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Abstract:  During the 1990s Two-level Adaptive Branch Predictors were developed 
to meet the requirement for accurate branch prediction in high-performance 
superscalar processors.  However, while two-level adaptive predictors achieve very 
high prediction rates, they tend to be very costly.  In particular, the size of the second 
level Pattern History Table (PHT) increases exponentially as a function of history 
register length.  Furthermore, many of the prediction counters in a PHT are never 
used; predictions are frequently generated from non-initialised counters and several 
branches may access the same counter, resulting in branch interference or aliasing.  
In this paper, we propose a Cached Correlated Branch Predictor in which the PHT is 
replaced by a Prediction Cache.  Unlike the PHT, the Prediction Cache saves only 
relevant branch prediction information.  Furthermore, predictions are never based on 
uninitialised entries, and branch interference is eliminated.  We simulate two 
versions of our cached correlated branch predictors, the first uses global branch 
history information and the second uses local branch history information.  We 
demonstrate that our predictors deliver higher prediction accuracy than conventional 
predictors at a significantly lower cost. 
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1. INTRODUCTION 

 
High-performance processors typically use dynamic 
branch prediction to avoid pipeline stalls whenever a 
branch is taken.  A traditional Branch Target Cache 
(BTC), based on the previous history of each branch, 
gives a prediction accuracy of between 80 to 95% 
(Hennessey and Patterson, 1996). 
 
More recently, the advent of superscalar processors 
has given renewed impetus to branch prediction 
research.  On a scalar processor, an incorrect branch 

prediction costs only a small number of processor 
cycles and only one or two instructions are discarded.  
In contrast, in a superscalar processor many cycles 
may elapse before a mispredicted branch instruction 
is finally resolved.  Furthermore, each cycle lost now 
represents multiple lost instructions.  As a result, 
branch mispredictions are far more costly on a 
superscalar processor. 
 
This renewed interest in branch prediction led to a 
dramatic breakthrough in branch prediction 
techniques in the 1990s with the development of 
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Two-Level Adaptive Branch Predictors by Yale 
Patt’s group (Yeh and Patt, 1992) and by Pan, So and 
Rahmeh (Pan, et al., 1992).  Although researchers 
report very high success rates with two-level adaptive 
predictors, this success is only achieved by providing 
very large arrays of prediction counters or PHTs 
(Pattern History Tables).  Patt (Patt, et al., 1987) 
argues that it will be practical to implement these 
large predictors in the early 21st century and suggests 
that between 256K bytes and 1024K bytes of the 
silicon budget should be devoted to branch 
prediction.  We argue that such profligate use of 
silicon area is unlikely to be cost effective. 
 
Two-level Adaptive Branch Predictors have two 
other disadvantages.  Firstly, in most practical 
implementations, each prediction counter may be 
shared between several branches.  There is therefore 
interference between branch predictions.  Secondly, 
large arrays of prediction counters require extensive 
initial training.  Furthermore, the amount of initial 
training required increases as additional branch 
history is exploited.  As a result, counter initialisation 
limits the amount of branch history that can be 
successfully exploited. 
 
We have developed a two-level branch predictor that 
addresses the three problems of conventional two-
level predictors: cost, interference and initialisation.  
We have called this novel predictor the Cached 
Correlated Branch Predictor.  Through a disciplined 
use of silicon area, we dramatically reduce the cost of 
two-level adaptive branch prediction.  At the same 
time, our predictor outperforms the traditional 
implementations.  For equal cost models, this 
performance advantage is particularly significant. 
 
These advantages are achieved for three reasons.  
Firstly, our cached predictor only holds those 
prediction counters that are actually used.  Secondly, 
interference between branches is eliminated; each 
branch prediction is determined solely by historical 
information related to the branch being predicted.  
Thirdly, a default prediction mechanism is included 
that is initialised after a single occurrence of a 
branch.  This avoids the high number of initial 
mispredictions sustained during the warm-up phase 
of conventional two-level predictors and minimises 
the impact of any failures in the caching mechanism. 
 
 

2. TWO-LEVEL BANCH PREDICTION 
 
Two-level branch predictors are usually classified 
using a system proposed by Yeh and Patt (Yeh and 
Patt, 1992).  The six most common configurations are 
GAg, GAp, GAs, PAg PAp and PAs. The first letter 
specifies the first-level mechanism and the last letter 
the second level while the “A” in the middle 

emphasises the adaptive or dynamic nature of the 
predictor.  GAg, GAp and GAs rely on global branch 
history while PAg, PAp and PAs rely on local branch 
history. 
 
