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Abstract

This paper discusses the design, development and application of the distributed multi-agent
platform DMAaRrks II. The platform consists of a flexible software library for the creation of
applications based on multi-agent systems. As an example the DMARKks 11 platform is applied
to the distributed computation of a multi-agent simulation in a market scenario. The market
model is presented in some detail. In the simulations we examine four different seller pricing
strategies, two of which use a modified Q-learning algorithm to extract maximum profits.
Special interest is put on asynchronous simultaneous multi-agent learning of pricing strategies

in different competitive environments.

1 Introduction

For the last few years the Internet has profoundly affected the retail trade of standardized consumer
goods, from books and CDs to intercontinental flights. For a single product consumers enjoy a wide
choice of offers and can easily compare prices making use of the decreased effort of information
retrieval and of software agent technology. But the interaction between the consumer (or his
agent) and retailer is typically very limited: it mainly consists of obtaining price statements and
eventually sending orders. For the future we envision a much more sophisticated trade on the
Internet benefitting both, consumers and retailers: agents entering into actual negotiations with
each other would be able to act on consumers’ or retailers’ behalf, locating specific products
or variants, discussing terms of delivery or special conditions, and performing the transactions
automatically, based on their owners’ preferences. An extended model of this is presented in
MarketSpace (Eriksson et al. [3]).

We believe this automated retail trade will be based on a decentralized dynamic system of
autonomous software agents with asynchronous mechanisms for communication and transactions.

In the present work, our first aim is to propose a design for such an agent system, discuss its



specific structural demands and develop a technical concept for its implementation. Based on
the distributed market simulation system DMARKS (Polani and Uthmann [10]) we develop an
integrative project DMARKS 11 consisting of:

1. A prototypical implementation of this general automated trading system, using Java tech-

nology;

2. An extension of this prototype to a distributed multi-agent simulator that allows the study

of market scenarios.

Using the DMaRrks TT simulator we then examine developments which could arise from widespread
application of software like the DMARKs 11 platform in real markets. Namely, we want to shed
light on price developments and the power of seller strategies of different complexity in a mixed
buyer population, with an increasing fraction of fully informed buyers. Here we make use of
results achieved by Greenwald and Kephart [4, 5]. Different types of asynchronous Multi-agent

Reinforcement Learning will be used to determine optimal seller strategies.

2  Design concepts of the DMARKS 11 prototype

Due to the distribution of consumers and retailers over the internet our aim is to structure the agent
platform as a highly decentralized multi-agent system with point-to-point interaction. Agents can
enter and leave the system at any given time, so the composition of the system may constantly
change. The major difficulty is how to provide the individual agents with knowledge of other
active agents in a consistent and efficient way, especially on a large scale. As a centralized register
is bound to be overloaded or flooded with obsolete information when the agent population grows
too large, we propose a decentralized network of forum agents as the structural backbone of the
agent system.

DMaARKS 11 agents are started by the users in their own runtime environment and join the
agent space by entering a forum. The agents may be of different types derived from a common
ancestor to perform different tasks. Apart from interaction within the agent framework, they can
access external resources, such as databases or the World Wide Web to retrieve information (see
figure 1).

The forum agents are decentralized components of the agent system. They bring together local
groups of agents and thus subdivide the agent space. An agent that is member to a forum is
visible to all other agents via that forum. In the decentralized and changing environment the
forums provide up-to-date information of locally present agents, and their specific derived types or
"professions’. Forums can be linked together, such that an agent will be able to get to know agents
outside its local forum group. The agent may also enter these other forums to make itself known to
the other agents. The aim of the forum concept is to divide the agent space into groups of interest
that can effectively be searched by an agent. When the DMARKs Il prototype is applied to a
specific task, good consideration has to be taken as how to set up the forum network for efficient
agent interaction.

