

A COST-EFFECTIVE TWO-LEVEL ADAPTIVE BRANCH PREDICTOR

Steven, G. B., Egan, C., Shim, W. Vintan, L.

 University of Hertfordshire, Seoul National Univ. of Technology, University “Lucian Braga”
 Hatfield, Hertfordshire, U.K. Seoul, Korea of Sibiu
 AL10 9AB 139-743 Sibiu-2400, Romania
 email: G.B.Steven@herts.ac.uk wonshim@duck.snut.ac.kr vintan@cs.sibiu.ro

Abstract: During the 1990s Two-level Adaptive Branch Predictors were developed
to meet the requirement for accurate branch prediction in high-performance
superscalar processors. However, while two-level adaptive predictors achieve very
high prediction rates, they tend to be very costly. In particular, the size of the second
level Pattern History Table (PHT) increases exponentially as a function of history
register length. Furthermore, many of the prediction counters in a PHT are never
used; predictions are frequently generated from non-initialised counters and several
branches may access the same counter, resulting in branch interference or aliasing.
In this paper, we propose a Cached Correlated Branch Predictor in which the PHT is
replaced by a Prediction Cache. Unlike the PHT, the Prediction Cache saves only
relevant branch prediction information. Furthermore, predictions are never based on
uninitialised entries, and branch interference is eliminated. We simulate two
versions of our cached correlated branch predictors, the first uses global branch
history information and the second uses local branch history information. We
demonstrate that our predictors deliver higher prediction accuracy than conventional
predictors at a significantly lower cost.

Keywords: Branch Prediction, Two-level Adaptive Branch Predictors, Cached
Correlated Branch Predictors, Prediction Cache.

1. INTRODUCTION

High-performance processors typically use dynamic
branch prediction to avoid pipeline stalls whenever a
branch is taken. A traditional Branch Target Cache
(BTC), based on the previous history of each branch,
gives a prediction accuracy of between 80 to 95%
(Hennessey and Patterson, 1996).

More recently, the advent of superscalar processors
has given renewed impetus to branch prediction
research. On a scalar processor, an incorrect branch

prediction costs only a small number of processor
cycles and only one or two instructions are discarded.
In contrast, in a superscalar processor many cycles
may elapse before a mispredicted branch instruction
is finally resolved. Furthermore, each cycle lost now
represents multiple lost instructions. As a result,
branch mispredictions are far more costly on a
superscalar processor.

This renewed interest in branch prediction led to a
dramatic breakthrough in branch prediction
techniques in the 1990s with the development of

mailto:G.B.Steven@herts.ac.uk
mailto:wonshim@duck.snut.ac.kr
mailto:vintan@cs.sibiu.ro

Two-Level Adaptive Branch Predictors by Yale
Patt’s group (Yeh and Patt, 1992) and by Pan, So and
Rahmeh (Pan, et al., 1992). Although researchers
report very high success rates with two-level adaptive
predictors, this success is only achieved by providing
very large arrays of prediction counters or PHTs
(Pattern History Tables). Patt (Patt, et al., 1987)
argues that it will be practical to implement these
large predictors in the early 21st century and suggests
that between 256K bytes and 1024K bytes of the
silicon budget should be devoted to branch
prediction. We argue that such profligate use of
silicon area is unlikely to be cost effective.

Two-level Adaptive Branch Predictors have two
other disadvantages. Firstly, in most practical
implementations, each prediction counter may be
shared between several branches. There is therefore
interference between branch predictions. Secondly,
large arrays of prediction counters require extensive
initial training. Furthermore, the amount of initial
training required increases as additional branch
history is exploited. As a result, counter initialisation
limits the amount of branch history that can be
successfully exploited.

We have developed a two-level branch predictor that
addresses the three problems of conventional two-
level predictors: cost, interference and initialisation.
We have called this novel predictor the Cached
Correlated Branch Predictor. Through a disciplined
use of silicon area, we dramatically reduce the cost of
two-level adaptive branch prediction. At the same
time, our predictor outperforms the traditional
implementations. For equal cost models, this
performance advantage is particularly significant.

