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Abstract 

The underlying inflammatory storm in renal or diabetic disease may induce expression of 
inducible nitric oxide synthase (iNOS). Similarly, expression of iNOS or nitric oxide (NO) 
production in vascular smooth muscle cells (VSMCs) in a calcifying environment, may 
promote vascular calcification (VC) (Zaragoza et al., 2006). However, emerging data 
suggests that NO generated by either endothelial nitric oxide synthase (eNOS) or iNOS may 
protect VSMCs from VC (Kanno et al., 2008). Thus, the role of NO and its associated 
enzymes in the development of VC is unclear.  The aim of this study was to identify whether 
NO produced by iNOS regulates calcification in VSMCs, and to further understanding of 
potential mechanisms that may mediate the actions of NO/iNOS.  

A significant and sustained production of NO by iNOS, which peaked at day 3 and declined 
thereafter was found in rat aortic smooth muscle cells (RASMCs) that were preactivated with 
lipopolysaccharide (LPS; 100µg ml-1) and interferon gamma (IFN-γ;100U ml-1) in the 
presence of calcification buffer (CB) containing calcium chloride (CaCl2; 7mM) and β-
glycerophosphate (β-GP; 7mM). This was associated with formation of hydroxyapatite 
crystals (HA) or calcification plaques, observed via alizarin red staining (ARS) and/or fourier 
transform infrared (FT-IR) analysis. However, when RASMCs were incubated with the iNOS 
inhibitor GW274150 at 10 µM, together with LPS + IFN-γ + CB, HA crystal formation was 
abolished. When RASMCs were pretreated with diethylenetriamine/nitric oxide adduct (NOC 
18) at either 30 or 50 µM for an hour prior to addition of CB, to generate NO; calcium levels 
were elevated leading to form HA crystals. However, the elevation of calcium caused by the 
presence of NO generated via iNOS, did not result in phosphorylation of mitogen activated 
protein kinases (p38 MAPK), extracellular signal-regulated kinases (Erks), and protein kinase 
B. Furthermore, there was a reduction of Runx2 levels (pro-calcific factor) which could be 
another pro-calcific factor involved in this mechanism.    

These findings suggest that NO may indeed play a fundamental role in calcification, 
enhancing mineralisation of smooth muscle cells. Furthermore, the expression of iNOS/ NO 
appears to be enhanced under conditions that favour calcification and these together may 
contribute to enhanced calcification with potential detrimental consequences in vivo. 
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1.Introduction:  

Vascular calcification is a common complication of several pathologies including coronary 

artery disease, renal disease and bone disorders such as osteoporosis and/or adynamic bone 

disease. Its co-existence accounts for increased mortality in 3 out of 4 individuals (Aslam et 

al., 2010; Collins et al., 2005). Indeed, the risk of death is 10-50 fold higher in renal subjects 

with VC even after adjustment for age, gender, ethnicity and other underlying pathologies 

(Collins et al, 2005). An understanding of the regulation of this process, especially by other 

co-existing factors, is therefore of importance if progress is to be made in controlling its 

initiation and progression. 

1.1-Vascular calcification: 

Vascular calcification is an active well-controlled process involving the orchestrated trans-

differentiation of smooth muscle cells into bone-like cells (Byon et al., 2008). It is associated 

with the pathological deposition of calcium and phosphate products in the arterial wall 

resulting in calcification of the affected vessel. Calcification is however not restricted to the 

vasculature, and can indeed occur in other extra-skeletal soft tissues such as connective, 

cartilage, tendons and epithelial tissues. There are therefore different classifications of 

calcification depending on its anatomical location and pattern which will be discussed later in 

section 1.3. 

Physiologically, serum levels of calcium and phosphate are tightly regulated by the digestive 

(gastrointestinal tract), endocrine (parathyroid gland), skeletal (bone) and urinary (kidney) 

systems. Absorption of calcium and phosphate occurs in the small intestine and is sequestered 

either into bones, cartilages, teeth, or other parts of the body. The skeletal system acts as a 

major reservoir of calcium and phosphate, utilising and generating free calcium and 
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phosphate through the process of active bone turnover via osteoblastic (bone formation) and 

osteoclastic (bone resorption) activities respectively.  

The kidneys also play a major role in the regulation of serum calcium and phosphate via  

active reabsorption or secretion (Brini et al., 2013; Nordin, 1997).  Additionally, serum levels 

of calcium and phosphate are also tightly regulated through hormonal regulation by 

parathyroid hormone (PTH) and cholecalciferol (active vitamin D) produced by chief cells in 

the parathyroid gland and proximal convoluted tubules of the kidneys (Jono et al., 1997; 

Irving, 2012).  

Dys-regulation of calcium  and phosphate  leads to an increase in the deposition of these ions 

on the extracellular matrix, forming HA crystals with further consequences including cells 

undergoing a phenotypic alteration by losing smooth muscle markers such as the smooth 

muscle lineage protein SM22α and expressing osteogenic or chondrogenic markers (Moe and 

Chen, 2008). More importantly, it has been shown that phosphate ions act as a trigger to 

initiate these changes in the gene transcription level and result in the mineralisation of 

VSMCs (Steitz et al., 2001). Similarly, elevated calcium levels alone can also induce the 

mineralisation process through changing the phenotype of VSMCs (Byon et al., 2008). It 

does this by regulating levels of phosphate, increasing its binding by changing the sensitivity 

of VSMCs to phosphate (Proudfoot et al., 1998).  

In the investigations the concentrations of the calcium in the calcifying agents and the 

concentration of phosphate for our model was kept quit smiliar to that  used as previous 

studies (Byon et al.,2008; Kanno et al., 2008) as well as from our group (Patidar et al.,2013), 

in order to allow a comparison of effects. Furthermore, exploration of concentrations of 

calcium or phosphate in plasma and tissue  would be vary. For example, the normal range of 

human plasma and tissue fluid calcium concentration is 2.2 - 2.6mM (Ihmoda, 2005), while 



 

4 
 

in rats the level is 2.5mM (Lewin et al., 2002). Thus, 3mM concentration of extracellular 

calcium is considered to be hypercalcemic, whereas the concentration used in these studies 

was more than 2x higher, at 7mM. Furthermore, the levels of β-GP could also be varied, as 

this too had the fixed concentration of 7mM.  Therefore, the methods used could be modified 

to explore a wider variety of concentrations of calcium, phosphate, etc.  

It is interesting to note that in VSMCs free calcium concentrations vary, and intracellular 

signalling is partly achieved by waves of elevated calcium (Hill-Eubank et al., 2011). 

Altering extracellular calcium levels could disrupt the intracellular signalling as calcium 

enters the cell, for example through voltage gated channels. This is itself may contribute to 

cytotoxicity, and thus promote vascular calcification. 

 

1.2-Calcium and Phosphate induced calcification: 

Calcium is a prominent cation with major cellular actions that includes regulating cardiac 

contraction, controlling nerve impulse transmission, cell permeability, and even memory.  

However, calcium may also exert deleterious effects including cell death if uncontrolled and 

sustained higher intracellular concentrations are present (Berridge, 1998). More importantly, 

elevated calcium in the presence of phosphate results in apatite nucleation, and calcium can 

also increase phosphate levels by changing the sensitivity of VSMCs to phosphate (Proudfoot 

et al., 2001; Proudfoot et al., 1998). Additionally, calcium itself may also lead to extracellular 

matrix degradation, induction of apoptosis and osteogenic differentiation which all lead to 

calcification as summarised in Figure 1.1. Furthermore, in vitro cellular studies have 

suggested that calcium induces more calcification when compared to phosphate due to its 

direct and more potent adverse effect on the cytoskeleton (Steitz et al., 2001). This does not 

however mean that phosphate is not important in calcification. In fact phosphate is a more 
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potent inducer of the cellular signalling events such as expression of osteo/chondrogenic 

transcription factors that may regulate calcification (Jono et al., 2000). In addition, in clinical 

settings such as chronic kidney disease (CKD), phosphate levels are chronically elevated 

(sometime two fold higher than physiological phosphate levels), while serum calcium levels 

are only moderately increased (10-20%) (Adeney et al., 2009). The proposed mechanisms 

through which phosphate induce calcification are summarised in Figure 1.2 and reflect 

parallel similarities with those reported for calcium; see Figure 1.3 for  overview of pathways 

initiated by elevated calcium and phosphate in VSMCs. Further detailed description of these 

mechanisms is given in sections 1.4.2. 
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Figure 1.1: Role of calcium in VSMCs calcification. (Taken from: Shanahan et al., 
2011). 

Calcium elevation induces vesicle production and can lead to cell apoptosis and necrosis. 
High local levels of calcium trigger mineral nucleation in matrix vesicles and also triggers 
formation of apoptotic bodies. Accumulation of mineralised matrix vesicles and apoptotic 
bodies, and their uptake accelerate cell death and facilitate further crystal growth. 
Degradation of extracellular matrix (ECM) and nucleation of calcium apatite induces ECM 
protein mineralization. Runt-related transcription factor2 (Runx2), calcium sensing receptor 
(Ca R sensing), matrix gla protein (MGP), endoplasmic reticulum stress (ER stress), Erk1/2,   
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Figure 1.2: Role of phosphate in VSMCs calcification. (Taken from: Shanahan et al., 
2011) 

Elevated extracellular phosphate affects multiple signalling pathways that increase the 
susceptibility of VSMC to calcification, including decreased calcification inhibitors, 
increased ECM degradation, osteogenic/chondrogenic differentiation, apoptosis, and vesicle 
release. Some of the effects of phosphate are mediated through sodium-dependent phosphate 
co-transporters, Pit-1 and Pit-2, potentially via phosphate transport-dependent and phosphate 
transport-independent activities. Whether other receptors exist that mediate specific 
downstream signalling pathways in response to phosphate is not yet known but cannot be 
excluded. Msh homeobox 2 (Msx2), alkaline phosphatase (ALP), reactive oxygen species 
(ROS), matrix metallopeptidase 2/ 9 (MMP-2/9), phosphoinositide 3-kinase (PI3K). B-cell 
lymphoma 2 (Bcl2), Growth arrest specific 6 (Gas 6), bone sialoprotein (BSP) 
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Figure 1.3: Overview of distinct and overlapping pathways initiated by elevated calcium 
and phosphate in VSMCs. (Taken From: Shanahan et al., 2011).  
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1.3- Type of vascular calcification and associated co-pathologies: 

Vascular calcification is classified further depending on the site of calcification.  

Clinically, calcification of the blood vessels as well as cardiac tissues is classified into four 

different categories:  

 Atherosclerotic or intimal calcification is initiated by the development of the   

atheromatous plaque (Sage et al., 2010) and as explained in section 1.3.1 with an 

example given in Figure 1.4 A.      

 Medial artery calcification (Figure 1.4B), also known as Mönckeberg’s sclerosis, is 

linked to the stiffening of the vascular wall as a consequence of either diabetes or 

CKD and this sometimes involves both pathologies (Amann, 2008;Leopold, 2014). 

The smooth muscle cells are located in the medial artery layer along with elastic 

tissue, whereas endothelium is located in the intimal layer. Therefore, the current 

study uses an experimental medial model for calcification, as the calcification of 

VSMCs rather than endothelial cells is the focus of the investigation. 

 Cardiac valve calcification (Figure 1.4C) occurs when calcium deposits in the valves 

of the heart (Wirrig et al., 2014). 

 Calciphylaxis or calcific uraemic arteriolopathy is associated with extraskeletal 

calcification and extensive medial calcification (Brandenburg et al., 2014). It is 

characterised by extensive necrosis of skin with highest mortality in subjects with end 

stage of renal disease (ESRD) (Blacher et al., 2001; Floege and Ketteler, 2004) and 

causes non-healing wounds (Figure 1.4D). 
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Figure 1.4: Types of calcification within the cardiovascular system (Johnson et al, 
2006). 
 
A: atherosclerotic (Intimal) calcification. Diagram on the left hand side of Figure A, 
shows a the atherosclerotic plaque and the figure on the right hand side of Figure B 
shows a magnified image of a ruptured atherosclerotic plaque (hematoxylin and eosin 
stain, H&E stain). Cholesterol crystals are indicated by the arrow. Calcification or areas 
of concentration of calcium is represented by the blue spherules. B: medial 
calcification: abundant calcification as indicated by the dark purple staining. C: 
valvular calcification in excised stenotic bicuspid aortic valve. D: calciphylaxis: 
extensive medial calcification is noted in this subcutaneous vessel isolated from the 
thigh of a patient with calciphylaxis.   
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Vascular calcification is an aging process; however it progress rapidly in pathologies such as 

diabetes, atherosclerosis and CKD. Disease specific factors will be discussed in the following 

sections: 

1.3.1 Atherosclerotic calcification (Intimal calcification): 

Atherosclerosis is a chronic inflammatory, fibro proliferative disease of large and medium 

sized arteries, fuelled by the build-up of low density lipoproteins. The process summarised in 

Figure 1.5 involves modification of low density lipoprotein (LDL), infiltration of monocytes 

that transform to macrophages and form lipid laden macrophages or foam cells 

(Aviram,1995; Simon et al., 1993). Simultaneously, VSMCs migrate to and proliferate in the 

intima. This ultimately leads to the formation of fibrous plaque which is composed of 

necrotised VSMCs (Wever et al., 1998), macrophage, foam cells and calcium-phosphate 

crystals. The stability of the plaque is of prime importance in determining the severity of 

atherosclerosis (Zhu et al., 2001) and this may in turn be determined by the development of 

calcification in the plaque. Furthermore, atherosclerotic calcification may be linked to 

necrosis of VSMCs caused by reactive nitrogen species (RNS) or modified oxidised LDL. In 

addition, the development of atherosclerosis is critically associated with oxidative stress 

which may play a critical role not only for atheroma development but also to the subsequent 

calcification (Katakami et al., 2009). Furthermore, macrophages in the atherosclerotic milieu 

can secrete inflammatory cytokines which accelerates plaque formation and promote 

calcification (Riemer, 2003). 

A characteristic feature of atherosclerotic calcification is the aggregation of calcium crystals, 

which can further coalesce with lipid laden matrix to produce crystals of a larger size 

(Schiffrin et al., 2007). This eventually reduces vascular compliance and can contribute in the 

dislodgement of the plaque and precipitation of subsequent adverse cardiac events. The co-

localisation of the atheroma and calcified plaques occurs mostly due to increased deposition 
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of calcium and phosphate on the apoptotic bodies and necrotised cells in the vascular wall. 

The process of intimal calcification renders the vessel with characteristics similar to bone 

(Shanahan et al., 1998) by expressing factors such as Runx2, Msx2 and also the 

dedifferentiation of VSMCs into secretory a phenotype by releasing bone morphogenetic 

protein 2/4 (BMP2/4). Once cells around the atheroma are dedifferentiated into bone like 

cells; active recruitment of more calcium and phosphate from the circulation occurs and is 

deposited within or around the atheroma.  

Clinical studies have indicated that intimal calcification increases in the elderly, especially in 

subjects with diabetes (Creager et al., 2003) and dyslipidaemia (Goodman, 2001). In 

addition, in CKD at least 50% of subjects show a presence of VC at the initiation of 

haemodialysis that progress rapidly with dialysis vintage and is responsible for the 

cardiovascular related mortality in these patients (Eddington et al., 2009). However, there are 

conflicting reports as to whether calcification provides plaque stabilisation or causes plaque 

to rupture in these settings (van der Wal et al., 1999; Wong et al., 2012). 

1.3.2- Medial vascular calcification (Monckeberg’s Sclerosis):  

Medial calcification was identified by Johann Georg Mönckeberg in 1903 as deposition of 

calcium and phosphate minerals along the elastic lamellae, suggesting that elastin may be the 

primary site for initiating medial calcification (Luo et al., 1997).   

Clinically, medial calcification is considered a less serious pathology when compared to 

intimal calcification as it does not pose a direct threat to blocking the smaller arterioles but it 

is still clinically relevant because in the long term it can lead to left ventricular hypertrophy 

(LVH) and cardiovascular related events (Nitta et al., 2004). Medial calcification is most 

common in subject with diabetes (Chen et al., 2003).  
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Recent evidence suggests that VSMCs in diabetic patients express elevated levels of bone 

matrix proteins such as osteocalcin (OC) (Al-Aly et al., 2007) and peroxynitrite (ONOO -)  

(Deedwania et al., 2008) which may contribute to VC.  

In addition, in vitro cultured VSMCs expressed less MGP, a local inhibitor of VC, upon 

incubation in high glucose medium (Proudfoot et al., 1998). Furthermore, persistent 

hyperglycaemia leads to endothelial dysfunction and glucose induced oxidative stress, 

impairing coupling of endothelial nitric oxide synthase (eNOS) and therefore vascular tone. 

Chronic hyperglycaemia also produces free radicals via the activation of protein kinase C 

(PKC),  a strong regulator of superoxide anion (O2
-) generation by mitochondria which 

reduces the bioavailability of NO not only by converting it to ONOO - but also by inhibiting 

its de novo production (Félétou, 2011). Furthermore, peroxynitrite could upregulate the 

osteogenic protein, such as Runx2, which is responsible for the differentiation of cells into 

osteoblast-like-cells resulting in extracellular matrix degradation. There is also evidence 

demonstrating that incubation of murine osteoblasts and rat-derived primary osteoblast 

precursors with ONOO - resulted in the activation of the apoptosis pathway and this could 

lead to apoptotic bodies and matrix vesicles. This action could enlarge the nucleation site of 

extracellular matrix allowing more calcium and phosphate products to accumulate at the site 

of crystal formation (Kelpke et al., 2001). 

Brownlee hypothesis suggests that hyperglycemia initiates microvascular disease due to the 

excess generation of superoxide ions via the mitochondrial electron-transport chain 

(Brownlee, 2001). Increased glucose provides greater pyruvate concentrations, resulting in a 

higher turnover of the tricarboxylic acid cycle  (TCA) cycle, and consequential flow of 

nicotinamide adenine dinucleotide phosphate (NADH) and flavin adenine dinucleotide 

(FADH2) into the electron transport chain. The increase causes a “critical threshold” potential 

to be reached which results in complex III of the electron transport chain being prevented 
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from allowing the passage of electrons further along the chain. The resulting excess electrons 

flow backward towards coenzyme Q, where superoxide ions form due to the reaction of the 

electrons with molecular oxygen.  

Damage caused by hyperglycemia can be eliminated by reducing the amount of superoxide 

ions present, as this reduces the rates of several biochemical pathways including activation of 

protein kinase C isoforms; glycation of cell proteins, the polyol pathway (Giacco and 

Brownlee, 2010), the aldose reductase pathway (Nishikawa et al. 2000), and the hexosamine 

pathway (Du et al. 2000). 

Additionally, incubation of smooth muscle cells with uraemic serum upregulated Runx2/core 

binding factor alpha 1 (Cbfa1), an osteoblastic transcription factor. This indicates that high 

glucose and uraemic serum factors may transform VSMCs into osteoblast-like cells (Chen et 

al., 2003). As with CKD (Hayashino et al., 2012), calcification caused in diabetics may be 

related to the inflammatory response in the disease state. The disease vintage and factors such 

as gender, age and ethnicity may however also contribute to the elevated mineralisation 

process seen in diabetic patients (Singh et al., 2012). 
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Figure 1.5: The process of atherosclerosis plaque formation (Adapted from Libby et al., 
2006).  

Maturation of the atherosclerotic plaque, the fibrous cap, macrophages, dead macrophages, 
cellular debris including apoptotic bodies, and extracellular lipid accumulations, and 
proinflammatory mediators develop plaques leading to extracellular matrix degradation 
which causes vascular calcification.  

 

1.3.3 Cardiac valve calcification: 

Compared to intimal and medial calcification, cardiac valve calcification is an unstructured 

and disordered process (Gross et al., 2007). An amalgamation of mechanical stress in the 

valve and local/systemic inflammation is the primary cause of valvular calcification. In 

response to an injury or inflammation, there is infiltration of macrophages and T cells to the 

valves. This is followed by the expression of BMP2 and BMP4 by the myofibroblasts 

(Mohler III et al., 2001). Moreover, OC and Cbfa1 are also expressed by valvular cells 

confirming osteoblastic differentiation (Rajamannan et al., 2003). Oxidised cholesterol may 

also be present within the nodules of calcification, calcified gallstones and atherosclerotic 

vessels, strongly suggesting oxidative stress and lipid oxidation (Sarig et al., 1994).   
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1.3.4 Vascular calciphylaxis:  

Calciphylaxis, otherwise known as calcific uraemic arteriolopathy (CUA) of vessels, is 

another systematic process characterised by extensive calcification of subcutaneous arterioles 

and arteries of small to medium size. It is also associated with intimal hyperplasia and tissue 

necrosis (Angelis et al., 1997). Elevated serum calcium and phosphate resulting from chronic 

renal failure and hyperparathyroidism is considered to be the primary cause of widespread 

calcification of the subcutaneous soft tissue (Saifan, 2013 a). Additionally thrombosis, 

calcification of adipocytes, dedifferentiation of VSMCs, production of bone matrix proteins 

like osteopontin (OPN) and infiltration of inflammatory cells have also been shown to cause 

vascular calciphylaxis  (Ahmed et al., 2001). However, calciphylaxis is relatively rare in 

renal population, and it is not very well understood why some patient develops this deadly 

skin necrotising form of calcification. Recent research suggests its association with warfarin 

therapy and a link to inhibition of the activation of MGP (Saifan et al., 2013 b). Table 1.1 

below summaries the different types of calcification and their characteristics features.  
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  Table 1.1: Overview of the different types of vascular calcification 

 

Type of 
calcification Site of location Primary inducer Associated disease Citations 

Intimal 
calcification Intimal layer of the arteries 

Generation of matrix vesicles and 
apoptotic bodies from VSMCs, down-
regulation of calcification inhibitory 
proteins. 

Atherosclerosis, aging, genetic 
disorders, dyslipidaemia, diseases 
related to disturbed mineral 
homeostasis 

(Johnson et al, 2006) 

Medial 
calcification Medial layer of the arteries Deterioration of elastin fibres and 

generation of apoptotic cells 

Diabetes and chronic kidney 
disease. Singleton-Merton 
syndrome and chronic renal 
disease 

(Al-Aly et al., 2007; 
Proudfoot et al., 2001) 

 

Cardiac valve 
calcification 

Cells present in cardiac 
valves (bicuspid, tricuspid, 
atrio-ventricular valve and 
others) 

Infiltration of T cells and macrophages 
in valves, in response to inflammation 

Chronic kidney disease, 
dyslipidaemia, and diseases 
related to disturbance in calcium 
metabolism 

(Sarig et al., 1994) 

Vascular 
calciphylaxis 

Medial layer of small to 
medium sized arteries and 
arterioles 

Increase in the threshold of calcium 
phosphate solubility due to conditions 
like hyperparathyroidism or chronic 
renal failure 

Warfarin therapy, chronic renal 
failure, significant weight loss 
immunosuppressive drugs, 
diabetes, obesity, and 
hypercoagulable states 

(Ahmed et al., 2001) 
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1.4-Molecular mechanism of vascular calcification: 

Vascular calcification is a significant predictor of mortality in subjects with renal disease, and 

may occur very early in the disease cycle, contributing at least in part to increased 

cardiovascular mortality in this population. This is indeed true even in young children. A 

landmark paper by Foley et al (1998) highlighted that VC was present in children with CKD 

and contributed to the increased risk of cardiovascular diseases (Foley et al, 1998).   

For most of the 20th century, physicians believed that VC was a passive process of deposition 

of calcium phosphate products due to higher levels in circulation. However, researches in 

past 30 years lead a new consensus that VC is in fact an actively orchestrated biological 

process. Also, recent research confirms that VC can occur at physiological serum levels of 

calcium and phosphate in subjects with diabetes (Singh et al., 2012), CKD (Reynolds et al., 

2004) and/or atherosclerosis (McCullough et al., 2008). However, very little is known about 

the events that lead to calcification under these conditions. It is also not clear what fraction of 

calcium and phosphate are un-ionised or ionised and whether these change in the disease 

states; which may be responsible for initiation of calcification.  Growing evidence from 

clinical and basic study however  suggest that there could potentially be four non-mutually 

exclusive mechanisms of calcification which may include: 1) loss in inhibitory protein and/or 

gain of promoters of calcification, 2) differentiation of VSMCs in to bone like cells, 3) 

circulating nucleating complexes and 4) apoptosis. These mechanisms are summarised in 

Figure 1.6 and discussed in more details below.  
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Figure 1.6: Four non-mutually exclusive mechanism of vascular calcification. (Adapted 
from; Giachelli, 2004).   

  

1.4.1: Mechanism 1:  Down-regulation of inhibitors of calcification:  

Some of the key proteins reported to inhibit the process of calcification are listed in Table 1.2 

and include MGP, OPN and pyrophosphates (Saifan et al, 2013 b). Other molecules that have 

been implicated are Fetuin-A and albumin. It is reported that even a minutes decrease in  

circulatory Fetuin-A in inflammation in CKD (Westenfeld et al., 1998) or albumin due to 

proteinuria in diabetes (Rees et al., 2004) will increases the possibility of mineralisation by 

forming micro crystals of calcium-phosphate which will eventually deposit in the arterial wall 

where necrotic or apoptotic cells are presented (Giachelli, 2004).   
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A role for Fetuin-A was further confirmed by Valdivielso et al (2011) who reported that 

circulatory Fetuin-A levels were decreased in haemodialysis subjects due to inflammation 

and this was associated with increased free calcium and phosphate as well as the rapid 

progression of calcification (Valdivielso et al.,2011).  