GAg uses a single global history register that records 
the outcome of the last k branches encountered, and a 
single global PHT containing an array of prediction 
counters.  To generate a prediction, the k bit pattern 
in the first-level global history register is used to 
index the array of two bit saturating prediction 
counters in the second level PHT.  Each branch 
prediction seeks to exploit correlation between the 
next branch outcome and the outcome of the k most 
recently executed branches.  The global history 
register and the prediction counter in the PHT are 
updated as soon as the branch is resolved.  Finally, it 
should be emphasised that a separate BTC is still 
required to provide branch target addresses. 
 
Unfortunately, since all the branches in a GAg 
predictor share a common set of prediction counters 
in the PHT, the outcome of one branch may interfere 
with the prediction of all other branches.  Although 
this branch interference limits the performance of 
global predictors, prediction accuracy improves as 
the history register length is increased.  At the same 
time, the number of counters in the PHT also 
increases, which in turn increases both the number of 
initial mispredictions and the cost of the PHT.  
Eventually, the increased number of initial 
mispredictions negates the benefit of additional 
history register bits and the prediction accuracy stops 
improving. 
 
GAp was first proposed by Pan et al (Pan, et al., 
1992) and called Correlated Branch Prediction.  Like 
GAg, GAp uses a single history register to record the 
outcome of the last k branches executed.  However, 
to reduce the interference between different branches, 
the global PHT is replicated to provide a separate 
per-address PHT for each branch.  Conceptually, the 
PC and history register are used to index into an array 
of PHTs.  Although this ideal model eliminates 
interference between branches, it leads to an 
exceptionally large PHT array.  For example, with a 
30-bit PC, 230 + k 2-bit counters are required.  In 
practice, to limit the size of the predictor, only a 
limited number of PHT arrays is provided; each PHT 
is therefore shared by a group of PCs with the same 
least significant address bits.  Since a separate set of 
PHT counters is provided for each set of branch 
addresses, this configuration is classified as GAs.  
However, while the size of the PHT array is 
significantly reduced, branch interference is now only 
partially eliminated.  As in the case of GAg, a 
separate BTC is required to furnish branch target 
addresses in both the GAp and GAs configurations. 
 



 

The Two-Level Adaptive Branch Prediction 
mechanism originally proposed by Yeh and Patt in 
1991 (Yeh and Patt, 1995) was later classified as 
PAg.  PAg conceptually uses a different local branch 
history register for each branch or a Per-Address 
Branch History Table and a single shared global 
PHT.  Each branch prediction is therefore based 
entirely on the history of the branch being predicted.  
The Branch History Table can be combined with the 
BTC by adding a history register field to each entry 
in a traditional BTC.  Since all branches share a 
single PHT, PAg is also characterised by interference 
between different branches. 
 
The interference in the PAg configuration can be 
removed by providing multiple PHTs.  If we retain 
the Per-Address Branch History Table and provide a 
separate PHT for each address or a Per-Address 
PHT, we have the PAp configuration.  As in the case 
of GAp, the size of the PHT array is excessive, and 
the initial training problem is exacerbated.  Instead, a 
separate PHT is therefore usually provided for sets of 
branches, giving rise to the PAs configuration. 
 
Both PAg and PAs predictors require two sequential 
accesses, one to the BTC to obtain the appropriate 
local history register and a second to the PHT to 
obtain the prediction.  However, to achieve high 
performance the prediction must be made in one 
cycle from the time the branch address is known.  
Fortunately, the next prediction for each branch can 
be determined as soon as the current instance of the 
branch is resolved.  The next prediction can therefore 
be obtained as part of the predictor updating process 
and cached in the BTC (Yeh and Patt, 1993). 
 
 

3. CACHED CORRELATED PREDICTION 
 
The high cost of Two-Level Adaptive Branch 
Predictors is a direct result of the excessive size of 
the second level PHTs.  In a Cached Correlated 
Predictor, the second-level table is therefore replaced 
with a Prediction Cache, while the first level is 
unchanged.  Unlike conventional two-level 
predictors, the number of entries in the Prediction 
Cache is not a function of the history register length.  
Instead, the size of the cache is determined by the 
number of prediction counters that are actually used.  
Since the Prediction Cache only needs to store active 
prediction counters, most of the entries in a 
traditional PHT can be discarded.  However, to 
implement caching, a tag field must be added to each 
entry.  A Cached Correlated Branch Predictor will 
therefore be cost effective as long as the cost of the 
redundant counters removed from the PHT exceeds 
the cost of the added tags. 
 
