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We present an investigation of some important mathematical and numerical features related
to the retrieval of microphysical parameters (complex refractive index, single-scattering
albedo, effective radius, total number, surface area, and volume concentrations) of ambient
aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple
examples we prove the non-uniqueness of an inverse solution to be the major source of the
retrieval difficulties. Some theoretically possible ways of partially compensating for these
difficulties are offered. For instance, an increase in the variety of input data via combination
of lidar and certain passive remote sensing instruments will be helpful to reduce the error of
estimation of complex refractive index. Also we demonstrate significant interference between
Aitken and accumulation aerosol modes in our inversion algorithm and confirm that the
solutions can be better constrained by limiting the particle radii. Applying a combination
of analytical approach and numerical simulations, we explain statistical behavior of the
microphysical size parameters. We reveal and clarify why the total surface area concentration
is consistent even in the presence of non-unique solution sets and is on average the most stable
parameter to be estimated, as long as at least one extinction optical coefficient is employed.
We find that for a selected particle size distributions the total surface area and volume
concentrations can be quickly retrieved with fair precision using only a single extinction
coefficients in a simple arithmetical relationship. © 2016 Optical Society of America

OCIS codes: 000.3860, 010.1100, 010.1110, 010.3640, 280.0280.

1. Introduction

Aerosols are fairly minor constituents of the
Earth’s atmosphere, but they are able to affect
its radiative energy balance and thus participate
in shaping of the Earth’s environment [1]. Var-
ious types of atmospheric particles differently
influence regional and global climate through
direct and indirect radiative effects. They are
not well understood yet because of a multitude

of connection factors and feedback mechanisms.
Aerosols are considered to be the dominant un-
certainty in assessing anthropogenic forcing of
climate change [1]. Regular monitoring over long
temporal and global spatial scales is needed to
address the gaps in knowledge of the role of mi-
crophysical and optical properties of aerosols in
these complicated processes.
Light identification, detection, and ranging
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(lidar) remote sensing instruments have all
the potential to play a crucial role in atmo-
spheric research as they uniquely provide infor-
mation about ambient aerosols properties on a
comparably high vertical resolution. A signif-
icant leap in technology development has re-
cently been achieved by NASA Langley Re-
search Centers (LaRC) airborne “3 backscat-
ter (β) + 2 extinction (α)” High-Spectral-
Resolution Lidar (HSRL-2). This instrument
participated in several successful field cam-
paigns, and some of the results already have
been published [2]. An article summarizing more
results is in preparation [3].
Climate study applications require knowledge

of the parameters that can’t be directly meas-
ured by lidar, but some of them can be retrieved
by specialized algorithms using lidar data. These
algorithms solve mathematical problems that
have multiple theoretical and numerical fea-
tures. They need to be discovered, analyzed and
carefully considered in order to provide the cli-
mate research community with trustworthy re-
trieval products.
Simplifying the classical definition [4], a math-

ematical problem is called well posed if the so-
lution of that problem (i) exists, (ii) is unique,
and (iii) is stable. The term uniqueness is used to
indicate that exactly one object with a certain
property exists. The term stability reflects the
ability to result in small variations of solution
under small perturbations of initial conditions.
A problem is ill-posed if (i), (ii) or (iii) fail [4].
The topic of estimation of aerosol parameters

from multiwavelength lidar was actively devel-
oped in the recent two decades. Several algo-
rithms were proposed and tested by research
groups from different institutions. The list of
algorithms includes but is not limited to an
adapted form of the principal component analy-
sis [5, 6], inversion with Tikhonov’s regulariza-
tion [7–11], the hybrid regularization method
[12,13], the linear estimation approach [14], and
the arrange and average algorithm [15]. Cur-
rently, there is no published study revealing the
whole picture of the retrievals complexity and
multifacetedness. Reading the topic related lit-
erature [5–15], we did not find satisfactory an-

swers to many of our questions. Some of them
previously were not explained in terms of equa-
tions or numerical demonstrations. For instance,
what makes the retrieval system ill-posed, or
why there is a certain stable pattern in the qual-
ity of microphysical products? The purpose of
this paper is to continue with our study that
filling the gap with explanations and supporting
examples on these and other questions [16]. Our
ultimate goal is to help ourselves and others to
improve the quality of estimations through bet-
ter understanding of the inversion background.
In Section 2 we reveal the major problem

and describe the analysis technique which in-
cludes investigations using the look-up table. In
Section 3 we explore the interference between
the Aitken and accumulation mode particle re-
trievals. In Section 4 we present our explanation
of the statistical behavior of the microphysical
size parameters. Section 5 provides more insight
on the details of Section 4 through the analysis
of extinction number kernel functions. Section 6
summarizes our findings.

2. Non-Uniqueness of the Solution

A. Statement of Mathematical Problem

The optical coefficients of aerosols can be calcu-
lated according to the following equation:

lλ = ∫ ∞

0
Kl (m,r,λ, p) f (r)dr. (1)

The term lλ describes the optical data at
measurement wavelength λ for one altitude- and
time-resolved acquisition point. The symbol l

denotes the type of optical data (β – backscat-
ter, α – extinction, and ς – scattering). The func-
tion f (r) describes the particle size distribution
(PSD) expressed as the number of particles per
unit volume between particle radius r and r+dr.
The terms Kβ (m,r,λ, p), Kα (m,r,λ, p), and
Kς (m,r,λ, p) describe, respectively, the back-
scatter, extinction, and scattering number ker-
nel functions.
The kernel functions Kl (m,r,λ, p) depend

on the complex refractive index (CRI), i. e.,
m = mR − i ⋅ mI that describes the material
composition of the particles, on the radius r of
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the particles, as well as on their shape properties
p. The expression mR denotes the real part, and
the expression mI describes the imaginary part
of the CRI. In this study we consider only spher-
ical aerosols, which allows us to apply the Mie-
scattering theory in computations of the particle
optical properties [17]. For easier reading, the
reference to the shape property p will therefore
be omitted.
The set of several different optical coefficients

{lλ} is assumed to be known as the result of
the real measurements or numerical simulations.
The unknown parameters to be retrieved out of
the Eq. (1) are the real (mR) and imaginary (mI)
parts of the CRI, and the PSD f (r). Estimat-
ing these after solving the inverse problem, one
can get access to a huge variety of microphys-
ical parameters. The most popular and useful
parameters in the atmospheric research applica-
tions are the total number concentration:

nt = ∫ ∞

0
f (r)dr, (2)

the total surface area concentration:

st = 4π∫ ∞

0
r2f (r)dr, (3)

the total volume concentration:

vt = 4π

3 ∫
∞

0
r3f (r)dr, (4)

the effective radius:

reff = 3vt
st
= ∫ ∞0 r3f (r)dr
∫ ∞0 r2f (r)dr , (5)

the single-scattering albedo:

ωλ = ςλ

αλ

= ∫ ∞0 Kς (m,r,λ) f (r)dr
∫ ∞0 Kα (m,r,λ) f (r)dr , (6)

and so on. This very short list can be extended
further, but in this study we only pay attention
to these few microphysical parameters.

B. Simple Examples of Failure of Uniqueness

Let us consider the numerical simulation
of the advanced “3β + 2α” configura-
tion of the multiwavelength Raman/high-
spectral-resolution lidar. In this case the

set {β355, β532, β1064, α355, α532} consisting of
the backscatter coefficients at 355, 532, and
1064 nm, and extinction coefficients at 355 and
532 nm is available as input information.
We will use the logarithmic-normal distribu-

tion of the form:

f (r) = n0

r
√
2πlnσ

exp [−(lnr − lnrmed)2
2ln2σ

] (7)

as the PSD f (r) in Eq. (1).
The parameter rmed describes the count me-

dian radius with respect to the number concen-
tration distribution. The count median radius is
defined as the radius above which there are as
many particles as there are particles with radii
below rmed. The term σ denotes the geomet-
ric standard deviation whereas lnσ is commonly
referred to as the mode width. The parameter
n0 with the positive range of possible values is
responsible for the linear variation of the total
number concentration [see Eq. (2)]. The values
of optical coefficients of the aerosols [see Eq. (1)],
their total surface area and volume concentra-
tions [see Eqs. (3)–(4)] also would change pro-
portionally to n0.
Equation (7) describes a monomodal PSD.

