COMPUTER SCIENCE TECHNICAL REPORT

THE UNTRAINED EYE: WHAT MAKES A REPRESENTATION
EASY FOR NOVICE READERS TO UNDERSTAND?

Carol Britton and Sara Jones

Report No 308

December 1997

The Untrained Eye: what makes a representation easy for
novice readers to understand?

Carol Britton and Sara Jones
Department of Computer Science
University of Hertfordshire
College Lane, Hatfield, Herts. UK
AL10 9AB
Tel: 01707 284354 / 284370
Email: C.Britton, S.Jones@herts.ac.uk

Abstract

It is generally recognised that choice of notations can have a significant effect on the
system development process, particularly in the early stages of requirements capture
and validation. In the development of interactive systems it is essential that stakeholders
are able to understand representations of key design ideas, in order that they can
participate meaningfully in the development process. Although in some development
projects this requirement is fulfilled by an early prototype, there are many situations in
which paper-based representations have to be used. Some stakeholders, such as clients
and potential users of the system, may be unfamiliar with the notations used by
software engineers and therefore find it difficult to understand representations produced
using such notations well enough to contribute effectively to system development. In
this paper we discuss the problem of how to choose the most effective notation in a
particular situation and identify understandability of representations as a key issue for
interactive system development. We then consider ways in which the notion of
understandability may be defined in this context, and discuss the possibility of
evaluating notations in terms of ease of understanding.

1 Introduction.

Although the relationship between notations, representations and the quality of the
system development process is not fully understood, the impact of the choice of
notation on successful performance of many system development activities has long
been recognised (Green 89 and 91a, McCluskey et al 95, Modugno et al 94, Roast 97).
However, little is currently known about what notations are likely to be most suitable
for use in which contexts. The choice of notations for particular projects often reflects
the experience or preferences of the development team more than an objective
consideration of possible alternatives (McCluskey et al 95).

In the case of interactive system development, it is essential that all those involved,
including clients and users who may be untrained in the use of notations for modelling
software, have access to a representation that they can readily understand. This is
because successful development of interactive systems demands active user
participation, and this can only be achieved through a shared understanding of
representations of the system. Thus understandability of representations is a necessary
(though not sufficient) condition for successful interactive system development.

In many interactive system development projects, the need for user understanding is
addressed by building a skeleton prototype to offer options which can then be refined in
line with the user’s requirements. A prototype facilitates communication between
developers and clients or users, allows users to relate what they are shown to their own
experience of tasks, and enables them to give meaningful feedback on the design ideas
which are embodied in the prototype.

There are, however, certain cases where the prototyping approach may be neither
feasible nor adequate. For example, early design ideas may need to be discussed with
clients and users before even a first prototype is built. For safety critical systems,
development based on a prototype would be unlikely to gain the client’s confidence,
and for large complex systems of any kind the development of complete system
prototypes is unlikely to be cost-effective. Even in development situations where
prototyping appears to be desirable, problems can arise relating to the complexities of
version control, difficulties in producing realistic task scenarios or the amount of time
that is needed for a client to evaluate the prototype (Britton and Doake 96).

Where prototypes cannot be used, the main alternative is currently to use paper-based
representations constructed using notations designed for modelling software. The
question for the developer is how to select a notation which is easy for clients and users
to understand. The problem of which modelling notation to choose is exacerbated for
the developer of interactive systems by the fact that many notations designed to model
this type of system are relatively immature, their theoretical underpinnings are often
weakly documented and some are still undergoing evolution stimulated by practical
experience. Since ease of understanding of representations is crucial for successful
development of interactive systems, this paper aims to address the question of how to
evaluate notations in terms of understandability and whether it is possible to predict the
extent to which an untried notation will be readily understandable by novice readers.

The following section defines some of the key terms which we will use throughout the
rest of the paper. Section 3 discusses the problem of choosing notations appropriate to
a particular software development project, and section 4 contains a brief discussion of
understanding and its significance in the context of representations for interactive
system development. Section 5 considers ways in which notations may be evaluated in
terms of ease of understanding, and we end with some conclusions in section 6.

2. Definitions of terms

No useful discussion can take place without a shared understanding of the meanings of
key terms, and words such as ‘model’ are particularly prone to a variety of
interpretations. Clear definitions of terms help to eliminate vagueness and to reveal and
resolve ambiguity; even if the definitions used are not agreed by all readers, they
nevertheless help to clarify what the authors are trying to say. We therefore suggest the
following as working definitions in the context of this paper:

Notation: a system of signs, symbols or characters used to represent
concepts that are relevant to the development of a system;
examples include the data flow diagramming technique, natural
language, storyboards, the Z specification language.

Representation: an expression of a concept or concepts relevant to the development
of a system which is created using notations such as those listed
above; examples of representations include particular data flow
diagrams, Z specifications, and statements of requirements written
in natural language.

Model: the information content of a representation.

Stakeholder: a person involved in any way in the development of a system;
potential system users, clients and software developers are
typically all stakeholders in the development of an interactive
system.

3. The problem of choosing suitable notations

The problem of assessing and selecting notations, methods and tools for system
development is one that has attracted interest from both academia and industry. The
DESMET project (Kitchenham 94) addressed the question of how to determine
objectively the effects and effectiveness of methods and tools in general, using both
qualitative and quantitative approaches. More recent projects such as RESCUED
(O'Neill et al 97) and the Evaluation Framework for Representations in Requirements
Engineering (Sutcliffe et al 97) are currently investigating the choice of representations
at various stages of the software development process.