With regards to MGP and osteoprotegerin (OPG) (Browner et al., 2001)they may regulate 

calcium and apatite binding and may each serve a number of functions including regulation 

of apatite, crystal nucleation and growth (Giachelli, 2004).  Low levels of OPG may exert its 

protective effect on calcification by a) acting as a decoy receptor for receptor activator of 

nuclear factor kappa-B ligand  (RANKL) protein, b) inhibiting BMP2 signalling, and c) 

binding with calcium and phosphate crystals and inhibiting their seeding (Boyace and Xing, 

2007). Furthermore, knock out models of both OPG and MGP produced extensive VC in 

mice models (Boyace and Xing, 2007; Johnson et al., 2006). However, elevated levels of 

OPG and MGP have been seen in patients with diabetes (Dalmeijer et al, 2013) and CKD 

(O'N, 2005) which questions whether these elevated levels are due to the underlying 

pathology as a defence mechanism or actively taking part in the progression of calcification. 

Interestingly, in in vitro studies, supra-physiological concentrations of OPG have been shown 

to enhance calcification via insulin-like growth factor receptor (IGF-1R) signalling (Di 

Bartolo et al, 2011). This would suggest a dual role for OPG with the effects produced 

determined by the concentrations present locally at the tissue level.     
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Table 1.2:  Inhibitors of calcification  

Marker of 
Inhibited 

Calcification 
Main action 

Molecular 
weight of 
Protein 

Citations 

MGP 

Prevent calcification in 
cartilage, bone matrix and the 
arterial wall by a 
phosphorylated and γ-
carboxylated protein the HA 
crystals  formed. 

10 KDa 

 

(Proudfoot et al., 1998) 

 

Pyrophosphate 

Directly inhibits HA through 
physiochemical mechanism by 
reducing binding site of   
calcium and phosphate 

90 KDa 

 

(Addison et al., 2007; 
Persy et al., 2011) 

 

Fetuin-A 
Prevents the mineralisation 
process by inhibiting the 
growth of HA crystals. 

59 KDa (Giachelli, 2004) 

OPG 
Binds to a decoy receptor for 
RANKL and this inhibits HA 
crystals. 

60 KDa (Giachelli, 2004; 
Naschberger et al., 2004) 
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1.4.2 Mechanism 2: Induction of bone formation – promoters of calcification:  

In addition to the inhibitors, VSMCs also express other proteins such as OC, osteonectin, 

ALP, BSP (Hunter et al., 1993), and BMP2 that promote calcification (Shao et al., 2007). 

These proteins play a very critical role in regulating nucleating sites of calcification and also 

regulate the process of mineralisation and crystal growth (Shanahan et al., 1998).  

The mechanisms that lead to the expression of these proteins by VSMCs, and eventually to 

VC, are yet to be fully understood. It is however hypothised that VSMCs along with 

macrophages express low levels of these bone associated proteins which become elevated in 

disease states and may eventually lead to their osteogenic differentiation causing VC. They 

do this by being able to cause cells to recruit more calcium and phosphate intracellular and 

finally excreting this out in the form of apoptotic bodies to deposit within the extracellular 

matrix (Kockx et al., 1998).  

In relation to medial calcification, it is proposed that there may be a down regulation of MGP 

expression intracellularly leading to a decrease it its expression. In parallel, other proteins 

mentioned above (OC), which are not expressed under normal circumstances, become over-

expressed (Kanazawa et al., 2011). These changes eventually lead to calcification.  Indeed, 

Luo et al (1997) have demonstrated using MGP knockout mice that down-regulation of this 

protein which inhibit the process of calcification results in deterioration of elastic fibres and 

generation of apoptotic bodies, which act as nucleating sites leading to extensive medial 

calcification and subsequent death (Luo et al., 1997).  
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Studies using human atherosclerotic plaque have also demonstrated the presence of BMP2 

(Mohler III et al., 2001) which together with other factors such as Runx2 are elevated at the 

sites of early calcification and these protein are activated by inflammatory cytokines such as 

IFN-γ contributing to an elevated level of local concentration of 1,25-

dihydroxycholecalciferol or 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] that causes 

progression of VC (Adams et al., 2012: Jono et al., 1998).  

Furthermore, activation of toll like receptor 4 (TLR4) in VSMCs by bacterial endotoxin such 

as LPS plays a significant role in enhanced progression of mineralised plaques  (Lin et al., 

2006; Ortolani et al, 2010). This occurs because LPS stimulates its receptor resulting in the 

release of inflammatory cytokines such as interlukin-8 (IL-8) (Heo et al., 2008) and also 

BMP2 (Yang et al, 2009). Lipopolysaccharide and tumour necrosis factor (TNF-α) contribute 

to the accumulation of lipid in the artery wall in atherosclerotic plaques which in turn 

promote calcium and phosphate crystallisation to form HA crystals (Alò et al., 2009).  Under 

the influence of calcium and phosphate VSMCs undergo differentiation into a cartilage and a 

bone like phenotype, which in turn enhances the process of calcification (Lu et al., 2014). 

Inflammatory cells, such as macrophages and T lymphocytes are known to interact with 

VSMCs, endothelial cells and extracellular matrix to result in calcification by increasing 

expression of BMP2 and loss of MGP when VSMCs are exposed to macrophages incubated 

condition medium containing TNF-α (Tintut et al., 2002;Ikeda et al, 2012). In addition, in 

CKD, secondary parathyroidism is prevalent and can induce 1-alpha hydroxylase (1alpha-

OHase) expression in VSMCs and thereby the local production of vitamin-D (Somjen et al, 

2005). However, it is not clear whether this is protective against calcification as the 

concentration of vitamin-D produced by PTH stimulus is not known. Similarly, 

proinflmmatory cytokines such as IFN-γ is also known to induce vitamin-D production in 

VSMCs and macrophages (Shioi et al., 2000). Expression of vitamin D receptor has been 



 

24 
 

found in endothelial cells, VSMCs and macrophages (Norman and Powell, 2014). The 

vitamin D receptor has transient fast effects on the levels of intracellular calcium, (Norman, 

2006), possibly by inducing the opening of cell membrane calcium channels. It achieves this 

via the proposed ability of the receptor to achieve different conformations depending on 

configuration of the flexible vitamin D3 molecule 1alpha,25(OH)2D3 (Norman, 2006). The 

accumulation in vitro of vitamin D3 and its receptor has been observed in caveolae , which 

are sphingolipids and cholesterol rich invaginator membrane region (Huhtakangas, et al., 

2004). Thus, different receptor-ligand conformations locate to different targets either the 

nucleus to function as transcription regulators; or caveolae at the cell membrane- where it 

modulates secondary messenger signalling.  

Furthermore, when overexpressed, the vitamin D receptor can cause changes further down-

stream at the nuclear level producing osteogenic proteins, activate MAPKs signalling and 

induce proinflammatory cytokine (Norman and Powell, 2014). These effects are however 

only induced when vitamin D concentrations are high. A high dosage of 1,25-

dihydroxyvitamin D3 was equated to be 0.25 μg kg−1 day−1 in the studies conducted by 

Lamawansa et al. (1996) and Zebger-Gong et al. (2011). 

At low concentrations, vitamin-D protects against calcification by protecting the expression 

of vascular anti-aging protein Klotho (Lim et al., 2012). See table 1.3 showing an example of 

protein induced calcification. 
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Table 1.3:  Inducers of calcification  

Marker of 
calcification Main action 

Molecular 
weight of 
Protein 

Citations 

(Runx2)/Cbfa1 

Runx2/Cbfa1 is a key transcription factor which 
induces osteogenic differentiation by elevating 
calcium and phosphate. This works cooperatively with 
the ligand bound vitamin D3 nuclear receptor to 
cooperatively regulate the expression of multiple 
genes. 

60-90 
KDa 

(Ho et al., 2009; 
Stephens and 

Morrison, 2014) 

BMP2 

BMP2 belongs to the TGF-beta superfamily, and is 
thus a regulatory peptide/growth factor. BMP2 binds 
BMP receptor I, initiating the linked signal 
transduction cascade and also activates BMP receptor 
II (BMPRII) by phosphorylation. Activated BMPRII 
phosphorylates R-SMAD which acts as a transcription 
factor after translocation to the nucleus. A dose 
dependent phosphate uptake and induced calcification 
with BMP2 is observed in VSMCs. BMP2 enhances 
osteoblast differentiation. 

44KDa 

(Li et al., 
2008;Shao et al., 
2007, Wang et 
al. 2014) 

   

 

OC 

OC is secreted by osteoblasts and is the most plentiful 
non-collagenous protein in bone and dentin. It is 
expressed in both osteoblasts and VSMCs which are 
undergoing calcification. It circulates in the blood in 
an uncarboxylated form. However, it is modified post-
translationally at 3 glutamic acid (Gla) residues by 
vitamin K. After γ-carboxylation it binds calcium and 
phosphate. OC is required for HA formation.OC 
increases the rate of HA nucleation.  
 

37.4KDa 

(Covic et al., 
2010; Kapustin 
& Shanahan, 
2011; Gundberg, 
Lian & Booth, 
2012 
;Flade et al. 
2001) 
 

 

 

ALP 

 

ALP enzyme is homodimeric and found in all body 
tissues. Several isoenzymes are produced, with serum 
ALP being derived mostly from skeletal muscle and 
liver. The ALP isoenzyme in bone is the same as that 
in the liver and kidney, where it is membrane bound; 
and is termed tissue non-specific ALP. In the bone 
matrix ALP is found in vesicles where it hydrolyses 
pyrophosphate into monophosphate ions, which is 
used for HA nucleation. Lack of this enzyme leads to 
defective bone mineralisation in mice. Mis-sense 
mutations in humans are linked to hypophosphatasia 
and bone mineralisation deficiency. 
 

49 KDa 

(Schutte et al., 
2013; Anderson 
et al., 2004) 

 



 

26 
 

1.4.3: Mechanism 3: Circulating nucleational complexes:  

Subject with CKD and osteoporosis (Abedin et al., 2004) often have increased concentration 

of nucleational complexes compared to normal healthy individuals. These nucleational 

complexes are released into the blood stream from bone and can act as nucleating sited for 

extra calcium and phosphate i.e. already present in the circulation (Giachelli, 2004). This 

process accelerates even more when serum levels of proteins such as albumin, Fetuin-A are 

reduced. Postmenopausal woman with osteoporosis have been shown to reduce the rapid 

progression of calcification when treated with bisphosphonates (Price et al., 2001). 

1.4.4: Mechanism 4: Apoptosis:  

Studies have also shown that the medial VSMCs undergo apoptosis and the apoptotic bodies 

formed act as nucleating sites for calcium crystal (Figure 1.7). This has been confirmed by 

showing that inhibition of apoptosis reduces calcification (Giachelli, 2004) while increased 

apoptosis resulted in increased levels of VC (Giachelli, 2004). Furthermore, studies 

conducted on patients with atherosclerosis show that vesicles are shed when VSMCs undergo 

apoptosis and these vesicles are rich in calcium and phosphate (Ewence et al., 2008; Kapustin 

et al., 2011; Otsuka et al., 2014). The characteristics of the vesicles are similar to those of the 

matrix vesicles which are formed in the bone by biogenesis and budding and pinching-off of 

the osteoblasts, odontoblasts and chondrocytes (Trion et al., 2004; Trion et al., 2008). In 

other words, these matrix vesicles are usually seen at the initial stage of calcification of bone 

in which the matrix vesicle acts as a submicroscopic extracellular membrane-invested particle 

that serves as the initial site of calcification in all skeletal tissues (Trion et al., 2008). The 

crystals formed grow along the length of elastin fibres (Kim, 1995; Kim et al., 2002). The 

anatomy of elastin fibres consists of an elastin core, which is surrounded by micro-fibrils. 

Any alterations in the structure of these fibres can enhance the process of calcification 

(Giachelli, 2004). Pereira et al (1999) demonstrated that there was a higher rate of medial 
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calcification in aorta in mice which were genetically modified to under-express micro-fibrils 

(Pereira et al., 1999). Additionally, with aging, the levels of free elastin peptides in the 

circulation increase due to the degradation of the elastin itself. These elastin peptides have 

been shown to encourage the process of intimal as well as medial calcification (Faury et al., 

1998). 

 

Figure 1.7: Cell fate, function, and phenotype in vascular calcification (Mizobuchi et al., 
2009).   

Under the influence of an elevation of calcium and phosphate levels or uraemic toxins, 
VSMCs generate apoptotic bodies and matrix vesicles. These apoptotic bodies and matrix 
vesicles are able to concentrate calcium and phosphate at the nucleating sites and initiate the 
formation of calcium crystals. 

 

 

 



 

28 
 

1.5 Inflammation and vascular calcification: 

It has already been indicated before that inflammation may play a critical role in the 

development of calcification. For instance, cytokines such as IFN-γ may elevate the 

expression of promoters of calcification such as the transcription factors Runx2. Interferon-

γ may additionally cause over production of vitamin D which in turn induces osteogenic 

proteins including BMP2. Other inflammatory mediators such as LPS may also stimulate 

BMP2 production (Yang et al, 2009) thereby potentiate calcification. Similarly, in vivo 

administration of LPS in rat fed on high phosphate resulted in enhanced inflammatory 

cytokines such as TNF-α and IL-1 and in calcification (Guerrero et al., 2011; Pan et al., 

2007). It has also been shown that inflammation can lead to free radical generation and the 

reactive oxygen species generated regulates the inflammatory cascade (Pacher et al., 2007) 

which in turn leads to the  progression of calcification (Byon et al., 2008). A study has also 

demonstrated that the transcription factor Runx2 is involved in oxidative stress in VSMCs 

incubated with hydrogen peroxide (H2O2) and high phosphate media thus inducing 

calcification (Liu et al., 2010). This process may have occurred through the activation of 

inflammatory mediators such as transforming growth factor-β (TGF-β) or LPS.  

The actions of inflammatory mediators may not be restricted to the discussions above but 

may extend to other molecules and pathways of which that associated with the induction of 

NO production may be of key importance.  
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1.6 Nitric Oxide and nitric oxide synthases:  

Physiologically NO , known as endothelium drive relaxation factor, is formed via cleavage of 

the amino-terminal nitrogen of L-arginine producing L-citrulline by a product (Moncada et 

al., 1991). This reaction is catalysed by the family of nitric oxide synthase (NOS) enzymes 

which exist as three distinct isoforms. These include eNOS and neuronal NOS (nNOS) which 

are constitutive while the third isoform is iNOS in response to inflammatory mediators 

(Napoli and Ignarro, 2001; Förstermann et al., 1998). All three isoforms of NOS only 

function to produces NO whilst in the dimer form. Dimerization of NOS not only activates 

the enzyme but also increase its affinity for L-arginine and a critical co-factor, 

tetrahydrobiopterin (BH4).  

This enzymatic reaction is also dependent on binding of calmodulin in eNOS and nNOS but 

not in case of iNOS as calmodulin is already tightly bound with the NOS enzyme (Alderton 

et al., 2001; Napoli and Ignarro, 2001).  Nitric oxide is a well known and studied molecule 

that has either beneficial effects under physiological conditions or damaging effects in several 

pathologies. Whether NO/iNOS is good or bad primarily depends upon the underling 

pathologies and organ systems involved.        

Nitric oxide itself is a free radical which can exist in several forms depending on the oxido-

reductive state of the cells such as nitroxyl ions (NO–), NO free radicals (NO•), nitrosonium 

cations (NO+), nitrite ions (NO2
–) and nitrate ions (NO3

–) (Ischiropoulos and Gow, 2001). 

Nitric oxide also reacts with the superoxide ions to form ONOO- which is a very potent 

oxidant of lipids and proteins. In addition, NO can react with thiol cysteine residues on 

proteins leading to compromised protein function. Also, binding of NO to cytochrome c 

oxidase causes irreversible nitrosation of mitochondrial complex-I which can activate 

uncontrolled leakage of protons, dysfunction of permeability transition pore and cellular 

apoptosis (Brown, 2001).   
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Inducible nitric oxide synthase protein is highly conserved in different species however its 

promoter regions are different in different cells and species. Due to this, iNOS activation of 

rat smooth muscle cells can be achieved by LPS, IFN-γ or cytokines such as IL-1/6 or TNF α 

but not necessarily in human aortic smooth muscle cells (Vallance and Charles, 1998). It has 

been very well postulated that iNOS expression in immune cells is critical for host defences 

mechanisms (Bogdan, 2001). However, iNOS can also be induced in other cells such as 

aortic smooth muscle cells where its expression has been implicated in pathologies such as 

septic shock and, of relevance to this thesis, in VC. Its role in relation to the latter is however 

inconclusive.     Figure 1.8 & 1.9 below shows relaxation of vascular smooth muscle cells by 

NO generation via endothelial cells or within smooth muscle cells  
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Figure 1.8: Relaxation of vascular smooth muscle cells by NO generation via endothelial 
cells. 
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Figure 1.9:  Relaxation of vascular smooth muscle cells by NO generation within smooth 
muscle. 
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1.7: Nitric oxide and vascular calcification:  

Low levels of NO have generally been reported in chronic renal failure (Baylis, 2006) and 

this has been suggested to contribute to the development of hypertension as well as the 

subsequent cardiovascular related events observed. This however, contradicts other reports of 

elevated production of NO and iNOS expression in subjects with renal dysfunction (Schmidt 

et al., 1999; Schmidt et al., 2000; Qiu et al., 2004) which would indicate otherwise.  

Moreover, there is no conclusive evidence about the role of NO in the regulation of 

calcification in this high risk renal population. Indeed it is not clear whether NO is an active 

player in the regulation of calcification or an innocent bystander due to renal failure.  

Low levels of vitamin K are evident in CKD population and especially on haemodialysis (El 

Asmar et al., 2014). The reduction in vitamin K (especially K2 isoforms) may be linked to 

the progression of VC and may lead to reduced gamma carboxylation or MGP (local 

intracellular inhibitor of calcification) and its activation (Asmar et al., 2014). Furthermore, 

incubation of vitamin K2 (menatetrenone) with cultured bovine vascular smooth muscle cells 

(BVSMCs) induced iNOS and NO production in a time dependent manner over 24 to 72 

hours (Sano et al., 1999). It is however not known whether these changes are linked to the 

suppression of MGP or contribute to the actions of vitamin K on calcification. Worth noting 

however is the observation that NOC 18, an NO donor see table 1.6 summarised the half- life  

, inhibited the expression of MMP-2 in endothelium (Chen and Wang, 2004, Milkiewicz et 

al., 2006). Also inhibition of iNOS resulted in increased expression of MMP-9 (Knipp et al., 

2004) in aortic smooth muscle cells. MMP-9 is known to regulate VC with elevated levels 

found in the arterial wall calcification (Chen et al., 2011). Additionally, SNP, another NO 

donor see table 1.6 summarised the half- life, has also been shown to inhibit calcification 

(Huitema et al., 2006a). Furthermore, Kanno et al (2008) have demonstrated that NO could 

prevent differentiation of VSMCs into osteoblastic cells by inhibiting TGF-β signalling 
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through cGMP dependent pathway. They showed that inhibiting guanylate cyclase reversed 

the inhibitory characteristics of NO on VC by inhibiting the osteoblastic differentiation of 

VSMCs (Kanno et al., 2008). Any notion that NO may suppress calcification would however 

contradict observations that it accumulates in VC and in chondrocytes. In turn this inhibits 

mitochondrial respiration leading to modulation of matrix loss which is associated with 

mineralisation of the chondrocytes (Johnson et al., 2000; Johnson et al., 2006). Furthermore, 

production of NO may lead to elevations in ONOO -  induced oxidative stress and apoptosis 

in osteoblast cells, again contributing to calcification.  Other studies have however shown 

that incubation of cells with FGF-1 exposed to ONOO - reversed apoptosis and oxidative 

stress (Kelpke et al., 2001) inducing calcification. In one other study, incubation of cells with 

calcium phosphate activated iNOS and produced NO in in vitro cultured articular 

chondrocytes in a dose dependent manner (Ea et al.,2005). These observations are again 

contradictory with those reported above and throws further confusion as to whether NO 

inhibits or promotes calcification. This clearly needs further investigation and has been 

explored in this thesis.  

Nitric oxide has many roles in cells and tissues. It is a potent inflammatory mediator, 

vasodilator, neurotransmitter, free radical and secondary messenger. The evidence suggests 

that the mode of NO promoting calcification of blood vessels of is via its S-nitrosylation 

reactions with respiratory enzymes, primarily the complex enzymes in the mitochondrial 

electron transport chain. Loss of mitochondrial function promotes apopotosis by clearly 

identified pathways (Estaquier et al., 2012). This means that NO is cytotoxic at certain levels, 

which need further characterisation. However, NO also functions to protect cells from death, 

which includes the inhibition of calcification in VSMCs. Here evidence suggests its mode of 

action involves vasodilation, inhibition of tissue remodelling after injury, as well as inhibition 

of vascular disease pathology. 
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Table 1.4 & 1.5 below summarised primary evidence to support the functioning of NO as an 

inhibitor or a promoter of vascular calcification 
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Table 1.4: Primary evidence to support the functioning of NO as an inhibitor of vascular calcification 

Action Effect Cell / tissue / organelle / 
enzyme effect observed in Citation 

L-arginine transport reduced  Reduced NO contributes to hypertension 
Vascular endothelial cells using 
uremic plasma from end-stage 
renal disease patients 

(Xiao et al., 2001) 

Urea inhibits L-arginine transport 
Elevated blood urea nitrogen may lead to 
endothelial L-arginine deficiency in vivo, 
chronic kidney disease leads to hypertension 

Bovine aortic endothelial cells (Wagner et al., 
2002) 

Inhibition of arginase slows the 
progression of renal failure. Arginase 
limits NO production 

Increase of NO production protects against 
endothelial cell damage Rat with kidney ablation (Sabbatini et al., 

2003) 

NO-mediated dilation of coronary 
arterioles is inhibited in hypertension by 
an increase in arginase activity in 
endothelium, which limits l-arginine 
availability to e/iNOS for NO 
production. 

NO production and NO mediated blood 
vessel dilation reduced in hypertension Pig coronary arterioles (Zhang et al., 

2004) 

 
 
Inhibiting arginase or supplementing 
with L-arginine restored endothelial 
vasodilation 

Enhanced vascular arginase activity 
contributes to endothelial dysfunction 

 
 
Arteriole endothelium from rats 
with salt-induced hypertension 

 
 
(Johnson et al., 
2005) 

Chronic renal disease patients had low 
excretion of NO 

Hypertension is linked to reduced NO 
production Human renal disease patients (Schmidt & 

Baylis, 2000) 
Patients with end-stage renal disease 
have low NO production 

NO production contributes to increased 
blood pressure in end-stage renal disease Human renal disease patients (Schmidt et al., 

1999) 
NO inhibits transcription of matrix 
metalloproteases in a dose dependent 
way 

NO acts as a negative regulator in 
endothelial migration and tissue remodelling Endothelial Cells (Chen & Wang, 

2004) 
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NO donors significantly reduced MMP-2 
production NO reduces tissue remodelling Microvascular endothelial cells (Milkiewicz et al., 

2006) 
iNOS inhibition resulted in increased 
expression of MMP-9 

Reduced NO levels promote tissue 
remodelling  Rat aorta smooth muscle cells (Knipp et al., 

2004) 

MMP inhibitors decreased calcification 
of aorta rings from normal and chronic 
kidney diseased rats. 

