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Abstract

We theoretically study the formation of lines in phase space using Wigner’s
distribution W. In trapped quantum systems such lines form generically, cris-
scrossing phase space and they can have astonishing extent, reaching across
the entire state. In classical systems this does not happen. We show that the
formation of such straight line patterns is due to the formation of ‘randomized
comb-states’. We establish their stability to perturbations, and that they are tied
to coherences in configuration space. We additionally identify generic higher-
order ‘eye’ patterns in phase space which occur less often since they arise from
more specific symmetric comb-states; we show that the perturbation of eye
patterns through their randomization tends to deform them into lines. Lines in
phase space should give rise to large probability peaks in measurements.

Keywords: quantum phase space, Wigner distribution,
nonlinear Schrédinger equation, lines in phase space
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1. Introduction

Quantum waves frequently form long lines in phase space. This has not been reported
before [1-6], and is astonishing when viewed from the perspective of classical phase space
densities.

To study phase space behaviour we map the quantum waves 1 onto their associated Wigner
distribution, W [7]. While time evolves, W forms lines and does so repeatedly. The lines cris-
scross W, often in such a way that they reach across the entire distribution. This trend, to form
lines in phase space, is enhanced by attractive and suppressed by repulsive nonlinear interac-
tions of .

We note that such straight lines should create significant peaks detectable in (rotated quad-
rature) measurements, as used in quantum [8] or atom optical [9] experiments measuring pro-
jections of W.

Formally, we study one-dimensional single-particle quantum waves t(x, ), in position x
and time ¢, whose evolution obeys linear or nonlinear Schrodinger equations (NLSEs) [10] of
the form

= 2LV =AY (M

We always assume either the conservative potential V(x) to be trapping, or the nonlinear
(energy conserving) interactions to be self-attracting (y > 0).

Such attractive nonlinear interactions describe multi-particle or field phenomena which
can lead to the formation, stabilization and interaction of pulses in plasmas [11], nonlinear
optics [12] or dilute ultracold clouds of atoms, and the generation of rogue waves [13], tidal
bores, dam break scenarios [14] and many other nonlinear wave phenomena [15]. For order
e =2 [16], equation (1) is also known as the Gross—Pitaevskii equation.

Few analytical solutions for NLSEs (1) are known and generally little is established about
the generic behaviour of solutions for arbitrary initial states and in the presence of external
potentials. We numerically investigate their phase space behaviour, showing that they often
form straight lines crisscrossing phase space and also ‘eye’ patterns for a large variety of dif-
ferent scenarios, different initial states, different confining potentials and different classes of
NLSEs of varying order € + 1 and strength +y of their nonlinearity.

In this work, after we remind ourselves of the behaviour of classical systems, in the next
paragraph, we introduce Wigner’s distribution in section 2, then we will concentrate on the
dynamics of the linear Schrodinger equation of quantum mechanics for a trapped system in
section 3. In section 4, we show that the formation of (positive) straight lines in phase space is
due to the formation of randomized comb-states, whereas eye patterns are due to more symmet-
rical comb-states with locally concave or convex arrangements of the weights of their peaks.
Finally, we consider nonlinear systems without trapping potential in section 5.1 followed by
nonlinear systems with trapping potential in section 5.2.

1.1. Classical systems:

Spread-out states subjected to conservative Hamiltonian time evolution in classical phase
space, typically, form delicate folded patterns on ever smaller scales as the Hamiltonian flow
stretches and folds their (initially concentrated, but non-singular) distributions. Similar whorl
patterns can also form in the quantum case [1], at least temporarily, but they are limited by a
minimum scale first identified by Zurek [4, 17].
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Lines in classical phase space can arise for free particles with distributions initially spatially
concentrated as their nonzero momentum spread over time induces an unlimited affine shear in
phase space [9]. Systems isomorphic to free particles, namely, when V(x) forms linear ramps
or harmonic traps induce purely classical transport [18, 19]. This can result in displacements,
rotations and shearing but does not at all change W’s interference patterns in phase space [18,
19]. Being in this sense trivial we will not discuss such cases any further.

For systems confined by a non-harmonic trapping potential, lines do not form in classical
phase space unless one starts out with special initial states (back-propagated line states). Such
lines then form once but not again.