Several authors have highlighted the importance of choosing an effective modelling
notation, while others have set out general guidelines on how to choose appropriate
requirements representations and methods for particular situations. Macaulay has
identified the question of “What representation format should be used?’ as a significant
one for practising software developers working on the elicitation and specification of
system requirements (Macaulay 96) , and similar issues were discussed in a workshop
reported in (Jones et al 97). Christel and Kang’s report for the SEI on requirements
elicitation identified a number of factors relating to the scope of a project, the need for
understanding by various parties, and the volatility of requirements, which they
suggested should influence the developer's choice of requirements techniques and
notations (Christel and Kang 92). In 1995 Brun and Beaudouin-Lafon presented a
taxonomy for the evaluation of formalisms for the specification of interactive systems
(Brun and Beaudouin-Lafon 95). The taxonomy includes three types of criteria,
relating to expressive power, generative capabilities, and extensibility and usability.
More recently, Sommerville and Sawyer have listed some generic guidelines for
choosing representations and methods (Sommerville and Sawyer 97) and the
RESPECT project has made some general recommendations as to the stages of system
development for which certain techniques and representations are most appropriate
(Maguire 97). However with each of these authors taking a slightly different
perspective on the problem, it is difficult for the practising software developer to know
on what basis the choice of modelling notation for a particular project should be made.

In (Jones et al 97) the authors of this paper argue that an-appropriate approach to the
problem is to base the selection of notations as far as possible on existing knowledge
and experience. A framework is proposed within which this knowledge can be
structured, developed and exploited. The framework is presented in the form of a
simple questionnaire and aims to help practising software developers make quick, but
useful evaluations of available modelling notations in the context of particular
development situations. It does not propose rigorous guidelines, but is intended rather
as a tool to promote discussion and evaluation. Figure 1, below, gives an overview of
the proposed selection process, showing how general criteria for modelling notations
(identified from the industrial and academic literature) are considered in relation to a
profile of the project, which is obtained from a detailed checklist of features of the
project context provided in the questionnaire. Comparison of the general criteria for
notations with the profile of the project context provides the basis for a refined list of
criteria for notations which will be effective in the situation under consideration.
Modelling notations available to the developer are then considered in relation to the
refined list of criteria and from this the final selection of appropriate modelling
notations is made.

Project context
- users of the notation
- purposes of models

- environment
Refined criteria
+ : .
for notations in
ZI; iigitc project Notations
General criteria for notations appropriate
/ to project
Available notations

Figure 1: Overview of the selection process for modelling notations

At present, both the generation of a list of refined criteria, and the use of this refined list
in choosing an appropriate set of notations can be done only on the basis of experience
gained in past development projects. Our aim, however, is to investigate the possibility
of providing a more objective basis on which to make such choices by defining key
properties of notations in sufficient detail that at least some objective measures might
eventually be used to compare them.

The general criteria for modelling notations, which are used in the first stage of the
selection process, are those which are cited most frequently in the academic and
industrial literatures. Farbey (93) covers criteria relating directly to notations, such as
readability, modifiability and lack of ambiguity, and criteria relating to the notation in
use, such as the production of a well- -presented specification, the cost in time to
produce the representation, and the amount of support available. =Green (89) suggests
that a notation should be able to support what he terms ‘opportunistic planning', where
high-and low-level decisions may be mingled, work may frequently be re-evaluated and
modified and commitment to different decisions may be strong or weak. Although
Green is writing about notations for programming, his point is equally relevant to the
study of notations which are used earlier in the development process. In an article on
hypermedia design, Garzotto (95) evaluates notations in terms of what can be
described: a useful notation should be able to model information content and
presentation, system structure, and interaction with the user. Davis (93) suggests a list
of criteria pertaining to the effectiveness of representations and the choice of notations.
Davis’ list includes criteria relating directly to modelling notations,.such as that the
notation should permit annotation and traceability, facilitate modification, and some
that are expressed in terms of the software requirements specification. These include the
criterion that "proper use of the technique should result in an SRS that is
understandable by customers and users who are not computer scientists".

Among publications from authors in industry, criteria for modelling notations in the
STARTS guide (DTI and NCC 87) incorporate qualities such as rigour, suitability for
agreement with the end-user and assistance with structuring the requirements. Rigour
comprises four separate features: how precisely the syntax of the notation is defined, the
extent to which it is underpinned by maths and logic, whether the meaning of individual
symbols is defined, and the extent to which the notation supports consistency checking of
the requirements themselves. Suitability for end-user agreement refers to ease of
understanding of the notation by an untrained reader, and assistance with structuring the

requirements assesses the extent to which the notation supports hierarchical decomposition
and separation of concerns in the representation. The STARTS guide also regards the
range of requirements covered by the notation as important, including functional,
performance, interface, system development and process requirements. Admiral
Training's (95) guide to interactive multimedia development is similar to the STARTS
guide in placing emphasis on what the notation should be able to model and on ease of
understanding. Effective notations, according to Admiral, should be able to describe the
current situation, the target audience, the actual and required level of user performance, the
overall aim of the system, the environment, possible constraints and details of specific
functions. Notations need to be easy to understand, not only for clients and users, but also
for members of the multimedia development team who do not have a background in
computer science.

Authors who have explored the topic of criteria for modelling notations differ in their
approach and in the weightings that they give to different properties; in general, and as
might be expected, publications from industry focus on practical criteria aimed at
producing an effective representation, whereas criteria chosen by academics tend to be
more theoretically based. There are, however, certain criteria that are generally agreed by
most authors to be important for effective modelling notations; one of these is the criterion
that a notation should be as easy as possible for untrained readers to understand. The
following section explores the issue of ease of understanding, both generally and in the
context of interactive system development.

4 Ease of understanding
4.1 A view of understanding
One perspective on understanding from the philosophy of language is described by
Blackburn (84). The key elements in a discussion about the understanding of language or
linguistic utterances may, according to Blackburn, be represented as in figure 2.

Speakers

/

Language — World

Figure 2: Key elements of understanding

Figure 2 denotes the fact that language is typically used by speakers to express their ~ _
thoughts about the world. A person with a thought (such as ‘I’d like a cup of coffee’) can
only communicate that thought to another person, such as the waiter in a café, through the
use of some language - either verbal or visual (as in sign language). We say that the waiter
is able to understand such a request if he can attach the intended meaning to it, or in other
words, if he can know what thought or desire it expressed.