Two Cached Correlated Predictors are presented in 

this paper.  The first predictor employs a global 
history register, while the second employs multiple 
local or per branch history registers.  In an earlier 
feasibility study (Steven, et al., 2000) we presented a 
Cached Correlated Branch Predictor that used a fully 
associative Prediction Cache.  Although the concept 
of a cached PHT was successfully demonstrated, a 
fully associative Prediction Cache would be too 
costly to implement in practice.  In contrast, the 
Cached Correlated Branch Predictors, presented in 
this paper, use a set-associative Prediction Cache that 
is indexed by hashing the PC with the history 
register. 
 
 
3.1. Global Cached Correlated Predictor 
 
Figure 1 shows a four-way set-associative Global 
Cached Correlated Branch Predictor.  Each entry in 
the Prediction Cache consists of a PC tag field, a 
history register tag field, a two-bit prediction counter, 
a valid bit and a LRU (Least Recently Used) field.  A 
four-way set-associative BTC is also provided to 
furnish the branch target address.  Each BTC entry is 
augmented with a two-bit prediction counter and 
therefore consists of a branch target address, a branch 
address tag, a two-bit saturating counter, a valid bit 
and a LRU field. 
 

 
Figure 1: A four-way set-associative Global Cached 
Correlated Branch Predictor. 
 
The Prediction Cache index is obtained by hashing 
the PC with the global history register bits while the 
BTC is accessed using the least significant bits of the 
PC.  As long as there is a miss in the BTC, the 
predictor has no previous record of the branch and 
defaults to predict not taken.  Whenever there is a 
BTC hit a prediction is attempted.  If there is also a 
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hit in the Prediction Cache, the corresponding two-bit 
counter from the Prediction Cache entry is used to 
generate the prediction.  In this case, the prediction is 
based on the past behaviour of the branch with the 
current history register pattern.  If, however, there is 
a miss in the Prediction Cache, the prediction is 
based on the default prediction counter held in the 
BTC and is therefore based on the overall past 
behaviour of the branch.  Once the branch outcome is 
known, the relevant saturating counters are updated 
in both the Prediction Cache and the BTC.  In the 
case of misses in either cache, new entries are added 
and initialised.  Finally, the global history register is 
updated. 
 
Providing a default predictor has several advantages.  
Firstly, the default counters are initialised after only a 
single encounter with a branch.  In contrast, with a k 
bit history register, up to 2k counters must be 
initialised for each branch before the two-level 
predictor is fully functional.  Adding a default 
predictor should therefore reduce the number of 
initial mispredictions.  Secondly, the default predictor 
minimises the impact of misses in the Prediction 
Cache. 
 
Hybrid predictors (McFarling, 1993) also use two or 
more distinct predictors to generate each prediction.  
A hybrid predictor, however, uses a selection 
mechanism to choose dynamically between two or 
more predictions, on the basis of each predictor’s 
past success.  In contrast, our priority prediction 
mechanism uses the Prediction Cache whenever 
possible, and only uses the BTC prediction when no 
other prediction is available. 
 
 
3.2. Local Cached Correlated Predictor 
 
The Local Cached Correlated Predictor also replaces 
the PHT with a Prediction Cache (Figure 2).  
However, since a history register is now required for 
every branch, a local history register field is now 
added to each BTC entry.    As with the Global 
Cached Correlated Predictor, a default prediction 
counter is also added to each BTC entry. 
 
The BTC is accessed using the least significant bits 
of the PC.  On a BTC hit, the history register 
associated with the PC is obtained along with a 
default prediction counter.  The history register is 
then hashed with the PC and the resulting bit pattern 
is used to access the Prediction Cache.  Whenever 
possible a prediction counter stored in the Prediction 
Cache is used to make a prediction.  However, in the 
case of a Prediction Cache miss and a hit in the BTC, 
the default counter in the BTC is used. 
 
One problem with the local predictor as described is 

that two sequential accesses are required to make a 
prediction, one to access the BTC and a second to 
access the Prediction Cache.  This problem can be 
overcome by caching local predictions in the BTC so 
that the prediction is available after only one table 
access.  As soon as the outcome of a branch is known 
the local history register and the Prediction Cache are 
updated.  At this point the prediction for the next 
encounter of the branch is fully determined.  This 
prediction is then stored in the BTC entry for the 
branch to allow the next prediction to be made in one 
cycle. 
 

 
Figure 2: A four-way set-associative Local Cached 
Correlated predictor. 
 