We use this logarithmic-normal shape as it is a
reasonable approximation for the shape of nat-
urally occurring PSDs [18, 19].
For the first look, the considered inver-

sion problem has a good chance to be well-
posed. There are five measured quantities{β355, β532, β1064, α355, α532} and five values to be
retrieved, i. e., {n0, rmed, σ,mR,mI}. The num-
ber of unknowns is exactly equal to the number
of measurements.
Let us calculate the reference “3β + 2α” op-

tical coefficients using Eq. (1) with the geo-
metrical parameters of PSD nref.A

0 = 1 cm−3,
rref.Amed = 0.02 µm, σref.A = 2.5, and the CRI
with real part mref.A

R = 1.5 and imaginary part
mref.A

I = 0.015 [see Table 1, column “Reference
A”]. The CRI was kept independent of particle
size and wavelength. The lower and upper inte-
gration limits in Eq. (1) were set from 0.001 to
50 µm. The radius stepsize in the computations
was 0.001 µm. Two optional “3β + 2α” optical
data sets were simulated using alternative input
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parameters [see Table 1, columns “Option A.1”
and “Option A.2”]. These parameters were in-
tentionally chosen in a way that the optical data
later are reproduced with high similarity to the
reference data.
The existence of the solution of the inverse

problem expressed as the Eq. (1) is obvious for
this numerically simulated example. Therefore,
the first of the three conditions for well-posed
problems is fulfilled. However, Table 1 clearly
demonstrates the non-uniqueness of the math-
ematical solution of the microphysical parame-
ters retrievals. We provided three different sets
of inputs that resulted in almost exactly the
same “3β + 2α” optical coefficients. One can see
that the relative difference between the corre-
sponding reference and optional optical data is
less than 0.1% [see Table 1]. We consider this
to be sufficient to confirmation the ill-posedness
of the inverse problem at least in some cases
because the condition (ii) is not fulfilled. An er-
ror of 0.1% is much smaller than the measure-
ment error that can be achieved by any Raman
or high-spectral-resolution lidar. We can barely
expect to have optical data with better quality
in terms of noise, but in this case it is not even
necessary to introduce any noise. The precisely
defined “3β+2α” optical coefficients are well re-
produced in multiple ways by just using different
input parameters.
One might have the impression that the con-

sidered “Reference A” geometrical input param-
eters are extreme because the low count me-
dian radius (rref.Amed = 0.02 µm) even in combi-
nation with high geometric standard deviation
(σref.A = 2.5) results in a very narrow PSD. The
absolute majority of the particles have a radius
below 100 nm [see Fig. 1, solid bell shaped curve
of “A” series]. This barely realistic showcase was
selected because it obviously reveals the com-
plexity of the underlying inverse problem due
to the effective radius (reff.A = 0.163156 µm) fit-
ting exactly into the accumulation mode range
of real retrievals.
Figure 1 shows all of the “3β+2α” backscatter

and extinction number kernel functions together
with the monomodal logarithmic-normal PSDs
that are used in this example. The backscatter

kernels at the same wavelength look very similar
for the reference and both optional cases up to
a particle radius of about 100 nm. A noticeable
oscillation that is helping us to distinguish them
begins only after that border [see Fig. 1, three
top blocks]. The extinction kernels are more eas-
ily distinguishable from each other [see Fig. 1,
bottom two blocks]. Despite this, the integration
in Eq. (1) results in quantities that are different
less than 0.1% between themselves [see Table 1,
lines ∆α355 and ∆α532].
From the absorption point of view, the “Refer-

ence A” column represents moderately absorb-
ing aerosols (mref.A

I = 0.015). The “Option A.1”

is a low absorbing (m
(A.1)
I ≈ 0.0025) and the

“Option A.2” is a highly absorbing (m
(A.2)
I ≈

0.0405) mixture of ambient particles [see Ta-
ble 1]. The purpose of this example is to demon-
strate the theoretical possibility of having the
distribution of spherical particles with radically
different absorbing properties and very similar
quantitative interactions with incident laser ra-
diation at certain wavelengths.
In our studies we are highly interested in the

accumulation mode of aerosols. These are the
particles with radii between 50 nm and 1.25
µm, and a lifetime in the atmosphere of days
to weeks [18, 19]. The aerosols with radii be-
low 50 nm belong to the Aitken and nucleation
modes. Their lifetime is estimated to be only a
few hours with further coagulation with larger
particles [18, 19].
The first example represents the Aitken mode

particles [see Table 1]. The accumulation mode
aerosols are considered in our second example
[see Table 2]. It demonstrates the input pa-
rameters that again result in almost identical
“3β + 2α” optical coefficients for the reference
and two optional cases. We kept the same ref-
erence CRI but shifted the PSD to cover bigger
particles sizes [see Fig. 1, solid bell shaped curve
of “B” series]. The true effective radius is more
than twice as large compared to the first exam-
ple [see Tables 1–2, “Reference” columns].
These two examples are showing that the non-

uniqueness of the inverse solution is common for
the mathematical problem to be solved. The am-
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bient particles of different size modes are equally
affected. We also noticed that it is much easier to
find an alternate solution with higher imaginary
parts than the reference one has. This is consis-
tent with the outcome of our previous studies,
which generally showed an overestimation of the
imaginary part as a result of microphysical pa-
rameters retrievals [7–11, 15, 16].

C. Look-Up Table

Let us move away from analyzing solutions-pairs
one by one to a more statistical approach with
the look-up table (LUT). That LUT contains
particle backscatter, extinction, and scattering
coefficients at 355, 532, and 1064 nm, CRI, ef-
fective radius, total surface area, and volume
concentrations. The optical parameters are cal-
culated with a Mie scattering code appropriate
for spherical particles [17]. The input parame-
ters for the computations are PSD and CRI. The
normalized PSDs are chosen in a way that the
total number concentration nt [see Eq. (2)] is
equal to 1 cm−3, which is the case if n0 = 1 cm−3.
The range of PSDs and CRIs in the LUT is suf-
ficiently broad to cover realistic values for atmo-
spheric aerosols [20].
Table 3 lists the parameters of the normal-

ized monomodal logarithmic-normal PSDs and
CRIs that were used in generating the LUT.
We used 42 different values of real parts and
52 imaginary parts of the CRI. The PSDs are
given in terms of the total surface area concen-
tration and effective radius. This is done in or-
der to have the controllable distribution of these
two microphysical parameters. The total surface
area concentration varies from 0.005 to approxi-

mately 6.36 µm2

cm3 . For the constant total number
concentration, 362 values are considered. The ef-
fective radius is varying from 0.025 to approxi-
mately 2.57 µm, and 235 values are considered.
The next value is 2% larger than the previous
one for both parameters. For instance, the start-
ing value for the effective radius is 0.025 µm.
The next ones are 0.025 ⋅ 1.02 = 0.0255 µm,
0.0255 ⋅ 1.02 = 0.02601 µm, and so on.
Theoretically, the designed LUT should con-

tain 42 ⋅ 52 ⋅ 362 ⋅ 235 = 185,792,880 entries.
Practically, the number of the LUT elements

is equal to 122,675,280. The constraining lim-
itation that reduces the number of entries so
significantly is mathematically explained below.
The physical meaning of this constraint is that
the low values of effective radius and the high
values of total surface area concentration can’t
be simultaneously reproduced using a normal-
ized monomodal logarithmic-normal PSD.
The connection between the total surface area

concentration st and effective radius reff on the
one side, and the count median radius rmed and
geometric standard deviation σ on the other in
our particular case can be obtained analytically.
First, we have to substitute the logarithmic-
normal PSD f (r) formerly described by Eq. (7)
into Eqs. (3) and (5). Then, the application
of direct integration will allow us to express
these two chosen microphysical parameters via
n0, rmed, and σ as:

st = 4πn0r
2
med exp (2ln2σ) , (8)

reff = rmed exp (2.5ln2σ) . (9)

For the purpose of error analysis in Section 4,
we will need the analytical form for the total
number and volume concentrations. These two
parameters can be presented as:

nt = n0, (10)

vt = 4π
3
n0r

3
med exp (4.5ln2σ) . (11)

In a general case, the direct integration with
monomodal logarithmic-normal PSD f (r) that
is described by its variables n0, rmed, and σ will
result in:

∫ ∞

0
rkf (r)dr = n0r

k
med exp(k22 ln2σ) . (12)

In the opposite direction, the expression of the
rmed and σ via the st and reff from Eqs. (8) and
(9) will give us:

rmed = reff exp(5
6
ln

st

4πn0r
2
eff

) , (13)
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σ = exp√−1
3
ln

st

4πn0r
2
eff

. (14)

According to Eq. (14), the geometric standard
deviation σ can only be computed in real num-
bers if the value under the square root is non-
negative. That is the case if:

st

4πr2eff
< n0 = 1 cm−3. (15)

This limitation reduces the number of PSDs
in the LUT from 362 ⋅ 235 = 85,070 to 56,170.
The spatial distribution of the remaining com-
binations of the total surface area concentration
and effective radius is shown in Fig. 2. As pre-
dicted by Eq. (15), on the bottom side of the
plot one can see the parabolic shape gap in the
coverage of the LUT parameters.