According to this view, understanding relies on a shared system of thoughts and
meanings, one which all members of the linguistic community have (at least roughly) in
common. In the above example, both the waiter and the original speaker would normally
be familiar with the idea of a request and the fact that the words ‘I’d like’ may be used to
express one. They would normally also have roughly the same idea about what kind of
thing the words ‘a cup of coffee’ are used to denote. Thus Blackburn talks about a ‘dog-
legged’ theory of meaning in which understanding between different members of a .
linguistic community is possible because that community shares a set of conventions about
the mappings between words and things in the world, and also between words and
thoughts.

For the purposes of our discussion, we may substitute the more general notion of
‘representations’ in place of ‘language’ in figure 2. We may limit ourselves to the domain
of software systems as the part of the world in which we are particularly interested, and
think of our speakers as being software developers, clients, and potential system users, in
other words, the stakeholders in a system development (see figure 3).

stakeholders

/

representations software systems

Figure 3: Key elements of understanding in interactive system
development ‘

Following on from the discussion above, we would say that understanding between the
stakeholders would have to rely on a shared system of thoughts and meanings for
representations; or in other words, a shared set of mappings between aspects of the
software systems and their representations, and also between the representations and the
thoughts of the stakeholders. But of course, this is likely to be problematic. Users and
developers typically come to the development with vastly different experiences, both of
the application domain (users will know it well, developers often hardly at all), and of
software systems (users may have experience of system interfaces but usually do not have
the developers' experience of the internal workings of such systems). Therefore our
community of ‘speakers’ do not have a perfectly shared set of thoughts. There is also, at
present, no conimon currency of representations whose elements are linked by any
common agreement with particular aspects of software systems. Thus each of the links of
the triangle in figure 3 is rather weak, and we can begin to appreciate why it will be
difficult to tackle the problem of using representations effectively in the development of
interactive systems. :

The following paragraphs will return briefly to the question of why, despite being
difficult, the question of understanding is important in this context, and will consider, in a
little more depth what might be involved in understanding a particular representation. This
leads to a discussion, in section 5, of whether it may be feasible to evaluate or predict the
understandability of representations written using particular notations.

4.2 Understanding in the context of interactive system development

As we have already said, building interactive systems involves developers and users
with vastly different experience and different ways of thinking who must be able to
communicate effectively with each other if the system eventually delivered is to satisfy
the users’ requirements. It is assumed to be the developer’s responsibility to present the
users, who are likely to have little or no training in the field of computing, with
representations of the intended system which they can understand well enough to give
useful and meaningful feedback on design decisions proposed.

It is important that the representations used should be easy to understand so that
untrained clients and users are not forced to put effort into deciphering them, rather than
concentrating on their content. This problem is described most eloquently in (Green
89): "When a train of thought is broken again and again by the need to find something
out the hard way, it is difficult to piece thoughts together into inspirations; it is difficult
enough even to finish a simple train of thought without making a mistake, simply
because of having to get the information in some tedious and error-prone way."

It is difficult to generalise about what makes representations written in one notation
easier for an untrained reader to understand than those in another. Inevitably, users
who are shown a representation will have personal preferences, different backgrounds
and experiences and different attitudes to the representation and to the unfamiliar
notation. One user may be instinctively attracted to diagrams, while another may feel
more at home with a text-based notation. Without detailed knowledge of a particular
user, it is not possible to predict whether he or she will find a specific notation easy to
understand. However, some understanding of the needs of a ‘typical’ novice reader in
understanding a representation may be possible, and may assist us in evaluating
existing or proposed new notations in terms of their suitability for use with novice
readers. '

In basic terms, we may say that users presented with a representation of a proposed
system would be expected first to extract information from the representation, either by
simply absorbing and assimilating the information presented, or by searching for
particular pieces of significance. We hope that they will then be in a position to relate
the system described to the domain in which they are to use it, to imagine how it would
be to perform the tasks of interest in that domain, and to comment on the proposed
design, perhaps adding creative suggestions of their own as to how the proposed
system might be modified. Thus we must permit users to relate the concepts denoted in
our representations to concepts of their own, and encourage both reasoning and
creativity.

Much work in cognitive psychology has addressed the extraction and use of
information from spoken or written language, but there is less on the use of graphical
representations such as those typically used in software system development. Sengler
(83) has identified finding (or searching for), decomposing and abstracting information
as three of the most important activities in reading a representation. Larkin and Simon
(87) have also identified the key activities in reading representations as searching for
and recognising relevant information, drawing inferences from that information and
adding new (inferred) elements to the representation.

Given this basic view of what might be required in order for a representation to be
usefully understood by an untrained reader, we now move on to consider the
possibility of evaluating existing or possible new notations in terms of their likely
understandability for novice readers.

5 Evaluating notations in terms of ease of understanding
5.1 Cognitive dimensions

One of the most useful concepts in the evaluation of notations for different purposes is
that of cognitive dimensions (Green 89 and 91a). Cognitive dimensions are not a set of
criteria which may be satisfied to various degrees by different notations; rather they are
aspects of notations which may be important and useful in specific situations.
Cognitive dimensions are tools for thinking about notations, rather than detailed
guidelines. They are intended to support the evaluation of any type of information
structure and can be applied to programming languages, musical scores or even
telephone numbers (Modugno et al 94). The twelve dimensions described by Green
aim to provide a broad-brush assessment of the information structures to which they are
applied. All of the dimensions are useful in the overall evaluation of a modelling
notation, but we mention here only those that are directly relevant to the particular
feature of notations that is the subject of this paper: that of ease of understanding for
novice readers.