3.3. The Prediction Cache Organisation 
 
We originally used a fully associative Prediction 
Cache to test our Cached Correlated Branch 
Predictor (Steven, et al., 2000).  Clearly, a practical 
branch predictor must use either a direct mapped 
cache or a set associative organisation.  However, the 
detailed organisation of this cache requires careful 
consideration. 
 
Both a BTC and an instruction cache are usually 
indexed by the least significant bits of the PC.  
However, this solution is completely unsatisfactory 
for a Prediction Cache.  Consider, for example, an 8-
way set associative cache.  In the absence of 
collisions with other PCs, each PC is still restricted to 
only eight entries.  However, if k history register bits 
are used by the predictor, as many as 2k cache entries 
may theoretically be required for each PC.  Although 
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many of these history register patterns will never 
occur, a PC indexed cache will clearly suffer from 
excessive collisions, even with modest history 
register lengths. 
 
A second alternative is to use the history register to 
index the Prediction Cache.  This solution also has 
disadvantages.  Firstly, if only a small number of 
history register bits is used, only part of the 
Prediction Cache will be used.  Secondly, when the 
number of history register bits exceeds the number of 
bits in the cache index, collisions are frequent enough 
to prevent the predictor from reaching its full 
potential. 
 
We found that the most accurate predictions are 
obtained when the history register bits are hashed 
with the PC bits to form a cache index.  In this paper, 
the PC is XORed with the history register bits to form 
the cache index.  The tag field in the Prediction 
Cache therefore consists of the most significant bits 
of the PC and all of the history register bits. 
 
 

4. SIMULATION RESULTS 
 
In this section we quantify the performance of set-
associative Cached Correlated Predictors and 
compare their performance and cost with 
conventional two-level predictors.  Both global and 
local predictors are evaluated. 
 
Our simulations use a set of eight integer programs 
known collectively as the Stanford benchmarks.  
Since the programs are shorter than the SPEC 
benchmarks, each branch is executed fewer times.  
As a result, the branches are more difficult to predict 
and predictor initialisation problems are more acute.  
A classic BTC therefore achieves an average 
misprediction rate of only 11.86% with the Stanford 
benchmarks. 
 
The benchmarks were compiled for the Hatfield 
Superscalar Architecture (HSA) (Steven, 1997), a 
high-performance multiple-instruction-issue 
architecture developed to exploit instruction-level 
parallelism through static instruction scheduling.  The 
HSA instruction-level simulator was then used to 
generate instruction traces for our branch prediction 
simulations.  All the predictors simulated in this 
paper use a four-way set-associative BTC with 1K 
entries; sufficient entries are therefore always 
available to minimise BTC misses. 
 
4.1. Global Predictors 
 
For comparative purposes, we first simulated a GAg 
predictor, a GAs predictor with 16 sets and a GAp 
predictor (Figure 3).  The average misprediction rate 

initially falls steadily as a function of the history 
register length before flattening out at a misprediction 
rate of around 9.5%.  The best average misprediction 
rate of 9.23% is achieved with the GAs(16) 
configuration and 26 history register bits.  In general, 
however, there is little benefit from increasing the 
history register length beyond 16-bits for GAg and 
14-bits for GAs/GAp.  Beyond this point there is 
either no benefit from new branch correlations or any 
benefit is negated by the additional initialisations 
required in the PHTs. 
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Figure 3: Conventional global two-level 
misprediction rates. 
 
The average misprediction rates achieved with a four-
way set associative version of our Global Cached 
Correlated predictors are shown in Figure 4.  The 
number of entries in the Prediction Cache is varied 
from 1K to 32K.  Initially, the misprediction rate 
steadily improves as a function of history register 
length for all versions.  After history register lengths 
of 12 bits, the limited capacity of the 1K Prediction 
Cache prevents further improvement.  In contrast, 
with larger Prediction Cache sizes, the prediction rate 
continues to improve until a history register length of 
26 bits is reached.  Not surprisingly, the larger the 
size of the Prediction Cache the better the 
misprediction rates.  The best misprediction rate of 
5.99%, achieved with a 32K entry Prediction Cache 
and a 20-bit history register, represents a 54% 
reduction over the best misprediction rate achieved 
by a conventional global two-level predictor. 
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Figure 4: Global Cached Correlated misprediction 
rates. 
 