D. Example of Non-Uniqueness as Major Issue

in the “3β + 2α” Retrievals

The parameter ranges covered by the LUT
were chosen to present the range of param-
eters found in ambient aerosols. For further
analysis, let us select the situations that are
similar to the “Reference A” case which is
described by the set of its “3β + 2α” opti-
cal coefficients {βref.A

355 , βref.A
532 , βref.A

1064 , α
ref.A
355 , αref.A

532 }
[see Table 1]. We consider the entry number
j of the LUT represented by its optical data{βj

355, β
j
532, β

j
1064, α

j
355, α

j
532} to be similar to the

“Reference A” case within the manually set
threshold δ, if the coefficient nj

3β+2α can be found

that makes the normalized discrepancy ρ
j
3β+2α to

be less than δ, i. e.,

ρ
j

3β+2α
= 1

5

⎛
⎝
RRRRRRRRRRRRRR
βref.A
355

−n
j

3β+2α
β
j
355

βref.A
355

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR
βref.A
532

−n
j

3β+2α
β
j
532

βref.A
532

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR
βref.A
1064

−n
j

3β+2α
β
j
1064

βref.A
1064

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR
αref.A
355

−n
j

3β+2α
α
j
355

αref.A
355

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR
αref.A
532

−n
j

3β+2α
α
j
532

αref.A
532

RRRRRRRRRRRRRR
⎞
⎠ ⋅ 100% < δ%. (16)

The simplest way to estimate the unitless co-
efficient nj

3β+2α is:

n
j
3β+2α = 1

5

⎛⎝β
ref.A
355

β
j
355

+ βref.A
532

β
j
532

+ βref.A
1064

β
j
1064

+ αref.A
355

α
j
355

+ αref.A
532

α
j
532

⎞⎠.(17)
Using Eq. (16), we are testing all of the

j = 1. . . 122,675,280 entries of the LUT. The

subset {LUTδ
3β+2α} consists of the LUT elements

that passed through that test, i. e., with a dis-
crepancy ρ

j1
3β+2α smaller than the manually cho-

sen threshold δ. This subset can be analyzed
from different perspectives. We are interested in
the distribution of CRIs, as well as the behav-
ior of microphysical size parameters within this
distribution, because the subset content is likely
to be used for the final solution averaging in one
of our inversion algorithms [7–11,15]. The unit-
less coefficients nj1

3β+2α can be treated as the to-
tal number concentrations because numerically
they are equal in the case of used LUT and “Ref-
erence A” optical data set. The imaginary part
of the CRI deserves special attention because it
is the most critical parameters for the estimation
of the single-scattering albedo that describes the
absorbing properties of aerosols [see Eq. (6)].
The total surface area (sj1t ) and volume (vj1t )

concentrations in the subset {LUTδ
3β+2α} have

to be scaled up by the coefficient n
j1
3β+2α before

carrying out the analysis as:

ŝ
j1
t = nj1

3β+2αs
j1
t and v̂

j1
t = nj1

3β+2αv
j1
t , (18)

where ŝ
j1
t and v̂

j1
t are the corrected values. The

index j 1 runs from 1 to the number of entries in
the subset {LUTδ

3β+2α}.
Figure 3 demonstrates in a qualitative manner

the behavior of microphysical size parameters
targeted in this study; one block per parameter.
The normalized discrepancy threshold δ in this
test was selected to be 0.3%, which is sufficient
to provide the representative sample. The center
of each bubble is located in the coordinates given
by the real (horizontal axis) and imaginary (ver-
tical axis) parts of the CRIs of the {LUT0.3%

3β+2α}
subset entries. The radius of each bubble shows
the value of the corresponding size parameter.
The true “Reference A” value of the microphys-
ical size parameter is shown in the right bot-
tom corner of each block. One can see that the
trace of “3β+2α” optical data sets similar within
0.3% to the set {βref.A

355 , βref.A
532 , βref.A

1064 , α
ref.A
355 , αref.A

532 }
is quite narrow and stretches from the minimum
to maximum values of the imaginary part. In
Table 1 we provide an example of three differ-
ent combinations of the CRIs and PSDs that
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are reproducing almost the same “3β + 2α” op-
tical coefficients. Figure 3 shows that there are
more than two options to do so and this is the
main reason why the retrieval of the imaginary
part can be such a complicated task in general
case [5–15]. We would like to point out that the
displayed situation is not unique. In our numeri-
cal simulations we often see similar output. The
results for effective radius and total volume con-
centration look qualitatively analogous, i. e., in
this particular example their overall estimations
are getting higher for lower imaginary parts [see
Fig. 3, top left and bottom right blocks]. The
total surface area concentration has about the
same range of retrieved values for the whole dia-
pason of imaginary parts [see Fig. 3, bottom left
block]. In Sections 4 and 5 we will pay special at-
tention to this impressive consistency and make
it serve for some useful conclusions. The total
number concentration, which is presented here
by the unitless coefficient n3β+2α, is the most
unpredictable among the four considered micro-
physical size parameters [see Fig. 3, top right
block]. It has the largest ratio of the biggest to
the smallest parameter value at the same CRI
point.
For the demonstration of key mathematical

features in this study, we use monomodal PSDs.
In the real atmosphere, PSDs are commonly
believed to be at least bimodal or multimodal
[18, 19]. We expect that if we expand our LUT
to include bimodal PSDs similar to ambient
aerosol distributions, then the non-uniqueness
of the inverse solution will become even more
pronounced.

E. Effect of Alternate Instrument Configura-

tions on Non-Uniqueness

Before moving further, let us consider four alter-
native instrument configurations and provide a
quick estimation of the CRI distribution within
the corresponding LUT subsets. We will test the
“3β”, “2β + 1α”, and “3β + 1α” lidar configu-
rations as we did for our arrange and average
algorithm [15], plus the “2β + 1α + 1ς” one as a
theoretically possible combination of active and
passive remote sensors.
The “3β” configuration is the extreme sce-

nario as it only uses particle backscatter coef-
ficients at 355, 532, and 1064 nm. The “2β+1α”
lidar configuration consists of backscatter coef-
ficients at 532 and 1064 nm, and the extinc-
tion coefficient at 532 nm. This configuration
reflects the first generation of airborne High-
Spectral-Resolution Lidar (HSRL-1) built at
NASA LaRC [21]. The HSRL-1 instrument col-
lected a huge amount of “2β + 1α” data dur-
ing its numerous field campaigns. The “3β+1α”
configuration consists of backscatter coefficients
at 355, 532, and 1064 nm, and the extinction
coefficient at 355 nm. This configuration is in-
teresting from the perspective of the ground-
based Raman lidar community because the ni-
trogen Raman signal is considerably stronger at
355 nm compared to 532 nm. It allows us to
measure the extinction coefficient with higher
precision at 355 nm. The “2β + 1α + 1ς” con-
figuration has similar to “2β + 1α” wavelengths
for the backscatter and extinction coefficients,
and uses a scattering coefficient at 532 nm. In-
stead of scattering, the absorption optical coef-
ficient or single-scattering albedo can be used.
This configuration is purely theoretical at the
moment and represents the combination of lidar
and some passive remote sensing instruments.
For these four instrumental configurations we

need to define the normalized discrepancies as:

ρj3β = 13⎛⎝
RRRRRRRRRRR
βref.A
355 − nj

3ββ
j
355

βref.A
355

RRRRRRRRRRR +
RRRRRRRRRRR
βref.A
532 − nj

3ββ
j
532

βref.A
532

RRRRRRRRRRR
+ RRRRRRRRRRR

βref.A
1064 − nj

3ββ
j
1064

βref.A
1064

RRRRRRRRRRR
⎞
⎠ ⋅ 100%,(19)

ρ
j

2β+1α
= 1

3

⎛
⎝
RRRRRRRRRRRRRR
βref.A
532

−n
j

2β+1α
β
j
532

βref.A
532

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
βref.A
1064

−n
j

2β+1α
β
j
1064

βref.A
1064

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
αref.A
532

−n
j

2β+1α
α
j
532

αref.A
532

RRRRRRRRRRRRRR
⎞
⎠ ⋅ 100%, (20)

ρ
j

3β+1α
= 1

4

⎛
⎝
RRRRRRRRRRRRRR
βref.A
355

−n
j

3β+1α
β
j
355

βref.A
355

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
βref.A
532

−n
j

3β+1α
β
j
532

βref.A
532

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
βref.A
1064

−n
j

3β+1α
β
j
1064

βref.A
1064

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
αref.A
355

−n
j

3β+1α
α
j
355

αref.A
355

RRRRRRRRRRRRRR
⎞
⎠ ⋅ 100%, (21)