These advantages are achieved for three reasons.
Firstly, our cached predictor only holds those
prediction counters that are actually used. Secondly,
interference between branches is eliminated; each
branch prediction is determined solely by historical
information related to the branch being predicted.
Thirdly, a default prediction mechanism is included
that is initialised after a single occurrence of a
branch. This avoids the high number of initial
mispredictions sustained during the warm-up phase
of conventional two-level predictors and minimises
the impact of any failures in the caching mechanism.

2. TWO-LEVEL BANCH PREDICTION

Two-level branch predictors are usually classified
using a system proposed by Yeh and Patt (Yeh and
Patt, 1992). The six most common configurations are
GAg, GAp, GAs, PAg PAp and PAs. The first letter
specifies the first-level mechanism and the last letter
the second level while the “A” in the middle

emphasises the adaptive or dynamic nature of the
predictor. GAg, GAp and GAs rely on global branch
history while PAg, PAp and PAs rely on local branch
history.

GAg uses a single global history register that records
the outcome of the last k branches encountered, and a
single global PHT containing an array of prediction
counters. To generate a prediction, the k bit pattern
in the first-level global history register is used to
index the array of two bit saturating prediction
counters in the second level PHT. Each branch
prediction seeks to exploit correlation between the
next branch outcome and the outcome of the k most
recently executed branches. The global history
register and the prediction counter in the PHT are
updated as soon as the branch is resolved. Finally, it
should be emphasised that a separate BTC is still
required to provide branch target addresses.

Unfortunately, since all the branches in a GAg
predictor share a common set of prediction counters
in the PHT, the outcome of one branch may interfere
with the prediction of all other branches. Although
this branch interference limits the performance of
global predictors, prediction accuracy improves as
the history register length is increased. At the same
time, the number of counters in the PHT also
increases, which in turn increases both the number of
initial mispredictions and the cost of the PHT.
Eventually, the increased number of initial
mispredictions negates the benefit of additional
history register bits and the prediction accuracy stops
improving.

GAp was first proposed by Pan et al (Pan, et al.,
1992) and called Correlated Branch Prediction. Like
GAg, GAp uses a single history register to record the
outcome of the last k branches executed. However,
to reduce the interference between different branches,
the global PHT is replicated to provide a separate
per-address PHT for each branch. Conceptually, the
PC and history register are used to index into an array
of PHTs. Although this ideal model eliminates
interference between branches, it leads to an
exceptionally large PHT array. For example, with a
30-bit PC, 230 + k 2-bit counters are required. In
practice, to limit the size of the predictor, only a
limited number of PHT arrays is provided; each PHT
is therefore shared by a group of PCs with the same
least significant address bits. Since a separate set of
PHT counters is provided for each set of branch
addresses, this configuration is classified as GAs.
However, while the size of the PHT array is
significantly reduced, branch interference is now only
partially eliminated. As in the case of GAg, a
separate BTC is required to furnish branch target
addresses in both the GAp and GAs configurations.

The Two-Level Adaptive Branch Prediction
mechanism originally proposed by Yeh and Patt in
1991 (Yeh and Patt, 1995) was later classified as
PAg. PAg conceptually uses a different local branch
history register for each branch or a Per-Address
Branch History Table and a single shared global
PHT. Each branch prediction is therefore based
entirely on the history of the branch being predicted.
The Branch History Table can be combined with the
BTC by adding a history register field to each entry
in a traditional BTC. Since all branches share a
single PHT, PAg is also characterised by interference
between different branches.

The interference in the PAg configuration can be
removed by providing multiple PHTs. If we retain
the Per-Address Branch History Table and provide a
separate PHT for each address or a Per-Address
PHT, we have the PAp configuration. As in the case
of GAp, the size of the PHT array is excessive, and
the initial training problem is exacerbated. Instead, a
separate PHT is therefore usually provided for sets of
branches, giving rise to the PAs configuration.

Both PAg and PAs predictors require two sequential
accesses, one to the BTC to obtain the appropriate
local history register and a second to the PHT to
obtain the prediction. However, to achieve high
performance the prediction must be made in one
cycle from the time the branch address is known.
Fortunately, the next prediction for each branch can
be determined as soon as the current instance of the
branch is resolved. The next prediction can therefore
be obtained as part of the predictor updating process
and cached in the BTC (Yeh and Patt, 1993).

