DIVISION OF COMPUTER SCIENCE

Clone Detection in Telecommunications Software Systems:
A Neural Net Approach

Technical Report No.208

December 1994

Clone Detection in
Telecommunications Software
Systems:

A Neural Net Approach

S. Carter, R.J. Frank*, D.S.W. Tansley

BNR Europe Limited
London Road, Harlow, Essezx, UK, CM17 9NA
sc@bnr.co.uk, dswt@bnr.co.uk
* Universily of Hertfordshire
College Lane, Hatfield, Herts, UK, AL10 9AB
comgrjf@herts.ac.uk

Abstract

We report on the development of a tool which uses neural nets to
help in the detection of ’clone’ software in large telecommunication
software systems. Cloning is a primitive form of software re-use,
whereby existing blocks of source code are copied and adapted, for
use elsewhere in the system or to implement new functionality. A
number of representation schemes for presenting the source code to
Self-Organising Maps (SOMs) have been tried. The more favourable
of these have been applied in a hybrid, modular tool architecture.
The current result is a demonstration system in trial.

1 Background

1.1 Work context

The authors were given the opportunity to start to evaluate the costs and
benefits of the much-hyped neural network technology in late 1992, following

years of low-level background monitoring of the field by the Software and
Systems Engineering group within the Advanced Technology Centre at BNR
Europe Limited, Harlow, UK. Our aim was to design a programme of work
to be carried out in 1993 to demonstrate the capabilities of the technology
in a useful way to the company. It was decided that this should be done by
developing a software source code clone detector.

1.2 Clones and cloning

The clone 'problem!’ arises from a simple, frequently-used technique to in-
crease or amend the functionality of telecommunication systems, notably
those large, older systems from a time when software development tech-
niques were relatively primitive compared to those we have today. It involves
copying existing sections of source code and changing the copy as necessary
in order to implement the new functionality. Whilst this should result in
copying known-to-be-working code, it also copies as-yet-unknown bugs, and
may often include large amounts of redundant statements. Software cloning
is a major contributor to the steadily increasing size, complexity, and in-
creased error rates of such systems.

The choice for telecommunications companies is stark — either build new
systems from scratch using modern technology, or re-engineer the existing
systems. If re-engineering is the choice, a major part of the problem will be
solved if the clone software present in the system can be managed — either
eradicated or tracked. Similarly, new clones should either be prevented or
logged to aid future bug-fixing. To do this practically, an automatic tool is
required - a clone detector. Since clone detection inevitably involves pattern
matching, a neural net approach would seem to offer some promise.

There are a number of different types of clone to be found in telecom-
munications software. By different types, we mean degrees of how far away
from some original piece of software a cloned piece of code is. Thus, one
can describe clones using the following typology:

® Type I - An exactly identical source code clone, i.e. no changes at all.

e Type Il - An exactly identical source code clone, but with indentation,
comments, or identifier (name) changes.

e Type IIT — A clone with very similar source code, but with small
changes made to the code to tailor it to some new function.

e Type IV - A functionally identical clone, possibly with the originator
unaware that there is a function already available that accomplishes
essentially the same function.

1There are actually both positive and negative aspects of software cloning.

L

Whilst a neural net approach could be used to address any of these types,
currently we are addressing the problem of types II and III, which probably
form by far the majority of clones present in existing systems. Future work
may address type IV. (Type I is trivial to detect.)

Finally, in terms of level of scale, at the current stage of our work, we are
looking for clones at the ’procedure’ or 'PROC?’ level. (This is analogous
to the level of 'functions’ in the C programming language.)

2 A Neural Network Solution

The problem of detecting clones is to do with taking a large data set and
identifying groups of closely-related sections of that data, i.e. a classifica-
tion problem. The data set is some range of the total set of source code
procedures for a system that we are concerned with. By ’closely related’,
we mean closely related in terms of being candidate clones’.

A'solution emerged in the form of the well-known ’Self-Organising Map’
(SOM) [1] [2] . This performs a classification using an unsupervised training
phase. It had the additional advantage of preserving any topological rela-
tionships between the input vectors. This would be useful in our problem
domain as it might be used to measure some degree of ’cloniness’ between
any specific classes of clones identified by the network.

3 The Input Vector

The mapping of the raw source code into a form suitable for inputting to
the network is a major area for our investigation. Preliminary discussions
generated the following possibilities for abstracting the raw source code into
1ts specific features: call graphs, parse trees, tokens (e.g. names, identifiers,
etc.), visual patterns (e.g. indentation, characters represented as single bits,
etc.), data structures, and comments. The input to the net would be some
coded form of these. Combinations of the above are also possibilities.