5.1.1 Closeness of mapping.

The cognitive dimension which probably contributes most to ease of understanding is
that of the closeness of the notation to the problem domain. In the terms of section 4,
closeness of mapping corresponds to a strong link between language and world (see
figure 2). If the reader can readily recognise symbols in the notations as ©
representations of elements in the domain, this will facilitate the tasks of searching the
representation and abstracting important information from it.

Close mapping between representation and domain is much more readily achieved in
disciplines such as architecture and engineering where there are clear physical links. In
software system development, where what is normally visible are the effects of
processes and interactions between data elements, there is no obvious way of
representing the actual processes or data elements themselves. It is therefore very
difficult to achieve real closeness of mapping between representation and problem
domain in the development of software systems. This is discussed further in section
5.2.2 on motivation of symbols in a notation. ‘

5.1.2 Hidden dependencies.

A notation which allows hidden dependencies will produce representations in which
important links between elements are not visible. This can be confusing for novice
readers who do not know whether links exist, but can't be seen, whether they do not
exist, or whether they are simply not part of the representation. The example most
frequently cited is that of a spreadsheet where it is not clear that the value of a particular
cell is dependent on the content of some other cell. Among notations for modelling
software, data flow diagrams illustrate clearly the links between processes in terms of
data, but do not show any timing or control dependencies. To achieve a complete
representation, a range of notations has to be used in order to make explicit all the
different dependencies in the system.

5.1.3 Diffuseness/terseness.

The degree of diffuseness or terseness of a notation is important for novice readers in
two ways: a notation which is not succinct is likely to produce representations which
are cluttered, lacking in organisation, or which have very little content; on the other
hand a notation in which symbols carry complex information is likely to produce
representations which are too dense to convey any meaning to novice readers. One
example of this is the specification language Z where a single symbol, such as @,
represents a complicated mathematical operation.

5.1.4 Visibility

The ability to view components of a representation easily and to distinguish them from
each other is valuable in providing the novice reader with confidence that he or she will
be able to understand the representation. First impressions can have a significant effect
on the way in which a novice reader approaches the tasks of searching the
representation, recognising relevant information and validating the model. A textual
representation which is presented in a single block is much more off-putting than the
same text split into separate sections according to the different topics covered. Among
mathematical notations, the schema boxes in Z help to increase visibility by physically
packaging together associated parts of the representation. Graphical notations, such as
entity-relationship or data flow diagrams, appear to offer the greatest potential for
visibility, but frequently produce diagrams which are a cluttered mish-mash of icons
and symbols, because not enough care has been taken to emphasise visibility of
components in the representation. One of the most useful aspects of the cognitive
dimensions approach to evaluation of notations is that it highlights the trade-offs that
have to be made between dimensions in different situations. Visibility of components

is often a casualty in cases where priority is given to ensuring that the representation
carries as much information as possible.

5.1.5 Redundant recoding

A cognitive dimension which is related to visibility is that of redundant recoding: the
ability to express information in a representation in more than one way. Examples of
redundant recoding in text-based representations include headings, font size, and use of
upper and lower case. Colour or the shape of the representation itself may be used in
graphical or textual representations to highlight separate parts of a system or to
emphasise aspects of its functionality. In notations such as structured English and
decision trees redundant recoding is provided by indentation and layout. Figure 4 below
shows two versions of the same process description using structured English and a

decision tree. The decisions to be taken are conveyed by both the content and the layout
of the representations.

if not local Customer (*lives outside 20 miles radius*)

charge P&P . Local Customer Distance - Customer ACTION
else (*local customer*) order ' trade
if TotalCost (* of Order*) < £30 then value record
set DeliveryCharge | . o P&P
else if TotalCost (* of Order*) > =£30 then
if Distance <=5 miles then ;RE‘;:}:'\,ERY <£30 Delivery
no DeliveryCharge POLICY < charge
else (*Distance > S miles*) then Yes f
if CustomerTradeRecord > = | year then \\ ree
no DeliveryCharge S Delivery

set DeliveryCharge R

>= | vear Free

<=5
= £30 <1 year
else (*CustomerTradeRecord < 1 year®) < charge

Figure 4: Process description using structured English and a decision tree

As with the cognitive dimension of visibility, graphical notations seem to have
considerable potential for exploiting the concept of redundant recoding, but again this
potential is no guarantee of a successful representation. The use of redundant recoding
requires skill and creativity in order to make information more accessible without
producing an over-crowded representation or misleading cues.

5.1.6 Abstraction gradient

One of the problems in designing representations to exploit the cognitive dimensions of
visibility and redundant recoding is the risk of over-crowding; the cognitive dimension
which addresses this question is the abstraction gradient: the availability and types of
abstraction and structuring mechanisms provided by a notation. Reading
representations of any size involves the activities of decomposition (to split the
representation into manageable chunks) and abstraction (to identify the most important

~

features) as described in section 4. A notation which scores highly on the cognitive
dimension of abstraction gradient is one which encourages developers to produce
representations with clearly visible structures where the reader does not have to expend
effort in working out how the representation should be split into sections or how to
abstract the most important information from it. The amount of structure 1n a notation
is discussed in section 5.2.5.

5.1.7 Consistency

A consistent notation is one where similar information is expressed in similar ways.
This not only simplifies representations produced using the notation, but means that
novice readers can make reasonable guesses at symbols which they have not seen
before. One example of consistency is the use of different types of arrow to represent
different types of function in the specification language Z.

5.1.8 Role expressiveness

In notations which score well on the dimension of role expressiveness the reader can
readily infer the purpose of individual components in a representation. Closeness of
mapping between notation and problem domain (see section 5.1.1 above) provides
support for role expressiveness since the reader will recognise the purposes of different
components of the representation based on his or her own experience of the problem
domain. As already mentioned in 5.1.1, there is rarely a direct mapping between
symbols used in notations for software development and the domain elements they
represent. This means that role expressiveness depends largely on how names and
labels are used in representations. In a data flow diagram, for example, the name given
to a process or data store is crucial in conveying the purpose of that process or store to
the reader. In a Z specification the purpose of a schema is encapsulated in its name, so
it is important that care is taken to make sure this is meaningful.