In the quantum case we find the dynamics creates lines in many different scenarios, in view
of the classical behaviours this is puzzling and demands an explanation. We will show that
these lines in phase space are created by the coherences of randomized comb-states. More
symmetrical comb-states can create ringed ‘eye’ patterns, upon perturbation such eye patterns
morph into lines.

2. Wigner’s distribution

Here, we do not assume periodic boundary conditions thus avoiding quantization of
momentum into discrete momentum modes [22, 23].

To study phase space behaviour for equation (1) we determine ’s Wigner distribu-
tion W [24] associated with pure states ¢(x,7) [25], namely

W(x,p,t) = %/ dy ) (x +y,0)9* (x — y, )e 2P, 2)
W is a function of x, t and momentum p and known to fully represent all information con-
tained in . By construction W is nonlocal (through y) and normalized: f dp f dx W(x,p,t) = 1.
Unlike 3, W is always real-valued but features negative regions [7] and is thus considered a
distribution featuring ‘quasi-probabilities’ [26].

Here, we consider 1D problems and always assume wave functions to be normalized
S e, ) P = 1.

The projections of W yield the densities in position P(x,7) = |¢(x,1)[> = [dp W(x,p,1)
and in momentum P(p,7) = |4(p,1)|> = [ dx W(x,p,1), respectively. Thus, long straight lines,
reaching across entire distributions, can only form when they have positive values.

3. Trapped linear systems

We find that trapped systems sooner or later form lines in phase space. When we choose a
spatially concentrated initial state, the (anharmonic) potential V(x) disperses the state over its
energy corridor in phase space (the black background lines in figures 1 and 2 depict energy
contours). This process has to happen first until finally the state is sufficiently dispersed to
self-interfere as irregular standing waves, i.e. form random comb-states, see (b)—(d) and, to a
lesser extent, (B)—(D) in figure 1.

These random comb-states are responsible for the formation of lines in phase space, see
section 4.

Simple enough trapped systems can show state revivals after a ‘recurrence’ or ‘revival’
time T; (at t = T; the evolved state is identical to the initial state [27] or very similar to it [17,
20, 21]). For such, not too highly excited linear systems 7; can be so short that we can study it
numerically. At suitable fractions of T}, namely, at times of ‘fractional revivals’ of the initial
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Figure 1. The Wigner distribution evolved in a linear system with potential V(x) =
x* /500, has a recurrence time [20, 21] T; & 750 at which the evolved state roughly
reforms [17]. For the top row, (A)—(D), the initial state ¢ = (2/7)"/*exp[—(x — 9)?]
is used; for the bottom row, (a)-(d), the initial state is more squeezed in
p: Yo = (2/97)"/*exp[—(x —9)?/9]. For short times (A) and (a) the state forms a
fringed crescent. At greater times the distribution covers its energy corridor in phase
space and around r = 77, (B) and (b), straight lines first appear. Such straight lines tend to
have larger extent in cases where the state covers a larger area in phase space, (c) versus
(C). At time 1= 192 ~ T /4, (D) and (d), fractional revivals of the initial state with
approximately fourfold symmetry form [17, 20, 21].
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Figure 2. Wigner distributions evolved in double well potential V(x) = x*/200 — x? /2.

The initial state ¢y = (2/57)"/*exp[— (x4 9.9)?/5] has an energy that partly exceeds
the central barrier as can be seen clearly at short times (A). Subsequently, lines form
quite soon (B) and keep reappearing (C)-(D).

state [17, 20, 21, 27], we witness pronounced formation of lines in phase space, for an example
see figures 1(D) and (d).

4. Comb-states have to be random to form lines in phase space

The formation of (positive) straight lines in phase space is due to the formation of randomized
comb-states. If the comb-states are too symmetrical, they form higher order concentric ring or
‘eye’ patterns, instead of lines. These eye patterns are most pronounced for comb-states with
locally concave or convex arrangements of the weights of their peaks. We now give numerical
and semi-analytical evidence to support these claims.
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Figure 3. W’s elementary phase space interference fringes [4, 7, 28] are roughly
described by equation (3) but tend to be curved when created between two peaks of
unequal shape (see fringes centered on (—1,2) and (2,—3)) whereas peaks of equal shape
create straight fringes (here at (0,—1)).

