrelation cause
the linear mappings T ν and T̃ ν not to be exact convolution
matrices. Specifically, the large fractional bandwidth makes the
beam pattern vary significantly toward the edge of the field,
and the effective PSF is also direction-dependent. All modern
imagers are indeed affected by problem (i) in the minor cycle,
and problem (ii) in both the major and minor cycles, and so will
produce morphologically biased results away from the point-
ing center. In this section we describe how DDFacet takes into
account and compensates for these effects.

3.6.1. Effect of decorrelation

It follows from Eq. (1) that any source in the sky corresponds to a
complex vector rotating in the uv-domain and any visibility mea-
surement is an averaged value over that domain. This fact causes
the amplitude of the averaged vector to decrease (in the extreme
case in which the phase of the complex vector ranges over [−π, π]
in the domain of averaging, the average vector amplitude can
be zero). This effect is known as decorrelation and is described
in much detail by Bridle & Schwab (1999), Thompson et al.
(2001), Smirnov (2011), Atemkeng et al. (in prep., and refer-
ences therein). One can see from Eq. (1) that the magnitude
of decorrelation depends on (i) the baseline coordinates and
(ii) the distance of the source to the phase center, causing the
effective PSF to be direction-dependent. This effect is a direct
image-domain consequence of baseline and direction-dependent
decorrelation, and is known in the literature as smearing.

The effective mapping is therefore direction-dependent, and
no imaging and deconvolution can take this effect into account.
This has the direct effect of incorrectly estimating the source’s
morphology, and the error gets worse as the source gets fur-
ther away from the phase center. Since the longest baselines are
most affected, decorrelation is minimized by accepting a small
decorrelation (e.g. a few per cent decrease in the ratio to peak to
integrated flux density) at the edge of the field.

A major strength of a facet-based imaging and deconvolution
framework is that we can take decorrelation into account in quite
an easy way by computing a PSF per facet. While computing the
PSF, each unit visibility is multiplied by the factor γpq,t, defined
as

γpq,tν =
sin

(
φpq,t

)
φpq,t

sin
(
ψpq,t

)
ψpq,t

(34)

with φpq,tν = π
∆ν

c
bT

pq,t (s − s0) (35)

and ψpq,tν = π
ν

c
dbpq,t

dt

T

(s − s0) ∆t, (36)
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Fig. 2. The nonunitary Mueller matrices inA cause the mapping in Eq. (19) to not be a convolution operator. The left panels shows the dirty image
yν obtained after applying AH to the visibilities. The image plane correction M̃ν is displayed in the central panel and the corrected image ỹν is
shown in the right panel. As explained in Sect. 3.5 the modified mapping is approximately a direction-dependent local convolution function.

Fig. 3. PSF estimated at various locations of the image plane even after
the transformation described in Eq. (30) is applied. The net local convo-
lution function significantly varies, and this effect is taken into account
by computing a PSF per facet.

where ∆t and ∆ν are the time and frequency size for the domain
over which the given visibility has been averaged, and dbpq,t

dt is
the speed of the baseline in the uv domain. Conversely, in the
forward step of major cycle, γpq,tν can be applied to the model
visibilities on a per-facet basis. This allows decorrelation to be
properly accounted for both in the minor and major cycles.

3.6.2. Per-facet PSFs

In the facet approach, it is staightforward to compute a per-
facet PSF that takes all of the above effects into account during
deconvolution. We compute a PSF per facet φ for a point source
following

ỹν1 =T̃ ν
φ01 (37)

where T̃ ν
φ is the local convolution function function in facet φ,

and 01 is a vector containing zeros everywhere except the cen-
tral pixel, which is set to the value {I,Q,U,V} = {1, 0, 0, 0} Jy.
Figure 3 shows the PSF evaluated for a source in two different
facets.

Note that in the full-polarization case, i.e. given DDEs with
a nontrivial polarization response (nondiagonal, or at least non-
scalar Mueller matrices), it is in principle incorrect to speak of
one PSF. All four Stokes components are, in general, convolved
with different PSFs, and there are also “leakage PSFs” that trans-
fer power between components. A fully accurate description of
the local convolution relationship therefore requires that 16 inde-
pendent PSFs be computed, with all the consequent expense (i.e.
16 separate gridding operations for the PSF computation). In
practice, we limit ourselves to computing the Stokes I PSF, and,

during the minor cycle of deconvolutin, assume that the other
Stokes component PSFs are the same, and treat leakages as negli-
gible, trusting in the major cycle to correct the effect. The impact
of this approximation on polarization deconvolution is a topic for
future study.

3.7. In-facet errors

As explained in Sect. 1, the facet-based imaging and deconvolu-
tion framework presented here has the disadvantage of taking
DDEs into account in a discontinuous manner in the image
domain. Indeed, within a direction-dependent facet, DDEs are
assumed to be constant while they continuously vary. This is
typically the case for beam effects that vary very quickly, espe-
cially around the half power point. We show in this section that
this effect can be partially accounted for by applying a spatially
smooth term to the image ỹν.