Cognitive dimensions permit a broad-brush evaluation of a wide range of information
structures. They are general principles, triggers for thought rather than rigid
guidelines. Using the framework provided by cognitive dimensions, as discussed
above, we now investigate the possibility of evaluating or predicting the
understandability of representations on the basis of objectively measurable properties of
the notations in which they are written. Some work has already been carried out on
investigating ways in which the cognitive dimensions of repetitive and knock-on
viscosity may be measured (Roast 97). In the section below we identify specific
properties relating to ease of understanding that may, one day, be amenable to some
form of objective measurement and thus provide a sounder basis for the evaluation of
modelling notations.

5.2 Properties of notations which contribute to ease of understanding

Building on the work of authors such as Green (80, 89, 91a and b, 96), Petre (95) and
Sampson (85) we have identified the following properties that may contribute to ease of
understanding of representations:

The number of different symbols in the notation

The degree of motivation of the symbols

The discriminability of the symbols

The extent to which the notation is perceptual or symbolic
The amount or structure inherent in the notation

P GN

In the sections below each of these properties is described and an assessment is made
of which cognitive dimension or dimensions it relates to, the extent to which it can be

10

measured, and how reliable an indicator it is of whether a notation will be easy for
novice readers to understand.

5.2.1 The number of different symbols in the notation

One obvious property of notations which can be measured is the number of symbols
they contain. Green (80) makes the point that programming languages with alarge
number of symbols and features are more difficult to learn and understand than
languages with fewer features. If we apply this to modelling notations, it follows that a
notation such as storyboard with 2 symbols, is apparently going to be easier for
novices to understand than notations such as the Z specification language, which has 76
symbols (Myers et al 96). It is not surprising then that storyboards are widely used in
the development of, for example, interactive multimedia systems, where not only the
users, but also members of the development team, are likely to be unfamiliar with
software modelling notations (Admiral Training 95, Britton et al 96). Table 1, below,
shows the huge difference in the numbers of symbols found in modelling notations.

Notation Number of entries | References and comments
in key or glossary

DED 4 Fertuck 1992

Structure 5 Fertuck 1992

Charts

ERD (Chen) 5 ' Fertuck 1992

State Transition 4 Fertuck 1992

diagrams

Z 76 Spivey 1987

1st order 12 Turski and Maibaum 1987

Predicate logic

Data Dictionary - 8 Yourdon 1989

Storyboard 2 Box and line

Table 1: Number of symbols in notations

Although superficially, it might seem that notations with fewer symbols are
automatically easier for novice readers, this is too simplistic a view of the situation.
The number of symbols in a notation is a crude measure. Consideration should also be
given to the amount of information carried by each symbol; for example the function
arrows in Z carry considerably more information than the arrows in a data flow
diagram. Z and other mathematical notations are difficult for untrained readers to
understand not only because they have large numbers of different symbols, but also
because many of the symbols represent complex operations and concepts. Developers
of systems also need to be aware of the trade-offs between a small and large number of
different symbols in a notation. A small number of symbols will be easier for novices
to grasp initially, but the restricted vocabulary of the notation may hamper their »
understanding in the long term. There is inevitably a trade-off between notations with
few symbols and constructs, which may produce diffuse and disorganised
representations, and notations where a larger number of symbols and constructs
encourages representations which are well-organised and therefore more accessible to
novice readers (Green 83).

The measure of the number of symbols in a notations has an impact on two of the
cognitive dimensions described in section 5.1: diffuseness/terseness and the abstraction
gradient, but does not give us a direct indication of understandability, due to the
complicated trade-offs described above.

11

5.2.2 The degree of motivation of the symbols

This property is related to the cognitive dimensions of closeness of mapping (section
5.1.1) and role expressiveness (section 5.1.8). The concept of motivated and arbitrary
notations has been described by Sampson (85). A notation may be considered to be
motivated if there exists a natural relationship between the elements of the notation and
objects or ideas that they represent. Many of the characters in Chinese script are
motivated, for example: ﬁ(‘

F 7 S

meaning tree meaning forest

Not only does the form of the symbols suggest trees, but the symbols also preserve the
idea that a forest is made up of many trees.

In an arbitrary notation there is no natural relationship between the object and the
representation; the symbol *, for example, bears no obvious relation to the notion of
multiplication and the logic symbol 7does not suggest negation.

As we noted already in section 5.1.1, disciplines where the artefact being modelled
exists in physical form , such as a bridge or a building in civil engineering, are more
likely than software development to have notations with motivated symbols, such as
those used in the drawings of an architect or structural engineer. The problem in
software systems development is that normally the effects and interface of the artefact
are perceived rather than the thing itself. This makes it difficult to provide motivated
symbols for use in representations: a shape can represent a room and a curve a bridge,
but what realistically represents a process or an interaction?

Modelling notations for software systems tend to be arbitrary, although some
diagrammatic notations do include motivated symbols, such as a line representing a link
in entity-relationship diagrams, and an arrow signifying direction in data flow
diagrams. Inclusive (such as Venn) diagrams and connected (such as state transition)
diagrams may each be considered as motivated in certain situations. For example, a
diagrammatic-inclusive notation can represent the positions of different elements on a
screen, and a diagrammatic-connected notation may be effective for specifying possible
routes through a system.

Motivation of symbols in a notations could be measured indirectly by means of
experiments, such as those used in choosing icons, where subjects are asked to identify
the images which map most closely onto concepts of interest. Although this would
involve a considerable amount of effort, it does seem as though information obtained
from such experiments would be useful in evaluating individual notations in terms of
ease of understanding for novice readers. Not only does this property of notations
relate to two of the cognitive dimensions that we consider to be relevant to
understandability, but the situation is not confused by complicated trade-offs of the
kind discussed in section 5.2.1 and below.

