
This paper is based on a master’s thesis that was carried out following the award of a STEPS scholarship and has been part-

financed by the European Union - European Social Fund (ESF) under Operational Programme II - Cohesion Policy 2007-2013,

"Empowering People for More Jobs and a Better Quality of Life".

© 2011 Higher Education Academy
Subject Centre for Information and Computer Science

INCREASED QUESTION SHARING BETWEEN ELEARNING SYSTEMS

RALPH ATTARD
http://otq.raland.net
raland@raland.net

BERNADETTE-MARIE BYRNE
School of Computer Science
University of Hertfordshire

b.m.byrne@herts.ac.uk

ABSTRACT

Online assessments are an integral part of eLearning systems that enhance distance and continuous education. Over

two-hundred and fifty eLearning applications exist and educational institutions are often trapped with a particular

vendor due to lack of test question content sharing features. This paper deals with issues related to interoperability

options as well as documenting an approach to address such issues. Inspired by the JISC funded MCQFM project, an

approach to the conversion of test question banks between QTI and QML formats is documented through the

development of a web-based software system. Specifically, this software parses QML/QTI questions stored in XML

documents, identifies their format and loads such questions in a high-level object representation of each question type,

and then models an XML output in the other format.

Keywords:

eLearning, objective test questions, question sharing

1 INTRODUCTION

Various eLearning systems exist that feature objective test questions in the form of exams and quizzes. Typical

eLearning systems store exam questions internally using proprietary formats. The formats are also used for import and

export purposes. Some of these systems also support a standard format, either Question Markup Language (QML) or

Question and Testing Interoperability specification (QTI), making it a rarity that a product supports both.

This paper improves interoperability between eLearning systems through the development of a software system that

aid users in migrating between systems that store question banks in different formats. The paper also identifies the test

question types supported by the QML and QTI formats.

A web-based utility has been developed to support the conversion of eleven (11) objective test question types that are

common to both QML and QTI formats. The software ensures full conformity to standards and enables organisations to

migrate their existing test question base to a different software package without the need to re-input their questions,

questions often written after much effort and thought.

2 ELEARNING SYSTEMS STANDARDS

Several standards and specifications exists for assessment and evaluation, most of which originated as proprietary

formats and have been adopted by several parties. Agea et al (2009) have worked on a study funded by the

eContentplus programme and analysed various standards, particularly the IMS QTI specification and those formats

derived from proprietary tools that are in use by ICOPER participants: Moodle XML, HotPotatoes, OpenMark,

Blackboard, DocBook, FML, QAML, and SuML. The study showed that the QTI de facto standard was the one that

supported most question types even though its use is not highly adopted due to lack of interoperability between

learning management systems.

In another study, Bennett (2007) proposes that the best way to share questions is to ditch standards, such as QTI and

QML, and implement plain text representations for the five (5) most popular question types. Bennet explains that this

would cover 95% of the questions which could be stored in a database with simple metadata and visualise them using

creative tools. Having said this, various proprietary languages exist and software houses have their reasons to use

them. In the subsequent sections, formats pertinent to this project are described in detail:- QML and QTI.

2.1 Objective test question types

Apart from objective test question types supported by proprietary formats, most question types are either supported by

QTI, QML or both. The Questionmark’s manual highlights twenty (20) types of questions in QML: captivate/robodemo,

drag-and-drop, essay, explanation, fill in banks, hotspot, flash, likert scale, matching, matrix, multiple choice, multiple

response, numeric, pull-down list, ranking, select a blank, spoken response, text match, true/false, and yes/no

questions. Further to this, the QTI specification highlights twenty (20) types of questions: true/false, single response,

multiple response, order, associate, match, gap match, inline choice, text entry, extended text, hot text, hot spot, select

point, graphic order, graphic associate, graphic gap match, position object, slider, drawing, and upload questions.

Notwithstanding that the above mentioned lists are quite long, some question types are common to both QML and QTI,

and therefore overlap. It is also true that some of the questions types are the same amongst both formats even though

they carry different names. With this in mind, the following section consolidates a common list of question types.