 
4.2. Local Predictors 
 
Again for comparative purposes, we first simulated 
conventional PAg, PAs and PAp predictors (Figure 
5).  Conventional local predictors achieve average 
misprediction rates of around 7.5%, better than 
GAg/GAs, but still significantly worse than the best 
Global Cached Correlated Predictor.  The best 
conventional local performance of 7.35% is achieved 
with a PAp predictor and a 30-bit history register 
length.  Local predictors are therefore able to benefit 
from longer history registers than their global 
counterparts. 
 
The misprediction rates achieved by our Local 
Cached Correlated Predictor are recorded in Figure 6.  
The number of entries in the cache is varied between 
1K and 32K.  Initially the misprediction rate falls 
steadily as a function of history register length.  Then 
as more and more predictions need to be cached, the 
larger caches deliver superior prediction rates.  
However, no further benefit is derived from 
increasing the cache size beyond 16K.  The best 
misprediction rate of 6.28% is achieved with a 16K 
cache and a 32-bit history register.  This figure is 
marginally worse than the best global predictor, but 
represents a 15% improvement over the best 
PAg/PAp configuration. 
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Figure 5: Conventional local two-level misprediction 
rates. 
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Figure 6: Local Cached Correlated Predictor 
misprediction rates. 
 
 
4.3. Cost Comparisons 
 
Misprediction rates are only one metric; cost is also 
important.  For example, the best Global Cached 
Correlated Predictor requires 87 Kbytes of storage, 
and the best Local Cached Correlated Predictor 
requires 93.75 Kbytes of storage.  However, these 
figures are completely dwarfed by the staggering 268 
gigabytes of storage required by the best PAp 
predictor. 
 
Table 1 summarises the storage requirements of the 
Cached Correlated Predictors simulated in this paper.  
As can be seen, the cost of our cached predictors only 
increases linearly as a function of history register 
length.  In contrast, in traditional two-level 
predictors, the size of the PHT increases 



 

exponentially as a function of the history register 
length and as a result the cost also rises exponentially 
as a function of history register.  For this reason, 
cached predictors are cheaper when more history 
register bits are used and are therefore better placed 
to exploit additional branch history information. 
 
In Figure 7, we compare the performance of global 
predictors with a maximum storage requirement of 
250 Kbytes.  As can be seen, the 4K Cached 
Correlated Predictor (CCP) is more cost effective 
than any low-cost conventional global predictor.  
Similarly, the 16K Cached Correlated Branch 
Predictor outperforms conventional predictors with 
comparable cost.  Similar cost comparisons are 
shown in Figure 8 for local predictors. 
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Figure 7: A comparison of global predictor 
performance as a function of cost. 
 
The most important difference illustrated by Figure 7 
and Figure 8 is the sharply contrasting impact on 
costs of increasing history register length.  Cached 
Correlated Predictors can safely seek to exploit 
additional branch correlation by increasing the 
history register length to as much as 30 bits.  In 
contrast, with conventional two-level 0predictors, 
storage cost becomes a major concern when the 
length of the history register reaches about half this 
size. 
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Figure 8: A comparison of local predictor 
performance as a function of cost. 
 
 

5. CONCLUSIONS 
 
Our simulations suggest that Cached Correlated 
Predictors are both significantly more accurate and 
require less silicon area than conventional Two-level 
Adaptive Predictors.  We ascribe this higher accuracy 
to our more disciplined approach.  Our predictions 
are always based on counters that have been trained 
as a result of at least one previous encounter with the 
branch being predicted.  Furthermore, there is never 
any interference between branch predictions. 
 
The higher accuracy is also due to the addition of 
default predictors in the BTC.  As history register 
lengths increase, predictors require an increasing 
number of counter initialisations and therefore suffer 
an increasing numbers of initial mispredictions.  In 
contrast, the default counter is initialised after only 
one execution of a branch and is therefore able to 
provide predictions while further Prediction Cache 
entries are being initialised.  Furthermore, the default 
counter effectively reduces the impact of misses in 
the Prediction Cache. 
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Table 1: Cached Correlated Predictor Costs in Kbytes. 
 

 HR=2 HR=4 HR=6 HR=8 HR=10 HR=12 HR=14 HR=16 HR=18 HR=20 HR=22 HR=24 HR=26 HR=28 HR=30 

Global 1K entries 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 

Global 16K entries 51.00 55.00 59.00 63.00 67.00 71.00 75.00 79.00 83.00 87.00 91.00 95.00 99.00 103.0 107.0 

Local 1K entries 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 

Local 16K entries 51.25 55.50 59.75 64.00 68.25 72.50 76.75 81.00 85.25 89.50 93.75 98.00 102.3 106.5 110.8 
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