In this section we estimate the flux density error across a
given facet ϕ that arises due to the fact that the Jones matrix has
been assumed to be spatially constant. Following Eq. (16), the
residual visibility on a given baseline b can be written as

rbν = SbνF (Mbν xν −Mbν
ϕ x̂ϕ) (38)

where Mbν
ϕ is a (4nx) × (4nx) block diagonal matrix which

represents the direction-independent Jones matrix that has been
assumed for that facet, and x̂ϕ is the sky that has been estimated.
We assume the deconvolution algorithm is subject to anL2-norm
constraint, and

χ2 =
∑

b

(Mbν xν −Mbν
ϕ x̂ϕ)H

Cbν (Mbν xν −Mbν
ϕ x̂ϕ) (39)

is minimized, giving

∂χ2

∂x̂ϕ
= 0 =

∑
b

2Mbν
ϕH
CbνMbν

ϕ x̂ϕ − 2Mbν
ϕH
CbνMbν xν (40)

and therefore

xν =

∑
b

Mbν
ϕH
CbνMbν

−1 ∑
b

Mbν
ϕH
CbνMbν

ϕ

 x̂ϕ (41)

As in Sect. 3.5, assuming the Mbν and Mbν
ϕ are baseline-

time independent at ν we get

xν =Mν
−1
Mν

ϕ x̂ϕ. (42)
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Data: ỹ, t, α, Q, v
Result: The estimated model π̂ of the true sky π in the

basis function P.
1 initialization: π̂ = 0;
/* Start nCycle major cycles */

2 for iCycle in range(nCycle) do
/* Start minor cycles */

3 while max {δ̃y} > t do
4 Find location of brightest pixel:

i = argmax
(
δ̃y

)
;

5 Find locally best sky model centered on pixel i:
π̂i = argmin

πi

(
C0{Θ̃I dπI |δ̃y,Q}

)
[s.t. C1{πi}];

6 Update sky model:
π̂← π̂ + α π̂i;

7 Update residual image:
δ̃y← δ̃y − αΘ̃iπ̂i;

8 end
9 Update residual image:

δ̃y = M̃ν

−H
AHW

(
v −AΠπ̂

)
;

10 end
11 Compute model image x̂ν = Πνπ̂;
12 Compute restored image x̂← δ̃y + C x̂ν;
Algorithm 1: HMP deconvolution algorithm. Here t is a
user defined flux density threshold, α is a minor cycle
loop gain. Other symbols are defined in Table 1 and/or in
the main text.

One can see that when no DDEs are being applied during
deconvolution (Mν

ϕ = I, as is traditionally done in radio astron-
omy), one can correct the fluxes by applying a smooth beam
correction in the image domain.

4. Wideband deconvolution

In this section, we describe how we solve for the sky in the local
deconvolution problem as well as the global inverse problem7

ỹ = T̃ νx. We present two multiscale wideband deconvolution
algorithms that iteratively estimate the underlying true sky. In
contrast to the calibration problem, the deconvolution prob-
lem is linear, but is strongly ill-conditioned. A wide variety of
algorithms have been developed to tackle the conditioning issue.

The first and largest family of deconvolution algorithms in
radio interferometry is based on compressive sampling theory
(or compressive sensing), and assumes the sky can be fully
described by a small number of coefficients in a given dictio-
nary8 of functions (a sparse representation). The dictionary of
functions can be, but is not necessarily, a basis function from
deltas to shapelets. In practice and for a given dataset, a spe-
cific convex solver is used to estimate the coeffiscient associated
to the functions of the dictionary. The cost function is often an
L1-norm subject to an L2 constraint. The widely used CLEAN
algorithm is one of those9 solvers, but we can also mention

7 In an abuse of language we can also call inverting T̃ ν a deconvolution
problem, although strictly speaking it is not a convolution operator.
8 In contrast to a basis, the decomposition of a vector in these
dictionaries is not necessarily unique.
9 Although CLEAN was written before compressive sampling theory
had been described.

MORESANE (Dabbech et al. 2015), or SASIR (Garsden et al.
2015). Each one of these methods uses a specific solver to esti-
mate the coefficients associated with a given dictionary. The
second family of algorithms deals with ill-conditioning using
Bayesian inference.

Only a few existing algorithms are able to accurately estimate
flux densities as well as intrinsic spectral properties (while tak-
ing Jones matrices into account). The most efficient and widely
used of these is the MTMS-CLEAN algorithm (for multi-term
multi-scale, see Rau & Cornwell 2011, and references therein).
Bhatnagar et al. (2013) have extended this algorithm in order to
take time-frequency dependent DDEs into account. The draw-
backs of this algorithm combination are that (i) since each Taylor
coefficient image stacks information from potentially large frac-
tional bandwidth, T̃ ν (Eq. (30), Sect. 3) will tend not to be
a convolution operator, (ii) it decomposes the signal in terms
of Taylor basis functions, and the signal needs to be gridded
nt-times if nt is the number of Taylor terms, and (iii) baseline-
dependent averaging cannot be used with A-Projection (see
Sect. 5.2).

Instead, we produce a (nch × npix) spectral cube, the dirty
images of size (npix) being formed into the corresponding nch
frequency chunks. The spectral cube then contains information
about the sky’s spectral properties. We present in this section two
wideband deconvolution algorithms that estimate flux densities
as well as the intrinsic spectral properties (taking into account
Jones matrices such as primary beam direction-time-frequency
behavior). The first uses a variation of the matching pursuit
CLEAN algorithm, while the second uses a genetic algorithm.