2.2 Standards and common question types

QML is a proprietary language that originated in 1998 as part of the Questionmark’s flagship product Perception. This

product supported a large number of question types on its own; however in 1999 the IMS Global Consortium started

working on QTI which was based on QML. At first, Questionmark put in their experience in this new language to create

an assessment specification, QTI, which can be adopted by all those working electronic assessments, however this

evolved over the years to cater for various variants and new question types to be more complete. The following eleven

(11) question types are common to both formats: Extended Text Questions, Upload Questions, Inline Choice

Questions, Matching Questions, Multiple Response Questions, Position Object Questions, Select Point Questions,

Sequencing Questions, Single Response Questions, Text Entry Questions, True/False (Yes/No) Questions.

2.3 Differences in XML formats

Below is an example of how XML samples have been compiled for each question type in both formats to serve as blue-

prints for the software. Elements common to both formats have been highlighted and numbered for easy referencing.

2.3.1 QML

<QUESTION ID="4923048238058661" DESCRIPTION="Sample: multiple response" TOPIC="new"

STATUS="Normal">

 <CONTENT TYPE="text/html"><![CDATA[<SPAN style="FONT-FAMILY: 'Courier New'; FONT-

SIZE: 8pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-GB; mso-

fareast-language: EN-US; mso-bidi-language: AR-SA; mso-no-proof: yes">Who of the

following became a president of Malta?]]></CONTENT>

 <ANSWER QTYPE="MR" SHUFFLE="YES" SUBTYPE="VERT" MAXRESPONSE="4">

 <CHOICE ID="ChoiceA">

 <CONTENT TYPE="text/html"><![CDATA[George Abela]]></CONTENT>

 </CHOICE>

 <CHOICE ID="ChoiceB">

 <CONTENT TYPE="text/html"><![CDATA[Guido de Marco]]></CONTENT>

 </CHOICE>

 <CHOICE ID="ChoiceC">

 <CONTENT TYPE="text/html"><![CDATA[Edward Fenech Adami]]></CONTENT>

 </CHOICE>

 <CHOICE ID="ChoiceD">

 <CONTENT TYPE="text/html"><![CDATA[Ralph Attard]]></CONTENT>

 </CHOICE>

 </ANSWER>

 <OUTCOME ID="ChoiceA George Abela" ADD="1" CONTINUE="TRUE">

 <CONDITION>"ChoiceA"</CONDITION>

 <CONTENT TYPE="text/html"><![CDATA[Became president in 2009]]></CONTENT>

 </OUTCOME>

 <OUTCOME ID="ChoiceB Guide de Marco" ADD="1" CONTINUE="TRUE">

 <CONDITION>"ChoiceB"</CONDITION>

 <CONTENT TYPE="text/html"><![CDATA[Became president in 1999]]></CONTENT>

 </OUTCOME>

 <OUTCOME ID="ChoiceC Edward Fenech Adami" ADD="1" CONTINUE="TRUE">

 <CONDITION>"ChoiceC"</CONDITION>

 <CONTENT TYPE="text/html"><![CDATA[Became president in 2004]]></CONTENT>

 </OUTCOME>

 <OUTCOME ID="ChoiceD Ralph Attard" ADD="0" CONTINUE="TRUE">

 <CONDITION>"ChoiceD"</CONDITION>

 <CONTENT TYPE="text/html"><![CDATA[Never.]]></CONTENT>

 </OUTCOME>

</QUESTION>

2.3.2 QTI

<assessmentItem identifier="4923048238058661" title="Sample: multiple response"

adaptive="false" timeDependent="false">

 <responseDeclaration identifier="RESPONSE" cardinality="multiple"

baseType="identifier">

 <correctResponse>

 <value>ChoiceA</value>

 <value>ChoiceB</value>

 <value>ChoiceC</value>

 </correctResponse>

 </responseDeclaration>

 <outcomeDeclaration identifier="SCORE" cardinality="multiple" baseType="identifier"/>

 <itemBody>

 <choiceInteraction responseIdentifier="RESPONSE" shuffle="true" maxChoices="3">

 <prompt>Who of the following became a president of Malta?</prompt>

 <simpleChoice identifier="ChoiceA" fixed="false">George Abela</simpleChoice>

 <simpleChoice identifier="ChoiceB" fixed="false">Guido de Marco</simpleChoice>

 <simpleChoice identifier="ChoiceC" fixed="false">Edward Fenech

Adami</simpleChoice>

 <simpleChoice identifier="ChoiceD" fixed="false">Ralph Attard</simpleChoice>

 </choiceInteraction>

 </itemBody>

</assessmentItem>

2.4 Software System

The software parses questions stored in XML
documents, identifies their format – QTI or QML –
and loads such questions in a high-level object
representation of each question type, and then
models an XML output in the other format. This has
been developed as a class library using C#.NET
based on Microsoft .NET Framework 3.5 and
exposed as an ASP.NET web application.