ρ
j

2β+1α+1ς
= 1

4

⎛
⎝
RRRRRRRRRRRRRR
βref.A
532

−n
j

2β+1α+1ς
β
j
532

βref.A
532

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
βref.A
1064

−n
j

2β+1α+1ς
β
j
1064

βref.A
1064

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
αref.A
532

−n
j

2β+1α+1ς
α
j
532

αref.A
532

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR
ςref.A
532

−n
j

2β+1α+1ς
ς
j
532

ςref.A
532

RRRRRRRRRRRRRR
⎞
⎠ ⋅ 100%, (22)
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and the corresponding unitless coefficients:

n
j
3β = 1

3

⎛
⎝
βref.A
355

β
j
355

+ βref.A
532

β
j
532

+ βref.A
1064

β
j
1064

⎞
⎠, (23)

n
j
2β+1α = 13⎛⎝β

ref.A
532

β
j
532

+ βref.A
1064

β
j
1064

+ αref.A
532

α
j
532

⎞
⎠, (24)

n
j
3β+1α = 14⎛⎝β

ref.A
355

β
j
355

+ βref.A
532

β
j
532

+ βref.A
1064

β
j
1064

+ αref.A
355

α
j
355

⎞
⎠,(25)

n
j
2β+1α+1ς = 14⎛⎝β

ref.A
532

β
j
532

+ βref.A
1064

β
j
1064

+ αref.A
532

α
j
532

+ ςref.A532

ς
j
532

⎞
⎠,(26)

where the entry number j = 1. . . 122,675,280
of the LUT in a general case is
represented by its optical data{βj

355, β
j
532, β

j
1064, α

j
355, α

j
532, ς

j
355} and compared

to the “Reference A” extended set of coeffi-
cients {βref.A

355 , βref.A
532 , βref.A

1064 , α
ref.A
355 , αref.A

532 , ςref.A355 }
[see Table 1 for the PSD variables and CRI].
The LUT subsets {LUT0.3%

3β }, {LUT0.3%
2β+1α},{LUT0.3%

3β+1α}, and {LUT0.3%
2β+1α+1ς} consist of the

LUT elements whose corresponding normalized
discrepancies [see Eqs. (19)–(22)] are less than
0.3%. The distributions of the CRIs for these
four subsets are shown in Fig. 4, one block per
instrumental configuration.
The “3β” lidar configuration has the broad-

est trace of its LUT subset on the CRI plane
[see Fig. 4, top left block]. This explains the
poorest performance of the “3β” configuration
in our arrange and average algorithm [15]. The
CRI barely has a chance to be estimated with
acceptable error in such a situation. The same
number of optical data, but employing just one
extinction coefficient can significantly reduce the
amount of outliers [see Fig. 4, “2β + 1α” block].
One more backscatter coefficient makes the sit-
uation even better [see Fig. 4, “3β + 1α” block].
These three blocks of Fig. 4 are in good agree-
ment with our earlier results [15]. The best the-
oretical performance is shown in this example
by the “2β + 1α + 1ς” configuration [see Fig. 4,
bottom right block]. The significant reduction

of the outliers population in the bottom right
block compared to the top right one is obvious
[see Fig. 4, “2β + 1α” block]. The combination
of only one precisely measured extinction and
scattering (or absorption, or single-scattering
albedo) optical coefficients being measured at
the same wavelength can significantly improve
the uniqueness aspect of the original mathemati-
cal problem [see Section 1]. We would like to pay
special attention to this conclusion because a
smaller number of input optical coefficients (four
for “2β + 1α + 1ς” versus five for “3β + 2α”) re-
sults in a competitive quality of retrievals. The
trace of the {LUT0.3%

2β+1α+1ς} subset on the CRI
plane is much more compact even compared to
the {LUT0.3%

3β+2α} [see Figs. 3–4].
Let us expand this valuable result into a wider

picture. We have to use more than just one
reference optical data input for that. We will
calculate these true optical data using parame-
ters {nj

0 = 1 cm−3, rjmed, σ
j,mj

R,m
j
I} from Table 4.

This table contains eight count median radii
rmed and six geometric standard deviations σ.
The effective radius in each case is less than
2.5 µm. This value is significantly higher than
the upper end of effective radii that are expected
for particles in the fine mode fraction of ambi-
ent PSDs [20]. The CRIs range between 1.4 and
1.7 for four chosen real parts [20]. We selected
15 imaginary parts of the CRI in the range from
0 to 0.05 [20]. The overall number of evaluating
optical data sets from these input parameters is
equal to 8 ⋅ 6 ⋅ 4 ⋅ 15 = 2880.
For each of these evaluating true optical data

j = 1 . . . 2880, we can find two corresponding
LUT entries that minimize the discrepancies
ρ
j
3β+2α [see Eq. (16)] and ρ

j
2β+1α+1ς [see Eq. (22)].

We will limit our consideration by only the CRI
of these single LUT elements. The CRIs esti-
mated in such a simple manner can be compared
with the true ones.
Figures 5–6 show the statistical distribution of

precision that was obtained for the “2β+1α+1ς”
and “3β + 2α” instrument configurations. The
left vertical axis of each plot refers to the num-
ber of cases (the total number was 2880 optical
data sets) that were tested. The histograms dis-
play the statistical distribution of errors of the
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retrieved real and imaginary parts of the CRIs.
The right vertical axis of each plot refers to the
cumulative probability distribution. The cumu-
lative probabilities are shown for both positive
and negative retrieval errors. The left and right
axes on the plots are scaled to each other. The
maximum value of 61% shown on the right axis
(“Cumulative probability, %”) corresponds to
the value of 1750 shown on the left axis (“Num-
ber of cases”). Positive values of the horizon-
tal axes mean that the retrieval results overes-
timated the true values. Negative values show
that the retrieval results underestimated the
true values. The horizontal axis of Fig. 5 is in-
dexed in increments of 0.05. We chose the step-
size of 0.05 because our goal is to achieve a pre-
cision of 0.05 for the retrieved real part of the
CRI. The horizontal axis of Fig. 6 is incremented
in steps of 0.005, which we target regarding the
retrieval precision of the imaginary part.
Without providing much further numerical

details it is obvious that in this quick test the
“2β+1α+1ς” instrument configuration partially
outperformed the “3β + 2α” configuration. The
imaginary part for the “2β + 1α+ 1ς” is surpris-
ingly more often estimated better than 0.005
compared to the “3β + 2α” [see the enhanced
central peak with smaller side lobes in Fig. 6].
Unfortunately, the real part on average is getting
retrieved with bigger errors in the “2β+1α+1ς”
case [see Fig. 5]. This result can be explained by
a smaller number of used input optical data, and
fits into our previous studies [15]. Even though
the mutual usage of the backscatter and extinc-
tion inputs together with just one extra scatte-
ring (or absorption, or single-scattering albedo)
optical coefficient would significantly improve
the inverse retrievals for any lidar configuration.
We would like to stress that the technique

used for this noiseless test is not appropriate for
the distorted or real data and can be used for the
quick look purposes only. Otherwise, the central
peak on the retrieval histograms might become
undistinguishable.

3. PSD thresholding at 50 nm

During the development of our arrange and av-
erage algorithm [15], we were trying to identify
the mechanisms of influence of the input param-
eters on the quality of outputs. As a part of our
efforts, the non-uniqueness of the inverse solu-
tion is proven to be the major issue because a
very different combinations of CRIs and PSDs
are able to reproduce the true optical data [see
Table 1]. One possible way to get the improve-
ments in the retrievals is to apply some physi-
cally meaningful constraints.
As mentioned in Section 2.B, we are mostly

concentrated on the accumulation mode aerosols
because of their longer lifetime compared to
the Aitken mode. At the same time, a sepa-
rate study by our group employs the LUT from
the first version of the arrange and average al-
gorithm to characterize the information content
and measurement sensitivities of the “3β + 2α”
system. That study shows a specific aspect of
the non-uniqueness issue when the retrieval of
microphysical parameters in the accumulation
mode can be highly affected by Aitken mode so-
lutions that are physically incorrect [22]. The
identical interference between the aerosol size
modes was noticed during the data processing
for the Lindenberg Aerosol Characterization Ex-
periment (LACE 98) [23]. The proposed physi-
cal explanation to this effect could be that the
used laser wavelength (355 nm at minimum)
is not sensitive enough for the observation of
such small particles (50 nm radius at maxi-
mum). One of the consequences of mismatches
between the wavelength and aerosols size is the
lack of small scale details on the “3β+2α” num-
ber kernel functions for the radii below 100 nm
even for different CRIs [see Fig. 1]. Another
consequence is that the different Aitken mode
measurement states, i. e., combinations of CRI
and PSD, are easily reproducing similar optical
coefficients [see Table 1]. Following the recom-
mendation for avoiding this interference [22], the
Aitken mode PSDs have to be excluded from
the LUT. For instance, the LUT used for the
first version of the arrange and average algo-
rithm contains 155,584 entries out of 755,040 to-
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tal with PSDs that have more than 30% of their
area below 50 nm. Thus, we reduced the num-
ber of the LUT entries from 755,040 to 599,456
by the count of the Aitken mode PSDs. We then
ran the arrange and average algorithm using the
same set of 2880 “3β + 2α” noiseless evaluat-
ing optical data [see Table 4], without changing
anything else in our algorithm [15]. Recall that
the arrange and average algorithm is based on
the property that after total number concentra-
tion normalization the simulated/measured op-
tical data can be compared with the LUT. Af-
ter normalization, all the entries of the LUT are
sifted for the multiple times through the proce-
dure of arranging the normalized distances and
rejecting those with worse agreement with the
measurements. For each run of procedure, only
one entry of the LUT can penetrate through
that sieve and become an averaging candidate.
Outliers are possible, but statistically they are
suppressed since the best solutions are counted
multiple times during the final averaging.
The comparison of results generated with full