3. CACHED CORRELATED PREDICTION

The high cost of Two-Level Adaptive Branch
Predictors is a direct result of the excessive size of
the second level PHTs. In a Cached Correlated
Predictor, the second-level table is therefore replaced
with a Prediction Cache, while the first level is
unchanged. Unlike conventional two-level
predictors, the number of entries in the Prediction
Cache is not a function of the history register length.
Instead, the size of the cache is determined by the
number of prediction counters that are actually used.
Since the Prediction Cache only needs to store active
prediction counters, most of the entries in a
traditional PHT can be discarded. However, to
implement caching, a tag field must be added to each
entry. A Cached Correlated Branch Predictor will
therefore be cost effective as long as the cost of the
redundant counters removed from the PHT exceeds
the cost of the added tags.

Two Cached Correlated Predictors are presented in

this paper. The first predictor employs a global
history register, while the second employs multiple
local or per branch history registers. In an earlier
feasibility study (Steven, et al., 2000) we presented a
Cached Correlated Branch Predictor that used a fully
associative Prediction Cache. Although the concept
of a cached PHT was successfully demonstrated, a
fully associative Prediction Cache would be too
costly to implement in practice. In contrast, the
Cached Correlated Branch Predictors, presented in
this paper, use a set-associative Prediction Cache that
is indexed by hashing the PC with the history
register.

3.1. Global Cached Correlated Predictor

Figure 1 shows a four-way set-associative Global
Cached Correlated Branch Predictor. Each entry in
the Prediction Cache consists of a PC tag field, a
history register tag field, a two-bit prediction counter,
a valid bit and a LRU (Least Recently Used) field. A
four-way set-associative BTC is also provided to
furnish the branch target address. Each BTC entry is
augmented with a two-bit prediction counter and
therefore consists of a branch target address, a branch
address tag, a two-bit saturating counter, a valid bit
and a LRU field.

Figure 1: A four-way set-associative Global Cached
Correlated Branch Predictor.

The Prediction Cache index is obtained by hashing
the PC with the global history register bits while the
BTC is accessed using the least significant bits of the
PC. As long as there is a miss in the BTC, the
predictor has no previous record of the branch and
defaults to predict not taken. Whenever there is a
BTC hit a prediction is attempted. If there is also a

Prediction

Correlated
hit

predictions

BTC hash

1

PC

actual prediction

BTC
hit

priority selector

1 0 2

0 2 3

3

Global History Register

k bit

hit in the Prediction Cache, the corresponding two-bit
counter from the Prediction Cache entry is used to
generate the prediction. In this case, the prediction is
based on the past behaviour of the branch with the
current history register pattern. If, however, there is
a miss in the Prediction Cache, the prediction is
based on the default prediction counter held in the
BTC and is therefore based on the overall past
behaviour of the branch. Once the branch outcome is
known, the relevant saturating counters are updated
in both the Prediction Cache and the BTC. In the
case of misses in either cache, new entries are added
and initialised. Finally, the global history register is
updated.

Providing a default predictor has several advantages.
Firstly, the default counters are initialised after only a
single encounter with a branch. In contrast, with a k
bit history register, up to 2k counters must be
initialised for each branch before the two-level
predictor is fully functional. Adding a default
predictor should therefore reduce the number of
initial mispredictions. Secondly, the default predictor
minimises the impact of misses in the Prediction
Cache.

Hybrid predictors (McFarling, 1993) also use two or
more distinct predictors to generate each prediction.
A hybrid predictor, however, uses a selection
mechanism to choose dynamically between two or
more predictions, on the basis of each predictor’s
past success. In contrast, our priority prediction
mechanism uses the Prediction Cache whenever
possible, and only uses the BTC prediction when no
other prediction is available.

3.2. Local Cached Correlated Predictor

The Local Cached Correlated Predictor also replaces
the PHT with a Prediction Cache (Figure 2).
However, since a history register is now required for
every branch, a local history register field is now
added to each BTC entry. As with the Global
Cached Correlated Predictor, a default prediction
counter is also added to each BTC entry.

