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Abstract. Often, it is argued that some problems in data-flow analysis
such as e.g. worst case execution time analysis are undecidable (because
the halting problem is) and therefore only a conservative approximation
of the desired information is possible. In this paper, we show that the
semantics for some important real programming languages – in particu-
lar those used for programming embedded devices – can be modeled as
finite state systems or pushdown machines. This implies that the halting
problem becomes decidable and therefore invalidates popular arguments
for using conservative analysis.

1 Introduction

Many program analysis approaches are conservative, i.e. they only deliver ap-
proximate results. They guarantee positive results but may overestimate the
negative side. E.g., worst-case execution time (WCET) analysis has to deliver
an upper bound of the execution time, but this bound may be an overestimation
of the real WCET [1, 2]. An other example is live-variable analysis (variables
at a certain program point that contain values which are needed for further
computations). The set of live variables may be overestimated. However for any
variable not in this set, it is guaranteed that its value will never be read. The
popular argument is that to derive these informations is not computable in the
sense of a Turing-Machine. However, undecidability results or computational in-
tractability results such e.g. the halting problem are based on the assumption
that every variable contains an integer (or may store values of an infinite range).
A closer look to language definitions such as, e.g., C, C++, Java, Fortran, Ada
or C# shows that the base types have finite range. In languages such as C or
C++ even pointers or references are of finite range. Most compilers map point-
ers and references to addresses of the target processor, i.e. they are also finite
range. Moreover in programming language (restrictions) for embedded devices
there are either no pointers or it is explicitly stated that anonymous objects are
allocated statically. This also implies that variables containing pointers can only
store values of finite range.

Our aim is to show that restricting variables to finite data types leads in
many cases (e.g. C or Java, but not Ada) to the decidability of the halting



problem and allows exact computation of programming analysis information
such as those mentionend above. It is not claimed that it is practically feasible
to compute exact program analysis informations, but the argument not to do it
cannot be based on undecidability results.

Our approach is as follows, we show for a representative subset of ISO C
that its semantics as a state transition system is a pushdown automaton. Since
reachability, LTL or CTL model checking on pushdown automata is decidable,
the halting problem of this subset becomes decidable. Any analysis that can
be expressed as a formula in LTL or CTL becomes decidable and can therefore
be computed exactly. In general the semantics of the whole C-language can be
formalized in this way but this would go beyond the limitations of such an article.

In programming languages there are only two reasons for being infinite state:
either some variables may store values of an infinite type (as e.g. references for an
unlimited memory) or there is no limitation on the recursion depth. Note that an
unlimited heap allocation would require infinite reference types. If each variable
can only store a finite range of values, any limitation on recursion depth would
lead to a finite number of states and therefore to a finite state system. Since
programming languages for embedded systems often restrict recursion depth
and allows only finite types, the semantics of programs in these languages are
finite state machines. Interestingly, for some programming languages the halting
problem even becomes undecidable if all variables only can store Boolean values
(it is possible to simulate a Turing Machine on the run time stack, when reference
parameters, recursion, procedure parameters, local procedures and global/local
variables are allowed).

2 Pushdown Systems

A pushdown system is a tuple Π , (Σ, Γ, I,→) where Σ is a finite set of states, Γ
is a finite set (the stack alphabet), I ⊆ Σ×Γ ∗ is the set of initial configurations,
and →⊆ Σ × Γ × Σ × Γ ∗ is a finite relation (the transition rules). As usual
X∗ denotes all finite sequences of elements of a set X, ε the empty sequence,
xy denotes the concatenation of two sequences x, y ∈ X∗, and |x| the length of
the sequence x. An element (σ, γ) ∈ Σ × Γ ∗ is called a configuration of Π. Let
κ , (σ, γγ̄) be a configuration where γ ∈ Γ . Then the head of the configuration
κ is the pair hd(κ) , (σ, γ) ∈ Σ×Γ . A direct derivation ⇒Π⊆ Σ×Γ ∗×Σ×Γ ∗

is defined by the following inference rule:
(σ, γ) → (σ, γ′)

(σ, γγ̄) ⇒ (σ′, γ′γ̄)
for all γ̄ ∈ Γ ∗.