(white stars) and reduced (corresponding black
stars) LUTs is provided on Fig. 7, one block per
microphysical parameter. The left vertical axis
of each plot refers to the retrieval error, whereas
the right axis helps us to estimate the difference
[see Fig. 7; solid curve] between the correspond-
ing reduced [see Fig. 7; ★] and full [see Fig. 7;☆] LUTs retrieval errors. On the horizontal axis
we show the portion of the PSD area below 50
nm. The higher numbers indicate an increase
in domination of the Aitken over the accumu-
lation mode aerosols within the PSD. The eval-
uating optical data set consists of 48 PSDs and
60 CRIs [see Table 4]. Each star in Fig. 7 corre-
sponds to one PSD and 60 CRIs, and shows the
averaged value of certain microphysical parame-
ters. Twelve out of 48 PSDs have more than 30%
of their areas below 50 nm. The retrieval errors
of all microphysical parameters for these twelve
PSDs on average became bigger after the LUT
reduction [see Fig. 7; the value of the black star
almost always exceeds the corresponding white
star if the horizontal axis position is above 30%].
It is understandable because the reduced LUT
does not cover the Aitken mode as well as before.

For the remaining 36 PSDs with less than 30% of
Aitken particles in them, the retrieval errors on
average became smaller. The improvements are
especially noticeable for the total number con-
centration [see Fig. 7, third block from bottom],
which is a very encouraging result because this
parameter is always one the most difficult to be
retrieved. All other microphysical parameters on
average also got better estimations [see Fig. 7,
solid curves are staying mostly in the negative
domain]. Even the smallest relative retrieval er-
rors for the total surface area concentration on
average became slightly smaller [see Fig. 7, sec-
ond block from bottom].
The 30% threshold mentioned above is not the

final number, and is used to provide an exam-
ple. We are less interested in Aitken mode com-
pared to accumulation mode aerosols, but we
still want to have retrievals for particles with
radii below 50 nm. The balance should be kept.
The unknown factor here is the share of the
Aitken mode in ambient PSDs. Real measure-
ments statistics is needed to make a decision
about the threshold. In our future studies we
plan to perform a comparison between the mi-
crophysical parameters retrieved from the lidar
measurements and in situ data in order to find
the balanced Aitken mode threshold.

4. Elements of Error Analysis

Our numerical simulations [7–11, 15] have been
continuously surprising by always showing on
average the smallest relative retrieval error for
the total surface area concentration if at least
one extinction optical coefficient was used in the
inversion. The representative statistics are avail-
able for our arrange and average algorithm [15].
For some previously unknown reason the qual-
ity of surface area concentration estimation was
almost always better compared to any other
microphysical size parameter (e. g., 2% preci-
sion for 68.2% of noiseless “3β +2α” cases [15]).
The effective radius normally was taking second
place (e. g., 10% precision for 68.2% of noiseless
“3β + 2α” cases [15]). The total volume concen-
tration usually was in the third position (e. g.,
12% precision for 68.2% of noiseless “3β + 2α”
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cases [15]), but not significantly worse than the
effective radius. The total number concentra-
tion almost always has the largest retrieval er-
ror among the four analyzed microphysical size
parameters (e. g., 22% precision for 68.2% of
noiseless “3β + 2α” cases [15]).
Going beyond the numerical simulations, we

noticed something very similar for retrievals
from real data measured by NASA LaRC “3β +
2α” High Spectral Resolution Lidar (HSRL-2)
[2, 3]. HSRL-2 results based on the surface area
concentration normally look much smoother and
consistent compared to any other microphysi-
cal product. The earlier determination of strato-
spheric aerosol microphysical properties from
measurements with a Raman lidar indicated the
same feature [24].
In order to explain this stable pattern, let us

analyze the behavior of error bars for the to-
tal number, surface area, and volume concen-
trations, and effective radius. To start, we will
consider a general case and express the errors of
these microphysical size parameters via the er-
rors ∆n0, ∆rmed, and ∆σ of the PSD variables
n0, rmed, and σ correspondingly [25].
Using Eq. (10), the error bar for the total

number concentration can be expressed as:

∆nt = ∣dnt

dn0

∣∆n0 = nt

∆n0

n0

. (27)

Based on the Eq. (8), we estimate the absolute
error for the total surface area concentration as:

∆st ≈ ∣ ∂st
∂n0

∣∆n0 + ∣ ∂st

∂rmed

∣∆rmed + ∣∂st
∂σ
∣∆σ =

= st (∆n0

n0

+ 2∆rmed

rmed

+ 4lnσ∆σ

σ
) .(28)

Equation (11) allows us to present the abso-
lute error for the total volume concentration as:

∆vt ≈ ∣ ∂vt
∂n0

∣∆n0 + ∣ ∂vt
∂rmed

∣∆rmed + ∣∂vt
∂σ
∣∆σ =

= vt (∆n0

n0

+ 3∆rmed

rmed

+ 9lnσ∆σ

σ
) .(29)

Using Eqs. (27)–(29) we can connect the rela-
tive errors of the microphysical size parameters
with the relative errors for the PSD variables n0,

rmed, and σ as:

∆nt

nt

= ∆n0

n0

, (30)

∆st

st
≈ ∆n0

n0

+ 2∆rmed

rmed

+ 4lnσ∆σ

σ
, (31)

∆vt

vt
≈ ∆n0

n0

+ 3∆rmed

rmed

+ 9lnσ∆σ

σ
. (32)

Equations (31)–(32) to a certain degree are
able to explain the findings from earlier stud-
ies [5–15], that the error of the total surface
area concentration is consistently less than the
error of the total volume concentration. Our an-
alytical explanation is that for the same set of
relative errors {∆n0

n0
, ∆rmed

rmed
, ∆σ

σ
}, the expression

of relative error for the surface area concentra-
tion has smaller multiplicative coefficients, i. e.,{1,2,4} [see Eq. (31)]. The coefficients for the
volume concentration are noticeably larger, i. e.,{1,3,9} [see Eq. (32)].
The disadvantage of the error bars estimation

given by the Eqs. (30)–(32) is obvious. Equa-
tion (30) makes one to think that the total num-
ber concentration has the smallest retrieval error
among the microphysical size parameters. Ac-
cording to our experience [7–11, 15], the situa-
tion is exactly opposite. The total number con-
centration is the most difficult to retrieve with
good precision.
The larger errors in the total number concen-

tration from actual retrievals are due to a fea-
ture that is not reflected in the theoretical treat-
ment above. While Eqs. (30)–(32) are derived
for an arbitrary set of errors {∆n0,∆rmed,∆σ},
the real retrievals include averages of solutions
with small discrepancies that are defined in a
way similar to Eq. (16).
In order to bring the error bars estimation

scheme closer to reality, we have to narrow down
the choice of the errors {∆n

j
0,∆r

j
med,∆σj} of

the corresponding PSD variables and discover a
specific mathematical feature of the considered
inverse problem. Let us accept only the combi-
nations {ñj

0, r̃
j
med, σ̃

j , m̃
j
R, m̃

j
I} that minimize the

discrepancy ρ
j
3β+2α [see Eq. (16)]. It is easier to
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use the LUT to search for these kind of combina-
tions. We are making this constraining assump-
tion because the small value of similarly defined
discrepancies is the main quantitative criteria
used by inversion algorithms [5–15]. We will
calculate the true values of optical data using
parameters {nj

0 = 1 cm−3, rjmed, σ
j,mj

R,m
j
I} from

Table 4. Thus, we will get j = 1 . . . 2880 pairs of
true PSD variables {nj

0, r
j
med, σ

j} and their cor-

responding approximations {ñj
0, r̃

j
med, σ̃

j} origi-
nating from the LUT. Since the solutions that
satisfy the discrepancy criteria in general dif-
fer in their values of total number, surface area,
and volume concentrations, the found approxi-
mation {ñj

0, r̃
j
med, σ̃

j , m̃j
R, m̃

j
I} will in general dif-

fer from the true solution {nj
0, r

j
med, σ

j ,m
j
R,m

j
I}.