XML

Input

Contains

Node?

For each node

assessmentItem

QUESTION

LoadQTI

LoadQML

ToQML

ToQTI

XML

Output

Figure 1: Process Flow

2.4.1 High-level objects

The below high-level class diagram shows the inheritance hierarchy together with the object associations and data

contracts that could be used instead of the generic option and response objects. This object-oriented (OO) approach

was chosen to ease development and provide consistency. An interface class was used to define required methods

and have been applied to an abstract class. The purpose of having a non-implementable abstract class was to define

data members and methods common to all those classes that inherit it, whilst that those methods imposed by the

interface and vary per child were not implemented. This abstract class also included two generic objects as data

members which were exposed through virtual properties, and therefore allows children to change their exposure by

redefining their properties to use custom data contracts.

Figure 2: Class Diagram: High-level

2.4.2 Data Contracts

Seven classes that resemble custom complex data types have been created. Each data member has a private

access modifier and is exposed through a public property that serves as its getter and setter. These data contracts

are used to make up classes that represent each objective test question.

Figure 3: Class Diagram: Contracts

2.4.3 Question Objects

Fourteen classes, two of which are an abstract class and an interface, are used to represent the chosen question

types. This object oriented approach was chosen to provide a high-level object that is valid for all possible objective

test question types. Inheritance is used to customise the structure through method overriding whilst allowing the

necessary flexibility by parameter hiding to vary the data type of the option and response data members according to

the type of question data.

Figure 4: Class Diagram:

ExtendedText

Figure 5: Class Diagram:

InlineChoice

Figure 6: Class Diagram:

Matching

Figure 7: Class

Diagram: Question

Figure 8: Class Diagram:

MultipleResponse

Figure 9: Class Diagram:

PositionObject

Figure 10: Class Diagram:

SelectPoint

Figure 11: Class Diagram:

Sequencing

Figure 12: Class Diagram:

TextEntry Figure 13: Class Diagram: Upload

Figure 14: Class Diagram: SingleResponse, TrueFalse, YesNo

3 CONCLUSION AND FUTURE WORK

This paper showed a way to further interoperability options within eLearning systems to promote question sharing. The

software produced demonstrates a simple approach to conversion of objective test questions. Test question banks are

parsed from QML and QTI documents and stored into high-level object models. Once the models are filled, their

content can be outputted in different formats. Currently, the software only supports the conversion of questions and

answers between two standard formats. This could be extended both in a vertical and horizontal manner. Vertical

expansion can cater for the inclusion of marking/scoring elements to enable automatic marking when questions are

migrated between eLearning systems, whilst that horizontal expansion can provide support for other proprietary

standards to further increase interoperability between eLearning systems. The only skills required to maintain this type

of approach are object-oriented skills to build the models, and XML manipulation to parse and construct documents.

4 REFERENCES

 AGEA, A. et al, 2009, Analysis of existing specifications and standards for assessment and evaluation and

their usage in Europe, Educanext, http://www.educanext.org/dotlrn/clubs/icoper/new-lors/Deliverables/Deliverables_-

_Submitted/D6.1/D6.1.final.doc, [Accessed 09/08/2010].

 BENNETT, S., 2007, MCQFM: Towards a Web 2.0 Approach to Objective Testing, e-Learning Focus,

http://www.elearning.ac.uk/features/mcqfm, [Accessed 13/05/2010].

 IMS GLOBAL, 2006, IMS Question & Test Interoperability Specification, IMS Global Learning Consortium,

http://www.imsglobal.org/question, [Accessed 14/05/2010].

 QUESTIONMARK, 2005, Perception Version 4, Concepts of Authoring, University of Southampton,

http://www.southampton.ac.uk/isolutions/computing/elearn/CAA/Perception/v44_concepts_of_authoring.pdf. [Accessed

17/08/2010].