The derivation relation defined by Π is the reflexive transitive closure ∗⇒Π of
⇒Π . A configuration (σ, γ) is final in Π iff there is no configuration (σ′, γ′) such
that (σ, γ) ⇒Π (σ′, γ′). A configuration κ is reachable in Π if there is an initial
configuration κ0 ∈ I such that κ0

∗⇒Π κ. The set of reachable configurations of
Π is denoted by Post∗(Π).

A run of Π is a finite or infinite sequence κ , κ0κ1 · · · of configurations such
that κ0 ∈ I and κi ⇒Π κi+1 for all i ∈ N, i + 1 < |κ|. If κ is finite, the last



configuration must be final. It is possible to transform finite runs to infinite runs
by adding the transition rules hd(κ) → hd(κ) for all final configurations κ.

3 Deciding the halting problem on C

We now show how a reasonable subset of C can be mapped to symbolic pushdown
systems (thereby defining the semantics of this subset). In contrast to C, we do
not limit recursion depth in this dialect. Such a limitation would lead to a finite
state system, which is a special case of pushdown systems (i.e. the results implied
by the assumptions of this section are more general).

Remark 1. In C recursion depth is implicitly limited because it is possible to
obtain addresses from local variables using the &-operator and the language
definition of ISO C [3] states that addresses are of finite range (depending on the
target). Thus, only finitely many local variables can be stored which implicitly
limits the depth of the runtime stack.

〈prog〉 ::= 〈decl〉+
〈decl〉 ::= 〈vardecl〉 | 〈procdecl〉
〈vardecl〉 ::= 〈type〉 identifier [=〈expr〉] ;
〈procdecl〉 ::= type identifier ([〈pars〉]) 〈block〉
〈type〉 ::= int | void | 〈type〉 *
〈pars〉 ::= (〈par〉 ,)∗〈par〉
〈par〉 ::= 〈type〉 identifier
〈stat〉 ::= 〈assign〉 | 〈call〉 | 〈vardecl〉 | 〈if 〉 | 〈while〉 | 〈block〉 | 〈return〉
〈assign〉 ::= 〈des〉=〈expr〉;
〈call〉 ::= 〈name〉([args]) ;
〈args〉 ::= 〈expr〉(,〈expr〉)∗
〈if 〉 ::= if (〈expr〉)〈stat〉[else〈stat ]
〈while〉 ::= while (〈expr〉)〈stat〉
〈block〉 ::= {〈stat〉∗}
〈return〉 ::= return [〈expr〉] ;
〈expr〉 ::= 〈conj 〉(||〈conj )∗〉
〈conj 〉 ::= 〈rel〉(&&〈rel〉)∗
〈rel〉 ::= 〈sum〉[(== | < | <= | != | > | >=)〈sum〉]
〈sum〉 ::= 〈term〉((+ | -)〈term〉)∗
〈term〉 ::= 〈unexpr〉((* | / | %)〈unexpr〉)∗
〈unexpr〉 ::= [!|-]〈factor〉
〈factor〉 ::= 〈des〉 | 〈call〉 | const
〈des〉 ::= *∗〈name〉
〈name〉 ::= identifier

Fig. 1. Syntax of a C-K

Fig. 1 shows the syntax of C-K, a representative subset of C. The constructs
have the traditional semantics as in C. One of the declarations must be a function
main. We assume that the rules of static semantics are satisfied. Table 1 shows
some notions on static informations about the program. The details of these
notions are discussed in the following.



