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Abstract

The following paper presents simulational results of coupling Genetic Algorithms to the
Kohonen Feature Map paradigm. The Genetic Algorithm is used to improve the Kohonen
Net topology, thus yielding better adaptation to the input vector space [0,1]*. Different
parameters of the process and their influence as to the resulting topologies are discussed.

1. Introduction

Recently there has been an increased interest in the application of Genetic Algorithms
(GA) to (artificial) Neural Networks (NN). The appeal of combining the GA and the
NN paradigm arises from the expectation that GA might yield a systematic approach
for an efficient search for "optimal” nets in the large space of network structures and/or
dynamics. A second motivation, of course, are the biological roots which both paradigms
share.

One main approach to combine GAs and NNs has been the usage of GAs instead (or in
addition to) Backpropagation or related algorithms to train the weights of Feed-Forward-
Networks [7]. GAs have also been used to find optimal learning rules [3] or to search for
an efficient net structure and topology ([2], [5]). It has been felt that a direct genotype-
phenotype-coupling in the combined algorithm (e.g. when explicit coding the weights of
a net into the chromosomes) is inappropriate and may lead to an unnecessarily large GA
search space, discarding its possible reduction by problem-inherent redundancies [1]. Even
in biological systems one can hardly expect to find an explicit detailed coding of structure
or weights of the nervous system.

Kohonen Feature Maps appear to be suited to study the possibility of compact encoding
of a net topology due to the rather uniform structure of the nets and of the spaces
they adapt to. In the classical approach the net topology is defined following a priori
assumptions about structure and dimensionality of the input vector space. The Kohonen
training procedure is then applied to establish a “topological mapping” between neurons
and input vector space. Using the GA to optimize the Kohonen net topology itself there
is no need to impose an a priori knowledge on the net any more. Instead, the net topology
is adapted to the input space to improve the effectivity of the training procedure.



Figure 1. Interaction between the GA and the Kohonen Feature Map

2. Interaction between the GA and the Kohonen Feature Map

Fig. 1 shows the structure of the algorithm. The GA creates by mutation and recom-
bination chromosomes, which are elements of {0,1}7. Every such genotype then defines
the topology of a Kohonen Net via a transcription rule (which will be described in more
detail below); the net is trained and after completion of the training it is subjected to a
"quality test”, which serves as a fitness function to be employed by the GA.

2.1. The Kohonen Feature Map

We will regard the Kohonen Feature Map as an undirected graph G, where a weight
vector € [0,1]™ = I"™ is associated with every vertex. We have a metric d; defined on
I'™ (typically the Euclidean distance) and the canonical metric dg defined on the set of
vertices of GG (two vertices v and v’ have distance 1 iff they are connected by an edge).

The training procedure for the net has been derived from the standard one (s. [4], [6]).
In every training step first a vector @ € ["™ is presented (e.g. according to a probability
distribution). Then the vertex v* is chosen, whose weight vector w* is closest to @ with
respect to the metric dy on I"™. Then for every vertex of the graph the weight vectors are
corrected according to:

wy(t +1) = wy(t) + a(t) - k(da(v7,v)) - [2(t) — w(?)] (1)

where the correction depends on the learning rate a(?) and on the activation profile h;.
The latter determines how strong the weights of a vertex v are corrected depending on



its graph-immanent distance dg(v*,v) from the "maximum activation vertex” v*. This
more general formulation of the Kohonen learning prescription renders possible to apply
the training rule to a net of arbitrary topology.

2.2. Genotype-Phenotype Mapping

In the next step we will define the transcription rule used in our simulations. This
rule yields a net with a unique topology for every given chromosome. It requires the
chromosome to consist of 2 bytes + n double-bytes (1 double-byte = 2 bytes = 16 bits):

The number k of vertices in the graph is given by the content of the first byte plus 1,
guaranteeing the net to have at least one vertex. The second one, multiplied by 16, yields
the maximum number of transcription steps that may be done before the procedure has
to stop (maxsteps). These two "header bytes” are followed by n double-bytes, each of
which defines one transcription step. In every transcription step a vertex is connected
with a different one. Whenever the rule tries to establish a connection which already
exists or tries to connect a vertex with itself, the algorithm stops. The central part of the
transcription algorithm follows (an example showing some transcription steps is illustrated

in Fig. 2):