Knowing the partner is a precondition for interaction between agents. Agents get to know
about each other by actively searching the forum network, from a message received from an other

agent, or by direct interaction with the agent’s user, who may provide name and host of a forum
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Figure 1: Structure of the DMARKS IT agent platform
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or even of a single agent. Agents interact with each other through communication or transactions.
Communication is restricted to point-to-point messages containing sender, addressee and an open
type of content. The content types have to be provided when applying the DMARKS IT prototype to
a specific purpose, and the agents need knowledge how to handle the different types. Transactions
go beyond mere information exchange and require confirmation of the subject by both agents. They
take the form of predefined two-sided contracts. As with the message content, these contracts and
especially their effect on the agents’ states need to be defined when applying the agent system.
For a transaction, both partners need to sign their part of the contract. After the second agent
has signed, the contracts are matched and confirmed, which results in a change of the agents’
states. Through this mechanism no trusting in trading partners is required, but the DMARKs 11
platform will ensure the correctness of the two-sided exchange. For example, a mutual exchange of
information can be modelled as a transaction: Both agents promise to provide some information
to the other through an exchange by signing their contracts. Only after both did successfully sign
(i. e. not lie about information they do not have) will the information be delivered to the respective
partner.

Here we need to emphasize that this decentralized transaction mechanism is modelled towards
consistency and safety of transactions on the agents’ level and does not explicitly address security
issues on the Internet. It assumes a trustworthy design of the contract implementations by the
application designers. The centralized transaction matching mechanism of the previous phase of

study of a distributed market simulator, by which the current system was motivated, is described

in [10].



3 Technical details of the prototype and the simulator

We chose Java as implementation language for the DMaRrks IT prototype for various reasons: As
Java is platform-independent the agent system can be run on heterogenous computer networks
such as the Internet. Tts powerful multi-threading features lend themselves to the design of multi-
agent systems, in which agents runs independently of one another. Furthermore Java’s remote
method invocation (RMI) mechanism lets us create decentralized distributed applications in a fast
and straightforward way, and is at the core of the current implementation of the DMARKs 11
prototype: every agent is in itself a remote object with defined interfaces to its environment
registered on the particular host machine it is running on.

The agent design follows a modular architecture with a communication manager, a transaction
manager and the agent’s control component which makes use of the two interaction managers
to receive information and perform interactions. Additional modules, for example an extended
reasoning or learning component, or an asynchroneous task processor, can easily be added to an
agent to be used by the control component. Contact between agents is made only through their
interaction managers. They provide means to deliver messages to an agent, and to sign and confirm
contracts for transactions.

The forums are based on the agent architecture as well. Their control component allows other
agents to enter or leave the forum, and to retrieve a list of the forums’ agents. The forum agents’
control component can be extended to provide additional functionality for any application of the
agent system. Java RMI was found to run sufficiently fast when used in local networks. Even on
wide area networks response time was fast enough to allow interactive usage of the software agents.
Distributed simulation runs on wide area networks do not seem feasible.

The DMARKS II prototype follows a rather generalized concept and can well be applied as
a platform for automated trading. To show the potential of the approach and as a testbed we
extend the prototypical agent platform to a multi-agent simulation system for market scenarios,
the DMaRrks II simulator.

On the technical level, we need to introduce timesteps into the agent model to allow a periodical
update of the agents’ states. As the DMARKS 11 prototype is based on asynchronous interaction,
the simulator will operate asynchronously as well. We cannot use a simulation loop, because agents
are running in a decentralized fashion. Instead we add an additional clock thread to each agent, to
trigger all agents in the simulation in the same time intervals independently from each other. This
means the simulation step interval needs to be estimated from known computational demands of
the agents and their distribution on different machines before the simulation run, and cannot be
adapted to the system load during runtime. This poses limits on simulation speed, but is the price
to pay for a decentralized system without (by design) extensive synchronization mechanisms. Still,
in our timing concept all agents have a guaranteed time slot, as long as the step interval is selected

with care.

4 The DMARKS II simulator’s market model

Apart from the introduction of the discretized time concept, the modelling extensions for the
DMarks II simulator are typical for any application of the DMarks II prototype to a given scenario.

The necessary market model specifications have been motivated by the previous DMARKS system



[10], Vriend [13] and Varian [11].

In our market scenario, units of a single good are exchanged against units of currency by two
different agent types, producers and consumers. Producers generate units of this good and keep it
in a store, until it can be sold to consumers. Production and storing incur costs, so to optimize
their profit producers will have to find an adequate production capacity. Consumers have a certain
demand for the good, which is modelled as an amount of money they are willing to pay for the
good, their bid level. They will receive a fixed sum of money every simulation step to satisfy
their demands. After buying a product, it will be consumed, and for satisfied demand a consumer
reward will be paid on the consumer’s reward account. The lower the price paid the higher the
reward will be, so to maximize rewards the consumers will try to bring down the producers’ prices.