GLOB set of global variable identifiers in a program
PROC set of global procedure identifiers in a program
LOCp set of local variables of procedure p ∈ PROC
LABELp set of labels associated with the instructions of procedure p ∈ PROC
EXPRp set of labels associated with expressions in procedure p.

Table 1. Static Information on Programs

We don’t consider arrays because their semantics in C is defined by pointers
and access to its element is defined by pointer arithmetic. We further do not
consider structs or unions because accesses to fields can be directly implemented
using pointers. A certain amount of the heap can be reserved using malloc(int).
It returns an address on the heap. The heap is finite since the number of ad-
dresses is finite. We don’t allow the address operator. It is therefore not possible
to access local variables of stack frames except for the top stack frame. For sim-
plicity, we don’t allow assignment expressions (and use assignment statements
instead) and assume a left-to-right evaluation order. Instructions are statements
(except blocks) and expressions. Declarations declare entities or procedures. A
declaration is global if it is declared in a program, otherwise it is called local,
i.e., it is contained in a block. Such declarations are uniquely associated with a
procedure and are variables. We therefore call a variable declaration local to a
procedure p iff it is declared in the block of p (sub-blocks are also allowed). For
simplicity, we assume that integer variables and pointer variables store (signed)
integers and addresses that can be represented by k Bits. BITk denotes the set
of bit sequences of length k.

Example 1. Fig. 2 shows a C-K-program recursively computing faculties. It holds
GLOB = {n}, PROC = {fak, main}, LOCfak = {n}, and LOCmain = {x} For each
instruction, the label is added as superscript. With these labels, it is EXPRfak =
{6, 7, 8, 10, 12, 13, 14, 15, 16, 17} and EXPRmain = {0, 2, 3}.

int n;

int fak(int n) {
if9 (n6<=817) return11 110;

return18 fak15(n12-14113)*17n16;

}
void main() {

n=120;

int x=4fak3(n2);

return5;

}

Fig. 2. A C-K-program

We now show that the semantics of the C-subset can be formally defined by
a pushdown system Π , (Σ,Γ, I,→). Intuitively, the set Σ of states represents



the global variables and the memory and the stack of the pushdown system
represents the procedure stack. The stack alphabet Γ defines the set of possible
procedure frames. Table 2 shows the notions used for the formal definition of
the pushdown system defining the semantics of a C-program. The details are
explained in the following paragraphs.

STOREk
V set of stores for variables V holding sequences of k Bits

MEMn
m set of m-Bit addressed memories holding sequences of n Bits

REGk
R set of all register assignments for registers R holding sequences of n Bits

FRAMEp set of stack frames for procedure p.
Table 2. Notions used for the formal definition of the semantics of C-K

Stores are used to model the storage for global and local variables. Memories
are used to model heaps. Registers are used to store intermediate values when
evaluating expressions. This is needed since functions calls are expressions that
may have side-effects. Because of recursion, a runtime stack is needed to maintain
the currently active procedure calls. The stack frames are the elements of this
runtime stack.

Formally, a store for a set V of variables (represented by their names) for
storing sequences of k bits is a mapping σ : VAR → BITk. A store for variables
x1, . . . , xn with values v1, . . . , vn is denoted by {x1 7→ v1, . . . , xn 7→ vn}. The
memory is a mapping mem : BITk → BITk. Thus, Σ , STOREk

GLOB ×MEMk
k ∪

{err} where err 6∈ STOREk
GLOB ×MEMk

k represents a runtime error that causes
to terminate exceptionally the program.

Example 2. For the set GLOB in Example 1 {n 7→ 5} is a store where the value
5 is stored at variable n. {00 7→ 0, 01 7→ 1, 10 7→ 2, 11 7→ 3} is an example of a
2-Bit addressed memory storing at an address a the value a.