4.1. HMP deconvolution

In this section we present the HMP deconvolution algorithm
(Hybrid Matching Pursuit). The idea is quite simple and con-
sists of decomposing the signal around the brightest pixel i in the
spectral cube ỹ into a sum of components with different spatial
and spectral properties. The basis function is similar to MTMS-
CLEAN (Rau & Cornwell 2011), but the idea differs in that (i) we
grid the data only once (we do not create dirty images at different
resolutions and for different Taylor terms), (ii) the optimisation
step is done on a set of pixels (and not only on the brightest
pixel), and (iii) at each iteration all coefficients are estimated
in the chosen basis function (as opposed to the maximum coef-
ficient only). This last point is illustrated by the example of a
faint extended signal containing a brighter point source. While
Cornwell (2008) have to introduce an ad hoc “small-scale bias”
to reconstruct the compact emission, we aim at finding nonzero
coefficients for the point source and the extended emission, at
each iteration (the same applies to the spectral axis). The fol-
lowing algorithm is implemented in DDFacet, natively taking
direction-dependent residual images and associated PSFs into
account (see Sect. 3.5 for a discussion of the normalization).

We first choose a set P of functions into which we want to
decompose the spectral cube. For example, it can be made of
Gaussians with various sizes and spectral indices. The sky image
xi
ν of models centered on pixel i at a frequency ν is then written

as

xν =
∑

i

Πi
νπi

defΠν
=== Πνπ (43)

and x =


...

xν
...

 defΠ
=== Ππ (44)
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where Πi
ν is the (nx × np) matrix containing the spectro-spatial

dictionary estimated at frequency ν, and πi is the spectro-spatial
sky model of pixel i, containing the np parameter values of the
spectro-spatial dictionary. We can then write the contribution ỹi
of pixel i to the spectral cube as

ỹi =


...
ỹi,ν
...

 =


...

T̃ νΠ
i
ν

...

πi (45)

defΘ̃i
=== Θ̃iπi (46)

and ỹ =
∑

i

Θ̃iπi (47)

defΘ̃
=== Θ̃π (48)

where ν is the frequency chunk and T̃ ν is the normalized spectral
PSF. In short, Θ̃ maps the vector of spatio-spectral coefiscients π
for all pixels to the spectral cube ỹ, taking into account the local
spectral PSFs.

The algorithm is described in detail in Alg. 1. Particular
attention needs to be given to step 5 where we estimate the best
local model by minimizing a cost function. Different cost func-
tions give different variations of HMP. Relaxing the constraint
C1, we can for instance set C0{Θ̃I dπI |δ̃y,Q} as

C0{Θ̃I dπI |δ̃y,Q}
def
==

∥∥∥ỹ − Θ̃iπi
∥∥∥

Q (49)

where the L2 norm ‖x‖Q = xT Q−1x of x is computed for the
metric Q, with Q being in practice a tapering function. The least-
squares solution is then given by the pseudo-inverse

π̂i =

[
Θ̃i

T
Q Θ̃i

]−1
Θ̃i

T
Q ỹ. (50)

Alternatively, we can use a Non-Negative Least
Squares (NNLS) optimisation in step 5 (Alg. 2) by setting
C0{Θ̃I dπI |δ̃y,Q} as in Eq. (49) while constraining the solution
using C1{x}

def
== (x > 0). In our experience the HMP-NNLS gives

the best results in reconstructing extended emission.

4.2. Wide-band joint subspace deconvolution

In this section, we describe the SSD (SubSpace Deconvolution
algorithm). It is a generic hybrid joint deconvolution algorithm
that uses subspace optimisation. We present in Sect. 4.2.1 the
generic scheme for subspace optimisation in the framework of
deconvolution, and in Sect. 4.2.2 we present one such algorithm
that uses a genetic algorithm in the optimisation step (SSDGA).

4.2.1. Subspace optimisation for deconvolution

It is well known that deconvolution algorithms based on
Matching-Pursuit solvers (specifically CLEAN) are not robust
in the deconvolution of extended emission. Joint deconvolution
algorithms are more robust, as demonstrated by Garsden et al.
(2015), but are not useful with large images since their sizes
can exceed

(
104−4.5 × 104−4.5

)
pixels. Indeed, Eq. (48) is costly

to invert because Θ̃ is expensive to apply10 the data. There-
fore in order to make joint deconvolution practical with real life

10 Θ̃ is done computationally by degridding.

data-sets, we aim at incorporating it in a matching pursuit-type
scheme. As for HMP (Sect. 4.1), the idea is to decompose the
signal into a basis function but here the parameter space at each
iteration is not a set of coefficients for one pixel only, but for a
subset I of pixels in the spectral cube (an island).

To illustrate the idea of SSD, consider the global transfer
function in Eq. (48). Since the convolution matrix is diagonally
dominant (the PSF goes to zero far from the center), the main
idea is that distant regions can be deconvolved separately. This

amounts to building an operator ˜̃
Θ with zeros where Θ̃ is consid-

ered to be negligible such that ỹ ≈ ˜̃
Θπ, and the deconvolution is

done jointly within each subspace {πI } of the global {π} parame-
ter space. This approximation will however lead to biases in the
estimate π̂ of π, because the contribution of the sky in island I
to the observed flux in island I′ has been neglected.

This will happen for example when a bright (a) source in an
Ia island has a faint (b) source (Ib island) in its side-lobe, and
when the two islands are deconvolved independently. The faint
source flux can be over- (or under-) estimated in the first iteration
since the cross-contamination term is ignored. However if one
computes the global residual map in a second iteration, most of
the side-lobe of source (a) has been properly removed at Ib . If
the islands are jointly deconvolved again, the sky model estimate
will be better than in the previous iteration. In our experience,
this algorithm has remarkable convergence properties.