Let us find the minimum of the differ-
ence ∆F (k) between the true monomodal
logarithmic-normal PSDs f j (r) and their cor-
responding estimations f̃ j (r) defined as:

∆F (k) = ⟨ ∣∫ ∞0 rkf̃ j (r)dr
∫ ∞0 rkf j (r)dr − 1∣ ⟩

kÐ→min, (33)

where the brackets ∣⋅∣ mean the absolute value
and ⟨⋅⟩ designates the averaging among 2880
pairs of available PSD variables. There is some
value of degree k for which this difference is min-
imized. The search is conducted in real values.
Using Eq. (12) we can rewrite Eq. (33) as:

∆F (k) = ⟨
RRRRRRRRRRRRRR
ñ0

n0

( r̃med

rmed

)k exp
⎛⎜⎝
k2 (ln2σ̃ − ln2σ)

2

⎞⎟⎠ − 1

RRRRRRRRRRRRRR
⟩ k
Ð→min. (34)

For the 2880 evaluating optical data sets, the
minimum in Eq. (34) is achieved at kmin = 1.908
[see Fig. 8]. This value has important practical
meaning because it is very close to the value
of degree kst = 2 [see Eq. (3)] of the surface
area concentration. This finding is another way
of looking at the results already seen in Fig. 3.
The surface area concentration is relatively con-
stant over the whole range of solutions that re-
produce the measurements to within the spec-
ified discrepancy threshold, and therefore this
microphysical size parameter statistically is re-
trieved with relatively small uncertainty despite
the non-uniqueness of the solution.
Out of the approximate coincidence kmin ≈ kst ,

we can make a theoretical conclusion that statis-
tically the surface area concentration will have

the smallest retrieval error compared to the to-
tal number [knt = 0, see Eq. (2)] and volume
[kvt = 3, see Eq. (4)] concentrations [see Fig. 8 for
these points]. That triggers us to express the re-
maining microphysical size parameters via sur-
face area concentration in order to have a com-
parison of their retrieval errors with the smallest
one. The total number and volume concentra-
tions can be presented as:

nt = st

4πr2med exp (2ln2σ) , (35)

vt = 1
3
strmed exp (2.5ln2σ) . (36)

Equations (27) and (29) are transformed into:

∆nt ≈ ∣∂nt

∂st
∣∆st + ∣ ∂nt

∂rmed

∣∆rmed + ∣∂nt

∂σ
∣∆σ =

= nt (∆st

st
+ 2∆rmed

rmed

+ 4lnσ∆σ

σ
) ,(37)

∆vt ≈ ∣∂vt
∂st
∣∆st + ∣ ∂vt

∂rmed

∣∆rmed + ∣∂vt
∂σ
∣∆σ =

= vt (∆st

st
+ ∆rmed

rmed

+ 5lnσ∆σ

σ
) .(38)

The absolute error for the effective radius can
be estimated using Eq. (9):

∆reff ≈ ∣ ∂reff
∂rmed

∣∆rmed + ∣∂reff
∂σ
∣∆σ =

= reff (∆rmed

rmed

+ 5lnσ∆σ

σ
) . (39)

Finally, if discrepancy ρ3β+2α is small then es-
timations given by Eqs. (30) and (32) can be
rewritten using the surface area concentration
relative error ∆st

st
as:

∆nt

nt

≈ ∆st

st
+ 2∆rmed

rmed

+ 4lnσ∆σ

σ
, (40)

∆vt

vt
≈ ∆st

st
+ ∆rmed

rmed

+ 5lnσ∆σ

σ
. (41)

Equation (39) results in:

∆reff

reff
≈ ∆rmed

rmed

+ 5lnσ∆σ

σ
≈ ∆vt

vt
− ∆st

st
. (42)
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The additives ∆st
st

, ∆rmed

rmed
, and ∆σ

σ
have no-

ticeably different significance for Eqs. (40)–(42).
Previously we already found that under certain
assumptions the component ∆st

st
statistically is

fairly small because the degree kst = 2 is very
close to bring the minimum in the Eq. (33).
The geometric standard deviation σ in our study
varies from 1.5 to 2.5 [see Table 4]. For the
worse-case scenario, the impact lnσ∆σ

σ
of its rela-

tive error can reach 0.37 (37%). The most sig-
nificant influence on the error bars has the ∆rmed

rmed

component because the range of used count me-
dian radii rmed stretches from 20 to 300 nm [see
Table 4]. That causes its relative error to achieve
hundreds or even thousands of percents. The in-
fluence of the ∆rmed

rmed
ingredient on the error bar

is doubled for the total number concentration
compared to the volume one. We claim this to be
the reason why the total number concentration
is statistically retrieved worse than other consid-
ered microphysical size parameters. Compared
to the others, ∆nt

nt
is twice as much affected by

the potentially large error of estimation of the
count median radius. Normally we do not re-
trieve rmed explicitly but the existing inversion
schemes can theoretically be re-viewed in that
way if necessary [5–15]. The absence of the term
∆st
st

in Eq. (42) perfectly explains why the effec-
tive radius is normally retrieved slightly better
than total volume but significantly worse than
surface area concentration. The missing single
component ∆st

st
is definitely much smaller than

∆rmed

rmed
+ 5lnσ∆σ

σ
.

On the one side, the Eqs. (40)–(42) were ob-
tained under an assumption that we use the
monomodal logarithmic-normal PSD, but the
same derivations can be done for the case of
multimodality, separately for each mode. On the
other side, the results of the real “3β + 2α”
HSRL-2 data processing by Tikhonov’s inver-
sion algorithm nicely confirm the theoretical es-
timations given by these equations [2, 3]. Al-
though the inversion with Tikhonov’s regular-
ization does not make any assumption about the
shape of the PSD [9–11], it is commonly believed
that atmospheric aerosols can be reasonably
well approximated by multimodal logarithmic-
normal PSDs [18,19]. So it is not surprising that

the error behavior derived here using this com-
mon assumption is also consistent with the find-
ings from Tikhonov retrievals.
We expect that the other research groups who

are developing inversion algorithms for the mi-
crophysical parameters retrieval using “3β+2α”
lidar data are also experiencing similar trends
in their results for the total number, surface
area, and volume concentrations, and effective
radius [6, 9, 13, 14]. In any case, the estimations
like Eqs. (40)–(42) theoretically can be derived
for PSDs that are different from monomodal
logarithmic-normal shape.

5. Analysis of Extinction Number Ker-

nel Functions

In Section 4 we ascertained the fact that the
total surface area concentration on average can
be retrieved with exceptionally good precision if
there is at least one extinction optical coefficient
participate in the inversion. Unfortunately, the
mechanism that explains why it happens still
remains unclear. We only used this numerically
confirmed property for our error analysis.
We were trying to find some reasonable expla-

nation in terms of equations or other theoretical
derivations and “discovered” an interesting fea-
ture of the extinction coefficient that earlier was
noticed at least for sulfuric acid aerosols [24].
Other important findings are discussed in sepa-
rate publication [26], but here we would like to
pay special attention to our finding that the av-
eraged extinction number kernel function can be
fairly well approximated by simple polynomials
as a function of radius. It makes the extinction
optical coefficient itself able to provide real-time
fast estimation of the correct order of magnitude
for some microphysical size parameters.
We started with averaging of the 60 extinction

number kernel functions separately at 355 and
532 nm, and used 4 real and 15 imaginary parts
of the CRI from Table 4. Figure 9 shows the re-
sults. For comparison purposes, we also demon-
strate the kernel functions corresponding to the
CRI of “Option A.1” input parameters [see Ta-
ble 1]. The averaged extinction kernel functions
for 355 and 532 nm are very similar and can be
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well approximated by parabolas. These parabo-
las are not shown in Fig. 9 because one barely
will be able to distinguish the difference between
them and averaged curves. Some imperfections
on the averaged curves are still visible but they
would become much less pronounced if the up-
per bound of radius range of Fig. 9 would be
increased, e. g., from 2.5 to 50 µm.
The oscillations are very noticeable for the

extinction number kernel functions correspond-
ing to the “Option A.1” inputs [see Table 1
and Fig. 9]. With an increase of imaginary part
of the CRI these oscillations will become much
smoother making quadratic approximation more
appropriate.
We are interested in decreasing the upper

bound of radius range from 2.5 to 0.5 µm be-
cause the majority of our 48 targeted PSDs
listed in the Table 4 noticeably exceed zero
only for the radii from about 0 to 0.5 µm. On
a smaller scale the non-parabolic imperfections
become more visible but quadratic (aλ,2r2) and
even cubic (aλ,3r3) approximations still fit ac-
ceptably well [see Fig. 10]. These approxima-
tions have practical meaning because they ex-
plain why the extinction optical coefficients are
almost linearly proportional to the total surface
area and volume concentrations.
Substituting aλ,2r2 and aλ,3r3 into

Eq. (1) instead of extinction kernel function
Kα (m,r,λ, p) and considering Eqs. (3)–(4), we
come up with:

α355 ≈ ∫ ∞

0
a355,2r

2f (r)dr = a355,2
4π

st, (43)

α355 ≈ ∫ ∞

0
a355,3r

3f (r)dr = 3a355,3
4π

vt, (44)

α532 ≈ ∫ ∞

0
a532,2r

2f (r)dr = a532,2
4π

st, (45)

α532 ≈ ∫ ∞

0
a532,3r

3f (r)dr = 3a532,3
4π

vt. (46)

The total surface area and volume concentra-
tions can be expressed from Eqs. (43)–(46) as:

st ≈ 4π α355

a355,2
≈ 4π α532

a532,2
, (47)

vt ≈ 4π
3

α355

a355,3
≈ 4π

3

α532

a532,3
, (48)

where a355,2 = 8.1 cm3

µm2Mm
, a355,3 = 18.5 cm3

µm3Mm
,

a532,2 = 9.8 cm3

µm2Mm
, and a532,3 = 22.4 cm3

µm3Mm
.