Lemma 1. |Σ| = 2|GLOB|·k+2k

+ 1

Thus, the number of states is finite.
Intuitively, a stack frame consists of the instruction to be executed next,

a store for the local variables, and a store for registers (required for evalua-
tion of expressions). A function result is also stored in a register. For identify-
ing the instructions of a program each instruction is associated with a unique
label. In particular, the sets of labels of the procedures are pairwise disjoint.
A register assignment of a procedure p is a mapping ρ : EXPRp → BITk. A
register assignment that assigns values u1, . . . , uk to registers r1, . . . , rk is de-
noted by r1 · · · rk

u1 · · · uk

Thus, a stack frame for procedure p is a tuple (l, σ, ρ) ∈

LABELp×STOREk
LOCp

×REGk
EXPRp

, FRAMEp. Then, the stack alphabet can be
defined as
Γ ,

⊎
p∈PROC

FRAMEp



Example 3.
(

6, {n 7→ 2}, 6 7 8 10 12 13 14 15 16 17
4 0 2 9 −1 22 47 88 2 9

)
denotes a stack frame for

procedure fak in Fig. 2.

Lemma 2. |FRAMEp| = |LABELp|·2k·(|LOCp|+|EXPRp|) and |Γ | =
∑

p∈PROC

|FRAMEp|

Thus, the stack alphabet is also finite.

firstp label of the first instruction of a procedure p
next l label of instruction being executed after instruction labelled l
yes l label of the first instruction in the positive case of a conditional or loop
nol label of the first instruction in the negative case of a conditional or loop
odpl(i) label of i-th operand
parp(i) i-th parameter of procedure p

Table 3. Control-flow and Data-flow in C-K

Each procedure has a uniquely defined first instruction. Assignments, pro-
cedure calls, expressions, program have a unique label, and (except for loops,
conditionals, and calls, and return statements) have a unique next instruction.
The instruction executed after checking a condition of an if- or while-statement
depends on the outcome of the decision. Therefore, there are two possibilities
for the next instruction. Expressions, if- and while-statements need the values
of their operands and conditional expressions, respectively. Table 3 shows the
corresponding functions for the control- and data-flow. Note that these functions
are statically defined for each program.

Example 4. In Fig. 2, the instruction with label 6 is the first instruction of pro-
cedure fak and the instruction with label 0 is the first instruction of procedure
main. Thus, firstfak = 6 and firstmain = 0. The instruction being executed after
the instruction at label 0 is the instruction at label 1. Thus, next0 = 1. Fig. 4(a)
shows the complete control-flow for the program in Fig. 2. Not that the instruc-
tion to be executed after label 9 is the instruction at label 10 if the condition
evaluates to a non-zero value and the instruction at label 12 if the condition
evaluates to zero. Thus yes9 = 10 and no9 = 12. Fig. 4(b) shows the data-flow
(as a use-def-chain) for the program in Fig. 2. E.g. the operands of the instruc-
tion at label 14 are at labels 12 and 13. Thus opd14(1) = 12 and opd14(2) = 13.
The operand of the instruction at label 9 is at label 8, i.e. opd9(1) = 8. The
operand of the return-instruction at label 11 is at label 10, i.e. opd11(1) = 10.

Table 3 shows the transition rules of the program. It uses the notations shown
in Table 4. In the initial state, all global variables are initialized with 0, the con-
tents of the memory is uninitialized, the first procedure to be executed is main,
and the first instruction being executed is the first instruction of main. All local
variables of main are uninitialized, i.e. any store for the local variables of main
is allowed for the first configuration. The same remark applies for any register
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o : V → BITk the function where o(v) = 0 for all v ∈ V

	(v) result of applying the unary operator 	 to v ∈ BITk

⊕(v1, v2) result of applying the binary operator ⊕ to v1, v2 ∈ BITk

f |vx function where f |vx (y) ,

(
v if x = y

f(y) otherwise
var(l) variable at label l
proc(l) procedure where l ∈ PROC proc(l)