5.2.3 The discriminability of the symbols

Discriminability refers to the ease with which different symbols in a notation can be
distinguished from each other; this depends largely on how physically distinct each
symbol is from others in the notation. Discriminability has been identified by both
Green (80) and Sampson (85) as an indicator of how easy an unknown notation will be
for novice readers to understand. As an example, we can consider the Z symbols
shown below:

12

-+ >
partial function maplet

To someone who is not familiar with the Z notation the two symbols look very similar,
yet they have completely different meanings. They are not easy to distinguish from each
other and so are a potential cause of confusion for novices trying to undetstand a
specification written in Z. Discriminability of symbols is a problem with many
mathematical languages. In contrast, diagrammatic notations, such as entity-relationship
and data flow diagrams, generally have symbols, such as lines, arrows and boxes, that
are clearly distinguishable from each other. However, confusion may arise when
someone who is unfamiliar with the notations has to look at more than one type of
diagram. An untrained reader may well find that the symbol for a process in a data flow
diagram is not easy to distinguish from the symbol for a data store or the symbol for an
entity in the E-R diagram (see Figure 5 below).

Process in a DFD Entity in an E-R diagram

Data store in a DFD

Figure 5: Symbols for process, data store and entity.

Different variations of standard notations, such as Yourdon and SSADM for data flow
diagrams, may also bewilder novice readers.

The level of discriminability in a specific representation can be increased by use of
techniques such as different sizes, fonts and use of colour, although these are
typographic devices, rather than an intrinsic part of the notation itself. Figure 6, below,
illustrates how even simple shading can help to distinguish data stores from processes
in a data flow diagram; use of colour for shading or outline would be even more
effective (Tufte 83) . This is an example of the use of redundant recoding (see section
5.1.5) to make the different components of the representation more visible and easier
to distinguish from each other.

As with the property of motivation of symbols, it would be feasible to measure
discriminability through experiments. These might involve situations where subjects
are timed in picking out a particular symbol from amongst a collection of others. The
property of discriminability is related to the cognitive dimension of visibility (section
5.1.4) and does not involve any complex trade-offs; therefore it appears to be a useful
indicator of ease of understanding of a notation.

13

‘
: L1 ‘
+ Order -
: Agree .
. customer
: orders] -
¢+ Product_
v Derails .
. Valld_
. Order
: Priced_{ 1.21
: Order Prics Srock
. orcer f SOV h
: ol Lave:
o
LV
: T PricecOrder

Invoice&DeliveryNote

Figure 6: Use of shading to distinguish symbols in a data flow diagram

5.2.4 The extent to which the notation is perceptual or symbolic

Perceptual representations are those in which we perceive meaning directly without
having to reason about them, for example the use of colour in electricity cables, or
diagrams in various contexts, such as road signs. Most modelling notations contain
both perceptual and symbolic elements. Graphs are perceptual in that they are
diagrammatic, although they often contain labels (symbols) for the various nodes.
Notations which are mainly symbolic rather then perceptual are frequently laid out to
show certain aspects perceptually: Z’s use of schemas, formatting of pseudocode and
introduction of ‘white space’ to aid comprehension are examples of this. Text-based
notations, which are symbolic, generally use perceptual devices to aid comprehension;
these may include section headings, paragraphs, variations in size and font, bullets,
emphasis and white space.

Perceptual and symbolic notations each have advantages and disadvantages in
modelling. Representations in symbolic notations, such as mathematical specification
languages, are able to hold much more information than perceptual representations, but.
are frequently beyond the understanding of untrained readers. Representations in -
diagrammatic notation often embody perceptual concepts, such as connectedness (as
used in state transition diagrams) and inclusiveness (as used in Venn diagrams), which
most people understand. However, without elaborate ‘extras’ the amount of
information they can contain is restricted. A further problem with perceptual notations
is identified by Green et al. (91b). Perceptual cues can be provided in a diagram by
placing functionally-related items close together in order to emphasise the relationship;
however, this can lead to diagrams which are cluttered and difficult to understand.
There is also the risk with untrained readers that any adjacent items in a diagram will be
seen as related, even when this is not the case.

14

Although we cannot currently measure the extent to which a notation is perceptual or
symbolic, we present below in table 2 a tentative classification of notations according to
their perceptual and symbolic content.

perceptual symbolic '
connected inclusion
DFD yes no yes (labels)
STRUCTURE yes no yes (labels)
CHARTS
ERD- Chen yes no yes (labels)
State Transition yes no yes (labels)
diagrams
Z no yes yes
Predicate logic no no yes
Data dictionary no no yes
Story Board yes no yes (labels)

Table 2: Perceptual/symbolic classification

The question of whether a notation is mainly perceptual or symbolic relates to the
cognitive dimensions of redundant recoding (section 5.1.5) and diffuseness/terseness
(section 5.1.3). However, the difficulty of assessing a notation in these terms and the
complicated trade-offs involved mean that this is not a particularly reliable indicator of
ease of understanding of a notation.

5.2.5 The amount of structure inherent in the notation

As discussed in section 4.2, finding, decomposing and abstracting information have
been identified as key activities in reading a representation (Sengler 83, Larkin and
Simon 87). Finding information involves searching the representation; this process will
be easier for untrained readers to carry out if the notation used encourages a clear
structure in the representation. Decomposition and abstraction are important because a
reader can only cope with a small amount of information at a given time. An effective
notation should encourage decomposition of the representation into sections or
‘chunks’, each of which is intellectually manageable by the reader. If the structure of
decomposition is not clear, then the reader will be forced to devise his or her own
decomposition of the representation, which may well be different from that which the
developer had in mind.