4.1. Interference between pairs of peaks

To theoretically underpin that the coherences between comb-state peaks gives rise to the
observed formation of lines in phase space, we will now isolate the pertinent trigonometric
terms that are responsible for the observed phenomena.

W for a ‘Schrédinger cat” state formed from two squeezed states G(x,p) = - le=¥ /€€
with squeezing parameter £, according to equation (2), has the simple form

G(x—Ax/2,p) + G(x + Ax/2,p)

> (3a)

W(x7p) =

+ G(x,p)cos (pAx). (3b)

This approximation for the description of a pair of peaks shows that they form an interference
pattern (3b) of peak-width, halfway between peaks, with fringes whose spatial frequency (k ~
p) is proportional to the interpeak distance Ax, (see expression (3b) and appendix ‘Wigner
distribution fringes between two-peak combinations’).

We emphasise that the interference pattern in phase space cos (pAx) does not generally
have such straight line behaviour, which requires equal shapes G of the constituent peaks. In
general the associated interference fringes are curved, see figure 3.

To investigate the comb-state scenario we strip out the terms (3a) corresponding to the
peaks themselves and only retain the terms (3b) describing phase space interference, compare
figures 4(A) with (B).

We are left with the resulting simplified expression for a random comb-state’s interference
term

N—1 N
I:Z Z A('x_)(mz—i_)(n) XCOS(p[Xm—Xn]—¢,71+¢n)7 (4)

m=1n=m-+1

describing the effective overlap between peaks through A. The inter-peak distances, X, — X,,,
modulate the cosine-term in (4) analogously to expression (3b). Every peak at position X,
caries its own (constant) phase ¢,,.
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Figure 4. (A) W of comb-state versus (B) Z of equation (4), with A = 1, with same
locations and weights of peaks of comb-state as in figure 6(E). Both representations yield
similar interference patterns: we conclude that coherences between peaks in comb-states
are responsible for formation of lines.

(BB 2 4 5

Figure 5. Plot of interference pattern Z of equation (4) for equal equidistant peaks. The
green strips indicate positions, X, of identical peaks. (A), all relative phases are zero:
eye-patterns form. (B), phase of the central peak (x = 3) is shifted by 7 and (C) phase
of the third peak, at position x = 3, is shifted by 7: these randomising phase shifts lead
to the formation of lines ((B)—(C)); also see appendix ‘Eyes of varying orders’.

Numerically, whenever W (generated from peaks as in figures 6 and A.12) forms lines, then
so does a plot of expression (4), figure 4 is a typical example.

Yet, we did not manage to extract an analytical expression that obviously displays the fact
that formation of straight lines with positive values is encoded in (4), we therefore now discuss
the emergence of straight lines due to random comb-states qualitatively instead.

4.2. Interference in combs of peaks

In figures 5(A) and 6(A) we observe that more symmetrical comb-states with fixed peak-to-
peak distances and fixed constant phase across all peaks do not form straight lines in phase
space, also see appendix ‘Eyes of varying orders’.

When these comb-states are sufficiently randomized, however, they exhibit formation of
straight lines in phase space, see figures 5(B), (C) and 6(D), (E). Additionally, we observe that
imprinting completely random phases on each peak or shifting their individual momenta ran-
domly (but moderately) or changing their relative weights randomly (but moderately) does not
destroy the formation of straight lines in phase space (see appendices ‘Randomized momenta:
single eyes and triangle lines’ and ‘Randomized phases’): the formation of straight lines in
phase space from randomized comb-states is a stable phenomenon.
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Figure 6. Randomized comb-state and associated Wigner distributions: P(x) (top row)
of a 7-peak state with constant peak-to-peak spacing (red curves) gets increasingly
squashed towards the centre ((A)—(E)) reducing the peak-to-peak distances (blue
curves). The resulting comb-states, randomized in interpeak distances, form Wigner dis-
tributions W(x,p) that develop lines crisscrossing phase space (bottom row).

This stability can be understood from the functional form of the interference pattern Z. For
example, shifts of a local phase ¢,, entail a ‘holistic effect’ since several terms in equation (4)
are affected in a synchronized fashion (see figure 5), thus interference patterns are modified
smoothly rather than abruptly.

We find that for randomized comb-states the formation of lines in phase space is generic,
see figure A.12, and that the formation of eye patterns occurs most clearly when locally con-
cave comb-states form, see figure A.12(D), (E) and 8(B)—(D), and appendix ‘Eyes of varying
orders’.