Table 4. Notations used in Table 3

next0 = 1
next1 = 2
next2 = 3
next3 = 4
next4 = 5
next6 = 7
next7 = 8
next8 = 9

yes9 = 10
no9 = 12
next10 = 11
next12 = 13
next13 = 14
next14 = 15
next15 = 16
next16 = 17
next17 = 18

opd1(1) = n

odp1(2) = 0
opd3(1) = 2
opd4(1) = x

odp4(2) = 3
opd8(1) = 6
opd8(2) = 7
opd9(1) = 8

opd11(1) = 10
opd14(1) = 12
opd14(2) = 13
opd15(1) = 14
opd17(1) = 15
opd17(2) = 16
opd18(1) = 17

(a) Control-Flow (b) Data-Flow

Fig. 4. Control– and Data-Flow for the Program in Fig. 2

value. We therefore introduce an artificial initial state start and the set of start
transitions Transs. The rules in Transc show the rules for accessing constants.
It changes the value at the register of the current expression to the value of the
constant. Similarly, the rules Transv for reading values of variables or from the
memory (using indirect addresses) change the value of the register associated
with the expression to the corresponding value of the global variable (first case),
local variable (second case) or memory address (contained in the register of the
operand). The rule Trans	 shows the transition rules for the unary operators
	. According to the ISO C language specification, the behavior is undefined,
if the result of a mathematical operation is exceptional (such as division by 0)
or an overflow occurs. This means that anything can happen (from continuing
program execution at any configuration up to exceptional termination). This
undefined behavior is modeled by the second set of transition rules of Trans⊕.
The short-circuit operators are associated with two instructions: The first in-
structions &&1 and ||1 are used for deciding whether the second operand has to
be evaluated. The second instructions are used for finally evaluating the second
operand. Fig. 5 shows the control- and data-flow of the short-circuit operators.

The execution of assignments stores the value of the right hand side (second
operand) to the variable or address defined by the left hand side of the assignment
(and thus changes the store for global variables, local variables, or the memory,
respectively). The main idea for the transition rules for procedure calls is to
push the current procedure frame onto the stack and allocate a new frame for
the called procedure. A variable declaration without an initialization expression
has no effect. A variable declaration with an initialization expression has the
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Fig. 5. Control- and Data-Flow for Short-Circuit Operators

same effect as an assignment to this variable (which is always a local variable in
this case). The transitions for conditional statements execute the statements of
the then-part if the result of the expression is true (beginning at yesL) and the
else-part (if present) or the statement after the conditional (if the else-part is not
present), respectively, if the result of the expression is false (in both cases, the
execution proceeds at noL. The transition rule for loops is analogous. The only
distinction between conditionals and loops is the definition of yesL and noL.
The block statement doesn’t require a transition rule: If L is the label of the
statement preceding the block, then nextL is the first statement within the block.
Furthermore, if L is the last statement of the block, nextL is the statement to
be executed after the block. The return statement of a proper procedure simply
pops the current frame from the stack. The return statement of the function must
pass the result of the function. This has been stored at the register for the return
expression and must be stored at the register of the function call. Returning from
main will stop the execution and requires therefore an additional transition rule.

Example 5. Fig. 6 shows a run of the program in Fig. 2. Since we have no pointer
variables, we omit the memory.

Remark 2. We have not shown the semantics of allocating objects on the heap
m. However, the semantics of malloc can easily be implemented by introducing a
global variable void * hp for storing addresses. It is initialized with the maximal
address. With this global variable, it is straightforward to implement malloc:
void * malloc(int s) {
hp=hp-s;
return hp;

}

Thus, the semantics of C-K is formally described as pushdown system. Since
for given configurations κ it is decidable for pushdown systems it is always
possible that κ reaches κ′ we have the

Corollary 1. For C-K, the halting problem is decidable.