MMP-2 and MMP-9 promote aorta 
calcification. NO inhibits calcification due 
to MMP downregulation noted in 
(Milkiewicz et al., 2006 and Knipp et al., 
2004) 

Rat aorta rings (Chen et al., 
2011) 

NO prevents differentiation of VSMCs 
into osteoblastic cells by inhibiting TGF-
beta signalling through a cGMP-
dependent pathway 

NO limits vascular calcification Murine vascular smooth muscle 
cells 

(Kanno et al., 
2008) 

NO inhibits angiotensin II-induced 
migration of smooth muscle cells NO limits artherosclerosis pathology Rat aortic smooth muscle cells (Dubey et al., 

1995) 
NO generating vasodilators inhibit 
mitogenesis and proliferation of smooth 
muscle cells 

NO limits artherosclerosis pathology Rat vascular smooth muscle 
cells 

(Garg & Hassid, 
1989) 
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Table 1.5: Primary evidence to support the functioning of NO as a promoter of vascular calcification 

 

Action Effect Cell / tissue / organelle / 
enzyme effect observed in Citation 

Nitrosation of mitochondrial complex-I  Protons leakage, increased 
permeability and apoptosis 

Macrophage targeting 
tumour cells 

(Lancaster & Hibbs 
1990) 
 

Nitrosation of mitochondrial complex-I  Cytotoxicity Macrophage targeting 
tumour cells (Hibbs et al., 1988) 

Inhibition of mitochondrial iron-sulphur  Cytotoxicity Macrophage targeting 
tumour cells (Drapier & Hibbs, 1988) 

Cytostasis and respiratory inhibition Cytotoxicity Macrophage targeting 
tumour cells (Stuehr & Nathan, 1989) 

Inhibition of mitochondrial electron transport Cytotoxicity Macrophage targeting 
tumour cells 

(Granger & Lehninger, 
1989) 

NO targets enzymes 
 Enzyme damage Not tested in cells – enzyme 

only (Henry et al., 1993) 

NO targets ubiquinol-cytochrome c reductase 
activity Enzyme damage Not tested in cells – enzyme 

only (Welter, Yu & Yu, 1996) 

NO damages mitochondrial cytochrome 
oxidase Enzyme damage Not tested in cells – enzyme 

only (Sharpe & Cooper, 1998) 

 
S-nitrosylation of mitochondrial enzyme 
complex I 

 
Inhibition of respiration, 
cytotoxicity 

 
Macrophage 

 
(Clementi et al., 1998) 

Inhibition of complex I activity and S-
nitrosylation of glyceraldehyde-3-phosphate 
dehydrogenase and glutathione reductase 

inhibition of respiration Human fibroblast cell lines (Beltran et al., 1998) 

Inhibition of respiration  Oxygen consumption reduced, 
hypoxia, cytotoxicity Macrophage (Orsi et al., 2000) 

NO reacts with cytochrome c oxidase Enzyme damage Not tested in cells – enzyme 
only (Boelens et al., 1983) 
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NO reacts with Fe2+ oxidase Enzyme damage Not tested in cells – enzyme 
only 

(Blackmore, Greenwood &. 
Gibson.,1991) 

NO inhibits cytochrome oxidase Inhibition of respiration Rat skeletal muscle 
mitochondria (Cleeter et al., 1994) 

NO deenergizes mitochondria Inhibition of respiration Liver and brain 
mitochondria 

(Schweizer & Richter., 
1994) 

Reversible inhibition of respiration by 
competition with cytochrome c oxidase Inhibition of respiration Rat heart mitochondria (Borutaité & Brown., 1996) 

Cytochrome oxidase activity inhibited, 
increased production of O2- and H2O2 

Inhibition of respiration Rat heart mitochondria (Poderoso et al., 1996) 

 
 
Inhibition of electron transport chain, 
regulation of mitochondrial oxygen uptake and 
superoxide anion, peroxynitrite formation 

 
 
Inhibition of respiration 

 
 
Rat heart 

 
 
(Poderoso et al., 1998) 

Mitochondrial proton leakage increased 
 

Irreversible inhibition of 
respiration Rat brain mitochondria (Brookes et al., 1998) 

iNOS induced in damaged tubules in late-stage 
kidney disease 

Apoptosis may increase in 
kidney tubules due to increased 
NO 

Human kidney (Qiu, Sinniah & Hsu., 2004) 

NO accumulates in vascular cells 
NO-induced depression of 
chondrocyte respiration, which 
may lead to mineralization 

Human chondrocytes (Johnson et al., 2000) 

A dose dependent delayed cell death occurred 
in osteoblasts subjected to peroxynitrite 

Superoxide and nitric oxide react 
to produce peroxynitrite. Murine osteoblasts (Kelpke et al., 200) 

 
Calcium phosphate activated iNOS generating 
NO in a dose dependent manner in vitro  

 
NO production increases in 
calcifying environment 

 
Cultured chondrocytes 

 
(Ea et al.,2005) 
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Table below summarised biological half-life for different releasing NO donors 
 
 
  
Table 1.6: the biological half-life for different NO donors 
 
 

Nitric oxide donor Biological half-life 

SNP 115-119 seconds 
(Resting circulatory half- life) 
(Desoky, Derendorf & Klotz, 2006)  

 

 (DETA NONOate/NOC-18) 

 

 

20–22 hours (Chen and Wang, 2004, 
Milkiewicz et al., 2006). 
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1.8- Aims and objectives:  

The main aim of this PhD programme is to determine whether NO production contributes to 

the calcification process in vitro (VSMCs) and establish whether excessive NO production 

exacerbates VC. Thus this study aims to investigate the relationship between NO/ iNOS 

expression and VC in VSMCs cultures. Selective pharmacological inhibitors of iNOS, such 

as GW274150, will be used in studies to block NO production. In addition, NO donors with 

defined NO releasing profiles will be used in parallel studies to establish whether the profile 

and/or levels released determine either the inhibition or development and degree of 

calcification. It is possible that modulators of NO levels may have an impact on VC.   

Confirmation of HA crystals formed by calcification inducers alone, or with/ without 

inflammatory mediators, NOC 18 and SNP will be investigated using ARS. Further 

characterisation of HA crystals will be conducted by FT-IR spectroscopy through 

determination of specific spectrum/wave number (cm-1) characteristic of HA crystals.  Where 

calcification is enhanced, we will aim to establish whether known pro-calcific markers such 

as Runx2 are induced. It is also intended that signalling pathways such as those involving 

kinases (p38 MAPK) known to regulate iNOS expression will be investigated.
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2.Materials and Methods: 

2.1- Drugs and Reagents:  

Materials used in cell culture were Dulbecco’s Modified Eagles Medium (all ingredients of 

DMEM see page 342), foetal bovine serum (FBS; containing growth factors, low gamma 

globulin (immunoglobulin), penicillin (100U ml-1) and streptomycin (100 µg ml-1), and 

Trypsin-EDTA (10X), liquid (0.5% Trypsin in 5.3 mM EDTA). All these reagents were 

purchased form (GIBCO, Loughborough, UK). Primary smooth muscle-22 alpha actin 

(SM22α) anti-SM22 alpha antibody rabbit polyclonal, anti-Runx2 antibody, phospho-p38 

MAPK rabbit mAb, phospho-Akt rabbit mAb, and phospho-p44/42 MAPK (Erk1/2) rabbit 

mAb were purchased from (Abcam PLC, Cambridge, UK). Furthermore, iNOS mouse 

monoclonal antibody was purchased from BD (Biosciences, Oxford, UK). Other standard 

laboratory reagents such as calcium chloride dihydrate for cell culture use, β-

glycerophosphate disodium salt hydrate, lipopolysaccharides from Escherichia coli, 

diethylenediamine/nitric oxide adduct, sodium nitroprusside dehydrate  ,  phosphatase 

inhibitor cocktail 2,  protease inhibitor cocktail, SB203580,  LY294002, ARS, horse radish 

peroxidase (HRP) conjugated β-actin antibody, and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-

diphenyl-2H-tetrazolium bromide (MTT) for cytotoxicity use were purchased from Sigma 

Aldrich (Dorset, UK).  Inducible nitric oxide synthase inhibitor GW274150 was a gift from 

GlaxoSmithKline. Recombinant rat – interferon-gamma (IFN-γ) was purchased from Merck 

Chemicals (Nottingham, UK). 

2.1.1- Preparation of complete cell culture medium, phosphate buffer saline (PBS) and 
trypsin: 
 

 Dulbecco’s Modified Eagles Medium (89%) was used in all the studies and was 

supplemented with 10% FBS, penicillin (100U ml-1) and streptomycin (100 µg ml-1). This 

solution will be referred to as complete culture medium from here on. Working stock PBS 
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was prepared by a 1:10 dilution of 10X stock with autoclaved double distilled water (DDW). 

Trypsin-EDTA (10X) was diluted 1:10 to give a 1X working solution using 1X PBS solution. 

All solutions were stored at 40C and used within 6 weeks of preparation except complete 

culture medium was used only for 15 days.  

2.1.2 Isolation of rat aortic smooth muscle cells: 

Male Sprague-Dawley rat were euthanized in a carbon monoxide chamber as per schedule 1 

following the University and home office guidelines. The aorta was isolated into complete 

culture medium as followed from Wileman et al., (1995). Each aorta was then stripped of fat 

and connective tissues using sterile scalpel blades in a class II tissue cabinet. The tissues were 

then cut longitudinally to expose the endothelial layer, which was removed by gentle 

scraping. Each aorta was then cut into approximate sizes of 2-4mm and 4 to 6 explants placed 

into a T-25 tissue culture flask with the luminal surface against the flask surface. 5 ml of 

complete culture medium was placed into each flask, avoiding dislodging the explants called 

passage 0 (P0).  The flasks were kept standing upright in a cell culture incubator maintained 

at 37oC for approximately 4 hours to ensure firm attachment of the tissues. The flasks were 

subsequently inverted ensuring that all the aortic explants were submerged in medium and 

left for 7 to 14 days to allow cells to migrate from the explants onto the flask surface (Figure 

2.1). The culture medium was changed every 72 hours to ensure adequate nutrient 

supplementation. Cells were eventually subcultured as explained in section 2.1.3, transferred 

to T-75 flask and labelled as P1 (Figure 2.2). Subcultured was repeated to two times and 

labelled as P2 and P3 to make sure the majority of cells were used smooth muscle cells.  

Isolated cells were also characterised routinely by immunostaining against SM22α as 

explained is section 2.2 to confirm the phenotypic lineage. A representative photograph of 

cells migrating from a tissue explants and growing in culture is shown in Figure 2.1 and a 

partially confluent flask of cells in culture is shown in Figure 2.2.  
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Figure 2.1: Migration of smooth muscle cells from aortic explants in a T-25 cell culture 
flask at passage 0. Images were captured at 40X magnification using an Olympus 
inverted light microscope with a GX capture software.  

 

 

 

 

 

 

 

 

Figure 2.2: Rat aortic smooth muscle cells growing in a T-75 cell culture flask at passage 
1. 
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 2.1.3- Subculture of rat aortic smooth muscle cells:  

Cells were routinely subcultured at 80-90% confluency to avoid an over-confluent and 

overgrown state. Tissue culture flasks were routinely subcultured (P3- P6) and plated either 

in 12 or 24 well cell culture plates for further experimentation as required. The cell culture 

medium was aspirated from the flasks and the cells washed three times in excess of 1X PBS 

(5ml) followed by the addition of 3 ml of 1X trypsin. Excess of trypsin was removed within 

30 second after addition, leaving about 0.5 ml in the flasks which were incubated for 3-5 

minutes at room temperature. Flasks were swirled occasionally to ensure that the trypsin was 

in direct contact with cells.  At the end of the incubation period, each flask was gently tapped 

on the sides to lift monolayers of cells and 2.66 ml complete cell culture added to inactivate 

the trypsin. Suspend monolayers were dispersed into single cells using a Pasteur pipette.  A 

further 12.34 ml of medium was added and cell counting performed as explained in section 

2.1.4 prior to plating in tissue culture plates for further experimentation or into culture flasks 

to generate further stocks.   

2.1.4-Cell counting and plating for experimentation:  

Following trypsinisation cells were centrifuged at 40C at 1100 rpm for 5 minutes. The cell 

pellet was re-suspended in 2 ml of fresh cell culture medium. 10 µl of the cell suspension was 

mixed with 10 µl of trypan blue (0.08 %) in an eppendorf tube before loading into a cell 

counting chamber for counting on a Countess™. The total cell count was determined as 

following: 

Total cells in chamber A = 5.8 x105 / ml   (living cell: 4.5 x105 /ml, viability of cells: 79%)  

Total cells in chamber B = 7.3 x105 /ml (living cells: 6.3 x105 /ml, viability of cells: 86%).  

Average total cell number per ml = 5.4 x105 cells 
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To plate the cells needed per well (A) the volume containing the required cell number was 

determined as follows: 

Total cells / ml determined from above = 5.4 x105 cell /ml 

Cells needed per 24 well = 60,000 

Thus, if 1 ml of stock cell suspension contains 5.4 x105 cell, then to get 60,000 cells we will 

need 60,000 x 1000/5.4 x105 = 111.1 µl 

For a full 24-well plate the volume of cell suspension required = 111.1 x 24 = 2.67 ml.  

This volume was then made up to 24 ml with complete DMEM and plated into the wells. 
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2.2- Identification of smooth muscle cells isolated from rat aorta:  

Isolated and subcultured cells were stained for the expression of the smooth muscle cell 

marker SM22α by immunostaining. Cells were plated in Lab-Tek wells and allowed to grow 

to ~40-50% confluency, before washing  3times (five minutes each) with 1X PBS and fixed 

with ice cold 100%  methanol for 20 minutes. After fixing, cells were then incubated with 5% 

bovine serum albumin (BSA) consisting of 100mM Tris–Base (pH 7.5), 100mM NaCl, 

Tween-20 (0.1 % equivalent to 100µl) to block nonspecific binding of primary SM22α 

antibody. Cells were then incubated with the primary antibody at 1:200 dilution into 5% BSA 

in PBS for 1 hour at room temperature on an orbital shaker. Cells were washed 3times with 

1X PBS and incubated at room temperature for an hour with goat an anti-rabbit IgG 

secondary antibody (Alexa Fluor® 488) at a dilution of 1:1000 in 5 % BSA. Excess of 

secondary antibody was removed and the cells washed 3X with 1X PBS before being 

visualised using a Nikon Confocal Microscope TE-2000U at a magnification of 100x. A 

representative photograph of positively SM22α stained cells is shown in Figure 2.3. 

 

 

 

 

 

Figure 2.3: Stained smooth muscle cells isolated from rat aorta.  

Smooth muscle cells were plated in LabTek wells at passage 3, and allowed to grow to 40-
50% confluency. Cells were then incubated with the primary antibody (SM22α antibody) for 
1 hour and washed 3 times. This was followed by incubation with goat anti-rabbit IgG 
secondary antibody for an hour. The cells were then washed 3 times with 1x PBS before 
being visualised using a Nikon Confocal Microscope TE-2000U at a magnification of 
100x. The photograph is representative of cultures routinely obtained, and confirms the 
presence of smooth muscle cells which are predominantly positively stained.   
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2.3-Griess assay: 

The Griess assay was used to quantify nitrite in culture medium collected from cells 

following different experimental conditions. The Griess assay reagents consisted of reagent I 

which contained 0.2% N-1-naphthylethylenediamine dihydrochloride and reagent II 

containing 2% sulfalinamide +10% H3PO4.  The reaction of nitrite with 2% sulfalinamide 

+10% H3PO4 results in the formation of a diazonium salt which in turn  reacts with 0.2% 

naphthylethylenediamine dihydrochloride  producing  chromophoric azo-derivative (Pink 

colour)  (Green et al, 1982).  This reaction is summarised in Figure 2.4.   

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.4: Detection of nitrite by the Griess assay. 
 

For the reaction, reagent I and reagent II were mixed in equal ratio. Nitrite standards were 

prepared by dissolving 0.0345g of sodium nitrite (NaNO2) in 5 ml of complete culture 

medium to give a 100mM stock solution which was further diluted to 1mM and used to 

construct the standard curve as shown in the Table 2.1.    
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Table 2.1: Preparation of a nitrite standard curve.  

Concentration 
of standard 

NaNO2  (mM) 
required 

NaNO2 
(1mM) in (µl) 

Complete Culture 
Medium  (µl) 

Final Concentration in 
100µl added to each well 

(nmole/100µl) 

0.1 100 900 10 

0.05 50 950 5 

0.04 40 960 4 

0.03 30 970 3 

0.02 20 980 2 

0.01 10 990 1 

0 0 1000 0 

 

100 µl of each standard solutions and unknown samples were added in triplicates in 96 well 

plate followed by the addition of 100 µl of the Griess reagent mix.  The plate was incubated 

at room temperature for 15 minutes and absorbance values read at 540nm using a MultiSkan 

Ascent Plate Reader (Labsystem). A representative standard curve is shown in Figure 2.5. A 

regression equation was used to quantify the amount of nitrite present in samples. 
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Figure 2.5: Nitrite standard curve. 

The nitrite standard curve was constructed as described above. The average absorbance 
measurement of the blank was subtracted from the absorbance values of each standard used. 
The average of triplicates was plotted against the NaNO2 concentrations used. This standard 
curve is the representative of several Griess assays carried out during the course of the 
studies. 
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2.4- Cell Lysis: 

10X lysis buffer was prepared using 10 % of sodium dodecyl sulfate (SDS) + 10 mM of Tris-

Base at (pH 7.5) and stored at room temperature. When required, the stock was diluted with 

DDW by ten folds to get the working solution. The lysis buffer was then pre heated to 950C 

prior to addition to cell monolayer kept on ice. Cell lysates were then collected in eppendorf 

tubes and subjected to sonication for 30 second with 30 second interval for 5 times. Lysates 

were reheated and centrifuged using a bench-top microfuge at 10000 rpm for 5 minutes. The 

supernatant was collected for analysis and the cellular debries discarded.  

2.5- Protein Assay:  

Total proteins were quantified using the bicinchoninic acid assay (BCA). Its principle is bases 

on the reduction of cupric ions (Cu+2) to cuprous ions (Cu+1) by proteins in an alkaline 

medium which is a selective and sensitive colorimetric detection of the cuprous ions. 

Chelation of one Cu+1 ion by two molecules of BCA results in purple colour formation. The 

intensity of the colour is proportional to the amount of protein in the lysate sample. The 

reaction is shown in Figure 2.6 (Smith et al., 1985). A serial dilution of BSA stock solution 

(10mg/ml) in water was used to construct a protein standard graph within a concentration 

ranging of 0.2-6 µg/µl as shown in Table 2.2.  
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Figure 2.6: Detection of protein by BCA reagents. 
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Table 2.2: Preparation of protein standard graph using BSA. 

No. 

Protein per 
well 

 (µg) 

10mg/ml 
BSA 

(µl) 

DDW 

(µl) 

Final  
concentration 

(µg/µl) 

1. 0 0 1000 0 

2. 1 20 980 0.2 

3. 2 40 960 0.4 

4. 3 60 940 0.6 

5. 5 100 900 1 

6. 10 200 800 2 

7. 15 300 700 3 

8. 20 400 600 4 

          9. 25 500 500 5 

         10. 30 600 400 6 

 

The BCA reagent was prepared by mixing reagent B and A in a 1:50 ratio. A non-sterile 96 

well plate was then set up as follows: 

BSA Standards: 5µl standard solution + 5µl 1X lysis buffer + 100µl (BCA Reagent Mix) 

Samples: 5µl DDW +5µl lysate sample + 100µl BCA.  

The plate was then incubated at room temperature for 40-45 minutes on a shaker before 

reading the absorbance at 620 nm. The absorbance readings of the standards were used to 

construct the standard curve (Figure 2.7) and regression equation was used to calculate 

protein in unknown samples.  
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Figure 2.7: Protein standards curve. 

The protein standard curve was constructed as described above. The average absorbance 
measurement of the blank was subtracted from the absorbance values of each standard used. 
The average of triplicates was plotted against the BSA concentrations used. This standard 
curve is representative of the protein assays carried out during the course of the studies. 
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2.6- Calcium assay using the QuantiChrom™ calcium assay kit (DICA-500 ™): 

In parallel to the BCA assay, cell lysates were subjected to calcium quantification using the 

QuantiChrom™ calcium assay kit (DICA-500). A phenolsulphonephthalein dye in the kit 

forms a very stable blue coloured complex specifically with free calcium. The intensity of the 

colour, measured at 620 nm, is directly proportional to the calcium concentration in the 

sample. The concentration of calcium can be quantified by comparing the intensity of the cell 

lysate sample a standard curve/line of best fit. The standard curve is obtained from reactions 

of the phenolsulphonephthalein dye with known serial dilutions of free calcium, as shown in 

Table 2.3. The equation of the graph for the line of best fit was used to determine the 

concentration of free calcium in the cell lysates. 

Calculation calcium concentration in nanomoles (nM): 

20 mg in 100ml of calcium is equivalent to 5mM according to the protocol  

5000 μmoles in 1000 ml    (As concentration is always in 1liter) 

Then in 1 ml is 50μM,   therefore, 5000μM in 1 litre      or 5μM in 1ml           or 5nM in 1μl 

Therefore, for 20 mg/dl is equivalent to 5nM/μl. So we use 5μl of standards which hence 

25nM for 20mg/dl concentration of calcium. 
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Table 2.3: Preparation of a calcium standard graph: 

 

5µl of standards or cell lysates were added in triplicate into 96 well plates. Equal proportions 

of reagent A and B were mixed and 200µl added to each well. The plates were then incubated 

for 5 minutes at room temperature and absorbance values were recorded at 620 nm as per 

manufacturer guidelines using a MultiSkan Ascent Plate Reader (Labsystem). An example of 

a standard curve routinely produced is shown in Figure 2.8.  

 

 

No. 

Volume of calcium standard 
solution (5mM or 20mg/dl) 

 (µl) 

Volume 
of DDW 

in   

(µl) 

Final concertation 
(mM) 

1. 100 0 5 

2. 80 20 4 

3. 60 40 3 

4. 40 60 2 

5. 30 70 1.5 

6. 20 80 1 

7. 10 90 0.5 

8. 0 100 0 



 

 

58 
 

 

Figure 2.8: Calcium standard curve. 

The Calcium standard curve was constructed as described above. The average absorbance 
measurement for the blank was subtracted from the absorbance values of each standard used. 
The average of the triplicates was plotted against the calcium concentration used. This 
standard curve is representative of several calcium standards constructed during the course of 
the studies. The equation of the graph for the line of best fit was used to determine the 
concentration of free calcium in the cell lysates.  
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2.7- Determination of cytotoxicity by MTT assay: 

This assay was used to determine the relative cytotoxicity of various treatment conditions on 

cells by monitoring the metabolism of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-

tetrazolium bromide (yellow colour) to form formazan (purple colour) which is formed by 

viable cells as shown in Figure 2.9. The intensity of the colour is directly proportional to the 

viability of the cells (Mosmann, 1983). 

 

 

                     Tetrazolium salts (Yellow colour)               Formazan (Purple colour) 

Figure 2.9: The formation of formazan from MTT metabolism. 

A 5mg/ml stock of MTT solution was prepared in 1X PBS, which was diluted 1:10 in 

complete cell culture medium to achieve a final concentration of 0.5 mg/ml. Cells incubated 

under different experimental condition were then incubated with MTT (0.5 mg/ml) in fresh 

culture medium for 4 hours. Cellular supernatant were discarded and formazan complexes 

dissolved using 200µl of iso-propanol. 200µl of purple coloured isopropanol were then 

transferred into a 96 well plate and read at 540 nm. Absorbance of control cells (without any 

treatment) were used a 100% to calculate relative cellular viability.  
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2.8- Alizarin Red Staining for mineralised plaques: 

 Alizarin Red Staining or 1, 2-dihydroxyanthraquinone is one of the dihydroxyanthraquinone 

which exchanges hydrogen for hydroxyl (OH) resulting in the formation of 1, 2-

dihydroxyanthraquinone. 2g of alizarin red staining was dissolved in 100 ml DDW and the 

pH was adjusted to between 4.1 - 4.3. 1X of ARS was prepared from the stock by diluting in 

DDW. For each experiment, RASMCs were incubated in the presence of CB (consisting of 7 

mM CaCl2 and 7 mM β-GP) with or without LPS, IFN-γ or both. Cells were fixed at the end 

of the relevant incubation periods and incubated with 10% formaldehyde for 15 minutes at 

room temperature. After fixing, cells were washed three times (two minutes each) using 

DDW. The dye solution was added and incubated with the RASMCs for 20-30 minutes at 

room temperature. After this period, the ARS was removed and 1 ml of DDW was added to 

the wells.  The amount of ARS added was dependent on the type of plate used. For instance, 

with 24 wells plate 500µl/well ARS was added. Stained cells were observed using the 

Olympus inverted microscope at 10x magnifications and captured using the GX capture 

programme and software. A representative photograph of ARS stained plaques is shown in 

Figure 2.10. 
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Figure 2.10: Staining of calcific plaques by ARS on rat cultured smooth muscle cells.  

Rat aortic smooth muscle cells cultured to ~90% confluency were incubated with a 
combination of 7 mM CaCl2 and 7 mM β-GP for 5 days. Cells were treated with ARS at the 
end of the treatment period. The images are representative of 3 individual experiments which 
were taken with an Olympus inverted microscope at 10x magnification and captured using 
the GX programme. 
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2.9. Identification of HA crystal [Ca10 (PO4)6(OH)2] by FT-IR: 
 

Fourier Transform Infrared Spectroscopy was used in parallel to investigate the chemical 

nature of deposited minerals on cellular monolayers. Chemical bonds within any molecule 

give particular vibrational frequencies upon exposure to infra-red beam which can be used to 

identify the molecule or complex. Thus, using FT-IR allows for the detection of HA crystals 

formed when cells calcify following incubation with calcification buffer. 