The BTC is accessed using the least significant bits
of the PC. On a BTC hit, the history register
associated with the PC is obtained along with a
default prediction counter. The history register is
then hashed with the PC and the resulting bit pattern
is used to access the Prediction Cache. Whenever
possible a prediction counter stored in the Prediction
Cache is used to make a prediction. However, in the
case of a Prediction Cache miss and a hit in the BTC,
the default counter in the BTC is used.

One problem with the local predictor as described is

that two sequential accesses are required to make a
prediction, one to access the BTC and a second to
access the Prediction Cache. This problem can be
overcome by caching local predictions in the BTC so
that the prediction is available after only one table
access. As soon as the outcome of a branch is known
the local history register and the Prediction Cache are
updated. At this point the prediction for the next
encounter of the branch is fully determined. This
prediction is then stored in the BTC entry for the
branch to allow the next prediction to be made in one
cycle.

Figure 2: A four-way set-associative Local Cached
Correlated predictor.

3.3. The Prediction Cache Organisation

We originally used a fully associative Prediction
Cache to test our Cached Correlated Branch
Predictor (Steven, et al., 2000). Clearly, a practical
branch predictor must use either a direct mapped
cache or a set associative organisation. However, the
detailed organisation of this cache requires careful
consideration.

Both a BTC and an instruction cache are usually
indexed by the least significant bits of the PC.
However, this solution is completely unsatisfactory
for a Prediction Cache. Consider, for example, an 8-
way set associative cache. In the absence of
collisions with other PCs, each PC is still restricted to
only eight entries. However, if k history register bits
are used by the predictor, as many as 2k cache entries
may theoretically be required for each PC. Although

Correlated
hit

Default prediction

Pred Cache
prediction

Prediction Cache

BTC

hash

1

PC

actual prediction

BTC hit

prediction selector

hrl pc
tag

cnt

0 2 3

…

many of these history register patterns will never
occur, a PC indexed cache will clearly suffer from
excessive collisions, even with modest history
register lengths.

A second alternative is to use the history register to
index the Prediction Cache. This solution also has
disadvantages. Firstly, if only a small number of
history register bits is used, only part of the
Prediction Cache will be used. Secondly, when the
number of history register bits exceeds the number of
bits in the cache index, collisions are frequent enough
to prevent the predictor from reaching its full
potential.

We found that the most accurate predictions are
obtained when the history register bits are hashed
with the PC bits to form a cache index. In this paper,
the PC is XORed with the history register bits to form
the cache index. The tag field in the Prediction
Cache therefore consists of the most significant bits
of the PC and all of the history register bits.

4. SIMULATION RESULTS

In this section we quantify the performance of set-
associative Cached Correlated Predictors and
compare their performance and cost with
conventional two-level predictors. Both global and
local predictors are evaluated.

Our simulations use a set of eight integer programs
known collectively as the Stanford benchmarks.
Since the programs are shorter than the SPEC
benchmarks, each branch is executed fewer times.
As a result, the branches are more difficult to predict
and predictor initialisation problems are more acute.
A classic BTC therefore achieves an average
misprediction rate of only 11.86% with the Stanford
benchmarks.

The benchmarks were compiled for the Hatfield
Superscalar Architecture (HSA) (Steven, 1997), a
high-performance multiple-instruction-issue
architecture developed to exploit instruction-level
parallelism through static instruction scheduling. The
HSA instruction-level simulator was then used to
generate instruction traces for our branch prediction
simulations. All the predictors simulated in this
paper use a four-way set-associative BTC with 1K
entries; sufficient entries are therefore always
available to minimise BTC misses.

4.1. Global Predictors

For comparative purposes, we first simulated a GAg
predictor, a GAs predictor with 16 sets and a GAp
predictor (Figure 3). The average misprediction rate

initially falls steadily as a function of the history
register length before flattening out at a misprediction
rate of around 9.5%. The best average misprediction
rate of 9.23% is achieved with the GAs(16)
configuration and 26 history register bits. In general,
however, there is little benefit from increasing the
history register length beyond 16-bits for GAg and
14-bits for GAs/GAp. Beyond this point there is
either no benefit from new branch correlations or any
benefit is negated by the additional initialisations
required in the PHTs.