The precise form of the input would be dependent upon the specific
type(s) of network used. Our early experiments concentrated on two fea-
tures of the source code in particular: physical layout patterns, keyword and
operator frequency distribution, (and also combinations of these two). Al-
though first attempts, these have actually proved successful enough to not
warrant the trying of other features at this stage.

Figure 1 illustrates how a typical input vector is constructed.

2A statement in BNR's proprietary programming language — but note that our work
is completely language-independent.

BLOCK

ndex GH_Audit_Index;

DCL GHRe GH_Audit_Re;
IF “Enter_Command (Activate_Doc, DBSC|LvInd (], ComInd)
THEH

TypeMess ('Put Help here.');

RETURH;
BHDIF;
BNDBLOCK Activate Com;

3]32[3]29[3 [s8[- |- -|

|1 1!0 ZIOlll
atum Desc e of

Indentation Keyword

Figure 1: Schematic of input vector construction

The first type of source code feature we used was the ’physical’ way
the source code was layed out, i.e. how it was indented on the page, how
many lines were present, how long the lines were, etc. There are various
possible combinations of these elements to describe the feature of the way
the code is laid out, depending on the level of detail required and the relative
importance of each element. For example, we tried representing only the
changes in indentation as a binary pattern vector and we tried representing
the changes and the length of similarly indented blocks.

A significant problem with this approach was that the vector varied in
length depending upon how many changes in indentation there were and/or
how long the procedure was. We used padding and truncation to address
these problems initially, in order to get a fixed input vector for the SOM,
but later moved to a scaling algorithm to pre-process the data to always
produce a fixed-length vector. The scaling algorithm worked by using the
values in the original vector to define points on a graph with straight lines
joining those points. The riew vector was produced by sampling along this
graph at the required interval to find the values for the new vector. This
technique has the advantage that operations such as adding or removing a
line of source code would result in similar vectors.

The left-hand side of figure 1 shows how a real vector (part) is con-
structed for indentation (and line length). For each line of code, the number
of characters of indentation is one value of a data pair (e.g. 3); the other
value is the length of the line (e.g. 32). In the example, a x2 expansion is

required to scale the raw data vector to the fixed-length input vector.

The second type of source code feature we used was the frequency dis-
tribution of the programming language’s keywords used in the procedures.
Keywords were such things as 'RETURN’, 'DESC’, "WHILE’, 'IF’, "THEN’,
etc. There were 77 different keywords, although some of these could be re-
moved due to rarity of use or redundancy (due to them always appearing in

pairs, for example), leaving 62 meaningful ones. The keyword input vector

(part) thus simply consisted of one fixed-length array per procedure, with
each element of the array containing a number representing the count of oc-
currences of a particular keyword in the current procedure — see right-hand
side of figure 1. Additionally, we added counts of the 19 different operators
in the language, giving a total input vector size of 81 in this case.

4 The Output Vector

The output of a SOM is inherently coupled to its Kohonen layer — in fact,
it is the pattern of activity in that layer itself. When a vector is applied
to the trained network, one neuron becomes active in the Kohonen layer.
Each neuron in the Kohonen layer represents a class, so the active neuron
indicates the class that the input vector falls within. This raw output is
not suitable in a clone detector tool. The sort of output required in such
a tool is a list of ’candidate clones’, perhaps with degrees of likelihood or
"cloniness’ against each, compared to themselves or a 'reference procedure’.
This output information can easily be obtained from the SOM with a little
post-processing, however, and its topology-preserving characteristic helps
to make a 'cloniness’ measure more easy to calculate.

5 Experimental Results

These results were produced using input vectors from 1775 procedures ex-
tracted from a skim file of approximately 5Mbytes of arbitrarily-selected
source code. A SOM was trained using these vectors. At the end of train-
ing the output from the SOM was further processed to populate a clone
database. Different experiments were done using combinations of various
sized SOMs and different input vectors (see Section 3).

The clone detection rate was determined by randomly choosing 100 test
procedures from this data set and using the clone database to access the
nearest procedure to it, subject to a cloniness threshold. The two pro-
cedures, test and candidate clone, were viewed side by side by a software
engineer familiar with the type of source code who then decided whether
the neighbouring procedure was or was not a clone of the test procedure. A

£

numerical value was then arrived at for each test by examining the result for
each procedure in the test and adding the cloniness value if the procedure
was a clone and subtracting the cloniness value if it was not a clone. The
final result was then scaled to be in the range 0 to 100. Note that this is
therefore not a percentage measure of accuracy!

Table 1 summarises the key experiments performed with the different
input vector schemes described in Section 3.