The SSD algorithm is described in detail in Alg. 2. Given
a residual image, in a first step the brightest regions are isolated
and joint deconvolution is performed independently on groups of
pixels (here called islands) using the local convolution operator
Θ̃I with Θ̃I = T̃ ν

φ
SIΠI , where SI is an (npix × nIpix) matrix that

maps the nIpix pixels of island I onto the full set of npix pixels.
For example we can minimize the cost function by setting

C0
def
==

∥∥∥∥δ̃y − Θ̃I dπI
∥∥∥∥

Q
(51)

where dπI are the differential values of the spatio-spectral
coefficients in a given basic function (see Sect. 4.1).

In a second step, the union of the sky models are sub-
tracted from the visibilities, and the visibilities are re-imaged
(corresponding to the step δ̃y = ỹ − Θ̃π̂).

The conditions for the convergence of SSD are hard to find,

but depend on the structure of ˜̃
Θ compared to Θ̃. We can estimate

at step k the contribution to the observed flux δy
I,k in I of all

islands I′ , I. If δx̂k = x − x̂k is the error in the estimate x̂ of
x, we can write

δy
I,k = ST

I

∑
I′,I

T̃ νSI′S
T
I′

 δx̂k. (52)

Since each island I is deconvolved in its own subspace (inde-
pendently of other islands), the level of the flux density bias at
iteration k + 1 is

‖δx̂I,k+1‖ ∼ ‖δyI,k‖ (53)

=
√
δyT
I,k
δy
I,k. (54)

Assuming the structures of the side-lobes of the different I′ in
I are uncorrelated, the power in the cross-island terms averages
out in the quadratic sum, and we get

‖δx̂I,k+1‖ ∼

√
δx̂T

k

∑
I′,I

(ST
I′
T̃ ν

T
SIS

T
I
T̃ νSI′ )δx̂k (55)
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Data: ỹ, t, α, Q
Result: The estimate π̂ of π in the basis function P.

1 initialization: π̂← 0, δ̃y← ỹ;
/* Start nCycle major cycles */

2 while max {̃y} > t do
/* Deconvolve each island I
independently */

3 for I in {I} do
4 d̂πI = argmin

dπI

(
C0{Θ̃I dπI |δ̃y,Q}

)
[s.t. C1{dπI }] ;

5 end
6 Update sky model:

π̂← π̂ +
∑
I

SI d̂πI;

7 Compute the residual data:

δ̃y = M̃ν

−H
AHW

(
v −AΠπ̂

) (
= ỹ − Θ̃π̂

)
;

8 end
Algorithm 2: SSD deconvolution algorithm. Here t is a
user defined flux density threshold.

defGI
===

√
δx̂T

kGIδx̂k. (56)

Here GI is the power in the side-lobes of all islands I′ to islands
I. If the cross-contamination power is small enough SSD con-
verges. For example, in the trivial case of two single pixel islands
with equal flux s, and cross-contamination term p (the PSF of I
onto I′ and conversely), at iteration k we have

‖δx̂I,k+1‖ ∼ ‖δx̂I′ ,k‖
√

p2 (57)

∼ s
√
g2k+1 (58)

and SSD always converges.

4.2.2. An example of SSD using genetic algorithm

We have presented in Sect. 4.2.1 the SSD algorithm, which
carries out joint deconvolution over a set of sub-spaces in an
independent manner. In this section we detail how the genetic
algorithm in SSDGA implements step 4 in Alg. 2. Specifically,
we discuss an example of an SSD algorithm, where we per-
form step 4 (Alg. 2) using a genetic algorithm (SSDGA). Genetic
algorithms are very different from convex solvers in the sense
that they are (i) combinatorial and (ii) nondeterministic. While
genetic algorithms are rather simple to use and very flexible,
SSDGA is in principle good for the deconvolution of extended
signal. We can for instance optimize the L0 norm which is a
nonconvex problem.

This step corresponds to fitting the residual dirty image by
a spectral sky-model for each island I, convolved by the local
spectral PSF.

Our current implementation is based on the DEAP package
(Fortin et al. 2012). Each individual ‘sourcekin’ consists of a
set of fluxes together with a spectral index. Each sourcekin is a
spectro-spatial model of the sky in I. It could also include minor
axis, major axis, and position angle of a Gaussian for exam-
ple. The idea consists of building and evolving the population
of sourcekin, and the fitness function is set to be L2 in our case.
An example of spectral deconvolution using SSDGA is presented
in Sect. 6.

Fig. 4. Residual data for a fraction of the field of view of the simulation
described in Sect. 6. The left to right and top to bottom panels show
the iterations {0, 1, 2, 3}. As explained in Sect. 4.2.1, the SSD algorithm
works differently from a matching pursuit in that it does joint deconvo-
lution on subsets of pixels, and the estimated flux is fully removed at
each iteration. The SSD has remarkable convergence properties.

5. Implementation, performance and features

The bulk of DDFacet is implemented in Python 2.7, with a
small performance-critical core module (gridding and degrid-
ding) written in C. In this section we discuss some impor-
tant aspects of the implementation. In Sect. 5.1, we describe
aspects of parallelization. In Sect. 5.2, we describe how we
use a baseline-dependent averaging scheme in the context of
wide-field wideband spectral deconvolution, and we explain
how we handle the nonregular spatial domains of Jones matri-
ces in Sect. 5.4. In Sect. 6 we demonstrate our imaging and
deconvolution framework on a single simulation.