4

6

8

10

12

14

16

18

20

22

6 8 10 12 14 16 18 20 22 24 26 28 30

History register length (bits)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

GAg
GAs(16)
GAp

Figure 3: Conventional global two-level
misprediction rates.

The average misprediction rates achieved with a four-
way set associative version of our Global Cached
Correlated predictors are shown in Figure 4. The
number of entries in the Prediction Cache is varied
from 1K to 32K. Initially, the misprediction rate
steadily improves as a function of history register
length for all versions. After history register lengths
of 12 bits, the limited capacity of the 1K Prediction
Cache prevents further improvement. In contrast,
with larger Prediction Cache sizes, the prediction rate
continues to improve until a history register length of
26 bits is reached. Not surprisingly, the larger the
size of the Prediction Cache the better the
misprediction rates. The best misprediction rate of
5.99%, achieved with a 32K entry Prediction Cache
and a 20-bit history register, represents a 54%
reduction over the best misprediction rate achieved
by a conventional global two-level predictor.

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
History register length (bits)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

1K 2K
4K 8K
16K 32K

Figure 4: Global Cached Correlated misprediction
rates.

4.2. Local Predictors

Again for comparative purposes, we first simulated
conventional PAg, PAs and PAp predictors (Figure
5). Conventional local predictors achieve average
misprediction rates of around 7.5%, better than
GAg/GAs, but still significantly worse than the best
Global Cached Correlated Predictor. The best
conventional local performance of 7.35% is achieved
with a PAp predictor and a 30-bit history register
length. Local predictors are therefore able to benefit
from longer history registers than their global
counterparts.

The misprediction rates achieved by our Local
Cached Correlated Predictor are recorded in Figure 6.
The number of entries in the cache is varied between
1K and 32K. Initially the misprediction rate falls
steadily as a function of history register length. Then
as more and more predictions need to be cached, the
larger caches deliver superior prediction rates.
However, no further benefit is derived from
increasing the cache size beyond 16K. The best
misprediction rate of 6.28% is achieved with a 16K
cache and a 32-bit history register. This figure is
marginally worse than the best global predictor, but
represents a 15% improvement over the best
PAg/PAp configuration.

4

5

6

7

8

9

10

11

12

13

6 8 10 12 14 16 18 20 22 24 26 28 30
History register length (bits)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

PAg

PAs(16)

PAp

Figure 5: Conventional local two-level misprediction
rates.

4

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
History register length (bits)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

1K 2K
4K 8K
16K 32K

Figure 6: Local Cached Correlated Predictor
misprediction rates.

4.3. Cost Comparisons

Misprediction rates are only one metric; cost is also
important. For example, the best Global Cached
Correlated Predictor requires 87 Kbytes of storage,
and the best Local Cached Correlated Predictor
requires 93.75 Kbytes of storage. However, these
figures are completely dwarfed by the staggering 268
gigabytes of storage required by the best PAp
predictor.

Table 1 summarises the storage requirements of the
Cached Correlated Predictors simulated in this paper.
As can be seen, the cost of our cached predictors only
increases linearly as a function of history register
length. In contrast, in traditional two-level
predictors, the size of the PHT increases

exponentially as a function of the history register
length and as a result the cost also rises exponentially
as a function of history register. For this reason,
cached predictors are cheaper when more history
register bits are used and are therefore better placed
to exploit additional branch history information.

In Figure 7, we compare the performance of global
predictors with a maximum storage requirement of
250 Kbytes. As can be seen, the 4K Cached
Correlated Predictor (CCP) is more cost effective
than any low-cost conventional global predictor.
Similarly, the 16K Cached Correlated Branch
Predictor outperforms conventional predictors with
comparable cost. Similar cost comparisons are
shown in Figure 8 for local predictors.

4

6

8

10

12

14

16

18

20

22

0 50 100 150 200 250 300

Cost (Kybtes)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

GAg
GAs(16)
GAp
Global CCP 4K
Global CCP 16K

Figure 7: A comparison of global predictor
performance as a function of cost.