In detail, producers keep an account A which is initialized once with a small credit. They also
keep track of a store S for their goods, for which they are charged ¢, for every unit in store, for
every timestep. Production incurs costs ¢, per unit produced and is performed by setting the
production capacity C' to a certain level. At every simulation step, producers will first be charged
¢cs - S for the store, then ¢, - C' for the production, and then S will be increased by C'. If A drops
below 0 after any step, the producer is financially ruined and forced to leave the simulation.

Consumers also keep an account A which is increased every step by a fixed income. After
buying goods, they directly consume them, converting them into a consumer reward r(qo, ¢, p). It
depends on the quantity gq already consumed during the current step before this consumption, the
quantity just consumed ¢, and the price p paid for the ¢ units. The rewards are accumulated on
a consumer reward account R, and are determined according to the consumer’s bid level b(qq + )
of the quantity ¢ of the good (the amount per unit the consumer would be willing to spend for
the next infinitesimal small quantity on top of ¢ + ¢). The reward is calculated as the difference
between what the consumer would have been willing to pay for ¢ units on top of ¢, and the actual
amount he paid: r(qo,q,p) = fq?-l_q b(s)ds — pq. Consumers therefore maximize their consumer
reward by completely satisfying their demand ¢ for a given price p, where b(q) = p, after looking
for the lowest p, taking into account their available funds A.

Message contents for this scenario have to include price enquiries, price statements, and orders
of a certain quantity ¢ for a certain price p.

In this market scenario we need two different contracts for product exchange, a buy-contract
for the consumer and a sell-contract for the producer side. Both contracts contain quantity ¢ and
exchange rate p of the transaction. Signing a buy-contract reduces the consumer’s account by p- ¢,
its confirmation pays out the consumer reward r(qo,q,p). A sell-contract reduces a producer’s
store by ¢ upon signing, and increases its account by p - ¢ upon confirmation.

This extends the DMARKS 11 prototype to the DMARKS 11 simulator, a distributed multi-agent
simulation system based on a market scenario with interacting producer and consumer agents. The
specifications of this model are by no means final; the design of the simulator allows easy extension

by additional model features.
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Figure 2: Price development of 4 sellers and 20 buyers at w = 0.3 and 7' = 2C' (with market
clearing price in this setting at p* = 0.8, horiz ontal line indicates average market price between

simsteps 150 and 500)

5 Simulation results for different seller strategies

5.1 Introduction

We simulate a market scenario in which a fraction w € [0, 1] of the consumer population is fully
informed about all sellers’ prices, and the remainder knows the price of only one randomly selected
seller every timestep. All consumers aim at optimizing their consumer rewards, and therefore
select the seller with the lowest known price. After ordering, all known information of the buyers
is invalidated and new price quotes need to be obtained from the sellers, as prices are bound
to change frequently. Obviously, the fully-informed buyers will create a considerable amount of
competition in the market between the sellers. The buyers’ strategy in the following experiments
is fairly simple and fixed to provide a stable environment for the examination of different seller
strategies. The described short-term greedy strategy of the buyers is a major reduction of the
complexity of the market scenario, and we plan to examine more complex behavioral strategies for
the buyers in the future. The introduction of these extended strategies into the buyer model will
be very straightforward, due to the modular architecture of the agent platform.

For the time being we want to focus on the seller side of the market: The seller strategies
in the different experiments vary in knowledge, complexity and computational demand. We are
especially interested in developments of price and in the quality of the different fixed and learned

pricing strategies as the fraction of the fully informed buyers increases.