Cells were plated in T-25 flasks and incubated under different experimental conditions. At 

the end of the incubation period, the medium was aspirated and the cells washed gently in 

absolute ethanol. Cellular monolayers were then scrapped in methanol using a rubber 

policeman cell scrapper and centrifuged at 2000rpm for 2 minute to make a pellet. The pellet 

was left to dry out completely at room temperature prior to FT-IR analysis. A Perkin Elmer 

FT-IR spectrometer-Frontier was used to analyse the chemical characteristics of mineral 

plaques including HA complex which was identified at a wavenumber of 1080 -1089 (Figure 

2.11). Obtained spectra were then analyse using Thermo scientific Omnic software. Other 

molecules identified include amide I (-CON )  at wavenumber 1620-1632 cm-1,  calcium 

carbonate (-CO3
2-) at wavenumber 1400-1480 cm-1 and phosphate  at wavenumber 1154, 

1075,1046, and 1010  cm-1(Figure 2.11). 

Identifying peaks:  

The wavenumbers identifying a compound by the presence of a specific peak in the FT-IR 

output were based on the literature review listed in the table 2.4. For example, the asymmetric 

stretching of phosphate groups (PO4
3-) is observed by a peak of absorption (1075 cm-1) 

(Destainville, et al., 2003) while HA crystals are observed at wavenumber (1085 cm-1) (Alò 

et al., 2009; kwon et al., 2003).  
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Table 2.4: Spectrum of molecules detected by FT-IR in cell cultures/ tissues  

 

 

Figure 2.11: Spectrum of HA crystal formed in RASMCs. 

RASMCs cultured to approximately 90% confluency were incubated with a CB for 5 days 
(containing 7 mM CaCl2 and 7 mM β-GP). Thereafter these were scraped from the plate, 
washed with 100% ethanol and a cell pellet prepared by centrifugation, before being 
subjected to FT-IR analysis. The cell pellet was scanned using a Perkin Elmer FT-IR 
spectrometer-Frontier. Infra-red absorption by the pellet was measured, and the peak at 1080-
1089 cm-1, confirming the presence of HA crystals detected by Omnic software. The trace is 
representative of 3 individual experiments.  

Data from Literature review 

Stretch or bend of chemical 
compound 

wave number 
(cm-1) 

Citation 

Amide I-(CON stretch), 
Amide II (NOH bend), 
Amide III (COH stretch, NOH 
bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Alò et al., 2009; Dritsa, 
2012; Lin et al., 2007) 

Calcium Carbonate 
( Calcite -CO3

2-) 

 
1430-1480 

 
(Raynaud, et al., 2002) 

Tricalcium phosphate (TCP), 
β-Tricalcium phosphate (β- TCP) 

700-750, 
690 (Destainville, et al., 2003) 

Phosphate  (PO4
3-) 

1154, 1075,1046, 
1010 & 1020 or 

975 

(Destainville, et al., 2003; 
Han J-K., et al., 2006; 

Mobasherpour and 
Heshajin,2007; 

Raynaud, et al., 2002) 

HA crystal C10(PO4)6(OH)2 1080 - 1089 (Alò et al., 2009; Kwon, et 
al.,2003) 
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2.10- Western blot: 

In western blotting, polyacrylamide gel (SDS-PAGE) is used to separate specific proteins that 

are transferred to a polyvinylidene fluoride (PVDF) membrane, making it easy for the antigen 

to bind to the antibody (Lee et al., 2000). There are normally two antibodies (primary and 

secondary) used for detecting the specific protein, as depicted in Figure 2.12.  

 

                                  

 

 

 

 

 

Figure 2.12: Detection of proteins by western blotting 

Glass plates were set up for the gel apparatus and the gel cast starting with the resolving gel 

using: DDW (2.32ml/gel), 30% acrylamide (1.33ml/gel), resolving buffer (1.25 ml/gel) 

(1.5M Tris-HCl, pH8.8), 10% SDS (50µl/gel), 10% ammonium per sulphate (APS) (50µl/gel) 

and tetramethylethylenediamine (TEMED; 3µl/gel). The stacking gel was prepared next 

using DDW (1.22ml/gel), 30% acrylamide (0.26ml/gel), stacking buffer (0.5 ml/gel) (0.5M 

Tris-HCl, pH6.8) and 10% SDS (20µl/gel). There was also 10% ammonium per sulphate 

(APS; 10µl/gel) and TEMED (2µl/gel). A well-forming comb was inserted and the gel 

allowed to set, forming wells for loading samples. Once the stacking gel had polymerised the 

comb was removed and the gels transferred into the electrophoresis apparatus filled with 1x 
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tank buffer consisting of 1X ultra-pure 0.025 M Tris/ 0.192 M Glycine/ 0.1% SDS. Samples 

were loaded into the wells ensuring 20 µg of protein was loaded into each lane. 

The apparatus was run at 220v and 20 mA per gel until the samples migrated through the 

stacking gel. At this point, the current was changed to 25 mA per gel and the samples allowed 

to resolve through the resolving gel. The latter was then cut to size, eliminating the stacking 

gel.  Filter papers and PVDF membrane were cut to the size of the gel which was normally 6 

cm in length and 9 cm in width. The PVDF membrane was soaked in methanol for 15 - 20 

sec and then washed in DDW to remove excess methanol. The filter papers and gel were 

soaked in 1X transfer buffer prepared from a 10X stock consisting of 48mM Tris base (pH 

7.5), 39mM glycine and 0.0375% SDS. The filter papers, membrane and resolving gel were 

set up in a sandwich as shown in Figure 2.13.  Transfer buffer was poured onto the sandwich 

and a rolling pin used to remove any bubbles between the sandwich. The transfer cell was 

then connected to the mains and run for 15-20 minutes at 25 mA/gel.  

 

 

Figure 2.13:  Sandwich of filter paper, membrane and gel for western blotting. 

After 15 minutes, the membrane was removed from the transfer cell into blocking buffer 

consisting of 10 ml washing buffer (10 mM Tris-Base pH 7.5 and 100 mM NaCl) , 90 ml 

DDW, 100µl tween and 5g fat free milk or 3 g of BSA (for transcription factor or signalling 

molecule). The membrane was blocked for 1 hour before placing in a hybridization bag and 

sealed with the primary antibody of choice which was either iNOS antibody diluted 1:2500 in 

blocking buffer, Runx2 antibody diluted 1:200 in blocking buffer, phosphor-p38 MAPKs 



 

 

66 
 

antibody diluted 1:1000 in blocking buffer, phospho-Akt antibody diluted 1:1000, or a 

phosphop44/42 MAPK antibody diluted 1:2000 in blocking buffer.  The membrane was then 

incubated on a shaker overnight at 4 0C in the cold room. At the end of this period, the 

membrane was removed from the hybridization bag, washed for 30 minutes, changing the 

washing buffer every 10 minutes before incubating with HRP conjugated β-actin antibody at 

a dilution of 1:10,000 in blocking buffer. Simultaneously, anti-biotin diluted at 1:1000 in 

blocking buffer dilutions and appropriated HRP conjugated secondary antibody at 

manufacturers recommended dilution were also added to the PVDF membrane for 1 hour at 

room temperature. The membrane was washed again for 30 minutes with the washing buffer 

changing every 10 minutes.  After the last wash, the membrane was incubated with  

electrochemiluminescence  (ECL) detection reagent. The reagents were prepared as reagent A 

(100 mM Tris pH 8.5- 5ml /gel + 25 µl 90 mM p- coumaric acid+ 50 µl 250 mM luminol) 

and reagent B (100 mM Tris PH 8.5- 5ml /gel + 3µl 30% H2O2). Both ECL reagents A and 

reagent B were mixed prior to addition to the PVDF membrane for 1-5 minutes before 

exposing the membrane to  an auto-radiographic film in a cassette for 5-30 seconds (detecting 

iNOS) or 1-1.5 minutes (detecting β-actin).  The film was subsequently developed using a 

developer solution for 30 sec, washed with water and placed into the fixer for 1 min before 

washing again in water and allowed to dry in air at room temperature. The bands visualized 

were quantified using scanning densitometry. 
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2.11- Data analysis:  

All the experiments were performed at least three times except stated otherwise.All the 

experiments were performed at least three times except when stated otherwise. The letter (n) 

in each legend represents the number of aorta isolated from the male Sprague Dawley rat. An 

experiment denotes an independent culture (P3-P6) from a different rat. The data is expressed 

as means ± S.E.M. Statistical significance of two means was performed by independent or 

paired t test as appropriate. Statistical differences of three or more means was tested using 

one way analysis of variance (ANOVA) followed by post hoc Dunnett’s test. Significance 

was tested at 95% confidence interval. Significance were denoted as *, **, *** or #, ##, ### 

if p values are less than 0.05, 0.01 and 0.001 respectively. All statistical analysis was carried 

out using GraphPad Prism version 5.0. 
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CHAPTER  III  

RESULTS 
 

Regulation of vascular calcification and 
induced nitric oxide synthesis by 
calcification inducers and/or inflammatory 
mediators 
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3.1- Introduction: 

As already discussed in the introduction, the role of NO in the development of VC is 

controversial with mixed reports claiming that NO promotes as well as inhibits the process. 

Moreover, where levels of NO have been shown to change, it has not been clearly 

demonstrated whether this is a consequence of or a prerequisite for calcification. To address 

these issues a series of experiments were designed and conducted in this thesis aimed 

specifically at establishing unequivocally whether VC is either promoted or blocked by NO. 

To start with, models of in vitro calcification, and of iNOS expression and NO production 

had to be personally established for this project using protocols that have been routinely used 

in our laboratory. The establishment of these models is described in this chapter. Further 

studies were also conducted to determine whether inflammatory mediators such as LPS 

and/or IFN-γ regulate calcification induced by CaCl2 (7mM), β-GP (7mM) or in combination 

(CB). Additionally, other experiments were conducted to investigate how iNOS expression 

and NO production may be regulated under calcifying condition.  

To induce calcification, subconfluent cells in culture were incubated with CaCl2 (7mM), β-

GP (7mM) alone or in combination. Calcification was monitored and detected by measuring 

the accumulation of calcium, staining HA crystal formed with ARS and by conducting FT-IR 

analysis of apatite crystals. The induction of iNOS was initiated using LPS and IFN-γ which 

our group had demonstrated causes sustained induction of iNOS in cultured RASMCs 

(Wilemen et al., 1995).  
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3.2: Experimental protocol:  

Cells were cultured and quantification of NO production, total protein and calcium 

measurements as well as western blotting were performed as described in chapter 2, section 

2.3, 2.5,  2.6 , and 2.10, respectively. In parallel experiments, ARS and FT-IR analysis was 

also performed as previously described in the method (sections 2.8 and 2.9, respectively). 

3.2.1- Induction of calcification and nitric oxide synthesis: 

Rat aortic smooth muscle cells  were cultured as described previously (Methods, Section 

2.1.2 and 2.1.3) and seeded in 24 well plates to reach a confluency of ~90 % in 72 hours. 

Calcification was induced by incubating cells with either CaCl2, β-GP or a combination of 

both at 7mM each (CB) for 24 hours followed by the addition of same agents again at 48 

hours. To establish the induction of iNOS, cells were incubated with LPS (100µg ml-1) and/or 

IFN-γ (100 U ml-1) for 24 hours followed by the addition of same agents again at 48 hours. 

Changes in calcification, NO production and iNOS expression were evaluated over a time 

course of 1, 3, 5 and 7 days.  
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3.3-Results: 

 3.3.1- Induction of calcification of RASMCs using CaCl2, β-GP or in combination: 

Cells incubated with CaCl2 induced significant calcification throughout the time course of 1, 

3, 5 and 7 days. On the other hand, β-GP did not induced significant calcification compared 

to control at any of the time courses. Furthermore, the degree of calcification induced by β-

GP at all time points was lower when compared to CaCl2 alone or CB (Figure 3.1). This 

suggests that CaCl2 alone is able to induce calcification and the effect was significantly 

elevated to a maximum on day 5 (1.4 ± 0.2 nmole. µg-1 protein),  decreasing on day 7 (1± 

0.23 nmole. µg-1 protein) but remaining higher than control (0.19± 0.06 nmole. µg-1protein), 

β-GP (0.26± 0.04 nmole. µg-1 protein) or CB (1 ± 0.02 nmole. µg-1 protein) (Figure 3.1).   

In addition, the degree of calcification or at least the levels of calcium detected was not 

significant different between cells incubated with CaCl2 alone or in combination with β-GP.  
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Figure 3.1:  Induction of calcification of RASMCs using CaCl2, β-GP or in 
combination 

Cells were cultured to ~90% confluency and incubated either with culture medium alone 
(control), CaCl2 (7mM), β-GP (7mM), or in combination (CB) for 1 to 7 days.    Total 
calcium was quantified as described in the methods (Section 2.6). The data represents 
means ± S.E.M. from 4 experiments. *** denotes p< 0.001 when compared to control and 
#, ## denote p <0.05 and p< 0.001 as shown in the figures. 
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3.3.2- Staining of calcific plaques with ARS: 

Rat aortic smooth muscle cells were incubated with complete cell culture medium, CaCl2, β-

GP or CB for 5 days followed by staining with ARS described earlier (Chapter 2 section 2.8). 

Control cells and those incubated with β-GP did not reflected calcified plaques upon ARS 

staining. Interestingly, although CaCl2 induced a similar degree of calcification compared to 

CB, ARS confirmed that calcified plaques were evident only in cells incubated with the CB 

and not with CaCl2 alone (Figure 3.2).   

 

Figure 3.2: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated either with culture medium alone 
(control), CaCl2 (7mM), β-GP (7mM), or in combination (CB) for 5 days. Cells were treated 
with 1x ARS at the end of the incubation period as described in the methods (Section 2.8). 
The images are representative of 3 individual experiments which were taken with an inverted 
Olympus microscope at 10X magnification using the GX capture programme.  
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3.3.3- Detecting HA crystals by FT-IR analysis:  

The chemical nature of the calcified plaques was investigated by FT-IR spectroscopy. The 

spectra generated identified the presence of Amide-I, Amide-II, Amide-III and carbonate 

peaks at 1630-1637 cm-1, 1514.53-1522.37 cm-1, 1234-1243.99 cm-1, and 1430-1450 cm-1 

respectively in cell lysates analysed irrespective of the incubation conditions  (Figure 3.3). 

Cells incubated with CaCl2 reflected calcite (CO3
2-) with a peak at 1430-1480 cm-1 and in 

samples treated with β-GP phosphate  or mineral phosphate spectrum was detected at 1026, 

1075,1072, 1055,  1154, and 1158 cm-1.  Hydroxyapatite crystals usually detected within the 

range 1089 – 1080 cm-1 was not found in the conditions above. In contrast, HA was present in 

cells treated with CB and this was detectable at 1085 cm-1 (Figure 3.3). Defining peaks of 

various components detected following FT-IR analysis are summarised in Table 3.1. 
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Figure 3.3: FT-IR spectrum analysis of activated RASMCs. 

Cells were treated with medium alone or with calcification inducers (7mM CaCl2, 7mM β-GP or in combination- CB) for 5 days. Cells were 
washed and scraped with 100% ethanol at the end of the incubation period and subjected to FT-IR spectra analysis as described in the methods 
(Section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Table 3.1: Spectrum of molecules detected by FT-IR treated RASMCs with CaCl2, β-GP, or in combination:  

Data from Literature review Data from current studies 

Stretch or bend of chemical 
compound 

wave number 
(cm-1) 

Citation Expected Wave 
number (cm-1) 

Control CaCl2 β-GP CB  

Amide I-(CON stretch), 
Amide II (NOH bend), 
Amide III (COH stretch, NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Alò et al., 2009; Dritsa, 
2012; Lin et al., 2007) 

1620, 1625,1622, and 
1624 (Amide-I), 

1528,1531, and1537 
(Amide-II),1236 and 

1237(Amide-III) 

Present Present Present Present 

Calcium Carbonate 
( Calcite -CO3

2-) 

 
1430-1480 

 
(Raynaud, et al., 2002) 1450,1452, and 1472  

-CO3
2 Present Present Present Present 

Tricalcium phosphate (TCP), 
β-Tricalcium phosphate (β- TCP) 

700-750, 
690 

(Destainville, et al., 
2003) 

743  TCP 
693 β- TCP Not present Not 

present 
Not 

Present Present 

Phosphate 

1154, 
1075,1046, 

1010 & 1020 or 
975 

(Destainville, et al., 
2003; Han J-K., et al., 

2006; Mobasherpour and 
Heshajin,2007; 

Raynaud, et al., 2002) 

975, 1026, 1075,1072, 
1055,  1154, and 1158  

PO4
3- 

Present Present Present Present 

HA crystal C10(PO4)6(OH)2 1080 - 1089 (Kwon, et al.,2003: 
Alò et al., 2009) 1085 Ca10(PO4)6(OH)2 Not present 

Not 
present 

Not 
Present 

Present 
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3.3.4- Effect of LPS, IFN-γ alone or in combination (LPS+ IFN-γ) on NO production and 
iNOS expression: 
 

As expected, control cells did not produced NO or expressed iNOS throughout time course 

ranging from day 1-7. In addition, IFN-γ induced only marginal NO production that was 

more than in controls but lower than the levels induced by LPS (0.06 ± 0.01 nmole µg -1 

protein; p< 0.001) and did not altered significantly over the time course (Figure 3.4).   

In time course studies LPS induced NO elevated significantly on day 7 (0.19 ± 0.03M nmole 

µg -1 protein; p <0.01)  with not much difference in the levels detected between days 1, 3 and 

5 (Figure 3.4). When given in combination, LPS and IFN-γ significantly enhanced NO 

production in a time dependent manner well above that seen with either agent alone. Maximal 

NO production occurred on day 3 (0.20 nmole µg -1 protein; p <0.05) and these levels were 

maintained up to day 7(Figure 3.4).   
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Figure 3.4: Induction of NO production of RASMCs using LPS, IFN-γ, either alone or 
in combination.  

Cells cultured to ~90% confluency were incubated either with culture medium alone 
(control), LPS (100 μg ml-1), IFN-γ (100 U ml-1), in combination (LPS+IFN-γ) during a time 
course ranging from day 1 to day 7. Total NO was quantified as described in the methods 
(Section 2.3). The data represents means ± S.E.M. from 4 experiments. #, ## and ### denotes 
p< 0.05, p< 0.01, and p<0.001 respectively when compared to LPS alone.   
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Rat aortic smooth muscle cells were incubated under similar conditions as stated above and 

cell lysates were collected and subjected to western blotting to investigate the expression of 

iNOS. Similar to NO production control cells did not express iNOS at any of the time points. 

Interferon gamma alone did not induced iNOS expression or at least not sufficiently to be 

detectable by western blotting while LPS induced detectable amounts of iNOS which was 

further enhanced when given in combination with IFN-γ   (Figure 3.5 A &B).  

Expression of iNOS on day 1 in cells incubated with LPS and IFN-γ together was used as 

100% to calculate relative expression of iNOS in other experimental conditions Figure 3.5 B. 

Standardising to this condition showed that LPS induced cells expressed approximately 40% 

iNOS on day 1 and increased to 81% ± 15 on day 3, dropping to ~50% on day 5 and day 7. 

The levels induced by LPS and IFN-γ also declined over time, reducing marginally on day 3 

(80% ±9) and 5 (70% ± 10) followed by further reduction to ~40%± 5 on day 7 (Figure 3.5 

B).  
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Figure 3.5 A: Induction of iNOS expression of RASMCs using LPS, IFN-γ, either alone 
or in combination.   

Cells cultured to ~90% confluency were incubated with culture medium alone (control) and 
either with LPS (100 μg ml-1), IFN-γ (100 U ml-1) or in combination (LPS+IFN-γ) during a 
time course ranging from day 1 to day 7. Expression of iNOS was determined by western 
blotting as described in the methods (section 2.10). The sample from each day was run on the 
same gel to ensure that a reliable comparison of expression could be made, however the order 
of bands has been rearranged from the original gel, to the above order in the figure, to make it 
the same order as that provided in the graph figures, e.g. figure 3.5B.  
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Figure 3.5 B: Induction of iNOS expression of RASMCs using LPS, IFN-γ, either alone 
or in combination.   

Cells cultured to ~90% confluency were incubated with culture medium alone (control) and 
either with LPS (100 μg ml-1), IFN-γ (100 U ml-1) or in combination (LPS+IFN-γ) during a 
time course ranging from day 1 to day 7. Expression of iNOS was determined by western 
blotting as described in the methods (section 2.10). The data represents means ± S.E.M. from 
4 experiments. ### denotes p<0.001 compared to LPS alone. 
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3.3.5- Effect of LPS and/or IFN-γ on calcification of RASMCs:  

Treatment of cells with either LPS or IFN-γ appears to elevate calcium levels and this was 

marginally higher with LPS (Figure 3.6). Moreover, LPS induced maximum calcification on 

day 3 (0.5 ± 0.05 nmole. µg-1 protein) compared to day 1 (0.32 ± 0.04 nmole. µg-1 protein) 

but this subsequently declined on day 5 (0.32 ± 0.04 nmole. µg-1 protein) and day 7 (0.32 ± 

0.04 nmole. µg-1 protein). The responses to IFN-γ appear to be more stable over the time 

course investigated.  

The combination of LPS and IFN-γ induced significantly more calcification with maximal 

effects observed on day 5 (0.7 ± 0.08 nmole. µg-1 protein) declining marginally on day 7 (0.6 

± 0.09 nmole. µg-1 protein). Incubation of cells with CB caused even more calcification 

which, consistent with previous observations, was maximal on day 5 (1 ± 0.02 nmole. µg-1 

protein) but declining by day 7 (0.6 ± 0.09 nmole. µg-1 protein), presumably due to cell death 

as indicated by data from the MTT assays (Figure 3.9). The levels of calcium measured in 

controls did not alter throughout the time course used. 
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Figure 3.6: Induction of calcification of RASMCs using LPS, IFN-γ, either alone or in 
combination.  

Cells cultured to ~90% confluency were incubated with culture medium alone (control) and 
either with LPS (100 μg ml-1), IFN-γ (100 U ml-1), or in combination (LPS+IFN-γ) for 1 to 7 
days. For comparison, parallel cells were incubated with CB [CaCl2 (7mM) + β-GP (7mM)] 
over the same time period. Total calcium content was quantified as described in the methods 
(Section 2.6). The data represents means ± S.E.M. from 4 experiments. * denotes p<0.05 ** 
denotes p<0.01 *** denotes p<0.001 when compared to control.  # denotes p<0.05, ## and 
denotes p<0.01 as shown in the figures. 
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3.3.6- Staining of calcific plaques with ARS: 
 

Rat aortic smooth muscle cells were incubated with complete cell culture medium, LPS, IFN-

γ either alone or in combination for 5 days followed by staining with ARS as described 

earlier. Control cells and cells incubated with LPS, IFN-γ either alone or in combination did 

not reflect any presence of calcified plaques upon staining (Figure 3.7) but confirmed 

calcified plaques in cells incubated with CB (Figure 3.7).   

 

 

 

Figure 3.7: Alizarin red staining of calcified RASMCs 

Cells were cultured to ~90% confluency and incubated either with culture medium alone 
(control), LPS (100µg ml-1), IFN-γ (100 U ml-1), in combination (LPS + IFN-γ) or CB for 5 
days. Cells were treated with 1x ARS at the end of the incubation period as described in the 
methods (Section 2.8). The images are representative of 3 individual experiments which were 
taken with an inverted Olympus microscope at 10X magnification using the GX capture 
programme.  
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3.3.7- Detecting HA crystals by FT-IR analysis: 

As mentioned before, HA crystal did not form when cells were coincubated with LPS and 

IFN-γ separately or in combination.  In contrast, HA crystal was detected from cells treated 

with CB as shown in Figure 3.8. The full spectrum detected by FT-IR analysis in the lysates 

is summarised in Table 3.2. 
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Figure 3.8: FT-IR spectrum analysis of activated RASMCs. 

Cells cultured to ~90% confluency were incubated with culture medium alone (control) and either with LPS (100 μg ml-1), IFN-γ (100 U ml-1) or 
in combination (LPS+IFN-γ) for 5 days. Cells were washed and scraped with 100% ethanol at the end of the incubation period and subjected to 
FT-IR spectra analysis as described in the method (Section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Table 3.2: Spectrum of molecules detected by FT-IR treated RASMCs with LPS, IFN-γ, or in combination: 

Data from Literature review  Data from current studies 
Stretch or bend of chemical 

compound 
wave number 

(cm-1) 
Citation Expected Wave 

number (cm-1) 
Control LPS IFN-γ LPS+IFN-γ 

Amide I, 
Amide II, 
Amide III, 

1620-1632, 
1515-1540, 
1216-1290 

(Alò et al., 2009; Dritsa, 
2012; Lin et al., 2007) 

1620, 1621, 1623, and 
1629 (Amide-I), 1512, 

1531, 1534, 1537 
(Amide-II),1237 and 

1240 (Amide-III) 

Present Present Present Present 

Calcite -CO3
2- 

 
1430-1480 

 
(Raynaud, et al., 2002) 1441, 1447, 1450, and 

1450  -CO3
2 Present Present Present Present 

TCP, 
β- TCP 

700-750, 
690 (Destainville, et al., 2003) ----------------- ----------- ------------- ------------- ---------------- 

Phosphate 1154, 1075,1046, 
1010 & 1020 or 975 

(Destainville, et al., 2003; 
Han J-K., et al., 2006; 

Mobasherpour and 
Heshajin,2007; 

Raynaud, et al., 2002) 

971, 1028, 1064, 1073, 
1072,  and 1106 -PO4

3- 
Not 

Present Present Present Present 

HA crystal  Ca 10(PO4)6(OH)2 1080 - 1089 (Kwon, et al.,2003: 
Alò et al., 2009) Ca 10(PO4)6(OH)2 

Not 
present 

Not 
present Not present Not present 

Polysaccharides Below 690 (Gómez-Ordóñez et al., 
2011; Parikh et al., 2006). 