/* transcription; k,n and maxsteps as above */

from = 0

to = 0

step = 0

1 = 0

while step < maxsteps do /* transcription step */
from = (to + al[i]) mod k
to := (from + b[i]) mod k

if (from = to) or (vertex[from] is connected with vertex[to])
then exit while loop
connect vertex[from] with vertex[to]
step := step + 1
i:=(i+ 1) modn
endwhile

Given the topology as resulting by the transcription rule, the net is trained according
to (1) until a termination condition is satisfied.

The trained net can then be regarded as phenotypic expression of the chromosomes.
Thus the genotype-phenotype-mapping consists of two phases: in the first the transcrip-
tion rule is applied to the chromosome. This deterministic process unfolds” the compact
information stored in the chromosome into a complete network topology (since usually
the explicit information contained in a chromosome is much smaller than that of a graph,
this is "unfolding” in most cases). In the second the net’s weight vectors are "unfolded”



Figure 2. Example of a 2 bytes 4+ 2 double-bytes chromosome (in general a chromosome
may contain more double-bytes)

in weight vector space. Since the training data in most cases result from a random
distribution of event vectors x this part of the genotype-phenotype-mapping is no longer
deterministic. Thus the full phenotypic expression is a result of the combination of genetic
and "environmental” factors.

One should note here that maxsteps may, but need not influence the net topology,
only setting an upper limit for the connectivity of the net. Depending on the number of
vertices k and the content of the double-bytes in some cases the algorithm may as well
create a net with a large set of sparsely or unconnected vertices without having been
limited by maxsteps.

2.3. Fitness function

The fully developed phenotype has now to be subjected to a quality or fitness function,
which is going to be used by the GA. Being acquainted with a typical appearance of
trained Kohonen nets one would choose some kind of smoothness function which would
yield higher quality values for smoother nets. For the sake of simplicity we preferred to
choose a different quality function, which gives an estimate of the average distance from
an arbitrary € I™ to the nearest weight vector of one of the vertices of G. Given a
sample of ¢ points z; € I"™,2 = 1,..., ¢ the quality function used is given by:




where w*(x;) := w,», if for all vertices v: dy(z;, wy,+) < di(w;,w,) holds. We call v* the
vertex activated by the sample vector z;; v* and hence w* is almost always unique. Q(G)
is essentially a measure of the average square distance from an input vector to the vertex
it activates; a smaller average distance yields a higher quality function and indicates a
better adaptation to the input space.

For a smaller estimated average distance the quality function increases. It is not obvious
that this quality function that essentially measures the equidistribution of the vector
weights of the trained nets should prefer nontrivial net topologies to a set of unconnected
vertices. But when starting a training sequence with weight vectors only distributed
inside a small area (in our case e.g. [0.45,0.55]?) only part of the neuron weights are
spread throughout weight vector space when training a net with unconnected vertices
(Fig. 3.a). In systems with a higher degree of connectivity the vertices mutually help each
other to spread throughout weight space towards a more uniform distribution.

3. Experiments and Results

In our simulations we used a GA with roulette wheel selection using the fitness function
described above. Recombination took place with two randomly chosen crossover points.
The population consisted of 30 individuals (chromosomes). It was initialized with random
binary strings. The best chromosome of the current population was always retained and
never subjected to mutation or substitution by offspring. To compute the fitness function
the chromosome was transcribed according to 2.2 into a net topology: the net weights
were randomly distributed in [0.45,0.55]* (Fig. 3.c). The Kohonen Net training procedure
with a random input vector sequence was then applied. Finally the quality function has
been computed for a sample of 100 test vectors. For the sake of reproducibility the
random vector sequences used were the same for every chromosome, so the genotype-
phenotype-mapping was in fact deterministic instead of, as it should be in principle,
being stochastic: so the same chromosome in our experiments would always yield the
same trained net. The sample used to calculate the quality function was also random but
fixed and is shown in Fig. 3.b. One more remark as to the training of the nets: « was
chosen to be a(t) = 0.25/(1 4 0.001¢). h; was chosen following the standard suggestion.
It had the value 1 up to a certain distance from the maximum activation vertex and the
value 0 farther away; up to 1000 training steps this distance was 3, up to 2000 the distance
was 2 and afterwards 1, defining decreasing influence ranges of the maximum activation
vertices.