These four coefficients are relevant for the 48
PSDs given in Table 4. They should be re-
estimated if the range of PSDs is much different
from the range [0; 0.5] µm considered here.
We found that the estimation 4π α355

a355,2
works

better for the total surface area and 4π
3

α532

a532,3
for

volume concentrations. The effective radius also
can be derived with the help of Eq. (5) as:

reff = 3vt
st
≈ a355,2
a532,3

α532

α355

. (49)

For the calculation of effective radius we ex-
plicitly used independent estimations of the to-
tal surface area and volume concentrations. The
absolute error for the effective radius in that case
should be derived using Eq. (5) as:

∆reff ≈ ∣∂reff
∂vt
∣∆vt + ∣∂reff

∂st
∣∆st = reff (∆vt

vt
+ ∆st

st
) .(50)

Equation (50) results in:

∆reff

reff
≈ ∆vt

vt
+ ∆st

st
. (51)

Comparing Eqs. (42) and (51), one can see
that different approaches in estimation of effec-
tive radius have different quality. If one is going
through the direct retrieval of PSD parameters
(e. g., count median radius rmed and geometric
standard deviation σ), then effective radius sta-
tistically will be estimated slightly better than
total volume concentration [see Eq. (42)]. If one
is using the scheme that provides independent
estimations separately for the surface area and
volume concentrations, then their errors will ac-
cumulate [see Eq. (51)]. Statistically, it will re-
sult in a larger relative error for the effective ra-
dius compare to the volume concentration one.
Let us provide a numerical example for the

derivations given above. We will use the tar-
geted 2880 noiseless optical data sets from Ta-
ble 4. Figure 11 shows the results of estimation
of surface area and volume concentrations, and
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effective radii, one block per parameter. The left
and right vertical axes have the same meaning
as in Figs. 5–6. The difference is only in scal-
ing. In contrast to Figs. 5–6 we show the results
in terms of relative error. The stepsize for the
horizontal axis is 10%. We consider 10% rela-
tive precision to be an ambitious goal for any
algorithm that is used for the retrieval of micro-
physical size parameters.
The surface area concentration is retrieved in

this experiment with average error 16.1%. It has
a distinguishable central peak on the histogram
[see Fig. 11, top block]. The majority of the cases
were estimated with precision better than 20%.
We evaluate it to be an impressive result given
the easiness of Eq. (47).
Performance of Eqs.(48)–(49) being used for

the volume concentration and effective radius
estimation is much less accurate. More than
70% of simulated cases are underestimated [see
Fig. 11, middle and bottom blocks]. The aver-
age error for the volume concentration is 43.9%
and for the effective radius is 57.2%. That result
nicely confirms our prediction given by Eq. (51).
Less than 30% of the considered cases were esti-
mated with precision better than 20%, but the
simplicity of the method allows us to use it for
the real-time mode quick looks.
Figure 12 provides more details about the re-

sults shown by Fig. 11. The total surface area
and volume concentrations on average are re-
trieved with a relative error within 1% smaller
for the evaluating cases with higher imaginary
parts of the CRI that supports our earlier state-
ment about the appropriateness of the quadratic
approximation of the extinction number kernel
functions. The averaged relative errors for these
two microphysical size parameters have almost
identical qualitative behavior, and because of
that we demonstrate only one curve which can
be used for both parameters [see Fig. 12]. The
averaging was done among the 192 evaluating
optical data sets for each of 15 imaginary parts
of the CRI [see Table 4].
Figures 9–10 and Eq. (47) can serve as an ex-

planation why the total surface area concentra-
tion statistically is retrieved with smaller error
compared to any other microphysical size pa-

rameter. We explicitly used this numerically val-
idated property for our theoretical derivations
in Section 4. In fact, the direct measurement
of the extinction optical coefficient can be rein-
terpreted as the straight assessment of the sur-
face area concentration. If the extinction is re-
produced by any inversion algorithm with little
discrepancy, then surface area on average has
proportionally little chance of being wrong. This
statement works stronger for the larger particles
or bigger imaginary parts of the CRI. The back-
scatter coefficients which are employed in the in-
version also contain the information about PSD
and that amplifies the effect.

6. Conclusion

We demonstrated several fundamental aspects
of the mathematical problem that has to be
solved during retrievals of microphysical param-
eters from multiwavelength lidar. The most im-
portant aspect is that the inverse solution is not
unique. If more backscatter and extinction opti-
cal coefficients are used as input, then the situa-
tion improves in terms of retrievals quality, but
even the advanced “3β +2α” lidar configuration
is not always enough to have one and only one
solution. We claim this feature to be the main
issue independent of the type or name of the
used inversion algorithm. It is not appropriate
to consider the inverse problem to be underde-
termined only because the algorithm is trying
to retrieve more microphysical parameters than
there are input data. In provided examples the
number of independent unknowns is the same as
the number of measurements. The number of the
reported microphysical parameters is larger but
they are not independent. It is also important
to realize that non-uniqueness is a more funda-
mental problem than instability. A retrieval is
called unstable if the inversion produces a large
increase in the error, but as this study shows,
the retrieval error can be large even with no
measurement noise. Realistically, the inverse so-
lution is very close to be non-unique and under
certain circumstances the combinations of dif-
ferent CRIs and PSDs result in almost the same
“3β + 2α” optical coefficients.
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The theoretically possible way to make the
inversion get closer to be the well posed math-
ematically is to apply constrains of a different
kind. For instance, one can start using three dif-
ferent types of input optical data. The backscat-
ter and extinction are already common for such
kinds of retrievals. The extra single-scattering
albedo, or absorption/scattering coefficient, at
least at one extinction wavelength would signif-
icantly relax the complexity of the considered
problem. We provided an example that the use
of a smaller number of “three types” of optical
coefficients results in better imaginary part es-
timations compared to larger number of “two
types”. The employment of a LUT with fine
steps in CRIs and PSDs allows us to take a
quick look at possible advantages of different
instrument configurations. That LUT itself can
be considered as a powerful constraint. The pre-
defined shape of PSDs forces the whole inver-
sion scheme to stay in the area of preferred
options. In the current study the monomodal
logarithmic-normal shape was used. For the real
retrievals we are going to expand the LUT to-
ward the PSD bimodality, as it seems to be
a more realistic assumption; however, adding
these additional PSDs could increase the non-
uniqueness effect in the inversion. Therefore, we
must carefully investigate the best way to ex-
pand the LUT to better reflect bimodal distribu-
tions in the atmosphere and address the non-
uniqueness in the retrieval.
We confirmed a retrieval interference between

the Aitken and accumulation mode aerosols that
is especially noticeable for the total number con-
centration. By limiting the participation of the
Aitken mode, we improved the performance of
our arrange and average algorithm for cases
where the accumulation mode was dominant.
We expect that the other inversion algorithms
are also affected by this effect.
We offered our explanation of the statisti-

cal behavior of microphysical size parameters in
the case of “3β + 2α” lidar configuration. We
found that the almost ideal parabolic behavior
of the extinction number kernel function and the
logarithmic-normal shape of the PSDs caused
the total surface area concentration to have the

smallest and the total number concentration to
have the largest retrieval errors. The analytical
expression for the total surface area concentra-
tion can be considered as the correlation law
between the PSD variables of optical data sets
that are non-uniquely reproducing the true one.
These results are valid both for the inversion of
simulated and real data by different algorithms.
We noticed another firm correlation: between

the extinction optical coefficients and total
surface area concentration. It explains why
this particular microphysical size parameter is
retrieved with smaller error than the others in
the case of “3β + 2α” lidar configuration. We
found that the correlation is getting stronger
with increase of imaginary part of the CRI
that slightly improves the retrieval of the total
surface area concentration. This effect is quite
weak but we still expect it to be observable in
all existing inversion schemes.