4.3. Line formation in random potentials

Evolution in random potentials V(x) is an obvious candidate for the synthesis of random comb-
states. Here we create V(x) from random Fourier series.

We commonly observe the formation of lines in phase space, see figure 7 (A) for a repres-
entative example.

Additionally, for a more symmetrical comb-state with a convex peak-weighting distribution,
eyes form in phase space as well, see figure 7 (B).

5. Nonlinear systems

5.1. Line formation in free nonlinear systems

For the free (V = 0) Schrodinger equation (1) of order three (e = 2) with attractive nonlinearity,
~ >0, it is known that initial states

h
»(x,0) = Sei@(x)withyzzNz,N: 1,2,3,... (5)

give rise to breather solutions with up to N + 1 peaks and repetition period 7= 7 [29]. Their
associated Wigner distributions W can display straight lines and ringed ‘eye’ shapes in phase
space, see figure 8.
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Figure 7. Random comb-states form in a random potential giving rise to lines across
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Figure 8. Wigner distributions evolved from initial sech-state (5) with v = 128 (N = 8):
(A)r=0.10,(B)t=0.31,(C) t=0.76, and (D) t = 0.79. Note the formation of zero lines
(white) in (A) and positive (red) straight lines throughout. In (B), (C) and (D) a regular
array of peaks in the position distribution P(x) which, in (C) and (D), coincides with
a concave momentum distribution P(p), giving rise to the formation of ‘double-eye’
patterns, compare figure A.12(E).

Straight lines also form for generic initial conditions which in the free case (V = 0) lead to
evolution fulfilling the ‘soliton resolution conjecture’ [30]. The lines only form initially, while
the radiative background and pre-solitonic peaks still overlap, see figure 9 for an example. This
finding applies to wide classes of NLSEs as long as the interactions are attractive (y > 0), see
figure A.13.

In the case of repulsive interactions a confining potential is needed to trap the system
state such that it self-interferes, forming comb-states with straight lines in phase space, see
figure A.14.

5.2. Line formation in trapped nonlinear systems

Straight lines form repeatedly, we believe in perpetuity, when we confine the spread of the
wave function by an external trapping potential since it traps the radiative background [30].
For an example see the bottom row of figure 10. Lines can form for nonlinear systems with
different orders € 4 1, see figure A.13.

We hope the reader finds our conjecture plausible that the formation of slightly randomized
peaks is responsible for the formation of straight line patterns in phase space.

Whereas line formation is enhanced by the presence of attractive nonlinear interactions,
figure 10, it can be present even for repulsive interactions (v < 0) if a confining potential traps
the state such that comb-states can form, see appendix ‘Repulsive nlse’.
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Figure 10. Enhanced line formation with attractive interaction: The initial state 1o (x) =
1

0.43exp[—(x — 2)*/19] evolves in the potential V(x) = mx“ without, (y =0) top row
((A)—(D)), and in the presence of attractive interaction (7 =50 and € =2) bottom row
((a)—(d)). The spatial probability density | (x, t)\z, (A) and (a), shows dynamics dom-
inated by oscillations due to the potential’s confining forces. The associated Wigner
distributions (using the same colouring as in figure 8), at times (B) and (b) t =0.55, (C)
and (c) r=1.76, and (D) and (d) t =4.52, prominently display straight lines crisscross-
ing phase space for the nonlinear case (b)—(d) whereas only weak lines form in the linear
case, also see appendix ‘Repulsive nlse’.
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6. Conclusions

We have established that the states of many different types of quantum systems display form-
ation of positive lines criss-crossing phase space; such lines cannot form in classical systems.

The formation of these lines is a robust phenomenon.

It will be interesting to see whether in higher-dimensional systems similar ‘pencils’ form
in phase space.

The presence of attractive nonlinear interactions enhances the formation of lines criss-
crossing phase space.

We moreover speculate that the formation of these lines might be able to illuminate the
formation of rogue waves in nonlinear systems [13], using the phase space perspective.

Lines can also occur in linear or repulsive systems, if the state is confined by a trapping
potential.