Remark 3. There is no construct in ISO C that prevents modeling of the seman-
tics as a symbolic pushdown system.



start„
{n 7→ 0},

„
0, {x 7→ −10},

0 2 3
20 −1 5

««
Transs„

{n 7→ 0},

„
1, {x 7→ −10},

0 2 3
2 −1 5

««
Transc„

{n 7→ 2},

„
2, {x 7→ −10},

0 2 3
2 −1 5

««
Trans=„

{n 7→ 2},

„
3, {x 7→ −10},

0 2 3
2 2 5

««
Transv„

{n 7→ 2},

„
6, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
4 0 2 9 −1 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transfak(n)„

{n 7→ 2},

„
7, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 0 2 9 −1 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transc„

{n 7→ 2},

„
8, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 2 9 −1 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transv„

{n 7→ 2},

„
9, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 −1 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Trans<=„

{n 7→ 2},

„
12, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 −1 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transi„

{n 7→ 2},

„
13, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 22 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transv„

{n 7→ 2},

„
14, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 47 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transc„

{n 7→ 2},

„
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Trans-„

{n 7→ 2},

„
6, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
2 3 7 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transfak(n)„

{n 7→ 2},

„
7, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
1 3 7 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transv„

{n 7→ 2},

„
8, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
1 1 7 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transc„

{n 7→ 2},

„
9, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
1 1 1 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Trans<=„

{n 7→ 2},

„
10, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
1 1 1 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 9 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transi„

{n 7→ 2},

„
11, {n 7→ 1},

6 7 8 10 12 13 14 15 16 17
1 1 1 0 2 1 1 88 2 9

« „
15, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 1 2 1 1 88 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transc„

{n 7→ 2},

„
16, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 1 2 1 1 1 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transr2„

{n 7→ 2},

„
17, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 1 2 1 1 1 2 9

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Transv„

{n 7→ 2},

„
18, {n 7→ 2},

6 7 8 10 12 13 14 15 16 17
1 2 0 1 2 1 1 1 2 2

« „
3, {x 7→ −10},

0 2 3
2 2 5

««
Trans*„

{n 7→ 2},

„
4, {x 7→ −10},

0 2 3
2 2 2

««
Transr2„

{n 7→ 2},

„
5, {x 7→ 2},

0 2 3
2 2 2

««
Transd2

({n 7→ 2}, ε) Transm

Fig. 6. A run of the program in Fig. 2



3.1 Covering the Platform-specific Semantics of C

Modeling the semantics of C-K as a pushdown system we made several assump-
tions about the semantics of some language constructs. This is necessary because
the language definition of ISO C gives only a partial definition of the functional
behavior of C. We call this language definition the platform-independent seman-
tics. The behavior not defined by the language definition can be freely defined
by the platform, where a platform is defined as all layers used to execute the pro-
gram, including the compiler up to the target hardware. We call this completion
of the language definition the platform-specific semantics. The platform-specific
semantics of ISO C and its challenges for cross-platform testing have been dis-
cussed by Wenzel et al. [4].

The reason why ISO C does not define the complete functional behavior of
the language constructs is simply because of legacy: while the C language was
originally developed in 1972 by Kernighan and Ritchie at AT&T Bell Labs using
an informal (and incomplete) language definition [5, 6] the ANSI committee to
develop the C language definition was only formed in 1983. Meanwhile a large
pool of C compilers with different interpretation of several language constructs
had arisen. As there was no simple agreement possible of which existing language
interpretation is the “right” one, the ANSI C language definition had been re-
stricted to a definition of that partial behavior where most C compilers agree.
In 1990 the ISO adopted the ANSI C language definition as the ISO C standard
and since then took over the further development of the language definition.

The split of the ISO C language definition into a platform-independent se-
mantics and a platform-specific semantics has a serious implication for deciding
the halting problem of C programs: whether a C program halts or not may de-
pend on the platform-specific semantics. Thus, even though the halting problem
for a C program is decidable for any platform-specific semantics, the halting
property can become undefined if no specific platform is assumed.