The most important difference illustrated by Figure 7
and Figure 8 is the sharply contrasting impact on
costs of increasing history register length. Cached
Correlated Predictors can safely seek to exploit
additional branch correlation by increasing the
history register length to as much as 30 bits. In
contrast, with conventional two-level 0predictors,
storage cost becomes a major concern when the
length of the history register reaches about half this
size.

4

6

8

10

12

14

16

0 50 100 150 200 250 300

Cost (Kbytes)

M
is

pr
ed

ic
tio

n
ra

te
 (%

)

PAg PAs16
PAp Local CCP 4K
Local CCP 16K

Figure 8: A comparison of local predictor
performance as a function of cost.

5. CONCLUSIONS

Our simulations suggest that Cached Correlated
Predictors are both significantly more accurate and
require less silicon area than conventional Two-level
Adaptive Predictors. We ascribe this higher accuracy
to our more disciplined approach. Our predictions
are always based on counters that have been trained
as a result of at least one previous encounter with the
branch being predicted. Furthermore, there is never
any interference between branch predictions.

The higher accuracy is also due to the addition of
default predictors in the BTC. As history register
lengths increase, predictors require an increasing
number of counter initialisations and therefore suffer
an increasing numbers of initial mispredictions. In
contrast, the default counter is initialised after only
one execution of a branch and is therefore able to
provide predictions while further Prediction Cache
entries are being initialised. Furthermore, the default
counter effectively reduces the impact of misses in
the Prediction Cache.

REFERENCES

Hennessy, J. L. and D. A Patterson (1996). Computer

Architecture: A Quantitative Approach, (Morgan
Kaufmann.

McFarling, S. (June 1993). Combining Branch
Predictors, Western Research Laboratories
Technical Report TN-36.

Pan, S., K. So and J. T. Rahmeh (1992). Improving
the Accuracy of Dynamic Branch Prediction
Using Branch Correlation, ASPLOS-V, Boston,
pp. 76 – 84.

Patt, Y. N., S. J. Patel, M. Evers, D. H. Friendly and
J. Stark. (1987). One Billion Transistors, One

Uniprocessor, One Chip, Computer, pp. 51 – 57.
Steven, G. B., D B Christianson, R. Collins, R. D.

Potter and F. L. Steven (1997). A Superscalar
Architecture to Exploit Instruction Level
Parallelism, Microprocessors and Microsystems,
20 (7), pp. 391 – 400.

Steven, G. B., C. Egan, P. Quick and L. Vintan A
(February 2000). A Cost Effective Cached
Correlated Two-level Adaptive Branch Predictor,
18th IASTED International Conference on Applied
Informatics (AI 2000), Innsbruck.

Yeh, T. and Y. N. Patt (November 1991). Two-Level
Adaptive Training Branch Prediction, Micro-24,
Albuquerque, New Mexico, pp. 51 – 61.

Yeh, T. and Y. N. Patt (1992). Alternative
Implementations of Two-Level Adaptive Branch
Prediction, ISCA -19, Gold Coast, Australia, pp.
124 – 134.

Yeh, T. and Y. N. Patt. (May 1993) A Comparison of
Dynamic Branch Predictors that use Two Levels
of Branch History. ISCA - 20, pp. 257 – 266.

Table 1: Cached Correlated Predictor Costs in Kbytes.

 HR=2 HR=4 HR=6 HR=8 HR=10 HR=12 HR=14 HR=16 HR=18 HR=20 HR=22 HR=24 HR=26 HR=28 HR=30

Global 1K entries 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75

Global 16K entries 51.00 55.00 59.00 63.00 67.00 71.00 75.00 79.00 83.00 87.00 91.00 95.00 99.00 103.0 107.0

Local 1K entries 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50

Local 16K entries 51.25 55.50 59.75 64.00 68.25 72.50 76.75 81.00 85.25 89.50 93.75 98.00 102.3 106.5 110.8

	Abstract: During the 1990s Two-level Adaptive Branch Predictors were developed to meet the requirement for accurate branch prediction in high-performance superscalar processors. However, while two-level adaptive predictors achieve very high prediction
	Keywords: Branch Prediction, Two-level Adaptive Branch Predictors, Cached Correlated Branch Predictors, Prediction Cache.