We are very grateful to James W. Closs for
the wording and grammar support.
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List of Figure Captions

Fig. 1. “3β + 2α” number kernel functions and
two groups (“A” and “B”) each consisting of
three bell shaped PSDs for the input parame-
ters given in Tables 1–2. The solid line is used
to represent both “Reference” columns, whereas
dashed and dotted lines depict “Option 1” and
“Option 2”. f01.eps.
Fig. 2. 56,170 sets of total surface area con-

centration st and effective radius reff that are
employed in the LUT. f02.eps.
Fig. 3. Distribution of the effective radius reff ,

unitless coefficient n3β+2α, and corrected total
surface area ŝt and volume concentrations v̂t on
the CRI plane for the entries of the LUT subset{LUT0.3%

3β+2α}. The corresponding true “Reference
A” values [see Table 1] are separately shown in
the right bottom corner of each block. Radius
of every bubble qualitatively represents the pa-
rameter value. f03.eps.
Fig. 4. Spatial distribution of the CRIs for the

LUT subsets {LUT0.3%
3β } (top left), {LUT0.3%

2β+1α}
(top right), {LUT0.3%

3β+1α} (bottom left), and

{LUT0.3%
2β+1α+1ς} (bottom right). The pentagon

symbol shows the position of the “Reference A”
CRI [see Table 1]. f04.eps.
Fig. 5. Noiseless retrieval of the real part of

the CRI for the “2β + 1α + 1ς” instrument con-
figuration (solid line) and the “3β + 2α” lidar
configuration (dashed line). Negative values in-
dicate underestimation in the retrievals whereas
positive values mean overestimation. f05.eps.
Fig. 6. Noiseless retrieval of the imaginary

part of the CRI. The notation is the same as
in Fig. 5. f06.eps.
Fig. 7. Influence of the Aitken mode on the ac-

cumulation mode particles retrieval. White stars
depict the performance of the arrange and aver-
age algorithm with full LUT. Black stars refer
to the results with reduced LUT. Solid curve
shows the difference between the reduced LUT
(★) and full LUT (☆) retrievals using the axis
on the right hand side. Dashed line borders the
30% threshold. Variable names are the same as
in Table 1. f07.eps.
Fig. 8. Minimization of the weighted differ-

ence between the true and estimated PSDs.

f08.eps.
Fig. 9. Averaged and “Option A.1” [see

Table 1] extinction number kernel functions.
f09.eps.
Fig. 10. Quadratic and cubic approximations

of the averaged extinction number kernel func-
tion. f10.eps.
Fig. 11. Noiseless retrieval of the total surface

area and volume concentrations, and effective
radius, using only two extinction optical coeffi-
cients. f11.eps.
Fig. 12. Averaged relative error for noiseless

retrieval of the total surface area (st) and vol-
ume (vt) concentrations. f12.eps.
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Fig. 1. “3β + 2α” number kernel functions and
two groups (“A” and “B”) each consisting of
three bell shaped PSDs for the input parame-
ters given in Tables 1–2. The solid line is used
to represent both “Reference” columns, whereas
dashed and dotted lines depict “Option 1” and
“Option 2”. f01.eps.
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of the CRI. The notation is the same as in Fig. 5.
f06.eps.
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Fig. 7. Influence of the Aitken mode on the ac-
cumulation mode particles retrieval. White stars
depict the performance of the arrange and aver-
age algorithm with full LUT. Black stars refer
to the results with reduced LUT. Solid curve
shows the difference between the reduced LUT
(★) and full LUT (☆) retrievals using the axis
on the right hand side. Dashed line borders the
30% threshold. Variable names are the same as
in Table 1. f07.eps.
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Fig. 11. Noiseless retrieval of the total surface
area and volume concentrations, and effective
radius, using only two extinction optical coeffi-
cients. f11.eps.
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Fig. 12. Averaged relative error for noiseless re-
trieval of the total surface area (st) and volume
(vt) concentrations. f12.eps.
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Table 1. The reference and two optional sets of
Aitken mode input parameters resulting in very
similar “3β + 2α” optical coefficientsa

Parameter Reference A Option A.1 Option A.2

n0 ( 1
cm3 ) 1 0.609846 1.81519

rmed (µm) 0.02 0.026722 0.0143
σ 2.5 2.41493 2.56124
mR 1.5 1.44262 1.63858
mI 0.015 0.00249 0.040493

β355 ( 1
Mm sr

) 2.297⋅10−4 2.297⋅10−4 2.296⋅10−4
∆β355 (%) 0 −0.01832 −0.076349
β532 ( 1

Mm sr
) 1.500⋅10−4 1.499⋅10−4 1.502⋅10−4

∆β532 (%) 0 −0.068815 0.097481

β1064 ( 1
Mm sr

) 6.285⋅10−5 6.284⋅10−5 6.283⋅10−5
∆β1064 (%) 0 −0.019134 −0.031577
α355 ( 1

Mm
) 1.136⋅10−2 1.137⋅10−2 1.135⋅10−2

∆α355 (%) 0 0.088928 −0.00803
α532 ( 1

Mm
) 7.993⋅10−3 7.994⋅10−3 7.994⋅10−3

∆α532 (%) 0 0.017477 0.018641
ω355 0.898016 0.979015 0.800886
∆ω355 (%) 0 9.01981 −10.8161
ω532 0.904254 0.981022 0.807858
∆ω532 (%) 0 8.48972 −10.6602
ω1064 0.896946 0.979821 0.792656
∆ω1064 (%) 0 9.23976 −11.6272
nt ( 1

cm3 ) 1 0.609846 1.81519
∆nt (%) 0 −39.0154 81.5188

st (µm2

cm3 ) 0.026948 0.042476 0.015072

∆st (%) 0 57.6225 −44.0687
vt (µm3

cm3 ) 0.001466 0.002642 0.000656

∆vt (%) 0 80.2515 −55.2537
reff (µm) 0.163156 0.186579 0.130528
∆reff (%) 0 14.3564 −19.9978
aThe term n0 means the parameter of pro-
portion, rmed is the count median radius, and
σ is the geometric standard deviation. CRI
real (mR) and imaginary (mI) parts are kept
particle size and wavelength independent. The
backscatter coefficients (β) and single-scattering
albedo (ω) are calculated at wavelengths 355,
532, and 1064 nm. The extinction coefficients
(α) are given at wavelength 355 and 532 nm.
The total number (nt), surface area (st), and
volume (vt) concentrations, and effective radius
(reff) are also provided for the comparison. This
can be done using corresponding ∆-lines that
are offered in percentages as compared with the
reference value for each computed parameter.

Table 2. The reference and two optional sets of
accumulation mode input parameters resulting
in very similar “3β + 2α” optical coefficientsa

Parameter Reference B Option B.1 Option B.2

n0 ( 1
cm3 ) 1 0.877246 1.55255

rmed (µm) 0.1 0.108699 0.078682
σ 2.1 2.07204 2.1213
mR 1.5 1.47207 1.63939
mI 0.015 0.008033 0.040766

β355 ( 1
Mm sr

) 6.992⋅10−3 6.993⋅10−3 6.987⋅10−3
∆β355 (%) 0 0.01515 −0.082439
β532 ( 1

Mm sr
) 5.515⋅10−3 5.51⋅10−3 5.52⋅10−3

∆β532 (%) 0 −0.088615 0.078643

β1064 ( 1
Mm sr

) 2.696⋅10−3 2.699⋅10−3 2.695⋅10−3
∆β1064 (%) 0 0.0845849 −0.044588
α355 ( 1

Mm
) 2.55⋅10−1 2.55⋅10−1 2.551⋅10−1

∆α355 (%) 0 0.0109398 0.052241

α532 ( 1
Mm
) 2.381⋅10−1 2.381⋅10−1 2.381⋅10−1

∆α532 (%) 0 −0.021901 −0.003679
ω355 0.857338 0.911602 0.746436
∆ω355 (%) 0 6.32943 −12.9356
ω532 0.887841 0.933024 0.786016
∆ω532 (%) 0 5.08902 −11.4689
ω1064 0.911272 0.948603 0.818949
∆ω1064 (%) 0 4.0966 −10.1313
nt ( 1

cm3 ) 1 0.877246 1.55255
∆nt (%) 0 −12.2754 55.2549

st (µm2

cm3 ) 0.37787 0.429218 0.241095

∆st (%) 0 13.5886 −36.1963
vt (µm3

cm3 ) 0.049876 0.058621 0.026

∆vt (%) 0 17.5341 −47.8695
reff (µm) 0.395974 0.409728 0.323528
∆reff (%) 0 3.47356 −18.2955
aVariable names are the same as in Table 1.
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Table 3. Parameters that were used for comput-
ing the optical data and microphysical parame-
ters in the look-up table “LUT”a

mR 1.295 1.305 1.315 1.325 1.335 1.345 1.355
and so on up to 1.705

mI ⋅ 10−3 0 0.5 1.5 2.5 3.5 4.5 5.5
and so on up to 50.5

st (µm2

cm3 ) {0.005, 0.0051, 0.005202, 0.00530604,

and so on up to 0.005 ⋅ 1.02361}
reff (µm) {0.025, 0.0255, 0.02601, 0.0265302,

and so on up to 0.025 ⋅ 1.02234}
aVariable names are the same as in Table 1.

Table 4. Parameters that were used for comput-
ing the evaluating optical data and microphysi-
cal parameters.
rmed (nm) 20 60 100 140 180 220 260 300
σ 1.5 1.7 1.9 2.1 2.3 2.5
mR 1.4 1.5 1.6 1.7
mI ⋅10−3 0 0.1 1.0 2.5 5.0 7.5 10.0 15.0

20.0 25.0 30.0 35.0 40.0 45.0 50.0
aVariable names are the same as in Table 1.
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