Below 690- 
Polysaccharide 

Not 
present Present Not present Present 
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3.3.8- Cellular viability of RASMCs when incubated with calcification inducers: 
 

To determine whether any of the effects reported are associated with changes in cell viability, 

the MTT assay was carried out in parallel with the experiments above. Lipopolysaccharide 

did not induce any significant toxicity when incubated with cells for 24 hours at up to 100µg 

ml-1 (Figure 3.9 inset A). Similarly, IFN-γ did not induced any significant toxicity up to 100U 

ml-1 (Figure 3.9 inset B). However, in time course studies, LPS (100µg ml-1) and IFN-γ 

(100U ml-1) combined resulted in 50% reduction in cellular viability at day 3 (p<0.05) and 

viability remained at a similar level on days 5 and 7 (Figure 3.9 inset C). Interestingly control 

cells also reflected ~50% or greater reduction in cell viability at day 7 (Figure 3.9 inset C, D, 

E and F).  

Additionally, when cells were incubated with either 7mM of CaCl2 or β-GP there were 

marginal reductions in cellular viability which although lower than controls did not change 

significantly over time (Figures 3.9 C and D).  Similarly, CB also only caused marginal 

reduction in cell viability on days 1, 3 and 5. Viability of cells was however significantly 

reduced (17.29 %, p<0.01) on day 7. Note however that viability was also significantly 

reduced in controls on day 7. This suggests that the decreases seen in MTT metabolism at this 

time point may not necessarily be due to the treatment conditions but perhaps more likely to 

be related to the culture conditions which will be discussed.  
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Figure 3.9: Cellular viability of RASMCs when incubated with calcification inducers 

Cells were incubated with LPS (A; 10-100µg ml-1), IFN-γ (B; 10-100 U ml-1) for 24 hours and in combination (C) over a time course of 1 to 7 
days. Similarly, cells were also incubated with CaCl2 (D; 7mM), β-GP (E; 7mM) or with CB (F; 7mM CaCl2 + 7mM β-GP) during a time course 
from day 1 to day 7. The data is represented as % change of cell viability taking controls as 100%. The data represent the means ± S.E.M from 4 
individual experiments. ** denotes p<0.01, # # represents p<0.01 when compared to day 1 control or treated cells.   
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3.4-Discussion:  
 
The studies described in this chapter have validated the in vitro model of calcification and 

confirmed the sustained induction of iNOS using LPS and IFN-γ which is consistent with our 

earlier observations (Wileman et al., 1995). The data generated in the calcification studies 

show that incubation of cells with CaCl2 caused a significant time dependent increase in 

calcium levels which was not observed with β-GP.  Interestingly, CaCl2 induced a similar 

degree of calcification which was comparable to that seen with the CB. This was initially 

thought to indicate calcification with the calcium levels detected representing calcium present 

in HA crystals. However, incubation of cells with ARS failed to stain cells treated with CaCl2 

but revealed significant staining of cells treated with the CB suggesting the presence of HA 

crystals, which is normally characteristic of calcification. These observations suggest that 

while CaCl2 may increase cellular calcium, but calcified plaques could only be deposited 

when a combined with β-GP. This was further confirmed by FT-IR analysis which detected 

TCP and β- TCP but only in cells incubated with CB.  

In our experiments, the fact that β-GP did not induced calcification does not mean that 

phosphate is not calcifying. Indeed high phosphate has been shown to contribute to the 

development of VC in vivo (Crouthamel et al., 2013) and several other researches have 

highlighted that a marginally sustained increase in serum phosphate levels increases the risk 

of cardiovascular disease by 2-3 fold even in healthy individuals which extend to 30 fold high 

risk in patients with kidney failure (Ketteler et al., 2012).  A study by Shioi and coworker 

showed that incubation of (BVSMCs) with β-GP alone elevated calcification and this was 

confirmed by von Kossa staining which stained mineralised plaques. Further investigation 

was conducted through detecting ALP expression which could be responsible to form HA 

crystals in BVSMC (Shioi et al., 1995).  
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One possible explanation why β-GP was without much effect in our studies may relate to the 

duration of the studies which were restricted to 5 days. This time point was chosen as it gave 

optimal plaque formation when β-GP was added together with CaCl2 and did not result in any 

significant loss in cell viability. The reduction in cell viability on day 7 could be due to the 

fact that the cell culture medium was not changed during the incubation period.  

 In experiments where phosphate had been used alone the incubations had been for periods of 

two to three weeks to induce calcification (Byon et al., 2008). These time points are much 

longer than the 5 day period used in this project. Another possible explanation why β-GP may 

not be effective in our studies may be because of the relatively low concentrations of β-GP 

used. In other studies, researchers have used high phosphate at concentrations of 10-14mM 

(Byon et al., 2008) or used high phosphate medium supplemented with ascorbic acid which is 

claimed to enhance calcification (Cao et al., 2013).  

One aspect of the research conducted in this thesis was aimed at establishing whether NO 

production regulated calcification. Thus, to start with, studies were carried out to establish 

that iNOS can be induced in RASMCs using LPS and IFN-γ. Indeed, consistent with our 

earlier studies and with several other studies LPS and IFN-γ caused significant induction of 

iNOS accompanied by elevated NO production. The inductions were less pronounced with 

either LPS or IFN-γ alone. LPS caused marginal induction of iNOS and NO production while 

IFN-γ was without much effect presumably because this cytokine does not induce but rather 

act to stabilise the iNOS mRNA (Wileman et al., 1995). The induction of iNOS peaked at 

day 3 and then declined as confirmed by western blotting. These findings are consistent with 

several reports in the literature including several from our laboratory (Balligand et al., 1994; 

Chan et al., 2001; Wileman et al., 2003). 
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In relation to calcification, the data generated demonstrate clearly that both agents increased 

detected calcium levels but with LPS causing the more profound effect which was 

significantly enhanced when administered together with IFN-γ. The responses even with LPS 

and IFN-γ combined were however less than those induced by CB.   

The ability of LPS to induce calcification is consistent with reports that it stimulate the 

synthesis of proteins such BMP2 (Zeng et al., 2014) through activating TLR2 and 4 (Heo et 

al., 2008). Both proteins are well-known pro-calcific markers and play a critical role in 

calcification by inducing a phenotypic transition of aortic smooth muscle cells in to bone like 

cells (Tintut et al., 2002; Zehnder et al., 2002). At present, it is not known whether LPS acts 

through these mechanisms to induce calcification in our model nor is it clear whether it 

activates other osteoblast or osteoclast like cells marker such as Runx2/Cbfa1 and this may 

require further investigation. Similarly, further studies are required to determine the 

mechanism(s) through which IFN-γ acts. One possible action may relate to the upregulation 

of the expression of  1alpha-OHase (Stoffels et al., 2006) which is extensively expressed in 

arterial smooth muscle cells of rats and humans and converts 25-(OH)2D2 (Calcidiol) to 1,25 

(OH)2 D3(Calcitriol), resulting in elevated calcium level leading to hypercalcemia (Somjen et 

al., 2005). Further studies are however again required to confirm that these mechanisms are 

indeed activated in our model.  

In current study, the MTT assay used indicated cytotoxicity when the cells were incubated 

continuously for longer time periods in inflammatory mediators/calcifying agents. In these 

conditions the levels of NO were measured. While it is likely that cytotoxicity may interfere 

with NO levels, in chronic conditions such as cardiovascular disease involving vascular 

mineralisation, it is also likely that cytotoxicity is a phenomenon due to continuous 

inflammation (Willerson and Ridker, 2004). Furthermore, varying the replenishment of 
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media allowed comparison of the effect continuous incubation periods, and this may serve as 

a better model for the continuous blood flow in vivo.  

When cells were incubated with the LPS and IFN-γ, there was significant generation of 

calcium levels compared to control. Published literature suggests that both LPS and IFN-γ 

can activate signalling mechanism(s) such as TLR 4 or 1alpha-OHase (Heo et al., 2008) that 

could accumulate calcium and phosphate (Stoffels et al., 2006). However more research is 

needed whether NO or iNOS can regulate calcification and understanding the mechanism(s) 

behind that. 
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CHAPTER  IV 

RESULTS 
 

Effects of LPS and/or IFN-γ on iNOS 
expression, NO synthesis and VC in the 
absence and presence of calcification 
inducers. 
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  4.1- Introduction:  

Data presented in the previous chapter suggest that incubation of cells with CaCl2 and CB 

caused a significant time dependent increase in calcium levels which was not observed with 

β-GP. In term of NO production through iNOS, cells were pre activated with LPS and IFN-

γ which caused significant induction of iNOS accompanied by elevated NO production. The 

inductions of NO was however less with either LPS or IFN-γ alone.  In addition, previous 

research have shown that proinflammatory cytokines and other inflammatory mediators can 

induce dysrgulated calcium and phosphate metabolism, causing renal insufficiency, 

potentially contributing to the development of VC (Bellasi et al., 2009). Furthermore, 

proinflammatory cytokines have been reported to stimulate osteoblast cells resulting not only 

in significant NO production by iNOS but also induce critical transcription factors of 

calcification such as Runx2 (Zaragoza et al., 2006). The latter causes high calcium deposition 

on osteoblast cells promoting HA crystals, contributing to calcification (Kreutz et al., 

1993;Somjen et al., 2005).  

These observations suggest that, in parallel with inducing iNOS, inflammatory mediators also 

activate processes associated with calcification. This raises the possibility that the iNOS 

pathway may be associated with VC; with the NO produced potentially regulating the 

calcification of blood vessels. The precise relationship between induced NO synthesis and 

VC however still remains to be defined and, as alluded to in the introduction chapter, it is not 

clear whether NO promotes or inhibits VC. Thus, in this chapter, further studies have been 

carried out to extend those conducted in chapter 3 and were aimed at establishing how 

calcification of cultured VSMCs may be altered in cells expressing iNOS. Additionally, other 

experiments were also carried out to determine whether the expression of iNOS and NO 

induced by inflammatory mediators is altered in the presence of conditions that induce 

calcification. For these studies, LPS and IFN-γ were used partly because the combination of 
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these two molecules has been shown to cause sustained induction of iNOS in VSMCs 

(Wileman et al., 2003;Guo et al., 1997). More importantly, activation of TLR4 by LPS has 

been implicated in the induction of pro-calcific marker such as ALP and Cbfa1 (Heo et al., 

2008) while IFN-γ is reported to stimulate high expression of 1-α hydroxylase playing a 

crucial role in accelerating conversion of 25(OH) D2 to 1,25 (OH)2D3 (Shioi et al., 2002) and 

hence VC. These effects of LPS and IFN-γ show that in parallel with inducing iNOS they 

also activate processes associated with VC and thus raise the possibility that the inducible NO 

pathway may be associated with VC.  
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4.2- Experimental protocols:  

Cell culture and quantification of NO production, total protein and calcium measurements as 

well as western blotting were performed as described in chapter 2, section 2.3, 2.5, 2.6, and 

2.10, respectively. In parallel experiments, ARS and FT-IR analysis was also performed as 

previously described in the method (sections 2.8 and 2.9 respectively). 

4.2.1-Induction of calcification, iNOS expression and NO production in RASMCs: 

Rat aortic smooth muscle cells cultured to ~90 % confluency were incubated with LPS 

(100µg ml-1), IFN-γ (100 U ml-1) or in combination for 24 hours followed by induction of 

calcification using CaCl2, β-GP or a combination of both (CB) in the continued presence of 

LPS, IFN-γ  or in combination (LPS + IFN-γ). Cell lysates were generated at 1, 3, 5 and 7 

days and used for the assessment of calcification and for determining changes in iNOS 

expression. In these experiments the medium was not changed and the NO measured was 

therefore the pooled amount produced over the incubation period. These studies were aimed 

at establishing whether the calcification process was regulated in any significant way if 

expression of the iNOS pathway precedes the initiation of calcification. The medium was not 

changed to ensure that plaque formation was not disrupted by regular washing of the cell 

monolayer. This however has the disadvantage of not removing metabolic waste from the 

cultures and replenishing required nutrients.  

 In parallel studies, cells were activated with LPS (100 µg ml-1) and IFN-γ (100 U ml-1) either 

alone or in combination for 24 hours followed by the addition of calcification inducers 

(CaCl2, β-GP or CB) at 7mM. In this experimental set up, the medium was changed every 24 

hours and replaced with fresh medium containing LPS and/or IFN-γ as well as CaCl2, β-GP 

or CB. iNOS expression, nitric oxide production and calcification were analysed at 1, 2, 3, 4, 

5, 6 and 7 days. These experiments were carried out to establish whether regular 
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replenishment of nutrients and other factors required for cell growth affected iNOS induction, 

NO production or the calcification process. Moreover, this protocol allowed for NO 

production to be determined more accurately on a 24 hours basis rather than determining the 

accumulated levels over prolonged periods.  

In further studies, cells were activated with LPS and IFN-γ for 24 hours followed by the 

addition of CB only without LPS and IFN-γ. Quantification of NO, iNOS and calcification 

were performed on day 3 after addition of CB as this was the time point found previously 

from the first experiment to induce maximal calcification. This was to determine whether 

sustained induction of iNOS and NO was essential for calcification to occur or whether the 

presence of NO at the onset of calcification rather than its continued and sustained production 

was the important factor.  In another experimental set up, cells were activated with CB for 3 

days followed by addition of LPS and IFN-γ  only without adding of CB for 24 hours in order 

to determine whether calcification regulated iNOS and NO production.  

In parallel studies, incubations with LPS + IFN-γ and/or CB were carried out at the onset and 

changes in iNOS expression, NO production and in intracellular calcium levels monitored 

over shorter time points ranging from 1, 3, 6, 9, 18, 24, 48 hours. This was to establish 

whether simultaneously inducing calcification and iNOS protein (and thus NO production) 

resulted in any significant alteration in either pathway or both.  

At the end of each study, supernatants were assessed for NO and lysates generated analysed 

for calcification and for iNOS expression.  
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4.3- Results:  

4.3.1- Effects of LPS on NO production, iNOS expression and calcification of RASMCs 
in the absence and presence of CaCl2, β-GP or CB: 
 

The data shown in Figures 4.1 to 4.3 represents the results from studies where cells were 

activated with LPS for 24 hours prior to coincubating with calcifying agents for further 

incubation periods which ranged from 1 to 7 days. Additionally, the medium was not changed 

throughout the incubation period in these series of experiments. In these experiments, 

RASMCs incubated with media alone (control) did not produce NO or express iNOS during 

the time course carried out. Incubation with LPS (100µg ml-1) resulted in a gradual increase 

in NO which appeared to be significantly increased on day 7 (0.19 ±0.006 nmole.µg-1 protein 

) with not much difference in the levels detected between days 1, 3 and 5 (0.067 ±0.02, 0.087 

±0.03, and 0.097 ±0.03 nmole.µg-1 protein, respectively ) (Figure 4.1A1). LPS also induced 

expression of iNOS which increased to a peak at day 3 (% 159.5 ±67.15) but declining 

thereafter (Figure 4.2 A1). When RASMCs were coincubated with LPS and CaCl2 (7mM), 

there was further elevation in NO compared to the response of the LPS alone. Under these 

conditions, NO accumulation peaked on day 5 (0.305 ±017 nmole.µg-1 protein) and remained 

elevated at day 7 (Figure 4.1A1). There was no significant statistical difference between any 

of the time points in the presence of CaCl2 but the changes were significantly different when 

compared to LPS treated cells. Initially, the addition of CaCl2 to LPS activated cells resulted 

in the partial suppression of iNOS expression, at days 1 and 3 but increased significantly on 

day 5 (% 151.5 ±64.9)  when compared to cells treated with LPS alone before declining back 

to basal levels at day 7 (Figure 4.2 A1).  

β-GP like CaCl2 enhanced LPS induced NO production and this was in a time dependent 

manner peaking at day 5 (0.305 ±0.15 nmole.µg-1 protein) and maintained up to day 7 (Figure 
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4.1 A2). These increases were significantly different when compared to the increases at days 

1 and 3 and to the LPS induced responses. In parallel experiments, iNOS expression was 

enhanced when cells were coincubated with LPS and β-GP at day 1 and maintained at days 3 

(% 160 ±21) followed by a declined at day 5 and 7. The levels of iNOS in the presence of 

LPS and β-GP at day 5 did not decline as dramatically as the levels seen with LPS alone 

(Figure 4.2 A2).  

The use of CB caused a similar trend in NO production and iNOS expression (day1 to day3) 

to that seen with CaCl2 or β-GP in that when used, CB potentiated the effects of LPS. 

Furthermore, iNOS expression did not decline as rapidly as seen when LPS was used alone 

(Figure 4.1A3 and 4.2 A3).  In all these studies, CaCl2, β-GP or CB did not cause any 

significant changes above control values when applied alone. Summary graphs showing the 

changes in NO production and iNOS expression are shown in Figures 4.1B and 4.2B.  

In the calcification studies, incubation of cells with LPS alone resulted in significant 

elevation of calcium in the cells on day 1 to 7 (within range 0.34 - 0.7 ±0.10 - 0.14 nmole.µg-

1 protein) when compared to controls (0.05 nmole.µg-1 protein) (Figure 4.3 A1, 2, 3).  

Similarly, CaCl2 and CB but not β-GP elevated calcium levels which was distinctly higher 

than in controls. Activation of cells with LPS in the presence of CaCl2 or CB did not 

potentiate the effects of either CaCl2 or CB as the responses seen under these conditions were 

not statistically different to those seen with each agent alone (Figure 4.3 A1 and A3).  The 

addition of LPS with β-GP (7mM) did not cause any further elevation in calcium beyond that 

seen with LPS alone. Figure 4.3 A2 and Figure 4.3 B represents the summary data of all the 

conditions above.  
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Figure 4.1 A: Effect of CaCl2, β-GP and CB on LPS induced NO production.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed the addition of CaCl2 (7mM; Panel A1), β-
GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Total NO was 
quantified by the Griess assay as described in methods (section 2.3). The data represents means ± S.E.M. from 4 individual experiments. * 
denotes p< 0.05 and ** denotes p<0.01 compared to LPS alone for each time point. 
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Figure 4.1 B: Summary data of the effect of CaCl2, β-GP and CB on LPS induced NO production.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed  the addition of CaCl2 (7mM), β-GP (7mM) 
or CB  in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Total NO was quantified by the Griess assay a 
as described in methods (section 2.3).  The data represents means ± S.E.M. from 4 individual experiments. 
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Figure 4.2 A: Effect of CaCl2, β-GP and CB on LPS induced iNOS expression.  
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed the addition of CaCl2 (7mM; Panel A1), β-
GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Expression of 
iNOS was determined by western blotting as described in the methods (section 2.10). The data represents means ± S.E.M. from 4 individual 
experiments.* denotes p< 0.05 compared to LPS alone for each time point.  
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Figure 4.2 B: Summary data of the effect of CaCl2, β-GP and CB on LPS induced iNOS expression. 

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed the addition of CaCl2 (7mM), β-GP (7mM) 
or CB  in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Expression of iNOS was determined by western 
blotting as described in the methods (section 2.10). The data represents means ± S.E.M. from 4 individual experiments. 
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Figure 4.3 A: Effect of CaCl2, β-GP and CB on LPS induced calcification.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed the addition of CaCl2 (7mM; Panel A1), β-
GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Total calcium 
was quantified as described in methods (section 2.6). The data represents means ± S.E.M. from 4 individual experiments.* denotes p< 0.05, ** 
denotes p<0.01 and *** denotes p<0.001 compared to control for each time point  
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Figure 4.3 B: Summary data of the effect of CaCl2, β-GP and CB on LPS induced calcification.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) for 24 hours followed the addition of CaCl2 (7mM), β-GP (7mM) 
or CB in the continued presence of LPS and incubated for a further period of 1, 3, 5 and 7 days. Total calcium was quantified as described in 
methods (section 2.6). The data represents means ± S.E.M. from 4 individual experiments. 
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4.3.2- Effects of IFN-γ on NO production, iNOS expression and calcification of RASMCs in 
the absence and presence of CaCl2, β-GP or CB: 
 

Similar to the studies with LPS, cells were activated with IFN-γ (100U ml-1)  for 24 hours before 

coincubating with CaCl2, β-GP or with CB for the specified time periods without changing the 

medium Figure 4.4 to 4.6. Incubation of RASMCs with medium alone did not produced NO 

during 1, 3, 5, and 7 days (Figure 4.4A1). Activation with IFN-γ produced much reduced 

amounts of NO when compared to LPS treated cells (0.028 ±0.005 nmole. µg-1 protein vs 0.097 

±0.02 nmole. µg-1 protein at day 5) and there was no statistically significant difference in the 

amounts produced over the time course. This observation was similar to that seen in cells treated 

with IFN-γ in the presence of CaCl2, β-GP or with CB in that the changes were much lower than 

those seen when LPS was used. Thus, induction of NO production by IFN-γ was only marginal 

when compared to the effects induced with LPS (Figure 4.4 A1). Consistent with the marginal 

effect on NO production, treatment of cells with IFN-γ alone or in the presence of calcification 

inducers did not induce iNOS as shown Figure 4.5. This is surprising because there was some 

detectable NO in the culture medium following exposure of cells to these agents (Figure 4.4A1, 2, 

3). At present the source of the NO detected is not known but we can rule out contamination in 

the medium as all the controls incubated with culture medium alone were blank. This therefore 

leaves the possibility that the NO may potentially come from very low levels of iNOS expressed 

which may be below the level of detection by western blotting. Quantitative polymerase chain 

reaction (PCR) analysis of iNOS mRNA expression was planned but unfortunately could not be 

completed because of time constraints. Figures 4.4B represent summaries of the data from all the 

conditions above. 

Cells activated with IFN-γ appear to be more stable over the time course investigated (0.97± 0.3 

nmole µg-1 protein) (Figure 4.6 A1). 
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Coincubation of RASMCs with CaCl2 and IFN-γ resulted in peak calcium levels 

 significantly  on day 3 (2.15 ± 1 nmole.µg-1 protein) and was sustained up to day 7 (Figure 4.6 

A1). The use of β-GP together with IFN-γ did not cause elevated calcium above that seen with 

IFN-γ alone (Figure 4.6 A2). In contrast, cells coincubated with CB and IFN-γ  induced 

significant calcium accumulation similar to effects seen with CaCl2 but peaked at day 5 (3.40 ± 

1.2 nmole.µg-1 protein) followed by a declined on day 7 (2.12 ±0.7 nmole.µg-1 protein) (Figure 

4.6 A3). Thus,   IFN-γ activated RASMCs coincubated with CaCl2 or CB led to induced 

increases in calcium which was significantly higher compared to IFN-γ alone (Figure4.6B).
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Figure 4.4 A: Effect of CaCl2, β-GP and CB on IFN-γ induced NO production.  

Cells were cultured to ~90% confluency and activated with IFN-γ  (100 U ml-1) for 24 hours followed the addition of CaCl2 (7mM; Panel A1), β-
GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of IFN-γ  and incubated for a further period of 1, 3, 5, and 7 days. Total NO 
was quantified by the Griess assay as described in methods (section 2.3). The data represents means ± S.E.M. from 6 individual experiments. 
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Figure 4.4 B: Summary data of the effect of CaCl2, β-GP and CB on IFN-γ induced NO production.  

Cells were cultured to ~90% confluency and activated with IFN-γ  (100 U ml-1) for 24 hours followed the addition of CaCl2 (7mM), β-GP (7mM) 
or CB  in the continued presence of IFN-γ and incubated for a further period of 1, 3, 5, and 7 days. Total NO was quantified by the Griess assay 
as described in methods (section 2.3).  The data represents means ± S.E.M. from 6 individual experiments. 
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Figure 4.5: Effect of CaCl2, β-GP and CB on IFN-γ induced iNOS expression. 

Cells were cultured to ~90% confluency and activated with IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 (7mM), β-GP (7mM) 
or CB in the continued presence of IFN-γ and incubated for a further period of 1, 3, 5, and 7 days. Expression of iNOS was determined by 
western blotting as described in the methods (section 2.10). The data represents means ± S.E.M. from 4 individual experiments.  
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Figure 4.6 A: Effect of CaCl2, β-GP and CB on IFN-γ induced calcification.  

Cells were cultured to ~90% confluency and activated with IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 (7mM; Panel A1), β-
GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of IFN-γ and incubated for a further period of 1, 3, 5, and 7 days. Total calcium 
was quantified as described in methods (section 2.6).The data represents means ± S.E.M. from 6 individual experiments.* denotes p< 0.05, ** 
denotes p<0.01, and p<0.001 compared to control.  # denotes p < 0.05, ## denotes p < 0.01, and ### denotes p <0.001 compared to calcification 
inducers alone for each time point. 
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Figure 4.6 B: Summary data of the effect of CaCl2, β-GP and CB on IFN-γ induced calcification.  