5.1. Parallelization

The gridding, degridding and FFT operations of faceted imag-
ing are embarrassingly parallel, as every facet can be pro-
cessed completely independently. The DDFacet implementa-
tion is parallelized at the single-node level, using the Python
multiprocessing package for process-level parallelism, and a
custom-developed process manager called AsyncProcessPool
that implements asynchronous, on-demand, multiprocessing
akin to the concurrent futures11 module found in Python 3. The
bulk of the data (visibilities, uv-grids and and images) is stored
in shared memory using the SharedArray12 module, and a cus-
tom extension called shared_dict. This significantly reduces
the overhead of inter-process communication. This also allows
us to perform I/O and computation concurrently: a successive
data chunk is read in while gridding of the previous chunk
proceeds. In the minor cycle, we employ the same technique
to parallelize the SSD algorithm. For HMP deconvolution (and
other CLEAN-style minor loops), the minor loop is inherently
serial, but a reasonable speedup is achieved with minimum effort

11 https://docs.python.org/3.4/library/concurrent.
futures.html
12 https://pypi.python.org/pypi/SharedArray
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Fig. 5. Speedup factor (in terms of overall wall time) obtained by run-
ning DDFacet on multiple cores. The solid line corresponds to fixed
affinities (each worker process was pinned to a single CPU core), while
the dashed line to no affinities (the OS scheduler was allowed to migrate
processes across cores). In the former case, processes 0–7 were pinned
to the first physical CPU, and 8–15 to the second CPU. This explains
the slightly better performance in the no-affinities regime with ≤8 pro-
cesses, as the OS scheduler was allowed to make use of the second CPU.
The graph also shows significanly worse scaling in the hyperthreaded
regime.

by employing the numexpr package13 to vectorize large array
operations.

All this allows DDFacet to make very good use of multiple
cores in a NUMA architecture, maintaining high core occupancy
throughout any given imaging run. We are conducting detailed
performance studies and these will be the subject of a sepa-
rate paper. Here we present the summary results of a simple
parallelisation scaling experiment.

We perform an imaging run using 14 h of VLA (C+D con-
figuration) data for the field around the source 3C147, in L-band.
This totals 2 350 127 time-baseline samples, with 64 channels
each, for a total bandwidth of 256 MHz. We make 5100 × 5100
pixel images of a 2.8◦ × 2.8◦ field tiled by 23 × 23 = 529 square
facets, in two frequency bands of 128 MHz each. A (rotating)
primary beam model is applied on a per-facet basis. We run 5
major cycles of HMP CLEAN, down to an absolute flux threshold
of 0.4 mJy.

Our test machine has two Intel Xeon E5, Sandy Bridge
class CPUs, each with 8 physical cores and 16 virtual cores
(hyperthreading enabled). In serial mode, i.e. with all operations
running on a single core, we measure a total “wall time” for this
imaging run of about 12 h. Ninety four% of this time is spent in
the gridding. We then increase the number of parallel processes,
and plot the resulting speedup factor (in terms of wall time, thus
including all overheads) in Fig. 5. We see exemplary linear scal-
ing of performance up to 16 processes (i.e. to the point where
each physical core is occupied by a single process). Beyond this
point, the scaling relation declines, as processes running on vir-
tual cores start competing for resources of a single physical core.
Note that a speedup factor of 12 from 16 cores is excellent effi-
ciency: a quick calculation shows that this corresponds to 98%
of the computation being parallelized.

13 https://pypi.python.org/pypi/numexpr

From this we can conclude that our parallel implementation
scales linearly with available physical cores, while the ben-
efits of hyperthreading are marginal in comparison. We also
find that the computational cost of the gridding step dominates
overall processing. DDFacet therefore implements two strategies
for reducing the overall cost of gridding: baseline-dependent
averaging (BDA) and sparsification.

5.2. Baseline-dependent averaging

Averaging visibilities has the effect of reducing data volumes
and increasing computing efficiency. However, information is
unavoidably lost in the process, and therefore inverting the Mea-
surement Equation from the averaged (and therefore smaller)
set of visibility measurements is, numerically, subject to poorer
conditioning.

The metric we use to limit the loss of information is based on
decorrelation effects14, and those will indeed constrain the max-
imum time and frequency domain over which visibilities can be
averaged. It can be seen from the RIME (Eq. (1)) that decorre-
lation can be caused by the variation over time, frequency and
direction of (i) the Jones matrices or (ii) the sky, and most impor-
tantly (iii) the geometric phase term (the kernel k term in Eq. (1).
Decorrelation due (i) and (ii) largely depends on the target,
the instrument and the observing frequency. For example, low-
frequency ν . 300 MHz data (such as that taken by the LOFAR
telescope) is affected by ionospheric phase, which varies on the
timescale of 10–30 s (and is also direction-dependent due to the
large FoVs). At higher frequencies, tropospheric phase begins
to have a similar (although effectively direction-independent)
effect. The decorrelation due to (iii) is well understood and pre-
dictable. For a given direction s, if the phase varies linearly
across the time or frequency domainD, and one can write

χD = sinc {∆ψD} (59)

with ∆ψD = πδbT
D

s (60)
and δbD = bD1

− bD0
, (61)

where bD0
and bD1

are the baseline vectors (in units of wave-
length) at the edges of the domainD.

Interferometric data is typically conservatively averaged at
best, using a common time-frequency bin across all baselines
that corresponds to no more than a few percent amplitude loss
on the longest baseline for a source on the edge of the field of
view. Several authors have come to the conclusion that this is
sub-optimal, and that one could use BDA instead (see Cotton
1989, 1999; Atemkeng et al., in prep.), with more aggressive
averaging on the shorter baselines, since for a given direction,
time and frequency domain, they decorrelate less than the longer
baselines. With core-heavy arrays such as MeerKAT and SKA1,
the potential storage savings of BDA can be substantial, since the
data sets are dominated by short spacings.

