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Summary 

 

Digested Information is a theory that aims to explain, at the non-semantic level of 

Information Theory, why it makes sense for one agent to observe another. Based on the 

formalism of Relevant Information, defined as the minimum amount of information an agent 

needs in order to determine its optimal strategy, I argue that, following its own motivation, an 

agent (1) obtains relevant information from the environment (2) displays it in the 

environment through its own actions, and (3) is likely to display information in a higher 

density in regard to its bandwidth than other parts of the environment. Furthermore, I argue 

that this information is also relevant to other, similar, agents and that this could be used to 

motivate agent-agent interaction (such as observing other agents) in a framework where agent 

behaviour is determined by information maximisation. 

 

Abstract 

 

Modelling agent-world interaction in terms of Information Theory (Shannon 1948) has advanced our 

understanding of simple AI mechanisms. For example, Klyubin (2005) and  Der (1999) have 

demonstrated that simple “intelligent” behaviour can be created by agent centric maximisation of 

channel capacity and information parsimony (Tishby 1999); all while staying purely “syntactical” 

(Nehaniv 1999), that is, while there is no actual meaning assigned to input or output states, as in 

symbolic AI. Also, work in biology (Vergassola 2007, Dauchin 2004) suggests that similar Shannon 

information based mechanism could explain basic animal behaviour. I argue that those principles 

can be used to motivate both agent-agent interaction and the development of the simple abilities 

needed for it, such as attention towards other agents, or the ability to even identify another agent.  

The argument presented uses the term information, associated with Shannon’s Information Theory, 

as the mutual information (Shannon 1948) between two random variables X and Y. Consequently, 

the world is described as a set of random variables, which can be modelled as a Causal Bayesian 

Network as described by Pearl (2000). To define an agent in this world one first divides all the 

random variables into either belonging or not belonging to the agent. The non-agent variables are 

used to form a compound random variable, called the environment R. Furthermore, the agent is 

organised into three sets of random variables, the sensors S, the actuators A and the memory M.  

It is assumed that the agent’s actions are connected to some unspecified form of utility function (for 

example survival probability, or fitness), which determines the different payoffs, depending on the 

agent's action and the state of the environment. For every state of the environment, there exists a 

set of actions which result in the highest expected utility; a collection of such actions for each state 

of the world is called an optimal strategy. 



Relevant Information is defined (Polani 2001) as the (minimal) average amount of information the 

agent needs to acquire from the environment to act according to one optimal strategy. 

Mathematically, this is defined as the minimal amount of mutual information between R and A for 

all optimal strategies.  

However, since the mutual information is symmetric, the relevant information is not only the 

amount the agent has to obtain through its sensors, it is also the amount of information its actions 

contain about the environment. If the agent uses one of the optimal strategies, it has to act 

accordingly, and displays (automatically) in its actions at least the amount of relevant information, 

simply in virtue of acting optimally.  

By extension, the relevant information of a sub-optimal payoff level is defined as the minimum 

mutual information of all strategies that reach that payoff level (Polani 2006). Thereby, any sub-

optimal strategy requires less, or the same amount of relevant information. Conversely, an agent 

that increases its payoff level by choosing a better strategy increases the amount of relevant 

information, both obtained and displayed, or at least keeps it the same. This gives agents an 

incentive to increase the relevant information displayed in their actions, since it is a by-product of 

increasing their performance.  

Furthermore, the agent's actions typically have a much smaller state space than the rest of the 

environment, and hence a much smaller bandwidth, but still need to contain the same amount of 

relevant information. This creates an “Information Bottleneck” (Tishby 1999), and it indicates that 

the agent’s actions could contain a much higher “concentration” of relevant information per bit than 

other parts of the environment.   

To support this claim we have implemented a grid world scenario where artificial agents search for 

the location of food (Salge 2009), controlled by a biologically inspired Infotaxis search (Vergassola 

2007). Our simulation showed that agents’ actions contained: 

a. relevant information (measured as mutual information between actions A and a random 

variable F denoting the location of the food) 

b. more relevant information per bit than any other part of the environment 

c. more relevant information if the agents performance increased  

Now consider a scenario with several agents that have a similar embodiment and utility, and 

therefore need to obtain similar relevant information. In this case, the actions of one agent are part 

of the environment of another agent, which can obtain its relevant information also by observing the 

other agent. Given the prior results, this seems a sensible thing to do, especially if an agent can only 

use a specified amount of sensor bandwidth to observe the environment.  

An extension of the experiment in (Salge 2009) demonstrates that agents that perform a Bayesian 

update with other agents’ actions are not only able to outperform those which do not, but also 

outperform the mathematically optimal strategy for any single agent. The limitation of the optimal 

performance is determined limited amount of information about the environment the agent can 

gain per time step, if the agent is only observing the non-agent environment. Therefore, to perform 

better, the agent has to obtain (relevant) information from the actions of other agents which is 

unobtainable from the rest of the environment. The presence of this additional information, which is 



not present in the current local environment of the two agents, can be explained via the agent’s 

memory. By retaining information about the environment the agent creates a channel from an 

information source, which is spatially or temporally removed, to its current, local actions.  

Concluding, the “Digested Information”, the relevant information present in an agent’s action, has 

several qualities that make it beneficial for other, similar agent to observe those actions. Especially 

interesting is the likely higher per bit density of relevant information if an agent has only a limited 

amount of sensor bandwidth to obtain information from the environment. Also, the possibility of 

gaining information in a place and time removed from the original source is very helpful for an agent 

aiming to maximize its information about the environment.  
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