Among software modelling notations, the context’diagram and imposed hierarchical
decomposition of data flow diagrams mean that it is relatively straightforward for
untrained readers to find information at different levels.and to concentrate on only a
small part of the representation at any given time. Mathematical notations, such as Z,
often provide structure at low levels - for example, separation of the specification into
schemas can help to identify normal and error cases of an operation - but no mechanism
is provided to give an overview of the system as a whole. This adds to the difficulties
of novice readers of Z who wish to get a feel for the overall system before examining
the details of the representation.

Although diagrammatic notations are often thought to encourage more explicitly
structured representations then text-based notations, this is not always the case. In an
experiment comparing textual and visual programming languages, Green and Blackwell
(96) found that readers' understanding of programs depended more on the structure of
the information in the program than on whether the program was written in a visual or
text-based language. Green (83) also makes the point that the structure is only useful if

15

it is clearly visible; experiments have shown that simple structures are generally more
effective than those that try to be 'natural' and mirror the way in which the reader thinks
about the problem.

The amount of structure inherent in a notation is directly related to the cognitive
dimension of abstraction gradient (section 5.1.6). It is difficult to see how notations
could currently be measured, or even classified, according to the amount and'types of
structure they offer. However, if suitable measures were to be discovered, the
possibility of evaluating notations in terms of structure would be extremely helpful in
assessing how easy representations written in those notations would be for novice
readers to understand.

6 Discussion

In order to make an informed choice of modelling notation, a developer needs first to
identify the criteria for effective notations which are relevant in a particular situation.
The second stage of the developer's choice consists of assessing available notations in
the light of the criteria which are considered important. In the development of
interactive systems, an important criterion will always be whether or not a notation
facilitates the production of representations which are easy to understand. The aim of
this paper has been to identify properties of notations that help to make representations
produced using them easier to understand for untrained readers. We have also
discussed the feasibility of evaluating ease of understanding through objective
measures, in order to provide a sounder basis for choice of modelling notation.

For developers faced with a raft of modelling notations to choose from, many of which
have been largely untried on 'real' problems, it is helpful to have some idea of whether
a particular notation is likely to produce a representation which untrained readers can
readily understand. Each of the properties identified in section 5.2 is, on its own, only
a crude indicator of the overall ease of understanding of a notation, but taken together
they may give some idea of how quickly and well a novice reader will be able to
understand a representation developed in a particular notation. However, the
assessment of notations in terms of ease of understanding is complicated by a number
of issues. ‘

Although there may be a theoretical case for suggesting that notations with certain
properties will support ease of understanding, this can only be proved in practice
through by empirical experiments involving novice readers attempting to extract
meaning from representations. The situation is complicated by the fact that the
effectiveness of a particular representation is influenced not only be the notation used,
but by a number of different factors, including the nature and complexity of the
problem to be modelled, the expertise and experience of the modeller, the purpose for
which the representation is built, and the tools used to implement the notations. The .
number and variety of variables make it very difficult to compare different
representations. A further problem in evaluating notations arises from the fact that most
system developments require more than one modelling notation to capture all relevant
information; this gives rise to added complications of consistency between the different
notations and ways in which they can best be combined.

In addressing the question of ease of understanding of notations, this paper has
suggested a possible role for objective measurement as a way of providing a sounder
basis for decisions and choices made. Each of the properties of notations identified has
been assessed in terms of whether it is currently amenable to direct measures, indirect
measures, or whether we do not see any feasible way of measuring it. We have not
found measures for properties corresponding to all of Green's cognitive dimensions; in
the case of some of the dimensions we feel that advances in the science of
measurement may one day produce useful metrics; however, some of the dimensions,

16

such as hidden dependencies and role expressiveness, are not simply concerned with
the notation, but with the relation between the notation and the problem domain.
Measures of notations alone will shed very little light on how well a particular notation
scores on these dimensions. Even if it were possible to obtain meaningful measures
and to locate different notations on the various cognitive dimensions, we have no
obvious way of calculating the overall ease of understanding of a notation as a function
of this, and in specific development situations we have no way of measuringthe extent
to which a reader has actually understood a representation.

Overall, it appears that a reductionist approach to investigation of ease of understanding
that depends on measurement is currently neither feasible nor adequate. For the time
being we must rely largely on the experience of experts concerning which notations to
use in which development situations, and on the human skills of developers to judge
whether particular representations have been understood.

In spite of all these caveats, we feel that it is useful to continue work in this field for
three reasons. First, there is no doubt that the choice of modelling notation is extremely
important for successful development of interactive systems and that ease of
understanding by novice readers is an essential feature of a notation. Second, we do
not know what measures will be possible in the future; rapid advances in measurement
are being made in a wide variety of areas, such as acoustics and neurology, and who
could have imagined two hundred years ago, that a child's fever, the heat of the day
and chilled food could all be measured on the same scale? Finally, the process of
attempting to measure something is valuable in itself, in that it forces the would-be
measurer to understand and articulate exactly what is being measured. In the words of
Lord Kelvin (1989) "When you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot measure it in
numbers, your knowledge is of a meagre and unsatisfactory kind". We may never be
able to evaluate understandability of notations in a precise and objective way, but we
feel that working towards this ultimate goal will lead to a fuller appreciation, both of
notations themselves and of whether representations produced using them will be
readily understood by novice readers.

Acknowledgements
The authors would like to thank the organisers and participants in the International

Workshop on Representations in Interactive Software Development (July, 1997) for
their helpful and constructive comments on an earlier version of this paper.

References

Admiral Training Ltd (1995) Multimedia Design - A Newcomer's Guide
Department of Employment, Sheffield.

Blackburn, S. (1984) Spreading the Word: Groundings in the Philosophy of Language
Oxford University Press

Britton, C. and Doake, J. (1996) Software System development. A gentle introduction.
McGraw-Hill

Britton, C., Jones,S., Myers,M. and Sharif, M.(1997) "A Survey of Current Practice in
Multimedia System Development", to appear in Information and Software Technology

Brun, P. and Beaudouin-Lafon, M. (1995) "A Taxonomy and Evaluation of Formalisms

for the Specification of Interactive Systems" in People and Computers X, Proceedings of
HCI'95, M. Kirby, A.Dix and J. Finlay (Eds.), C.U.P.