It is important to keep in mind that, for purposes of data
storage, the largest time/frequency domain to which any given
baseline may be averaged is given by

D =min {DJ,Ds,Dk} , (62)

where DJ, Ds, and Dk are the domains corresponding to an
acceptable decorrelation for (i) the Jones matrices, (ii) the sky,

14 Decorrelation is produced by averaging of complex-valued Jones
matrices. It is easy to see, for instance, that averaging a rotating complex
scalar will result in a loss of amplitude.
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Fig. 6. Compression ratios achieved with baseline-dependent averag-
ing, as a function of facet number (thus facet size), for several different
decorrelation levels, for a VLA B-configuration observation.

and (iii) the geometric phase term respectively. In the presence
of DDEs such as the ionosphere, DJ is the term that typically
constrains D, because there is no way to correct the stored vis-
ibilities for the DDEs; rather, we need to apply Jones matrices
to the data during imaging, as described in Sect. 3 (see Eqs.
(17) and (18)). For example, consider a single baseline at low
frequency, having a decorrelation time scale of the geometric
phase term of the order of a few minutes. As the Jones matri-
ces corresponding to the ionosphere are direction dependent, and
vary on an approximately ten second time scale, one cannot aver-
age the stored data on time scales larger than seconds without
substantially degrading the imaging response.

Even if the storage economies of BDA are not realized
(and are in any case limited by DJ), DDFacet derives compu-
tational economies from this technique. If one assumes that
the sky term is constant across Dk, one can average the 2 × 2
visibilities over Dk, while applying the per-facet phase rota-
tions, and the (direction-dependent) Jones matrices, to each
individual visibility. This is done on-the-fly in the gridder and
degridder code. The actual gridding (or degridding) is then
done once per averaging domain, rather than once per visibil-
ity. The resulting savings can be substantial, since averaging
visibilities involves fewer FLOPS than applying the convolution
kernel inherent to gridding or degridding. The BDA gridding
algorithm implemented in DDFacet is presented in detail in
Alg. 3. We note that a similar approach has been implemented
in recent versions of WSCLEAN (Offringa et al. 2014), without
the direction-dependent Jones correction.

On-the-fly BDA in the context of faceting offers an inter-
esting performance trade-off. Note that Dk is determined by
facet size, rather than the full FoV size. While imaging smaller
facets, more agressive BDA may be applied, since more vis-
ibilities can be averaged before a given decorrelation level is
reached. Note that at the limit of single-pixel facets, per-facet
BDA reduces to averaging the entire (phase-shifted) dataset,
which is effectively the same as doing a DFT. Figure 6 shows
the compression ratio achieved for a few fixed decorrelation lev-
els, as a function of number of facets (across the same FoV), for
a VLA B-configuration obervation. Note that more core-heavy
configurations such as MeerKAT and SKA1-MID should be
able to achieve even higher compression ratios. Figure 7 shows
the resulting speedup in gridding time per facet. Note that the

Fig. 7. Gridding speedup factors achieved with baseline-dependent
averaging, as a function of facet number (thus facet size), for several
different decorrelation levels. Observation configuration as per previous
figure.

speedup flattens out at around a factor of 4. Presumably, at this
point the gridder performance becomes dominated by memory
access. Thus, the computational cost of using numerous smaller
facets (resulting in more gridding/FFT operations) is partially
offset by the computational savings of increased BDA within
each facet.

5.3. Sparsification

Recent developments in compressive sensing (CS) theory (see,
e.g., Carrillo et al. 2012, and references therein) have provided
new mathematical insights into imaging and deconvolution. In
particular, CS shows that sparse signals, i.e. signals with lim-
ited support in some dictionary, can be successfully recovered
from a much smaller number of measurements than that required
by e.g. Nyquist sampling, provided a few mathematical criteria
(in particular, the Restricted Isometry Property, or RIP) are met.
Traditional CLEAN has been shown to be a variation of a CS
algorithm.

When multiple major cycles are performed by a CLEAN-like
algorithm (as is necessary for even modestly high dynamic range
imaging), the models recovered during early major cycles tend to
be extremely sparse. This is simply due to the inherent structure
of the radio sky: bright sources are few and far between, so it
is quite typical that early major cycles of CLEAN affect only a
relatively small number of components. Under these conditions,
it directly follows from CS theory that we can discard a random
subset of uv-samples in the early major cycles (the randomness of
the selection ensures that the RIP is maintained), and still recover
the same model components, as long as the image signal-to-noise
ratio (S/N) remains sufficiently high.

DDFacet implements this idea as the sparsification feature.
The implementation naturally interfaces with the BDA gridder.
At each major cycle, a user-specified percentage of visibility
blocks (i.e. BDA blocks) is tagged as “unlucky” and omitted
from the gridding process entirely. Effectively, the uv-coverage
is randomly sparsified by a given factor, without changing the
relative sampling density. The gridding loop is therefore accel-
erated by the same factor. The sparsification factor can be set to
decrease in successive major cycles, since, at the very least, the
final major cycle should be done on the full data.
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Data: v, {D}
Result: The dirty cube y, ỹ;

1 y = 0;
2 for ϕ in {ϕ} do
3 gsϕ = 0;wt = 0;

4 M̃bν = 0;
5 forD in {D} do
6 VD = 0; bm = (um, vm, wm) = 0;
7 for

(
b, w,Gp,Gq, vpq

)
inD do

8 bm ← bm + Csϕ b (see Eq. (14));
9 wm ← wm + w;

10 Mbν = G∗q ⊗Gp;

11 M̃bν
2
← M̃bν

2
+ wMbνHMbν ;

12 vD ← vD + Mbνvpq exp
(
−2πibT sϕ

)
;

13 end
14 bm ← bm/wm;
15 gsϕ ← gsϕ + C sϕ,bm Vec {VD};
16 wt ← wt + wm;
17 end
18 gsϕ ← gsϕ/wt;

19 ỹ← ỹ + Ss0M̃ν sϕ
−H
F

Hgsϕ/wt;
20 end
Algorithm 3: BDA gridder. Here gsϕ is the grid used
for facet ϕ, C sϕ,bm is the convolution function for the
w-coordinate of bm.