Cells were cultured to ~90% confluency and activated with IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 (7mM), β-GP (7mM) 
or CB in the continued presence of IFN-γ and incubated for a further period of 1, 3, 5, and 7 days s. Total calcium was quantified as described in 
methods (section 2.6). The data represents means ± S.E.M. from 6 individual experiments. 
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4.3.3- Effects of LPS and IFN-γ on NO production, iNOS expression and calcification of 
RASMCs in the absence and presence of CaCl2, β-GP or CB: 
 
Following the observations above, further experiments were carried out looking at the combined 

effects of LPS and IFN-γ under similar conditions to those already described Figure 4.7 to 4.9. 

Consistent with the studies above, NO production was not detected when cells were incubated 

with medium alone (control) during 1, 3, 5, and 7 days. Activation of RASMCs with LPS and 

IFN-γ induced significantly more NO when compared to levels detected with either LPS or IFN-

γ alone. The induction was pronounced at day 1 (0.18 ±0.05 nmole µg -1 protein) and did not 

show much time dependent differences except at day 7 where total NO appeared to be 

marginally higher, increasing to 0.203 ±0.09 nmole µg -1 protein. These responses to LPS and 

IFN-γ were significantly enhanced in the presence of CaCl2, β-GP or CB but with no obvious 

significant differences between the responses induced. Moreover, CaCl2, β-GP and CB did not 

individually induce NO production (Figure 4.7A1, 2, 3).  A summary figure of these trends is 

shown in Figure 4.7 B 

Consistent with the stimulation of NO production, iNOS was induced in parallel and detectable 

on day 1, remaining sustained up to day 7 (Figure 4.8 A1, 2, 3). The coincubation of RASMCs 

with LPS+IFN-γ and either  CaCl2, β-GP or CB induced significantly more iNOS expression but 

this was only evident on day 3. The levels seen at the other time points were not significantly 

different to the levels induced by LPS and IFN-γ alone. Moreover, CB did not cause any further 

increase to that caused by either CaCl2 or β-GP (Figure 4.8 A1, 2, 3; see Figure 4.8 B for summary 

data).  

In the calcification experiments, there was no evidence of this process in control cells during the 

time course examined (Figure 4.9 A1, 2, 3; see Figure 4.9 B). However, activation of RASMCs 

with LPS and IFN -γ resulted in elevation of calcium in a time dependent manner reaching 
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maximal induction at day 5 (0.87 ±0.2 nmole µg -1 protein) although calcification inducers were 

absent, Figure 4.9 A1, 2, 3.  

In addition, when activated cells were incubated with CaCl2 and CB there was a more potent 

induction of calcification peaking at day 5 (2.77 ±0.7 and 3.10 ±0.7 nmole µg -1 protein, 

respectively) and declining marginally on day 7 (2 ±0.3 nmole µg -1 protein and 2.6 ±0.3 nmole 

µg -1 protein) (Figure 4.9 A 1 & 3). Cells coincubated with β-GP+ LPS and IFN-γ (0.74 ±0.1 

nmole µg -1protein) did not cause more calcification than that seen with LPS/IFN-γ alone but 

levels were significant when compared the response to β-GP alone (Figure 4.9 A2).   

 In conclusion, RASMCs when activated by LPS+IFN-γ and coincubated with CaCl2 alone or in 

combination with β-GP (CB) resulted in further elevation of calcification Figure 4.9 B. This 

assists confirmation that a stable and functional iNOS might be playing a role in the 

development of calcification. 
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Figure 4.7 A: Effect of CaCl2, β-GP and CB on LPS +IFN-γ induced NO production.  
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 hours followed the addition of CaCl2 
(7mM; Panel A1), β-GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS + IFN-γ and incubated for a further period of 1, 3, 5 
and 7 days. Total NO was quantified by the Griess assay as described in methods (section 2.3). The data represents means ± S.E.M. from 8 
individual experiments.* denotes p < 0.05 and ** denotes p <0.01 compared to LPS + IFN-γ alone for each time point. 
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Figure 4.7 B: Summary data of the effect of CaCl2, β-GP and CB on LPS +IFN-γ induced NO production.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 hours followed the addition of CaCl2 
(7mM), β-GP (7mM) or CB in the continued presence of LPS+IFN-γ  and incubated for a further period of 1, 3, 5 and 7 days. Total NO was 
quantified by the Griess assay as described in methods (section 2.3). The data represents means ± S.E.M. from 8 individual experiments.  
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Figure 4.8 A: Effect of CaCl2, β-GP and CB on LPS+ IFN-γ induced iNOS expression.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1) for 24 hours followed  the addition of CaCl2 
(7mM; Panel A1), β-GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS+ IFN-γ  and incubated for a further period of 1, 3, 5 
and 7 days. Expression of iNOS was determined by western blotting as described in the methods (section 2.10). The data represents means ± 
S.E.M. from 4 individual experiments.* denotes p < 0.05 and ** denotes p <0.01 compared to LPS+ IFN-γ alone for each time point. 
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Figure 4.8 B: Summary data of the effect of CaCl2, β-GP and CB on LPS+IFN-γ induced iNOS expression. 

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 
(7mM), β-GP (7mM) or CB in the continued presence of LPS+ IFN-γ and incubated for a further period of 1, 3, 5 and 7 days. Expression of 
iNOS was determined by western blotting as described in the methods (section 2.10). The data represents means ± S.E.M. from 4 individual 
experiments.  
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Figure 4.9 A: Effect of CaCl2, β-GP and CB on LPS +IFN-γ induced calcification.  
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 
(7mM; Panel A1), β-GP (7mM; Panel A2) or CB (Panel A3) in the continued presence of LPS+ IFN-γ  and incubated for a further period of 1, 3, 5 
and 7 days. Total calcium was quantified as described in methods (section 2.6). The data represents means ± S.E.M. from 8 individual 
experiments. .* denotes p< 0.05, ** denotes p<0.01 and p<0.001 compared to control. # denotes p < 0.05, ## denotes p < 0.01, and ### p<0.001 
compared to calcification inducers alone for each time point. 
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Figure 4.9 B: Summary data of the effect of CaCl2, β-GP and CB on LPS+IFN-γ induced calcification. 

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1) for 24 hours followed the addition of CaCl2 
(7mM), β-GP (7mM) or CB in the continued presence of LPS+ IFN-γ  and incubated for a further period of 1, 3, 5 and 7 days. Total calcium was 
quantified as described in methods (section 2.6). The data represents means ± S.E.M. from 8 individual experiments.  
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4.3.4- Detection of components of calcification plaque using ARS and FT-IR:  

4.3.4.1- Staining of calcific plaques with ARS: 

To establish whether the changes in calcium levels described above were indeed associated with 

the formation of calcific plaques, further experiments were conducted staining cells with ARS 

and also subjecting cell lysates generated from different conditions to FT-IR analysis for 

detection of HA crystals. These studies were conducted at the single time point of 5 days 

because this was the time point found to cause maximum or reproducible elevations in calcium 

under the various conditions described above. Cells coincubated with medium only did not stain 

with ARS at day 5 (Figure 4.10 A, B and C). Staining of calcific plaques did not occur when 

RASMCs were coincubated with LPS, IFN-γ or in combination, nor was there any staining 

detected with CaCl2 or β-GP alone. However, when RASMCs were incubated with CaCl2 and 

LPS, there was less detectable staining of cells with ARS but not when β-GP was used in place 

of CaCl2 (Figure 4.10A). Staining was also prominent with CB (was little detected) and when 

CB or CaCl2 was incubated with both inflammatory agents. LPS and IFN-γ together did not 

cause any detectable staining (Figure 4.10 C). The use of CB and IFN-γ also causes significant 

staining of RASMCs (Figure 4.10 B) suggesting a good degree of calcification Figure 4.10B. 

There was little or no staining in cells treated with LPS, IFN-γ or β-GP (Figure4.10 A and B).  
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Figure 4.10 A: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated with  culture medium alone (control), or 
activated with LPS (100 μg ml-1) for 24 hours followed  the addition of 7 mM CaCl2, 7 mM β-
GP or CB (CaCl2 +β-GP) for 5 days. In parallel studies CaCl2, β-GP or CB were added without 
LPS. Cells were treated with 1x of ARS (1: 10 stock solution) at the end of the treatment period 
as described in method (Section 2.8). The images are representative of 3 individual experiments 
which were taken with an inverted Olympus microscope at 10X magnification using GX capture 
programme.  
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Figure 4.10 B: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated with  culture medium alone (control), or 
activated with IFN-γ (100 U ml-1) for 24 hours followed  the addition of  7 mM CaCl2, 7 mM β-
GP or CB (CaCl2 +β-GP) for 5 days. In parallel studies CaCl2, β-GP or CB were added without 
IFN-γ. Cells were treated with 1x of ARS (1: 10 stock solution) at the end of the treatment 
period as described in method (Section 2.8). The images are representative of 3 individual 
experiments which were taken with an inverted Olympus microscope at 10X magnification using 
GX capture programme.  
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Figure 4.10 C: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated with  culture medium alone (control), or 
activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours followed  the addition of  7 
mM CaCl2, 7 mM β-GP or CB (CaCl2 +β-GP) for 5 days. In parallel studies CaCl2, β-GP or CB 
were added without LPS+IFN-γ. Cells were treated with 1x of ARS (1: 10 stock solution) at the 
end of the treatment period as described in method (Section 2.8). The images are representative 
of 3 individual experiments which were taken with an inverted Olympus microscope at 10X 
magnification using GX capture programme.  
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4.3.4.2-Detecting HA crystals by FT-IR analysis: 

In vitro calcification was investigated by FT-IR in order to determine the spectra that identified 

HA crystal under the different experimental conditions already examined. The control spectra 

shown in Figure 4.11 A identifies Amide I, Amide II and Amide III at 1630-1637 cm-1, 1514.53-

1522.37 cm-1, and 1234-1243.99 cm-1 respectively. When RASMCs were incubated with β-GP in 

the presence of LPS, phosphate was detected at 1076 cm-1 but no HA crystal was identified. In 

contrast, HA crystal was present at 1088 and 1083 cm-1 when cells were exposed to CB with 

LPS or IFN-γ but not for CaCl2 with LPS (Figure 4.11 A).  

As with LPS, incubation of cells with IFN-γ  in the presence of CB caused formation of HA 

crystal which was detected at 1085 cm-1 (Figure 4.11B).  In contrast, when β-GP was used with 

IFN-γ, only phosphate was detected and at 1077 cm-1. There was no HA crystal identified 

(Figure 4.11 B). The different molecules identified by the FT-IR analysis together with their 

vibrational frequencies are summarised in Tables 4.1, 4.2 and 4.3. Interestingly, CaCl2 or CB in 

the presence of LPS and IFN-γ could support formation of HA crystal with a spectrum at 1080-

1089 cm-1. Incubation of cells with CaCl2, β-GP  alone or in combination with LPS or IFN-γ at 

day 5, did not result in HA  crystal whereas  CB alone or with  inflammatory mediators did 

cause HA crystal formation  as shown in Figure 4.11 A, B and C.  Table 4.1, 4.2, and 4.3 

showed summary of spectrum of molecules detected by FT-IR treated RASMCs either by LPS, 

IFN-γ, or LPS+IFN-γ in presence or absence of CaCl2, β-GP/ CB. 
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Figure 4.11 A:  FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control) and either with LPS (100 μg ml-1) followed the 
addition of CaCl2, β-GP or in combination at 7mM for 5 days. Cells were washed and scraped with 100% ethanol at the end of the incubation 
period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Figure 4.11 B:  FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control) and either with IFN-γ (100 U ml-1) followed  the 
addition of CaCl2, β-GP or in combination at 7mM for 5 days. Cells were washed and scraped with 100% ethanol at the end of the incubation 
period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Figure 4.11 C:  FT-IR spectrum analysis of activated RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control) and either with LPS (100µg ml-1)+ IFN-γ (100 U ml-

1) followed  the addition of CaCl2, β-GP or in combination at 7mM for 5 days. Cells were washed and scraped with 100% ethanol at the end of 
the incubation period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual 
experiments.
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Table 4.1: Spectrum of molecules detected by FT-IR treated RASMCs with LPS, IFN-γ or LPS+IFN-γ in presence CaCl2:  

 

Data from Literature review Data from current studies 

Stretch or bend of chemical 
compound 

wave number 
(cm-1) Citation Expected Wave number 

(cm-1) Control LPS+CaCl2 IFN-γ+ 
CaCl2 

LPS+IFN-γ+ 
CaCl2 

Amide I-( CON stretch), 
Amide II ( NOH bend), 
Amide III ( COH stretch, 
NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Olsztyńska-Janus et 
al., 2012) 

1620, 1623, and 1633 
(Amide-I),1515, 1519, 

1532, and 1537 (Amide-
II),1237  and 1240 

(Amide-III)- 

Present Present Present Present 

Calcite (-CO3
2-) 

 
1430-1480 

 
(Meejoo, et al., 2006) 1445,1455, and 1450  -

CO3
2 Present Present Present Present 

Tricalcium phosphate (TCP), 
β Tricalcium phosphate (β- 

TCP) 

700-750, 
690 

(Destainville, et al., 
2003) 

743 (TCP), 690 
(β- TCP) 

 

Not 
present Not Present Not 

present Present 

Phosphate (stretch PO4
3-) 1154, 1075,1046, 

1010 & 1020 or 975 

(Destainville, et al., 
2003;Han J-K., et al., 
2006; Mobasherpour; 

Heshajin,2007; 
Raynaud, et al., 2002) 

1027, 1035, 1066, 1072, 
and 1106  (PO4

3-) Present Present Present Present 

HA crystal 
(Ca 10(PO4)6(OH)2) 

1080 - 1089 (Kwon, et al.,2003: Alò 
et al., 2009) 1081 Ca 10(PO4)6(OH)2 

Not 
Present Not present Not 

present Present 

Polysaccharide Below 690 
(Gómez-Ordóñez et al., 

2011; Parikh et al., 
2006). 

Polysaccharide  670 Not 
present Present Not 

present Present 
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Table 4.2: Spectrum of molecules detected by FT-IR treated RASMCs with LPS, IFN-γ or LPS+IFN-γ in presence β-GP:  

  

Data from Literature review Data from current studies 
Stretch or bend of chemical 

compound 
wave number 

(cm-1) Citation Expected Wave number 
(cm-1) Control LPS+β-GP IFN-γ+ β-

GP 
LPS+IFN-γ+ β-

GP 

Amide I-( CON stretch), 
Amide II ( NOH bend), 
Amide III ( COH stretch, 
NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Olsztyńska-Janus et 
al., 2012) 

1624, 1633, and 1636 
(Amide-I), 1515, 1527, 

and 1532 (Amide-
II),1236, 1237, and 1240 

(Amide-III)- 

Present Present Present Present 

Calcite (-CO3
2-) 

 
1430-1480 

 
(Meejoo, et al., 2006) 1445,1446,and 1448  -

CO3
2 Present Present Present Present 

Tricalcium phosphate (TCP), 
β Tricalcium phosphate (β- 

TCP) 

700-750, 
690 

(Destainville, et al., 
2003) 797 -TCP Not 

present Not Present Not 
present Present 

Phosphate (stretch PO4
3-) 1154, 1075,1046, 

1010 & 1020 or 975 

(Destainville, et al., 
2003;Han J-K., et al., 
2006; Mobasherpour; 

Heshajin,2007; 
Raynaud, et al., 2002) 

1027, 1030, 1070, and 
1070 PO4

3- 
Not 

present Not present Not 
present Present 

HA crystal 
(Ca 10(PO4)6(OH)2) 

1080 - 1089 (Kwon, et al.,2003: Alò 
et al., 2009) Ca 10(PO4)6(OH)2 

Not 
Present Not Present Not 

present Not present 

Polysaccharide Below 690 
(Gómez-Ordóñez et al., 

2011; Parikh et al., 
2006). 

Polysaccharide  679 Not 
present Present Not 

present Present 
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Table 4.3: Spectrum of molecules detected by FT-IR treated RASMCs with LPS, IFN-γ or LPS+IFN-γ in presence CB: 

Data from Literature review Data from current studies 

Stretch or bend of 
chemical compound 

wave number 
(cm-1) Citation Expected Wave 

number (cm-1) Control LPS+CB IFN-γ+ CB LPS+IFN-
γ+CB 

Amide I-( CON stretch), 
Amide II ( NOH bend), 
Amide III ( COH stretch, 
NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Olsztyńska-Janus et 
al., 2012) 

1620, 1623, and 1633 
(Amide-I),1515, 1519, 

1532, and 1537 
(Amide-II),1237  and 

1240 (Amide-III)- 

Present Present Present Present 

Calcite (-CO3
2-) 

 
1430-1480 

 
(Meejoo, et al., 2006) 1445,1455, and 1450  -

CO3
2 Present Present Present Present 

Tricalcium phosphate 
(TCP), 

β Tricalcium phosphate (β- 
TCP) 

700-750, 
690 

(Destainville, et al., 
2003) 

743 (TCP), 690 
(β- TCP) 

 
Not present  Present Not present Present 

Phosphate (stretch PO4
3-) 1154, 1075,1046, 

1010 & 1020 or 975 

(Destainville, et al., 
2003;Han J-K., et al., 
2006; Mobasherpour; 

Heshajin,2007; 
Raynaud, et al., 2002) 

1027, 1035, 1066, 
1072, and 1106  (PO4

3-) present present present Present 

HA crystal 
(Ca 10(PO4)6(OH)2) 

1080 - 1089 (Kwon, et al.,2003: Alò 
et al., 2009) 

1080,1083, and 1088 
Ca 10(PO4)6(OH)2 

Not present Present Present Present 

Polysaccharide Below 690 
(Gómez-Ordóñez et al., 

2011; Parikh et al., 
2006). 

Polysaccharide  670 Not present Present Present Present 
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4.3.5- Effects of CaCl2, β-GP, CB, LPS and/or IFN-γ on cell viability:  
 

To determine whether any of the effects reported are associated with changes in cell viability, 

the MTT assay was carried in parallel with the experiments above. LPS (30 and 100 μg.ml-1; 

Figure 4.12 A) or IFN-γ (30 and 100 U.ml-1); Figure 4.12 B) did not cause any statistically 

significant change in MTT metabolism when used alone or in combination with CB at 1mM, 

5 mM and 7 mM. Studies with LPS plus IFN-γ alone and also in combination with 

calcification inducers did show marked reductions in MTT metabolism, indicating toxicity to 

cells. This was more evident when LPS and IFN-γ were used with CaCl2 or with CB and less 

so with β-GP. In each case the reductions in MTT metabolism were significant at days 3, 5 

and 7. LPS plus IFN-γ or CB also caused significantly more decreases in MTT metabolism at 

day7 (Figures4.12C, D and E). 
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Figure 4.12: Effects of CaCl2, β-GP, CB, LPS and/or IFN-γ on cell viability. 

Cells were cultured to ~90% confluency and incubated with either medium alone or with LPS, IFN-γ, or a combination in the absence and 
presence of CaCl2, β-GP or CB. Incubations were either for 24 hours (Figures 4.12 A and B) or for 1, 3, 5 and 7 days (Figures 4.12C, D and E).  
The data is represented as % change of cell viability taking controls as 100%. The values represent the mean ± SEM from 4 experiments * 
denotes p< 0.05 and ** p<0.01 compared to control on the same day.   
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4.3.6-Effects of daily medium change on the production of NO, iNOS expression and 
calcification of RASMCs induced by LPS and IFN-γ in the absence and presence 
of CaCl2, β-GP or CB. 
 

In the studies described previously, the experiments were designed such that the culture 

medium was not changed throughout the incubation period. This was so as not to disrupt the 

calcification process and have an uninterrupted continuous period when the process can take 

place. However, prolonged incubations of cells in the same culture medium may lead to 

decreased cell viability which could be exacerbated when cells are treated with other agents 

including LPS and IFN-γ. More importantly, this may also influence calcification of cells. 

Further studies were therefore carried out where cells were activated for 24 hours with LPS 

and IFN-γ and then coincubated with calcification inducers but changing the culture medium 

daily and replacing all the reagents.  

Cells cultured to ~ 90 % confluency incubated with media alone or medium containing CB 

did not produce NO or express iNOS over the period of incubation. In contrast, RASMCs 

treated with LPS and IFN-γ resulted in the expected induction of NO production which 

increased and reached a maximum at day 3, declining at 4, 5, 6, and 7 days but to levels still 

higher than controls. Similarly, the use of CB and LPS + IFN-γ resulted the same trend in the 

daily production of NO to that seen with LPS and IFN-γ but the decline in NO levels after 

day 3 (0.30 ±0.14 nmole µg-1
  protein) was more noticeable than when LPS and IFN-γ were 

used alone (Figure 4.13 A). The cumulative data (ie pooled data) did not show statistical 

differences between the effects with LPS and IFN-γ (0.71 ±0.22 nmole µg-1
  protein;Day3) 

when compared to these seen when CB as also present (0.64 ±0.17 nmole µg-1
  protein;Day3) 

(Figure 4.13 B; see Figure 4.13 B1 and B2 for summary data).  
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While the cumulative data of LPS and IFN-γ caused significant elevation of NO production 

to that seen with no change medium. CB alone was without significant effect when compared 

to controls (Figure 4.13 B1 and B2).  

Similar to trends with NO, iNOS expression was not detectable in controls or in cells treated 

with CB alone. LPS and IFN-γ however induced iNOS expression which increased over time 

up to day 3 declining thereafter but maintained above basal levels. The levels of iNOS did not 

changes significantly when CB was added with LPS and IFN-γ. The levels of expression 

reached a maximum at day 3 (193 %) followed by a partial decline thereafter (Figure 4.14 A).  

Changing the medium daily and replacing LPS and IFN-γ led to induce NO/iNOS which was 

higher compared to that seen in studies where the medium was not change (0.30 ±0.14 nmole 

µg-1 protein vs 0.18 ±0.05 nmole µg-1 protein; Day 3). Using CB with LPS and IFN-γ without 

changing the medium  caused marginal induction of NO which was 0.35 ±0.17  nmole µg-1 

protein on day 3 compared to the seen when the medium was changed daily (0.28 ± 0.05 

nmole µg-1 protein ; Day 3).  

In relation to calcification, cells incubated with media alone (control) did not induce increases 

in calcium levels. Calcification buffer however caused time dependent induction of calcium 

levels which peaked at day 3 (0.87 ±0.2 nmole µg-1protein) and then sustained thereafter. 

These results suggest that changing the medium daily has similar the elevations in calcium 

levels when compared to studies were the medium was not changed (0.6 ±0.09 nmole µg-

1protein).However,  The calcium level peaked at day 3 with changing medium compared to 

that seen when the medium was not changed where the peak response was seen on day 5.  

Cells activated with LPS + IFN-γ resulted in significant increases in calcium levels compared 

to the control but the levels, although sustained at the various time points, were lower than 

those seen with CB (Figure 4.15 A; see Figure 4.15 B1for summary data).  
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The levels of calcium were not significant higher when compared to studies were the medium 

was not changed or to pooled data. 

 When combined, LPS + IFN-γ and CB together caused significantly more elevation in 

calcium than the individual responses combined. Moreover, the changes in calcium were 

reduced 1.8 ±0.7 nmole µg-1protein when compared to studies were the medium was not 

changed 3.10 ±0.7 nmole µg-1protein. However, pooled data (Figure 4.15 B2) did show 

statistical differences between the effects with LPS + IFN-γ+CB (5.2 ±0.7 nmole µg-1protein) 

when compared to these seen when CB as also present alone. 

 In cytotoxicity studies (Figure 4.16), there was significant reduction in cell viability at day 2 

and over in cells treated with LPS+IFN-γ.  The degree of cytotoxicity did not show a time 

dependent effect in that there were no significant differences in MTT metabolism between 

the different time points from day 2 upwards. CB did not show any marked cytotoxicity and 

in combination with LPS+IFN-γ did not cause any further changes in MTT metabolism 

beyond that seen with LPS+IFN-γ alone (Figure 4.16). Interestingly, in these series of 

experiments, LPS+IFN-γ (Figure 4.16) did cause marked reduction in MTT metabolism as 

seen in previous studies above shown in Figure 4.12 E.  