The following list gives just a few examples where the platform-specific se-
mantics has the potential to influence the halting property of some C programs:

– Conversion from floating point to integer types: if the value is outside the
range of the integer type the result is undefined.

– Conversion of negative values of an integer type into a smaller signed integer
type: if the negative value cannot be represented in the smaller type, the
behavior is platform-specific.

– Shift operation: whether the shift operations are signed or unsigned is plat-
form-specific.

– Size of base types: the absolute size of the base types is platform-specific.
– Evaluation order of operands: the evaluation order is platform-specific for

most operands. One notable exception are short-circuit operations, where
the evaluation order is always from left to right.

– Floating-point operations: the behavior in case of exceptional results like
division by zero is undefined.



Everything of the ISO C language definition with behavior being undefined
or implementation-specific belongs to the platform-specific semantics. An inter-
esting property for ISO C is that undefined behavior includes the possibility of
non-termination. Thus, we also have the

Corollary 2. If an ISO C-program always terminates according to the language
definition, i.e., the platform-independent semantics, then it is free of undefined
behavior.

Deciding the halting problem of a C program based only on the platform-
independent semantics requires to consider all possible instantiations of the
platform-specific semantics. Since for any instantiation of the base type ranges
a C program has a finite state space and, of course, a finite code length, the set
of possible instantiations of the platform-specific semantics is also finite for any
ranges of the base types. As a consequence we have the

Corollary 3. The halting problem of an ISO C program based only on the
platform-independent semantics and upper bounds of the base type ranges is still
decidable (with the result being either yes, no, or platform-specific).

Remark 4. The problem complexity is dramatically higher than in case of con-
sidering a concrete platform-specific semantics, since each run of a concrete
platform-specific semantics is also a run of the platform-independent semantics
but not vice versa.

4 Related Work

Software model checking follows a similar approach [7–12]. Mostly, it abstracts
behavior to symbolic descriptions, i.e. variables over a finite range etc. can be
defined and they form the state space together with control variables. Popular
examples or finite state descriptions are PROMELA for the SPIN model-checker
[13] and the SMV-model checker [14, 15]. Remopla is a symbolic description for
pushdown systems and used for the Moped model-checker [16, 17]. The semantics
of Remopla can be formally defined by mapping it to a pushdown system similar
as in this work. A special case of pushdown systems are Boolean programs (i.e.
each variable can store only Boolean values) [18]. The decidability of reachability
of configurations of pushdown-systems is a well-known result that can be found
in textbooks [19]. In [20–23] it is shown that also model-checking on pushdown-
systems is possible.

The decidability of program analysis at source-code level has already been
the subject of investigation. Previously, it has been shown that may analysis and
must analysis are not decidable using ISO C programs as examples [24, 25]. In
contrast, we prove the decidability of ISO C programs by considering details of
the language definition that make ISO C programs inherently finite state and
thus decidable.



5 Conclusion

The use of conservative program analysis techniques for approximative analysis
results is often justified by citing the undecidability of the halting problem.

In this paper we have shown that a class of real programming languages is
decidable. Our approach is based on the assumption that the base types of the
language and the heap memory are of finite range, but allowing an unbounded
recursion depth of function calls. In case of Java the base types are already
bounded, but the potentially infinite heap has to be bounded to a maximum
size. In case of ISO C we have to bound the ranges of base types. The heap in
ISO C inherently is of finite size for base type ranges because of the address
operator and the finite size of pointer variables. Interestingly, Java Byte code
has also a heap of finite size because references must be stored in the operand
stack and the entries have the lengths of machine words.

We have proven the decidability of such programming languages by showing
how to transform them into a pushdown automaton, for which the decidability
is a well-known result. As a concrete example we have selected a representative
subset of ISO C.

Finally, we have got the interesting insight that the halting property for
ISO C can depend on the concrete system platform, i.e., implementation details
not specified by the language definition can influence the halting of a program.
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