Table 1: Input Vector Type vs Kohonen Layer Size Results

I Input Vector Scheme | Kohonen Layer Size || Results ||
Keyword/Operators 10x10 35.2
Keyword/Operators 15x15 36.0
Keyword/Operators 20x20 37.0

Indentation 10x10 41.3
Indentation 15x15 51.4
Indentation 20x20 55.0
Keywords/Operators/Indentation 20x20 68.7

The results show that as the number of units increase in the Kohonen
layer, the categorisation becomes more accurate.

The results also show that although the keyword and indentation tech—
niques both produce reasonable results, the combination of the two produces
a better result, as more information about the procedure is provided to the
net and there is a smaller likelihood that two procedures that were not
clones of each other would have similar input vectors.

6 The Neural Network Clone Detection Tool

Figure 2 shows a schematic view of the proposed tool architecture and mode
of operation. This is described below.

The proposed tool will be required to operate with a much larger en-
vironment (100k+ procedures) compared to the development and test envi-
ronment. We plan to use a two level hierarchical neural network based on
the SOM paradigm. The first level SOM will be trained on all the proce-
dures (in some suitable subset of the entire system) to classify them into a
relatively small number, say n, classes.

A set of n separate second level SOMs will then be tramed on the pro-
cedures in each class to discriminate these broad classes into smaller sub-

Approx 100k +
Training Procedures

\ 1 Training veciors (ses Figure 1)

~

SOM :m Main Classitier SOM networks

DODOOO OOO DO
OO0 0 cCOoDOoOOO

OO OO0 0000
oo o A
s o OO
000 OO o O o
-] -]
000 00O o o
s oo ocae oo e o SOM network #8
OO0 000 OO0 OO
o 000 OO0 000 00000

Training Phase

Recall Phase

Test
Procedure D \‘ e
Clone Cione
fnaysis Database
Engine
S—

iy e

Figure 2: Schematic of clone detection tool

classes. The output of this neural network hierarchy would then be pro-
cessed into a cloned procedure database. This would be accessed by the
clone analysis component of the tool in a recall phase, once the training
had populated the database.

The clone detection tool would find the clones of a given procedure by
accessing the class and subclass of a procedure from the neural network
output database and calculating the closeness of the given procedure to the
other procedures in the sub-class and neighbouring sub-classes.

At this point the closeness measure used may be based upon the textual
differences of the source code, procedure names, etc. The user can inspect
any of the candidate clone procedures against the test procedure in text
windows placed side by side on a workstation.

This mode of operation of the tool will be useful in debugging where the
cloned procedures of a procedure with a known error can also be discovered,
allowing an increase in efficiency of this activity.

Another possible mode of operation of the tool would be in providing
a statistical analysis of large parts of the system. This would constitute
a more time-consuming operation but would provide system development
managers with an overall view of the state of the system from the point of
view of code duplication, development effort, etc.

The tool could also be used as an aid in producing a reusable software
library for use in later generations of the software.

7 Conclusions

A demonstration tool has been produced that will take the raw output from
a trained SOM, together with the training vectors, in order to produce an
ordered list of likely clones of any given procedure. It will then present
windows on a screen which display the source code containing the likely
clones in order for the user to inspect them manually.

The work as it currently stands shows that the best performing network
is one that has the order of a 20x20 Kohonen layer, using an input vector
that encodes a combination of source code features including indentation
pattern, keyword and operator frequency, and the procedure length.

A clone detector product will use a hierarchy of SOMs which will enable
us to manage a realistic amount of source code. This will result in an'ex-
tremely powerful and uniquely flexible tool. The clone detector will be just
the start of a possible portfolio of reverse engineering and design recovery
tools that could use components based on neural networks.

Acknowledgments

We would like to thank Neil Davey from the Department of Computer Sci-
ence at the University of Hertfordshire, UK, for his contributions to the work
presented in the paper in his role as consultant.

We also acknowledge the financial assistance of the Department of Trade
and Industry of the UK government, who have partly funded the placement
of Ray Frank on a ’Senior Academics in Industry Scheme’ (SAIS) at BNR
Europe Limited, through the Teaching Company Directorate (TCD) organ-
isation, under grant no. SAIS-003.

References

[1] T. Kohonen, “Self Organised formation of topologically correct feature
maps,” Biol. Cyber., vol. 43, pp. 59-69, 1982.

[2] T. Kohonen, “A simple paradigm for the self-organized formation of
structured feature maps,” in Amari,S., and Arbib, M.[Eds], Competi-
tion and Cooperation in Neural Nets, Lecture Notes in Biomathemetics
vol. 45, Springer Verlag, 1982. ’