We expect that it should be possible to experimentally detect such lines through the detec-
tion of large peaks in measurements of suitably rotated quadratures and in quantum state recon-
struction experiments [8, 9].
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Appendix. On the formation of lines in quantum phase space

Ole Steuernagel, Popo Yang and Ray-Kuang Lee

Wigner distribution fringes between two-peak combinations

Figure A.11. Interference fringes in phase space for a two-peaked state form midway
between wave function peaks and at a spatial frequency proportional to the interpeak
distance, compare equation (3b). Here a distribution which is roughly concentrated in
two spatial locations (x < 0 versus 0 < x) (see P(x) top row) displays simple interfer-
ence in the region —1 < x < 0 [see W(x,p) bottom row], which is graded (the spatial
frequency increases from x = —1 to x =0) since P(x) for positive values of x is spa-
tially spread out. The phase space structure for the positive region, x > 0, arises from
the coherence of the three peaks located in that region. Therefore, the positive region
by itself provides a simple and illustrative case for how lines crisscrossing phase space
form.

Figure A.12. Random 7-peak comb-states and associated Wigner distributions: P(x)
(top row) of states with 7 equally weighted peaks which are randomly distributed in
position (and thus coalescing into 4 or 5 humps) are shown together with the associated
Wigner distributions W(x, p) (bottom row). W(x,p) displays straight lines crisscrossing
phase space. Panels (D) and (E) show a ‘double-eye’ pattern (bottom row) due to the
concave arrangement of the weights of the last three (rightmost) humps (top row).
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NLSEs of different orders
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Figure A.13. Wigner distributions for NLSE systems (1) with varied order € 4- 1, nonlin-
earity -y and potential V show formation of lines in phase space: from an initial squeezed
state of the form 1o (x) = 0.43 exp[—(x — x0)*/19], we show the time evolved state for A
€e=0.5,7v=40,V=0,x0 =0,r=1.5,Be=0.5,7 =40, V:x4/10,xo =2,t=2.7,C
e=1,7v=40,V=0,x0=0,t=138,and De =3,y = 4O,V:x4/10,x0 =2,t=2.0.

Repulsive nlse
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Figure A.14. Suppressed line formation in phase space for repulsive NLSE: top row:
panels for linear Schrodinger equation, (V(x) = %x“, o(x) = 0.43exp[—(x — 2)*/19],
v =0), copied over from figure 10. Bottom row with same parameters except for repuls-
ive interaction (v = —50 and € = 2). Evolved Wigner distribution at various times: B and
Batr=0.55,Candyatr=1.76,and D and § atr =4.61. Attractive NLSEs (- > 0) tend
to display enhanced line formation, repulsive NLSEs (y < 0) tend to display suppressed
line formation.
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Eyes of varying orders
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Figure A.15. ‘Double eye’ pattern in phase space: comb-states with a concave arrange-
ment of an even number of peaks (see P(x) in bottom row) yield a characteristic double
eye interference pattern (with a negative (blue) centre) with varying order of the number
of concentric rings within each eye (see W(x, p) in top row). Inter-peak phase differences
are zero whereas distances are not constant.
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Figure A.16. ‘Double eye’ pattern in phase space: similar to figure A.15, but for an odd
number of peaks, yielding positive (red) centres in W(x, p). Inter-peak phase differences
are zero whereas distances are not constant.
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Figure A.17. ‘Eye’ pattern in phase space: similar to figure A.16, but for peaks which
are equidistant to each other.
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Figure A.18. ‘Eye’ pattern in phase space: similar to figure A.17, but for peaks with a
convex weighting distribution. In this convex case the formation of eye patterns is less
‘clean’ than in the concave case of e.g. figure A.17.

Randomized momenta: single eyes and triangle lines
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Figure A.19. ‘Single eye’ pattern in phase space: here, comb-states for which not only
the peak positions (see P(x) in (A)—~(E)) but also the mean momenta of the peaks are
randomized (see P(p) in a—e is not an even function). This demonstrates that also single
eye patterns can form (see W(x,p) in (A) and (B)). Triangle line arrangements, e.g. in
panel (E), resemble those in figure 10(d) and figure A.13(D).
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Randomized phases
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Figure A.20. Comb-states with randomized phases form lines in phase space: P(x) in
(A)—~(E) has the same shape as in figure 6 but since every peak carries a completely
random phase the momentum distributions P(p) in (a)—(e) are not even functions any
more, yet, W(x, p) forms lines in phase space.
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