17

Christel, N. and Kang, K. (1992) "Issues in Requirements Elicitation", Technical
Report CMU/SEI-92-TR-12, Software Engineering Institute.

Davis, A.M. (1993) Software Requirements. Objects, Functions and States Prentice
Hall International.

Department for Trade and Industry and National Computing Centre (1987) The
STARTS Guide, second edition, volume 1, NCC Publications

Farbey, B. (1993) "Software quality metrics: considerations about requirements and
requirement specifications" in Software Engineering: A European Perspective R. Thayer
and A. McGetterick (Eds.), IEEE C.S.Press

Fertuck L. (1992) Systems Analysis and Design, WCB

Fitter, M.J. and Green,T.R.G. (1981) "When do diagrams make good computer
languages?" in Alty,J. and Coombs,M. (Eds.) Computing Skills and the User
Interface Academic Press.

Garzotto,F., Mainetti,L. Paolini,P. (1995) "Hypermedia Design, Analysis and
Evaluation Issues" Communications of the ACM Vol 38, No.8

Green, T.R.G. (1983) "Learning Big and Little Programming languages" in

Wilkinson, A.C. Classroom Computers and cognitive Science, Academic Press, New
York

Green,T.R.G. (1980) "Programming as a Cognitive Activity " in Smith, H.T.
and Green, T.R.G. (Eds.) Human Interaction with Computers Academic Press.

Green, T.R.G. (1989) "Cognitive Dimensions of Notations" in People and Computers
(HCI 89) Sutcliffe and McCauley (Eds.) CUP.

Green, T.R.G. (1991a) “Describing Information Artifacts with Cognitive Dimensions
and Structure Maps” in People and Computers VI, Proceedings of the HCI'91
Conference, Diaper, D. and Hammond, N. (Eds.), August 1991

Green,T.R.G., Petre,M. and Bellamy,R. (1991b) "Comprehensibility of visual and
textual programs: A Test of Superlativism against the "Match Mismatch" Conjecture"
in Koenemann- Belliveau,J., Moher,T. and Robertson,S. (Eds.) Empirical Studies of
Programmers Fourth Workshop, Norwood NJ, Ablex pp121-146

Green, T.R.G. and Blackwell, A.F. (1996) "Thinking about Visual Programs " in
Thinking with Diagrams IEE Colloquium Digest No: 96/010

Jones, S., Britton, C. and Lam, W. (1997) "Towards A Framework for Selecting
Notations for Modelling Requirements" Technical Report number 303, Department of
Computer Science, University of Hertfordshire, Hatfield, AL10 9AB

Kitchenham, B. (1994) DESMET Guidelines for Evaluation Method Selection
DESMET Workpackage 2 (DES/WP2.2/7), NCC Services Ltd.

Larkin, J.H. and Simon, H.A. (1987) “Why a Diagram is (Sometimes) Worth ten
Thousand Words”, in Cognitive Science, 11, pp 65-99

Macaulay, L.A. (1996) "Requirements for Requirements Engineering Techniques",

Proceedings of ICRE96, the Second International Conference on Requirements
Engineering, IEEE Computer Society Press

18

Maguire, M. (1997) "RESPECT User Requirements Framework Handbook" Version
2.2, HUSAT Research Institute.

McCluskey, T.L., Porteous, J.M., Naik, Y, Taylor C.N. and Jones, S. (1995)
A Requirements Capture Method and its use in an Air traffic Control Appllcatzon
Software practlce and Experience, Vol 25 (1)

Modugno, F., Green T.R.G. and Myers B.A. (1994) "Visual programming in a Visual
Domain: A Case Study of Cognitive Dimensions" in People and Computers IX,
Proceedings of HCI'94, Glasgow, August 1994

Myers, M., Britton,C., Jones,S.and Sharif, M. (1996) "An investigation into the
measurement of modelling notations" Technical Report No. 257, Faculty of
Information Sciences, University of Hertfordshire, to be presented at The Eighth
European Software Control and Metrics Conference, Berlin, May 1997

O'Neill, E., Johnson, P. and Johnson, H. (1997) "Representations in co-operative
software development: an initial framework", Proceedings of the International
Workshop on Representations in Software Development, 2-4 July 1997, Queen Mary
and Westfield College, University of London

Petre, M.(1995) "Why Looking Isn’t Always Seeing, Readership Skills and Graphical
Programming" Communications of the ACM, June 1995, Vol 38, No.6

Roast, C.R. (1997) "Formally Comparing and Informing Notation Design" in People
and Computers XII, Proceedings of HCI'97, H.Thimblely, B. O'Conaill and P.
Thomas (eds.), Springer.

Sampson,G. (1985)Writing Systems. Hutchinson, 1985

Sengler, H.E.(1983) "A Model of Program Undersanding" in Green, T.R.G., Payne,
S.J. and van der Veer, G.C.The Psychology of Computer Use Academic Press, 1983

Sommerville, I. and Sawyer, P. (1997) "Requirements engineering: a good practice
guide", Wiley.

Spivey J M. (1987) The Z Notation A Reference Manual, Prentice Hall

Sutcliffe, A.G., Maiden N.A.M. and Bright, B. (1997) "An Evaluation Framework for
Representations in Requirements Engineering", Proceedings of the International
Workshop on Representations in Software Development, 2-4 July 1997, Queen Mary
and Westfield College, University of London

Tufte, Edward (1983) The Visual Display of Quantitative Information Graphics
Press, Cheshire, Connecticut. -

Turski, W.M. and Maibaum, T.S.E. (1987) The Specification of Computer Programs
Addison-Wesley

Yourdon E. (1989) Modern Structured Analysis, Prentice Hall

19