What is a reasonable sparsification factor? Consider a typical
VLA or MeerKAT L-band observation of several hours’ dura-
tion. This will contain 106–107 time-baseline samples (per each
frequency channel), and offer an image dynamic range of, con-
servatively, 104 (in the presence of very bright sources, this can
go to 106 and above). Assuming a major cycle gain of 0.1, the
first major cycle will clean down to 1000σ, and the second major
cycle to 100σ, where σ is the noise rms. A sparsification fac-
tor of 100 will reduce S/N by a factor of 10, with a negligible
effect on overall uv-coverage, and with the second major cycle
remaining well above the noise floor. (In practice, we find that
sparsifying above a factor of 100 is not really useful, since at
that point the runtime becomes dominated by I/O rather than
gridding.) For 5 major cycles, a typical list of sparsification fac-
tors would be 100, 100, 30, 10, 1. This results in very substantial
acceleration of the first four major cycles.

5.4. Nonregular tessellation

Since astrophysical flux density is not uniformly distributed
over the sky, a reasonable DDE calibration strategy consists
of clustering sets of sources together, and estimating time–
frequency-antenna dependent Jones matrices in each of those
directions. As shown by Williams et al. (2016) and van Weeren
et al. (2016), it is necessary in that context to image the residual
data in the nonregular spatial domains within which the Jones
matrices have been estimated.

DDFacet has the ability to image irregularly tessellated
images while using 2D FFTs. This is done by providing it with
an arbitrary set of nodes (i.e. facet centers). A Voronoi tessella-
tion is then computed internally to generate a polygon file, where
each facet is associated with a unique polygon. An image mask
is constructed for each polygon. In order to form the residual

image, each facet image is multiplied by its corresponding mask,
before being stacked onto the combined residual image. We do
the converse operation for the degridding.

5.5. Primary beam models

The present implementation of DDFacet can correct for two
classes of DDEs: direction-dependent gain solutions derived
from a calibration procedure, and/or a priori known DDEs
imposed by the primary beam pattern.

The first class of DDEs is specified as an input list of
directions and (frequency-dependent) per-antenna Jones terms
associated with that direction. Facets are then determined by
the nonregular tesselation procedure described above, and imag-
ing proceeds on a per-facet basis, by applying the correct DDE
solution (and primary beam E-Jones, computed at facet center)
per facet, as described in Sect. 3. In the absence of DD gain
solutions, imaging can be done with primary beam corrections
alone. In this case the field of view is split into a user-supplied
number of square facets, and the primary beam E-Jones is again
computed at each facet’s center.

Two primary beam modes are currently implemented. In
FITS mode, the user specifies the primary beam pattern as a
set of 8 FITS cubes15 giving the real and imaginary components
of the 2 × 2 E-Jones elements, as a function of frequency and
direction in the antenna frame. DDFacet then computes parallac-
tic angle rotation, and interpolates the E-Jones value appropriate
to each facet’s center, as a function of time and frequency. FITS
mode is suitable to describing dish arrays. In LOFAR mode, the
primary beam corresponding to a LOFAR station is computed
using the LofarStationResponse class.

6. Simulations

In this section we discuss in detail a test case for the frame-
work developed throughout this paper. We simulate a small,
semi-realistic, LOFAR LBA data-set. The data consists of an
interferometric data-set with 630 baselines (36 LOFAR sta-
tions), 2.8 h long, with 5 frequency channels spanning the range
30 to 70 MHz. The station are configured in LBA_INNER mode
(van Haarlem et al. 2013) in order to provide us with the widest
field of view. The HPBW is on the order 5.77 degrees at 60 MHz.

The simulated sky consists of ∼100 point sources with
50-MHz intrinsic flux densities S 50 = s1.5 with s ∼ U {0, 100}
Jy, and spectral indices α50 ∼ U {−1, 1}, whereU is the uniform
distribution. To make the case more difficult yet, we add a bright
104 Jy off-axis source.

Apart from the LBA_INNER station beam being applied,
scalar time-frequency-direction dependent Jones matrices are
applied to the predicted visibilities. In particular, the Jones
matrices have a random phase and amplitude term that varies
sinusoidally with time, and this random realization is repeated
for each antenna, frequency and direction. The typical ampli-
tude variation is on the level of 0.1, while the phase variation
is on the level of 0.1π. This scheme guarantees (i) nonunitarity
of the Jones matrices (and Mueller matrices), and (ii) baseline-
dependency of the resulting Mueller matrices (see Sect. 3.5).

The Jones matrices together with the LOFAR LBA_INNER
beam are provided to DDFacet and the sky is tessellated as
described in Sect. 5.4. The image is 8019 × 8019 pixels with a

15 In principle it should also be possible to specify a different pattern per
antenna, although this option is currently not exposed in the interface.
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Fig. 8. Deconvolved images for the simulated data-set described in Sect. 6. The left panel shows the restored image not taking the beam into
account and not using wideband deconvolution. Central panel shows the result of the deconvolution taking DDE into account, but still not enabling
wideband deconvolution. right panel shows the deconvolution result using SSDGA.