The characteristic phases in the development of a fully connected net created by the
above transcription rule (applying it to an arbitrarily chosen 2 + 2 double-byte chro-
mosome) are shown in Fig. 3.c - 3.f. The training starts with the initial distribution of
weights shown in Fig. 3.c. Up to 1000 steps the coarse structures are formed (Fig. 3.d).
When the range of the activation profile decreases at later training times the finer struc-
tures begin to develop (Fig. 3.e). After 3000 steps (Fig. 3.f) no substantial changes take
place any more.

In Fig. 3.g - 3.1 the results of a GA run are illustrated, where the nets are trained only
for 300 steps; the figures always present the fittest phenotype of the population. Till later
generations the phenotypes exhibit a strongly irregular embedding into 7% and a not fully
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Figure 3. Diagrams

a) Net of unconnected vertices after 2000 steps with quality 1.26.
¢)-f) Training sequence of a typical net with qualities 0.08, 1.06,
1.97, 3.56 after 0, 1000, 2000 and 3000 cycles
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Figure 3. Diagrams (continued)

j)-1) fittest phenotype at generation 0, 20, 50 trained for 3000 cycles (qual 5.88, 6.35,
6.69) m)-o) fittest phenotype at generation 2, 150, 500 with longer genotypes and
smaller maxsteps (qual. 4.98, 8.26, 9.04)

developed connectivity.

One should note, however, that the transcription rule yields a relative regular net
topology for shorter chromosomes, as long as the transcription process is not limited by
maxsteps. Neglecting the influence of maxsteps the irregularity of the trained phenotype
is chiefly due to the weights and not to the topology of the net.

Furthermore the nets resulting from the evolution with short training times exhibit
effects like “dangling bonds”, which are not caused only by the maxsteps-limitation, and
which can be seen e.g. in Fig. 3.h.

On the other hand, what can be expected to be achieved by increasing training times?
It is shown in Fig. 3.j - 3.1 that as early as in the initial generation with a population of
random chromosomes phenotypes with a more regular structure and a stronger connec-
tivity (no “dangling bonds”) are preferred (see especially Fig. 3.k, “cobra”-pattern). A



stronger connectivity and the absence of dangling bonds appear to be relevant to achieve
a higher regularity for the weight vector distribution of the trained phenotype, which,
again, seems to yield better adaptation results. Even longer training times applied to the
nets of Fig. 3.g - 3.1 did neither result in essentially higher regularity of the phenotype
(not shown here) nor in in quality function values as high as for the Fig. 3.j - 3.1.

To check the connectivity issue once more and to further explore the genotype-pheno-
type-relation we present one of a series with longer chromosomes and where the second
byte contains only maxsteps/2 (i.e. maxsteps is only 2 times the contents of the second
byte, Fig 3.m - 3.0). The longer genotypes give rise to an increased complexity of the
nets. In spite of that and even though maxsteps is much more restrictive than in the runs
Fig. 3.g - 3.1 one notes that the successful nets tend to exhaust the connectivity reservoir
by a larger maxsteps.

4. Conclusions

It has been demonstrated that a coupling of the GA and the Kohonen Feature Map
paradigm leads to reasonable results regarding the capability of adaptation to a given
event space. In particular Kohonen nets proved to be promising candidates for phenotype-
genotype-mapping by a fairly simple transcription rule due to their highly uniform struc-
ture.

The results show that longer training times which permit full development of a net are
much more effective yielding good adaptational results than short training times (even at
longer evolution periods) which only result in immature nets. It is remarkable that the
advantage of the nets with longer training times immediately strikes one’s eyes. Higher
connectivity seems to be favourable for a more efficient exploitation of the input space.

Usage of a different fitness function as well as different parameters for the GA and the
Kohonen Net training has been envisaged. A deeper analysis of the current transcription
rule and of possible generalizations will be the topics of further research.
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