5.2 A market with constant supply

The first set of experiments was run with a fixed production capacity C for each seller. This is
meant to mirror a market with a highly inflexible production where sellers control their profits by
mainly setting their prices, for example the oil producing industry. The general assumption for
sellers is that a lower price will lead to increased sales. The sellers optimize their long term profits
by keeping their store S around a fixed target store level T, raising the price by a fixed amount
when S < T', and lowering it when S > T'. We found that with increasing price transparency w in

the consumer population competition between the sellers increased, leading to the sellers following
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Figure 3: Price development of 4 sellers and 20 buyers at w = 1 and T' = 2C (with market clearing
price in this setting at p* = 0.8, horizontal line indicates average market price between simsteps

150 and 500)

each others’ prices closely. In the extreme the sellers alternately take turns charging the lowest
price of all competitors with increasingly regular phase shifts (see figure 2).

The general price level rose to and fluctuated around a value dependent on total supply, total
demand, and 7. While competition was not too strong (w < 0.3), the theoretical market clearing
price was quickly and independently reached by the seller agents. With growing competition the
price attained by the market was significantly lower than the equilibrium price. As a reason for
this we isolated the concentration of market demand on the single cheapest seller, and its inability
to serve this high demand due to its production limitations. This leads to a reduction of average
total output as compared to the total consumer demand for any given price. Thus each seller will
tend to set its price considerably below the equilibrium price to sell its whole production quantity
(see figure 3).

The experiments imply that with a fixed production capacity, a store as a buffer for production,
and a price adaption mechanism based on store levels does lead to collusive and coordinated price-
setting behaviour of sellers, through competition induced by price-comparing buyers. A producer’s
level of storage seems to reflect its sale numbers well, even on longer terms. The greater the number
of sellers though (proportionally increasing the number of buyers to keep the relation between total
supply and total demand), the higher T has to be set for the adaptation mechanism to work well
and prevent the market price from crashing. The increasing of T leads to higher amplitudes in
the store fluctuations, and thus to higher total store costs, reducing total profit in a scenario with

strong competition.

5.3 A market with highly adaptable supply

In the second set of experiments the production capacity was not fixed, but varied according to
consumer demand (a “produce-on-demand” scenario). This was meant to reflect a product with a
highly flexible production chain. Sellers optimize their profits by setting their prices only, with no

need to take their store S into account.



Fixed pricing strategies

In this setting we used two seller strategies following Greenwald et al. [5], the Derivate Follower
(DF) and Myopically Optimal (MO) pricing strategies. The DF-sellers use only the immediate
reward from the last two price settings to adapt their future price to maximize expected profits.
They keep increasing their price, as long as their achieved profit increases and switch the direction
of the price change as soon as the achieved profit decreases. Doing so, they greedily try to climb
the profit curve when selecting a new price. DF-sellers can reach a collusive price setting near
the monopolistic price extracting maximum profit from the buyer population, as long as no other
conflicting pricing strategy is introduced into the market. The MO-sellers have perfect knowledge
of consumer demand and their competitors’ price settings and use this information to select the
price yielding the short-term maximum profit. In competitive scenarios with discrete fixed price
levels this typically leads to undercutting behaviour and cyclical price wars ranging from the
monopolistic price down to the production cost, as described extensively in Greenwald et al. [5].
The MO-pricing strategy is, due to its perfect knowledge and short-term rationality, by far superior
when tested against the DF-strategy. The results achieved in our simulations were comparable to
those of the preceding studies. It has to be emphasized that the observed price wars between two or
more MO-Sellers are a direct result of the discrete price levels applied. In a model with continuous
price selection no price wars will emerge, but the prices will drop to the Bertrand equilibrium price

(for a description of the Bertrand equilibrium see Varian [12]).

A learning strategy with little information

To bridge the gap between the reactive DF and the myopically rational MO-sellers, we here intro-
duce a Price-Profit (PP) adaptation mechanism based on single-state Q-learning (for Q-learning
see Watkins et al. [14, 15]). The PP-pricing strategy continually uses achieved profits to adapt
profit expectations to a given price, and chooses offer prices through a Boltzmann stochastic se-
lection mechanism based on these expectations. In particular, PP does not use information about
the composition of the buyer population or the competitors’ price settings (as does MO), but uses
only achieved profits to adjust its prices (like DF), applying a robust machine-learning mechanism.
Our expectation was that market demand and competitors’ pricing strategies should, in the long
run, implicitly be reflected in the general relation between prices and expected profits in the mar-
ket. This would allow PP to adapt to any market situation without the need to know about its
competitors’ price strategies. PP did show behavior patterns seen before in DF and MO (price
undercutting and collusive price setting) and, as expected, generally outperformed DF in the long
run. Due to its slow adaptability to changing environments, it could not stand against the perfectly
informed MO in any competitive setting.