Fig. 9. Relative flux density error δS 50 =
(
Ŝ 50 − S 50

)
S −1

50 between the 50 MHz flux density S 50 and its estimate Ŝ 50 as a function of radius from
the beam center (normalized by the half power radius at 50 MHz). The left and right panels show the results for the HMP and SSD wide band
deconvolutions (empty and filled black circles respectively). The gray cross corresponds to the flux densities errors taking neither DDE correction
nor wideband effects into account. The gray dots show the results when taking DDE effects, but not wideband effects into account.

pixel size of 10 × 10′′, and when the wideband mode is enabled
the residual image cube has 3 channels.

To measure the estimated sky produced by the different
deconvolution algorithms, we run DDFacet in various modes:

[•]DI/DD: Direction-independent faceting or direction-
dependent faceting.
NB/WB: Narrow-band and wideband observations. In the lat-
ter case the intrinsic spectral variability is taken into account
either by the HMP (HMP-WB) or by the SSDGA (SSD-WB).
The results are presented in Figs. 8–10. Figure 8 shows that,

as expected, the residuals are much lower when deconvolved
with DD+NB and DI+WB. In Fig. 9, we plot the relative flux error
δS 50 =

(
Ŝ 50 − S 50

)
S −1

50 as a function of the distance to the beam
center. It is quite clear from the plot that, as expected, the DI+NB
gives biased flux density estimates and higher residual values
(see Fig. 8). The main component of the bias is corrected using
DD+NB, but the flux density scatter is high. With HMP or SSD
deconvolution, the dynamic range increases, and the error on
both flux densities and spectral indices decreases. In Fig. 10, we
plot the error δα50 in spectral index estimate as a function of the

Fig. 10. Error δα50 = α̂50 − α50 between the spectral index α50 and its
estimate α̂50, as a function of the distance from the beam center. The
gray crosses show the spectral index estimates when the DDEs are not
taken into account.
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distance from the beam center. While DI+WB produces biased
spectral index estimates, the HMP or SSD algorithms properly
recover them (with SSD doing slightly better).

7. Overview and future work

In this paper we have presented a mathematical framework
for wideband wide-field spectral deconvolution that can take
generic DDEs into account, as well as an implementation of
this framework called the DDFacet imager. This has a number of
unique features not available in other imaging and deconvolution
frameworks:

•• A wide-field coplanar faceting scheme is implemented. This
is a generalization of the Kogan & Greisen (2009) scheme.
Nontrivial facet-dependent w-kernels are used to correct for
noncoplanarity within the facets.

• Generic, spatially discrete, time-frequency-baseline-
direction-dependent full polarisation Jones matrices can be
taken into account in the imaging and deconvolution steps16.

• As shown in Sect. 3.5 and 3.6, to account for time-frequency-
baseline dependent Mueller matrices, we compute a direc-
tion dependent PSF for use in the minor cycle of deconvolu-
tion.

• The above also allows for the effects of time and bandwidth
averaging to be explicitly incorporated into deconvolution.
In order to accurately deal with large fractional bandwidth of

modern interferometers, one has to estimate the spectral prop-
erties of the sky term in the Measurement Equation. We have
implemented two new wideband deconvolution algorithms:

• A hybrid matching pursuit algorithm (HMP, see Sect. 4.1),
with similarities to MTMS-CLEAN (Rau & Cornwell 2011).

• A hybrid joint deconvolution algorithm that we call Sub-
space Deconvolution (SSD, see Sect. 4.2). This does joint
deconvolution on subsets of pixels (islands), while treat-
ing the islands independently. For the former, we have
implemented a genetic algorithm to perform the nonlinear
optimisation step (Sect. 4.2.2)
Finally, a few interesting and innovative technical features

are incorporated:
• A general tessellation scheme that supports both regular

(square) and nonregular (Voronoi tesselation) facets.
• On-the-fly baseline-dependent averaging within the gridder

and degridder, resulting in a factor of several speedup of
these operations.

• A sparsification scheme that dramatically accelerates the
initial (shallow) major cycles, when using a CLEAN-style
deconvolution loop.

• Completely asynchronous multiprocessing, which does I/O
and computation concurrently, and achieves excellent scaling
properties on NUMA architectures.
The current version of DDFacet can deal with full polarisa-

tion deconvolution, and can take into account externally defined
Jones matrices and/or beam patterns. It has been successfully
tested with data diverse telescopes such as LOFAR, VLA,
MeerKAT AR1 and ATCA.

Further development of DDFacet is proceeding in a num-
ber of directions. These include (i) extending the basis set of

16 This is not the case for Bhatnagar et al. (2008); Tasse et al. (2013) that
are using A-projection and that need (i) spatially smooth DDE effects,
and (ii) time-frequency-baseline independent Jones matrices for the PSF
to be direction-independent.

SSDGA and HMP with Gaussian components for better decon-
volution of extended emission, (ii) implementing other types
of SSD algorithms, using convex solvers for the optimisation
steps, (iii) implementing CS-derived minor cycle algorithms,
(iv) back-porting existing multiscale CLEAN algorithms into the
framework. On the more technical side, we are working on incor-
porating (v) GPU-based gridders and degridders, and (vi) the
accelerated Direct Fourier Transform implemented in MONT-
BLANC (Perkins et al. 2015) for high dynamic range imaging.
Finally, a distributed implementation of the framework is being
designed.
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