In conclusion, it seems from the data above that changing the medium every 24 hours does 

not accelerate NO production and calcification any more significantly than in studies where 

the medium was not replenished daily. The mechanisms through which these changes occur 

now remain to be addressed.  
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Figure 4.13 A: Effect of CB on LPS +IFN-γ induced NO production. 
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours after which the medium was 
replaced every 24 hours for up to 7 days with fresh medium containing LPS + IFN-γ with and without CB. Controls were incubated with 
medium alone and parallel batches of cells were incubated with CB alone. Total NO produced was quantified by the Griess assay as described in 
methods (section 2.3).  The data represents means ± S.E.M. from 3 individual experiments. 
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Figure 4.13 B: Summary data of the effect of CB on LPS + IFN-γ induced NO production.  
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours after which the medium was 
replaced every 24 hours for up to 7 days with fresh medium containing LPS + IFN-γ with and without CB. Controls were incubated with 
medium alone and parallel batches of cells were incubated with CB alone. Total NO produced was quantified by the Griess assay as described 
in methods (section 2.3). Analysis of NO production was carried out by determining amounts produced every 24 hours (B1) or by analysing the 
cumulative production (B2). The data represents means ± S.E.M. from 3 individual experiments. 
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Figure 4.14 A: Effect of CB on LPS+ IFN-γ induced iNOS expression. 
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours after which the medium was 
replaced every 24 hours for up to 7 days with fresh medium containing LPS + IFN-γ with and without CB. Controls were incubated with 
medium alone and parallel batches of cells were incubated with CB alone. Expression of iNOS was evaluated by western blotting as described in 
methods (section 2.10). The data represents means ± S.E.M. from 3 individual experiments. 
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Figure 4.14 B: Summary data of the effect of CB on LPS+ IFN-γ induced iNOS expression. 
 

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours after which the medium was 
replaced every 24 hours for up to 7 days with fresh medium containing LPS + IFN-γ with and without CB. Controls were incubated with 
medium alone and parallel batches of cells were incubated with CB alone. Expression of iNOS was evaluated by western blotting as described in 
methods (section 2.10). The data represents means ± S.E.M. from 3 individual experiments. 
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Figure 4.15 A: Effect of CB on LPS +IFN-γ induced calcification. 
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 hours after which the medium was 
replaced every 24 hours for up to 7 days with fresh medium containing LPS + IFN-γ with and without CB. Controls were incubated with 
medium alone and parallel batches of cells were incubated with CB alone. Total calcium was quantified as described in methods (section 2.6). 
The data represents means ± S.E.M. from 3 individual experiments. *** denotes p<0.001 compared to control or ### denotes p<0.001 compared 
to CB alone for each time point. 
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Figure 4.15 B: Summary data of the effect of CB on LPS+IFN-γ induced calcification.  
 
Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1)  for 24 hours followed by adding of LPS+ 
IFN-γ and CB  during a time course of 1,2,3,4,5,6 and 7 days. Total calcium was quantified as described in methods (section 2.6). The 
measurement of calcium levels was done by two different ways, as normal calculation (B1) while cumulative calculation is represented on (B2) 
The data represents means ± S.E.M. from 4 individual experiments.* denotes p< 0.05, denotes p< 0.01 **, and *** denotes p< 0.001 and 
compared to the time points indicated for each experimental condition. 
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Figure 4.16: Effects of CB, LPS + IFN-γ or in combination on cell viability.  

Cells were cultured to ~90% confluency and activated with LPS (100 μg ml-1)+ IFN-γ (100 U ml-1)  for 24 hours followed by adding of LPS+ 
IFN-γ and CB  during a time course of 1,2,3,4,5,6 and 7 days. The data is represented as % change of cell viability taking controls as 100%. The 
values represent the mean ± SEM from 3 experiments * denotes p< 0.05 and ** p<0.01 compared to control on the same day.  
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4.3.7- Effects of coincubation of cells with CB together with LPS and IFN-γ on NO 
production, iNOS expression and on calcification. 
 

In these studies, RASMCs cultured to ~ 90 % confluency were incubated for 1 to 48 hours 

with either media alone or medium containing CB (combination of CaCl2 and β-GP at 7 mM) 

with / without LPS and IFN-γ. Consistent with earlier findings, medium with and without CB 

alone did not produce NO or induce expression of iNOS during a period of 48 hours 

incubation (Figure 4.17 A). In contrast, RASMCs coincubated with both inflammatory 

mediators and CB resulted in significant NO production detectable at 18 hours (0.06 ±0.01 

nmole µg-1protein) after incubation and its induction gradually increased reaching maximal 

production at 48 hours with the levels of NO produced being significantly higher (0.22 ±0.03 

nmole µg-1protein) when compared to LPS and IFN-γ alone (0.11 ±0.02 nmole µg-1protein) 

(Figure 4.17 A; see Figure 4.17 B for summary data).  Similarly, iNOS expression was 

significantly enhanced at 18 hours (%107± 12.5), with level of expression reaching maximal 

at 48 hours (% 174.02 ±33.4) (Figure 4.18 A; see Figure 4.18 B for summary data).  

Cells incubated with media alone (control) did not induce calcification. This was marginally 

enhanced by incubating cells with LPS + IFN-γ  during a 48 hour period (0.4 ±0.01 nmole 

µg-1protein vs 0.1 nmole µg-1protein in controls). CB alone caused the expected time-

dependent elevation in calcium levels (0.9 ±0.2 nmole µg-1protein; Figure 4.19).  More 

importantly, calcium levels were highly elevated by CB in the presence of LPS + IFN-γ (1.4 

±0.05 – 2.6 ±0.1  nmole µg-1protein ) and this was also time dependent (18 – 48 hours), being 

more prominent at 48 hours (Figure 4.19 A). Figure 4.19 B shows the summary data from the 

calcification studies.   
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Figure 4.17 A: Effect of coincubation of CB with LPS +IFN-γ on induced NO 
production.  
 
Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1) + IFN-γ(100 U ml-1)  
with adding CB  during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Total NO was 
quantified by Griess assay as described in methods (section 2.3). The data represents means ± 
S.E.M. from 4 individual experiments.* denotes p < 0.05 and *** denotes p <0.001 compared 
to LPS + IFN-γ alone on each time point. 
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Figure 4.17 B: Summary data of the effect of coincubation of CB and LPS +IFN-γ  on 
induced NO production.  

Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1) + IFN-γ(100 U ml-1)  
with adding CB  during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Total NO was 
quantified by Griess assay as described in methods (section 2.3). The data represents means ± 
S.E.M. from 4 individual experiments.* denotes p< 0.05 and *** denotes p<0.001 compared 
to each experimental conditions. 
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Figure 4.18 A: Effect of coincubation of CB and LPS + IFN-γ on induced iNOS 
expression.  

Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1)+ IFN-γ (100 U ml-1)   
with adding of CB during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Expression of 
iNOS was evaluated by western blotting as described in methods (section 2.10). The data 
represents means ± S.E.M. from 4 individual experiments.** denotes p< 0.01 and *** 
denotes p<0.001 compared to LPS+ IFN-γ alone on each time point. 
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Figure 4.18 B: Summary data of the effect of coincubation of CB and LPS + IFN-γ on 
induced iNOS expression.  

Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1) + IFN-γ (100 U ml-1)   
with adding of CB during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Expression of 
iNOS was evaluated by western blotting as described in methods (section 2.10). The data 
represents means ± S.E.M. from 4 individual experiments.* denotes p< 0.05 and ** denotes 
p<0.01 compared to LPS+ IFN-γ alone on each time point. 
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Figure 4.19 A: Effect of coincubation of CB and LPS +IFN-γ on induced calcification.  

Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1) + IFN-γ (100 U ml-1) 
together with CB during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Total calcium was 
quantified as described in methods (section 2.6). The data represents means ± S.E.M. from 4 
individual experiments.* denotes p< 0.05,** denotes p <0.01 and *** denotes p<0.001 
respectively compared to control while # and ## denotes p< 0.05 and p<0.01 respectively 
when compared to CB on each time point.  
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Figure 4.19 B: Summary data of the effect of coincubation of CB and LPS +IFN-γ on 
 induced calcification.  

Cells cultured to ~90% confluency were activated by LPS (100 μg ml-1) + IFN-γ (100 U ml-1) 
with adding of CB during a time course of 1, 3, 6, 9, 18, 24, and 48 hours. Total calcium was 
quantified as described in methods (section 2.6). The data represents means ± S.E.M. from 4 
individual experiments. The data represents means ± S.E.M. from 4 individual experiments.* 
denotes p< 0.05, ** denotes p< 0.01 and *** denotes p< 0.001 compared to CB at each 
experimental conditions. 
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4.3.8- Effects of preinduced NO production and iNOS expression on CB induced 
calcification of RASMCs.  
 

In these studies, cells were initially induced for 24 hours with LPS and IFN-γ  to initiate NO 

production before inducing calcification. This was to determine whether regulation of the 

latter required the sustained presence of NO or whether the availability of NO at the initiation 

of calcification was sufficient to regulate the calcification process. 

Incubation of cells with medium or CB alone did not caused NO production or iNOS 

expression throughout the time course of the studies. RASMCs activated with inflammatory 

mediators for 24 hours followed CB resulted in significant elevation in NO production (0.103 

±0.02 nmoles µg-1 protein) above that seen with LPS+IFN-γ alone (0.07 ±0.01 nmoles µg-1 

protein) (Figure 4.20 A). Similarly, iNOS expression was also enhanced by CB (46% 

increase) when applied after activation of cells with LPS and IFN-γ  even though the latter 

were removed from the incubation after 24 hours and were not present for the remaining 3 

days of incubation with CB.(Figure 4.20 B).  

Consistent with the above trends, calcification was also enhanced when CB was added after 

LPS and IFN-γ. The increase was well above that seen with LPS and IFN-γ and indeed CB 

(Figure 4.20 C), suggesting that the presence of NO at the initiation of calcification may be 

critical for the latter and further suggests that NO may promote calcification. This requires 

further clarification and is addressed in the next chapter of this thesis.  
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Figure 4.20: Effect of preinduced NO production and iNOS expression on CB 
induced calcification.  

Cells cultured to ~90% confluency were incubated with culture medium alone 
(control). Cells were co incubated with LPS (100 μg ml-1) + IFN-γ (100 U ml-1) for 24 
hours, then replaced by CB only. A: Total NO production was quantified by Griess 
assay as described in methods (section 2.3).  B: iNOS expression was quantified by 
western blotting as described in methods (section 2.10). C: Total calcium was 
quantified as described in methods (section 2.6). The data represents means ± S.E.M. 
from 5 experiments. * denotes p<0.05 or #p<0.05 as stated. 
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4.3.9- Effects of calcification on induced production of NO and iNOS expression in 
RASMCs.  
 

These experiments were the reverse of those described in section 4.3.8 above and looked at 

how the induction of calcification prior to that of iNOS and NO regulated the latter two 

processes. In these experiments, cells were initially incubated with CB for 3 days and then 

activated with LPS+IFN-γ for 24 hours. Medium or CB alone had no effect on basal NO 

release or iNOS expression (Figure 4.21 A). However, incubation with CB first followed by 

LPS+IFN-γ did not enhance the effects seen with the latter two alone. Both NO production 

and iNOS expression remained comparable to the levels seen under all conditions (Figure 

4.21 A and B).  

With regards to calcification, there was an increase in calcium levels in cells incubated with 

LPS+IFN-γ (0.35 ± 0.1 nmole. µg-1 protein) compared to control cells (0.1 ±0.03 nmole. µg-1 

protein) Figure 4.21 C. Incubation with CB alone enhanced calcium levels further as has been 

demonstrated (0.7 ±0.20 nmole. µg-1 protein) but the addition of LPS + IFN-γ after CB 

reduced the levels of calcium back to those seen before the addition of CB.  
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Figure 4.21: Effects of calcification on induced production of NO and iNOS 
expression in RASMCs. 

Cells cultured to ~90% confluency were incubated with culture medium alone 
(control). Cells were co incubated with CB for 72 hours followed by adding LPS (100 
μg ml-1) + IFN-γ (100 U ml-1).  A: Total NO production was quantified by Griess assay 
as described in methods (section 2.3).  B: iNOS expression was quantified by western 
blotting as described in methods (section 2.10). C: Total calcium was quantified as 
described in methods (section 2.6). The data represents means ± S.E.M. from 5 
experiments. * denotes p<0.05 or #p<0.05 as stated. 
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4.4-Discussion:  

As mentioned in previous chapter, one of the objectives of this project is to establish the role 

of NO in the calcification process and to determine whether it regulates the severity of the 

process, especially when the source of the NO is from the iNOS enzyme. The latter, induced 

by inflammatory mediators such as LPS and IFN-γ, may be critical in calcification since it 

has been shown to be enhanced in VC. Despite these observations, it is poorly understood 

whether NO (added or induced) contributes to the development of calcification or in fact 

protects against this process. 

 The first set of experiments incubated cells in medium which was not replenished for 7 days. 

Our data has demonstrated that cells incubated with medium alone did not produced NO or 

induce iNOS expression and this is in agreement with the fact that RASMCs in culture do not 

express iNOS under basal conditions. Literature review revealed that LPS mediated 

activation of TLR4 elevates NO production and iNOS expression over 24 hours which was 

induced in a time dependent manner (Heo et al., 2008). This could explain part of the 

underlying mechanism of action of LPS in inducing iNOS.  Furthermore, the induction iNOS 

by LPS is not only on RASMCs but also reported in rat liver where the effect is also time 

dependent over 48 hours (Billiar et al., 1990). LPS in vivo can induce proliferation and 

inflammation of VSMCs contributing to diseases such as atherosclerosis and arterial 

restenosis (Jiang et al., 2014). These consequences can accelerate the formation of vulnerable 

plaques.  

At the signalling level, LPS activates certain pathway to stimulate the induction of iNOS and 

thus NO production. For instance, LPS activates TLR4 as already stated above, and this 

triggers TRIP factor which in turn stimulate MAPK causing phosphorylation of p 38 MAPK 

(Meng et al., 2013) and then activator protein-1 (AP-1). AP-1 is an important transcription 
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factor which is capable of stimulating gene transcription resulting in protein expression 

including iNOS (Chyu et al., 2004). 

In the current project, studies have been carried out using LPS alone in the presence of 

calcification inducers (CaCl2 or β-GP or in combination; CB). The effect of each condition on 

NO levels and calcification was assessed during long time points (1, 3, 5, and 7 days).   

Activation of cells with LPS for 24 hours did caused the induction of iNOS expression which 

reached a maximum at day 3 (72 hours) followed by a decline thereafter. Other studies have 

demonstrated that LPS could express iNOS at 12- 18  hours reaching maximal expression at 

24 hours following by a declined thereafter in rat smooth muscle cells (Hung, 1995;Tsutsumi 

et al., 2008). Our results demonstrated that NO production continued to increase even 

through iNOS expression had declined and this is because NO production is measured 

cumulatively and therefore increases with time. 

Interestingly, the use of CaCl2 after activation of RASMCs by LPS caused marginal but not 

significant suppression of iNOS expression at day1 because of the large error bars suggesting 

noise in the data. Significant induction was however evident from day 3 to day 5, declining to 

basal levels at day 7. It seems from the western blots that CaCl2 may prolong the half-life of 

iNOS protein expressed significantly at day 5 which is against the findings of LPS alone.  

The mechanism by which CaCl2 may induce NO production by iNOS possibly includes CaCl2 

entering cells through voltage – dependent calcium channel (Lin et al., 2009)or receptor 

operated calcium channel (McFadzean et al., 2002) which causes the induction of NO 

production indirectly. This may however be independent of the classical physiological 

mechanism where calcium activates calmodulin which subsequently binds to NOS (eNOS or 

nNOS) causing activation of the enzyme. With regards to iNOS, calmodulin is apparently 

already tightly bound to the enzyme protein when produced and iNOS is therefore referred to 

as calcium independent (Jones et al., 2007) 
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 Changes in intracellular calcium may however be important for the actual induction of 

iNOS. In support of this it has been reported that its gene may be induced by 17β-estradiol 

through enhancing calcium and it has been demonstrated that inhibition of extracellular and 

intracellular calcium suppressed while enhanced calcium influx enhanced iNOS expression 

and NO production (Azenabor et al., 2009). Similarly, the use of β-GP or CB in the presence 

of LPS followed quit similar trends as has been seen with CaCl2. The use of CB did not 

however show any additive effect on induction of NO and iNOS which was the same trend as 

seen with either CaCl2 or β-GP alone. Therefore, this study confirm that iNOS expression and 

NO production are enhanced under conditions that favour calcification which could be a 

mechanism through which iNOS and NO contribute to regulate calcification in blood vessels.  

In the calcification state, incubation of cells with LPS for 24 hours followed by the continued 

presence of LPS caused significant elevation of calcium level compared to the control. LPS 

activate TLR2/4 leading to the elevation of the expression of the proinflammatory and pro-

calcific agent BMP2, which in turn causes aortic valve calcification in humans. BMP 2 

antagonism abolishes the activity of TLR2/4, which results in inhibition of BMP2 and ALP. 

Furthermore, the silencing of the gene of TLR2/4 contributed to the reduction of BMP2 

(Yang et al., 2009). Further study explained that activation of the TLR2/4 receptor is known 

to promote BMP2 production which causes phosphate uptake by the cell and hence 

calcification in human VSMCs (Heo et al., 2008).  

In our model, the calcification which occurred in RASMCs might follow one of the 

mechanisms mentioned above, but this needs to confirm by further studies in future. 

However, when cells were activated by LPS, followed by the continued presence of LPS in 

the media with CaCl2, β-GP or CB there were no significant changes in calcium levels 

compared to when LPS was not present. The reason for this difference is not understood, 

however previous studies have found that LPS inhibits BMP 2 in osteoblasts via crosstalk 



 

183 
 

between TLR4/MyD88/NF-κB and BMP/Smad signalling (Huang et al., 2013). Therefore the 

same may be occurring here, resulting in an increase in calcium levels, albeit marginal.  

 

Incubation of cells with IFN-γ  resulted in marginal production of NO which was much less 

when compared to LPS alone. This suggests that IFN-γ is a weaker inducer of NO 

production. This result confirms other studies demonstrating that IFN-γ on its own had little 

effect on basal NO levels and this may be because this cytokine does not induce but rather act 

to stabilise the iNOS mRNA (Chan et al., 2001). Consistent with the weak induction of NO 

production, was the lack of expression of detectable levels of iNOS when examined by 

western blotting. It is possible however that iNOS was induced but at a much lower level 

which perhaps was below the limit if detection by western blotting. To confirm this, it would 

have been helpful to detect whether iNOS mRNA was expressed following treatment with 

IFN-γ. Unfortunately, there were time constraints and it was not possible to extend the studies 

to qPCR analysis of iNOS mRNA expression.  Additionally, experiments could also have 

been carried out using a selective iNOS inhibitor such as GW274150 to block iNOS activity 

and see if this had any significant on the low levels of NO produced by IFN-γ. Again time 

constraints meant these experiments could not be carried out but should be planned for future 

studies.  

With regards to calcification, IFN-γ appears to be more stable over the time course 

investigated but was elevated calcium level to that seen with cells containing medium only. 

This result agrees with that obtained with LPS and suggests that IFN-γ, like LPS, is a good 

enhancer of calcium accumulation in RASMCs.  Interestingly, although IFN-γ did not induce 

as much NO production as LPS it did increase the levels of calcium detected even higher than 

those seen with LPS alone. This is interesting because it suggest that IFN-γ may be enhancing 

calcium levels via a mechanism independent of NO.  
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Although the mechanism that caused this increase in calcium has not been investigated, other 

studies have shown that IFN-γ  upregulates the expression of 1alpha-OHase (Stoffels et al., 

2006). The possibility that this may occur in RASMCs is supported by the fact that 1alpha-

OHase is extensively expressed in arterial smooth muscle cells of rat and human (Somjen et 

al., 2005) and converts 25-(OH)2D2 (calcidiol) to 1,25 (OH)2 D3(calcitriol), resulting in 

elevated calcium level leading to hypercalcemia. (Chakrabarty et al., 2011; Segersten et al., 

2002). Activation of RASMCs with IFN-γ followed by the adding of calcification inducers 

resulted in significant elevation of calcium levels which increased dramatically over time 

course. Incubation of cells with CaCl2 /CB and IFN-γ  caused significant induction of calcium 

levels when compared to CaCl2 or CB alone. Unlike CaCl2, β-GP in the presence of IFN-

γ did not caused any significant changes in cellular calcium level or indeed in calcification. It 

is possible therefore that the lack of calcium may be the key limiting factor in calcification 

not taking place. Furthermore, it could be that the time of incubation was not long enough to 

enhance calcium levels as it has been seen with other studies showing incubation of VSMCs 

with β-GP for 10 days while it was 7 days in this study.  

 

 The combination of LPS and IFN-γ caused significant and sustained induction of NO. The 

induction of iNOS on the other hand peaked and then declined as confirmed by western 

blotting. The reason behind this elevation and sustainable NO production and iNOS 

expression may be due to the fact that LPS induces and IFN-γ stabilises the mRNA of iNOS 

(Raghavan et al., 2001) and this could explain why there was more NO produced by iNOS in 

RASMCs. These findings are consistent with several reports demonstrated in the literature 

review (Chester et al., 1998; Hattori et al., 1994;Wileman et al., 1995).   
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Further investigations were carried out in order to establish whether regular replenishment of 

nutrients and other factors required for cell growth affected iNOS induction, NO production 

or the calcification process. Interestingly, it was clearly seen that incubation of cells with 

LPS+IFN-γ using this protocol caused significant elevation in NO production and sustained 

iNOS expression which were higher compared to levels seen without replenishment of 

nutrients protocol. The sustained expression of iNOS also contrasts with the generally 

reported profile of expression of iNOS protein which has been shown to peak at 24 hours but 

declining over 48h (Browner et al., 2004). Replenishing the medium provides nutrients and 

other factors essential to sustain optimal cell function and growth. This may enhance iNOS 

activity as well as sustaining its expression which could explain why levels are higher than 

when the medium was not changed where nutrients could be depleted resulting in poor 

viability and function of cells. These results are new, as they have not been demonstrated by 

previous studies. It may be that when LPS and IFN-γ were replenished the activation of iNOS 

expression was sustained, and thus NO is produced for a longer time course such as 5 or 7 

days.   

In terms of the role of CB in NO or iNOS expression, when LPS + IFN-γ was used to activate 

the cells, the presence of CB caused marginal changes to the level of NO and iNOS when the 

medium was replenished daily. Similarly, when the medium was not replenished daily the 

presence of both LPS and IFN-γ did not significant change when compared to studies where 

the medium was replenished daily.  

Cell viability experiments were conducted to determine whether any of the effects mentioned 

above were specific or due to cytotoxic consequences of the experimental conditions. A 

significant decrease in cell viability was noted when LPS+IFN-γ alone or in combination with 

calcification inducers were used at day 2 to 7. This may have been due to the prolonged 
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incubation period of the cells. Thus, to separate the effect of cell viability on calcification 

from the effect of the agents themselves, the protocol was revised by introducing daily 

replenishment of the incubation medium. However, with the daily replenishment of the 

medium with CB+LPS and IFN-γ in combination did not cause significant changes to NO 

levels or iNOS expression levels in comparison to conditions where the cell culture medium 

was not replenished. Thus, the viability of the cells did not impact upon the level of 

NO/iNOS in this model. 

Further experiments were conducted to determine whether there was a difference in effects 

when the cells were activated with either LPS and /or IFN-γ prior to CB being added to the 

medium versus coincubation with addition of CB at the same time as the others to the cell 

culture. In previous studies (Iadecola et al., 1996; Kessler et al., 1997) the presence of iNOS 

detected by western blotting was noted to occur earlier in VSMCs, between 12 – 18 hours. 

However, our data showed that there is no change of the levels of NO production by iNOS at 

18 hours when both LPS and IFN-γ were present, but there was significant induction of iNOS 

and increase in NO after 18 hours as shown in the 24 hours results. This was also true of 

when the cells were coincubated with CB+LPS +IFN-γ. Interestingly, the addition of CB with 

both LPS and IFN-γ caused significant induction of NO/iNOS at 48 hours compared to when 

LPS and IFN-γ alone. These results may be explained if CB acts at the post transcriptional, 

thus stabilising iNOS mRNA. This however was not investigated and requires further studies.  

The addition of CB with LPS and IFN-γ  resulted in the increased expression of iNOS 

followed by the elevation of NO which was comparable to when both LPS and IFN-γ were 

used to stimulate the cells. In comparison with the study where the medium was not changed 

for 7 days, incubation of the cells with LPS+IFN-γ  for 24 hours followed by the addition of 

CB at day 1 did not cause any significant changes to the induction of NO by iNOS. There 
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was however a lower level of induction. For instance, the activation cells by LPS+IFN-γ  

followed with addition of CB caused ~0.24 nmole.µg-1 protein versus ~0.2 nmole.µg-1 protein 

incubating cells with CB+LPS+IFN-γ at 48 hours.  

Further studies carried out were aimed at establishing whether the induction of NO/iNOS 

regulated calcification when subsequently induced in the absence of the continued presence 

of the inflammatory mediators. Cells were therefore activated with LPS and IFN-γ for 24 

hours followed by the addition of CB alone for 3 days. This was the time point found 

previously from the first experiment to induce maximal calcification and NO production. A 

significant increase in both NO and iNOS was noted. It thus appears that CB may be involved 

in the mechanism that elevates NO and iNOS production in RASMCs. The mechanism is still 

not known although the expression of iNOS is dependent of calcium because CB contains 

both CaCl2 and β-GP. This should not cause elevation of the iNOS protein, as this has not 

been seen with previous research, and it has been demonstrated that iNOS does not bind to 

calcium (Ding et al., 1998).  In this thesis, CB has however been shown to have a significant 

effect in the induction of NO and iNOS in RASMCs even when LPS and IFN-γ were not 

continually present in the medium.  