An interesting question also was how two PPs would adapt their learned pricing strategies
to each other, and whether the individual strategies would converge over time. To examine this
we placed several PP-sellers in the market, each of them deciding to change its price with a
fixed probability every simulation step. Thus an asynchronous multi-agent reinforcement learning
framework was created. The analysis of these runs showed, that the learning process has to take
place considerably slower (i. e. with a lower learning rate) than in the runs against fixed pricing
strategies to assure convergence of the learning process. The simultaneous learning lead to the

development of identical pricing strategies of all PP-sellers with a distinct price maximizing the
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Figure 4: Learned profit functions Q1 (p) and Q2(p) of 2 PP-sellers with 20 buyers at w = 1.

expected profit (see figure 4). This optimal price setting always lies between the monopolistic
and the Bertrand equilibrium price, depending on the amount of competition in the market as

determined by the buyer population.

A more sophisticated learning strategy

Finally a learning pricing strategy was developed which also takes the price settings of the competi-
tors into account. As above, it is based on Q-learning with a Boltzmann price selection mechanism,
but the lowest competitor’s price determines the state the Q-seller is in. This model of competi-
tor’s prices is sufficient here, because with the given buyer population, only the own and the lowest
competitor’s price determines the demand. We expected from the Q-sellers to respond more read-
ily to the immediate market situation than the PP-sellers. The same asynchronous multi-agent
reinforcement learning framework as with the PP-sellers was used to train and observe the agent’s
strategies in the competitive settings.

The first simulations runs were performed with no lookahead for the Q-learning mechanism.
The Q-seller managed well to learn the profit function and optimal pricing strategy against any
of the fixed strategies. Even against the PP-strategy and itself it developed this strategy without
any need to slow down the learning process. As was expected when future rewards are discounted
by the factor v = 0, the evolved strategy was the myoptimal pricing strategy (see figure 5).

Due to the asynchronous training setup, the rate of convergence is considerably slower than
in comparable experiments performed by Greenwald et al. [4]. Generally, alternating learning
updates with full knowledge of the partner’s value function are assumed in multi-agent reinforce-
ment learning frameworks (see Littman [9] and Hu et al. [7]). In this work, asynchronous learning
updates which do not make use of the partner‘s current value function led to similar results, which
can be an indication that synchronicity or asynchronicity in the training process does not affect
its results. Still, in the asynchronous setup more learning updates will be needed to remove the

additional noise created through the stochastic rather than alternate learning updates.
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6 Conclusion and Outlook

On the technical level the developed agent framework performed quite well, even in the distributed
computation of the simulation. The DMARKS II platform and simulator do lend themselves to the
development of asynchronous multi-agent systems and multi-agent simulations. Its implementation
in the Java language allows it to be run on a varienty of OS-platforms and over the Internet. It
can be extended easily and effectively by additional components or different simulation models due
to its flexible architecture!.

For future research, we plan to extend the behavior models of the agents: Apart from refine-
ments of the behavior strategies of the sellers, the introduction of more complex buyer strategies
should lead to interesting market developments. Furthermore, we want to include more than one
product into the market model to look into dynamics arising from production chains, which would
form a link between the constant and adaptable supply setting experiments.

On a larger scale, the examination of other typical market mechanisms could also be undertaken
effectively using the above market model. The agent platform’s design allows the emulation of
virtually any agent behaviour by simply extending the agent’s control component. Thus the effect
of discount pricing on large product quantites or personalized bundle offers by the sellers, or group
formation by the buyers (demand pooling) could be examined. Cartel formation of the seller agents
is also a possible direction for application of the DMARKs II simulator. The market model itself
(i.e. the producer and consumer classes of the simulator) would need to be extended, possibly by a
discounted investment cost, to explore market entering strategies of sellers, or regional effects,; such
as the impact of communication or transaction costs. Most of these extensions could be introduced

in a straightforward way and examined using the distributed DMARKS II simulator.
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