A further investigation was set up in which cells were activated with CB for 3 days followed 

by the addition of LPS and IFN-γ only for 24 hours without adding CB in order to determine 

whether calcification regulated iNOS and NO production. The data showed that there was a 

similar trend in NO and iNOS expression compared to incubating either with LPS and IFN-

γ or CB only. The presence of CB first did not cause any changes to the levels of NO/iNOS 

when compared to the reverse of this method. Thus, incubating cells with CB first followed 

by LPS and IFN-γ did not enhance the effects seen with the latter two alone.  
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In relation to calcification, the activation of cells with both inflammatory agents caused 

significant elevation of calcium levels over a time course which reached a maximum on day 5 

when compared to control. Moreover, there was significant  induced of calcium levels with 

LPS+IFN-γ when compared to LPS or IFN-γ alone as already discussed in chapter 3. This 

explains that LPS induce calcium levels through activating TLR2 and 4.  

An interesting observation form the studies carried out so far is that LPS + IFN-γ and the 

calcification inducers such as CaCl2 / CB resulted in induction of mineralisation as it has 

been detected either by ARS or FT-IR. Further study found an acceleration of calcification 

(maximal elevation of calcium day 3) in comparison to CB alone (maximal elevation of 

calcium day 5). LPS stimulate the synthesis of proteins such BMP2 and ALP through 

activating TLR2 and 4. Both proteins are well-known pro-calcific markers and play a critical 

role in calcification, by inducing a phenotypic transition of aortic smooth muscle cells in to 

bone like cells (Tintut et al., 2002; Zehnder et al., 2002). Thus, it is likely that LPS + IFN-γ 

with calcification inducers might regulate the calcification under the inflammatory condition. 

At present, the full mechanism of action of inflammatory mediators is not known and it is not 

clear whether in our cell system, LPS does activate other osteoblast or osteoclast like cells 

marker, such as Runx2/Cbfa1 and this may require further investigation.   

Several methods were used to see whether NO/iNOS regulates VC in this study. When the 

medium was changed every 24 hours and cells were coincubated with LPS and IFN-γ alone 

there was a significant induction of calcium levels compared to the control. These results 

were not significantly different to the calcium levels seen when the medium was not changed 

for 7 days. Similarly, when CB+LPS+IFN-γ were in the medium replenished daily there were 

no significant changes to the calcium levels when compared to cells incubated in the same 

medium for 7 days. For example with continued incubation in the same media iNOS 
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expression was 170%, while in daily changed media it was 200% at day 3 with an overlap in 

the margin of error of both these results. There was however a significant increase in calcium 

compared to the CB being present in the medium alone.  Moreover, there was a slight 

reduction in calcium levels when the cell medium was changed every 24 hours (with 

CB+LPS+IFN-γ) compared to that seen when the medium was not changed. When the media 

was replenished daily no significant changes in the levels of NO/iNOS (as seen by western 

blot) were seen compared to not changing the media. However, the data for the unchanged 

media did show a marginally higher level of NO/iNOS compared to that seen when the 

medium was changed.  

The cumulative increase in calcium levels could be explained by accumulation of calcium 

over the time course due to addition of calcium caused by buffer replenishment. When the 

cells were incubated with CB alone, the calcium level was significantly higher, but the levels 

when the media was changed daily were similar to those when the medium was not changed 

at every time point. This suggests that the daily replenishment of the medium could be 

saturating the cellular mechanism responsible for calcification, rather than the induction of 

calcium level itself.  Another possibility is that the cells are retaining the calcium, and these 

cells are unable pump out the calcium from the plasma membrane due to the low levels of 

adenosine triphosphate (ATPase) and which in turn maintains high cytosolic calcium 

concentrations for longer durations rather than exchanging these with other ions such as the 

hydrogen ion. Thus, there would be no further induction of calcium deposition when the 

medium was changed daily, as demonstrated by a previous study (Clapham, 2007). 

However, when the data over the 7 days is pooled, calcium levels were significantly elevated. 

Thus, it may be that when the buffer was replenished calcium accumulated from the first day, 

and this produced a significant level measured from the first day of incubation.  
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The calcium levels reached approximately 11 nmole.µg-1 protein. This is a significant 

increased when compared to incubation in CB media alone. Yet when the cells were 

incubated in CB alone the pooled data showed approximately 2 nmole.µg-1 protein being 

present. This data indicates the limitation of RASMCs cultured in the presence of calcium.   

Coincubation experiments were performed whereby cells coincubated with CB and 

LPS+IFN-γ were compared to cells incubated in CB alone for a 48 hour period. The levels of 

NO/iNOS and intracellular calcium were measured throughout  1, 3, 6, 9, 18, 24 and 48 hours 

in order to determine the changes in NO, iNOS expression and elevated intracellular calcium. 

Calcium was detected earlier, beginning at 3 hours when CB alone was present.  An 

explanation for this phenomenon could be that the activity of the calcium receptor is 

increased by the addition of CB.  

When NO/iNOS production is stimulated by the presence of LPS and IFN-γ, with CB also 

present, the elevation in calcium levels was significantly higher than that compared to CB 

alone or just LPS and IFN-γ at 3, 6 and 9 hours. However beyond this (18 – 48 hours) a 

significant increase in found only when comparing CB coincubated with LPS+IFN-γ to 

LPS+IFN-γ alone. However, iNOS appears at 18 hours in media containing LPS+IFN-γ but 

was not seen in the control. There was a strong link between the presence of NO/iNOS and 

calcification. Thus, the significant differences beyond 18 hours may be due to the synergistic 

effect of iNOS and CB in inducing calcification. This may be because iNOS depends on the 

presence of calcium. CB contains calcium and phosphate which is raised in the cell.  

Previous studies have shown that iNOS was involved in the binding to free intracellular 

calcium and calmodulin irreversibly (Panda et al., 2001). However, our findings have 

supported that CB and LPS+IFN-γ  induced calcium significantly compared to the control or 

CB alone and this result in elevation of iNOS expression in RASMCs.  
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In comparison with other studies, the calcium levels were elevated by incubating cells with 

LPS+IFN-γ first followed by the addition of CB at day 1. The levels were ~2.2 nmole.µg-1 

protein compared to when the both the inflammatory agents were added at the same time to 

the media, approximately ~2 nmole.µg-1 protein.  

A further investigation was conducted using two alternative methods in order to understand 

whether sustained induction of iNOS and NO was essential for calcification, and determine if 

CB is involved in regulation iNOS or NO production. In the first method cells were activated 

with LPS+IFN-γ for 24 hours, followed by the addition of CB alone; with quantification of 

iNOS and NO on the third day. This time period for quantification was selected as prior 

experiments had indicated maximal calcification at 3 days postactivation of iNOS expression. 

The results indicated a significant induction of calcium for the 3 days of incubation compared 

to the control. The levels of iNOS were however lower than previous experiments where LPS 

and IFN-γ continued to be present in the medium. For example after 3 days of continuous 

incubation with replenishing media the % expression of iNOS was 200% compared to 100% 

when only CB was present for 3 days postactivation. The NO levels were also lower, e.g. 

0.125nmole. μg-1 protein with CB only  compared to 0.38 nmole. μg-1 protein when LPS and 

IFN-γ continued to be present with CB. 

The cells also showed a significant increase in calcium levels when cells activated by LPS 

and IFN-γ had their media replaced and included CB compared to those incubated in CB 

alone, i.e. 0.5 nmole. μg-1 protein compared to 0.78 nmole. μg-1 protein. This was in 

agreement with other studies where it was found that the expression of iNOS was involved in 

the induction of calcification in the MC3T3-E1 osteoblasts not VSMCs (Zaragoza et al., 

2006). Importantly, both the induction of NO/iNOS and increase of calcium levels 

significantly at day 3 supports the idea of the involvement of iNOS in the calcification 
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process, in turn causing the formation of HA crystals.  On the other hand, when the method 

was reversed whereby cells were activated for 3 days with CB and thereafter the media 

replaced with one containing LPS and IFN-γ, there was a reduction of calcium levels. 

Therefore, using this novel result it is possible to demonstrate that the elevation of NO/iNOS 

by the inflammatory mediators enhances the effect of CB in the elevation of calcium in the 

cell. This indicates a strong link between the calcium and NO/iNOS levels in the vasculature. 

Thus an increased level of intracellular calcium generated less calcification than when 

inflammatory mediators activate iNOS/NO production prior to the calcium levels being 

increased.   

It is also interesting to note that when the media was not replenished for 7 days, i.e. 

incubation for 24 hours with LPS and IFN-γ was followed by the addition of CB, calcium 

concentration were considerably higher, reaching levels of 2.4 nmole. μg-1 protein at day 3. 

This indicates activation of calcification when all 3 agents are present together which may be 

an additive effect due to the continued presence of NO promoting free radical formation and 

hence calcification (Guzik et al., 2002). Thus, the increased iNOS levels noted at day 3 when 

coincubation was continuous and correlates with increased levels of calcium level leads to 

accelerate calcification process. 

The biochemical assays indicated elevated calcium levels under the conditions described 

above. There was however little staining with ARS evident in the treated cells. This could 

however be due to the fact that while there was an elevation in calcium levels there was less 

HA crystal formation presumably because there was no parallel increase in phosphate levels. 

Similarly when β-GP was used alone there was no detectable HA stained possibly because of 

the lack of parallel increase in calcium. Thus for HA to be formed and ARS to show a 

positive result there has to be an increase in both calcium and phosphate.  
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 The FT-IR analysis however did show evidence of HA crystal formation in the uses of CB/ 

CB+LPS /CB+ IFN-γ /CaCl2 +LPS+IFN-γ / CB+LPS+IFN-γ. While cells containing medium 

only, LPS and/or IFN-γ, CaCl2 or β-GP alone did not formed HA crystals as shown by the 

FT-IR analysis. Interestingly, these treatments, other that LPS/ β-GP, caused significant 

increases in cellular calcium levels as detected by the calcium assay kit. It could be that 

limitation of other factors such as calcium in the medium which is needed to form HA 

crystals was not present when cells were treated with β-GP.  Moreover, the fact that calcium 

was elevated would suggest that the cells may be primed to calcify once exposed to 

phosphate and the lack of detectable plaques may be due to phosphate not being present. This 

therefore suggests that these treatments increased cellular calcium, they did not necessarily 

cause plaques to form or the cells to calcify.  

However, ARS was obviously seen on RASMCs incubated with the treatments such as CB 

alone, CB+LPS, CB+ IFN-γ, CB+LPS+IFN-γ, CaCl2+LPS+IFN-γ. All these treatments 

induced HA which was stained significantly by ARS compared to control cells as well as to 

CB. It could be explained that these agents support formation of HA crystal which was 

confirmed by FT-IR. FT-IR analysis of mineralised plaques revealed the presence of HA 

crystals peak at 1080 cm-1 - 1089 cm-1. These readings represent HA with poor and strong 

crystallisation structures respectively. These findings were in agreement with a study 

demonstrating that HA can form either strong or poor spectrum in calcific tendonitis (Alò et 

al., 2009; Chiou et al., 2009; Lin et al., 2007). However, the confirmation of the presence of 

HA crystals by ARS and FT-IR was not conducted for the experiments involving daily 

change of media, or alternating between exposing cells to either CB or IFN-γ and LPS first. It 

is recommended that these experiments are carried out in future work. 
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The results of the experiments indicate that the calcifying agents are important in inducing 

crystallisation, and inflammatory mediators may accelerate this process noted by the presence 

of HA crystal 3 days after incubation, even though this results has not been published by 

other studies. The mechanisms that leads to HA formation has not been examined in the 

current studies, but there is at least one study that has demonstrated that peroxidation of lipid 

formed in human smooth muscle cells as a result of oxidative stress from hydroxyl radicals, 

can induce the characteristic crystallisation of HA. Hydroxyl radicals can attached the fatty 

acid bond and thus damage the membrane of foam cells leading to mineralisation of plaques 

(Alò et al., 2009; Dritsa, 2012; Sklepkiewicz et al., 2011). Whether oxidative stress plays any 

role in our system remains to be established. 

In summary, the studies carried out to date clearly show that induction of NO by both 

inflammatory mediators may be enhanced in a calcifying environment. Moreover, the 

presence of NO appears to enhance calcification caused by inflammatory mediators, and 

calcification inducers. In terms of the disease state in man it may be that increased 

intracellular calcium in vivo enhances iNOS expression and thus NO production. Moreover, 

increased iNOS expression and NO production enhance calcification. This indicates that there 

may be a cascade effect whereby one condition i.e. inflammation promotes calcification, 

while calcification promotes inflammation. This is important to consider when seeking to 

address the disease condition.  

Further studies were carried out detailed in the later chapters of this project, in order to fully 

understand the link between iNOS/NO and calcification, and the associated mechanisms. 

Figure 4.22 below shows the partial confirmation of the hypothesis in this project:  

  



 

195 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Expected formation of extracellular matrix degradation caused by NO 
production through iNOS. 
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CHAPTER  V 

RESULTS 
 

Effects of NO donors and of the selective 
iNOS inhibitor, GW274150, on calcification 
of smooth muscle cells 
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5.1- Introduction: 

The data presented in chapter 4 showed that exposure of RASMCs to LPS + IFN-γ resulted in 

calcification of the cells and this effect was further enhanced when coincubated with CB. 

Since these effects occurred in parallel with enhanced NO synthesis and iNOS expression, it 

is reasonable to speculate that induced NO synthesis may promote calcification of RASMCs 

which would be consistent with the notion that NO is a promoter of calcification (Zaragoza et 

al., 2006;Ehnes et al., 2015). This however contrasts with the other suggestion that NO may 

inhibit calcification (Richards et al., 2013). Thus, to conclusively demonstrate whether NO 

promotes or inhibits calcification, further studies were carried out using GW274150, a 

selective inhibitor of iNOS activity (Chatterjee et al., 2003; De Alba et al., 2006; Høivik et 

al., 2010), to confirm whether the induction of calcification by LPS and IFN-γ was associated 

with the expression of iNOS and thus NO production.  

 

In addition, parallel studies were carried out supplementing the culture medium with NO 

donors and inducing calcification using CB in the absence of LPS and IFN-γ. The reason for 

taking this approach was to establish categorically that NO itself in the absence of any 

potential influences that may be induced by LPS and IFN-γ  contributed to the calcification 

seen. The donors (Cai et al., 2005) were diethylenetriamine/nitric oxide adduct (DETA 

NONOate/NOC18) and sodium nitroprusside (SNP). These compounds were chosen in order 

to establish whether the profile of NO release correlates with the induction and degree of 

calcification. Diethylenetriamine/nitric oxide adduct (Lam et al., 2003) is a small molecule 

manufactured to release NO at a slow rate and has a half-life which is around 22 hours. 

Sodium nitroprusside (Giachelli, 2009) on the other hand is a fast releasing NO donor with a 

half-life of a few seconds. Interestingly, sodium nitroprusside could also protect against 

apoptotic bodies by B-cell lymphoma 2 (bcl2) gene which may in turn prevents accelerated 
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calcification (Ho et al., 2009). This therefore makes SNP an interesting NO donor to 

investigate. 

Diethylenetriamine/nitric oxide adduct has been shown to elevate calcium deposition and 

when coincubated with β-GP promotes mineralisation crystals (Yasuhara et al., 2007). 

Contrasting these findings, other reports have suggested that incubation of cells with CB in 

the presence of NOC18 caused significant reduction in calcification (Kanno et al., 2008 

;Pardali et al., 2012). Similarly, SNP has been found to inhibit mineralisation in cultured 

chondrogenic cells (ATDC5). This inhibition occurred via c-GMP through independent 

pathway which in turn inhibits formation of mineralisation plaques (Huitema et al., 2006a). 

Further studies investigated whether this inhibition was mediated through releasing of NO by 

SNP or through other mechanisms. Interestingly, the data generated suggested that iron 

moiety released from SNP rather than the NO generated was responsible for inhibiting 

mineralisation detected by ARS (Huitema et al., 2006b).  

Taken together, these findings highlight the controversy associated with the role of NO in VC 

and this requires further studies which will be addressed in this chapter.  The studies designed 

were aimed at establishing whether: 

(i) GW274150 inhibits iNOS activity in RASMCs. 

(ii) Blockade of iNOS activity by GW274150 regulate calcification of RASMCs. 

(iii) Calcification inducers cause significant changes in NO production. 

(iv) NO donors regulate calcification of RASMCs and whether this is determined by 

the profile of NO release. 
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  5.2 - Experimental protocol: 

Cells culture and quantification of NO production, total protein and calcium measurements as 

well as western blotting were performed as described in chapter 2, section 2.3, 2.5, 2.6, and 

2.10, respectively. In parallel experiments, ARS and FT-IR analysis was also performed as 

previously described in the method (sections 2.8 and 2.9, respectively). 

5.2.1- Effects of GW274150 on NO production and calcification of RASMCs. 

RASMCs were cultured to ~ 90 % confluency and preincubated for 30 minutes with 

GW247150 at 10, 50 and 100µM before adding calcification inducers and / or LPS and IFN-

γ together. Quantification of NO produced and calcification induced was determined at  3 

days by the Griess and calcium assays, respectively. This was the time point found previously 

from the first experiment to induce maximal calcification. 

5.2.2- Effects of nitric donors on calcification of RASMCs 

RASMCs at ~ 90 % confluency were coincubated with the NO donor NOC 18 (10, 30, 50 

µM) or SNP (10, 30 and 50 µM) in the presence or absence of CB (7 mM) for 3 days, and 

this was the time point found previously from the first experiment to induce maximal 

calcification. Calcification was determined using the calcium assays.  
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5.3- Results: 

5.3.1 - Effects of GW274150 on NO production and on calcification of RASMCs: 

Incubation of RASMCs with medium alone did not produce NO. Cells that were pretreated 

with LPS + IFN-γ (0.035 ±0.002 nmole µg-1 protein) and in combination with CB 

(0.06 ±0.003 nmole µg-1 protein) resulted in the production of NO which was significantly 

inhibited by GW274150 at 10, 50, and 100 µM  (Figure 5.1) at day 3. The inhibitions did not 

show much concentration dependency as shown in Figure 5.1. iNOS expression was also 

significantly induced when cells were incubated with LPS+IFN-γ either alone or in the 

presence of CB where levels of iNOS protein were higher than those seen with LPS+IFN-

γ alone Figure 5.2. The inductions were not affected by GW274150 at 10 and 50 µM.  The 

uses of  100  µM however caused significant inhibition of iNOS expression. Cells that were 

incubated with CB alone did not alter basal NO production or iNOS expression. 

Cells that were incubated with medium alone did not show any significant increase in 

accumulated calcium levels. Interestingly, in these studies, treatment of cells with LPS and 

IFN-γ ( 0.116 ±0.05 nmole µg-1 protein) failed to cause any significant increase in calcium 

levels above control (0.07 ± 0.01 nmole µg-1 protein ) (Figure 5.3). This is to be expected as a 

different protocol was used which aimed to have minimal NO present at the start of the 

calcifying process.  

The inclusion of GW274150 in the culture medium enhanced calcification in cells treated 

with either CB or with LPS+IFN-γ.  This effect was more marked with LPS+IFN-

γ [(0.28 ± 0.05 nmole µg-1 protein; 10 µM ) or (0.4 ± 0.25 nmole µg-1 protein; 50 µM)]   than 

with CB [(1.2 ± 0.5 nmole µg-1 protein; 10 µM) or (2.1 ± 0.5 nmole µg-1 protein; 50 µM)] and 

was seen only with 10 µM  and 50 µM of the drug. At 100 µM, GW274150 significantly 
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inhibited elevations in calcium levels induced by LPS+IFN-γ alone and in combination with 

CB but only partially suppressed that cause by CB alone (Figure 5.3).  
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Figure 5.1: Effect of GW274150 on LPS+IFN-γ induced NO production in RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ (100 U ml-1) alone 
or in combination with CB in the presence or absence of GW274150. Total NO was quantified by the Griess assay as described in methods 
(section 2.3). The data represents means ± S.E.M. from 4 experiments. # # # denotes p<0.001 compared to condition not incubated with 
GW274150.  
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Figure 5.2: Effect of GW274150 on LPS+IFN-γ induced iNOS expression in RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ (100U ml-1) alone 
or in combination with CB in the presence or absence of GW274150. Expression of iNOS was determined by western blotting as described in 
methods (Section 2.10). The data represents means ± S.E.M. from 4 individual experiments.  

  



 

 

204 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Effect of GW274150 on LPS+IFN-γ induced calcification in RASMCs. 

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control), LPS (100 μg ml-1) and IFN-γ  (100 U ml-1) 
alone or with CB in the presence or absence of GW274150. Total calcium was quantified as described in methods (section 2.6). The data 
represents means ± S.E.M. from 4 experiments. ## denote p<0.01 compared to the CB+LPS+IFN-γ.
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 5.3.2- Detection of components of calcification plaque using ARS and FT-IR:  

5.3.2.1- Staining of calcific plaques with ARS: 

As has been observed previously, control cells and cells activated with LPS and IFN-γ did not 

show any staining when exposed to ARS. Similarly, cells that were coincubated with 

GW274150 (10, 50 or 100 µM) were not stained by ARS (Figure 5.4 A, B, and C). In 

contrast, RASMCs treated with CB alone or with LPS+IFN-γ caused distinct formation of 

HA crystals which were stained significantly by ARS. The staining was significantly higher 

in the presence of CB+LPS+IFN-γ (Figure 5.4). When included, GW274150 at 10, 50 or 100 

µM Figure 5.4 A, B, and C, respectively completely abolished the staining observed under 

the conditions above.     
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Figure 5.4: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control), CB, LPS (100µg ml-1) + IFN-γ (100 U ml-1), 
or in combination with CB in the presence or absences of GW274150 at 10 µM (Panel: A), 50 µM (Panel: B), or 100 µM (Panel: C) for 5 days. 
Cells were treated with 1x of ARS (1: 10 stock solution) at the end of the treatment period as described in method (Section 2.8). The images are 
representative of 3 individual experiments which were taken with an inverted Olympus microscope at 10X magnification using GX capture 
programme. 



 

 

208 
 

5.3.2.2 - Detecting HA crystals by FT-IR analysis: 

As mentioned in previous chapters, amide spectra (I: 1633, II: 1515, III: 1234 CM-1) were 

found in all samples analysed from different experimental conditions. Cells coincubated with 

GW274150 alone at 10 µM (Figure 5.5 A), 50 µM (Figure 5.5B) or 100 µM (Figure 5.5C) 

did not show any detectable peaks for HA crystals consistent with the lack of staining with 

ARS reported. In contrast, treatment of cells either with CB or CB+LPS+IFN-γ did result in 

HA formation. Summary spectra of the different molecules detected are summarised in 

Tables 5.1 and 5.2, and shown in Figures; Figure 5.5 A, B, C compared to the Figure 5.5 D. 
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Figure 5.5 A:   FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), CB, LPS (100 μg ml-1) + IFN-γ (100 U ml-1), or in 
combination with CB in the presence of GW274150 at 10 µM for 5 days.  Cells were washed and scraped with 100% ethanol at the end of the 
incubation period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Figure 5.5 B:   FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ (100 U ml-1), or in 
combination with CB in the presence of GW274150 at 50 µM for 5 days.  Cells were washed and scraped with 100% ethanol at the end of the 
incubation period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Figure 5.5 C:   FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ (100 U ml-1), or in 
combination with CB in the presence of GW274150 at 100 µM for 5 days.  Cells were washed and scraped with 100% ethanol at the end of the 
incubation period and subjected to FT-IR as described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Figure 5.5 D:   FT-IR spectrum analysis of activated RASMCs. 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ (100 U ml-1), CB, or in 
combination for 5 days.  Cells were washed and scraped with 100% ethanol at the end of the incubation period and subjected to FT-IR as 
described in method (section 2.9). The FT-IR spectra are representative of 3 individual experiments. 
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Table 5.1: Spectrum of molecules detected by FT-IR treated RASMCs with GW274150, GW+CB, or GW+LPS+IFN-γ+CB:  

Data from Literature review  Data from current studies 

Stretch or bend of 
chemical compound 

wave number 
(cm-1) Citation Expected Wave number 

(cm-1) 
Control 

GW2742150 
10,  50 or 
100 µM 

GW10, 50 
or 100 

µM +CB 

GW10, 50 or 100 
µM +LPS+IFN-

γ+CB 

Amide I-(CON stretch), 
Amide II (NOH bend), 
Amide III (COH stretch, 
NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Alò et al., 2009; 
Dritsa, 2012; Lin 

et al., 2007) 

1620, 1621, 1623, and 1629 
(Amide-I), 1512, 1531, 

1534, 1537 (Amide-II),1237 
and 1240 (Amide-III) 

Present Present Present Present 

Carbonate 
and Calcite (-CO3

2-) 

 
1430-1480 

 

(Raynaud, et al., 
2002) 

1441, 1447, 1450, and 1450  
-CO3

2-CO3
2 Present Present Present Present 

Tricalcium phosphate 
(TCP), 

β-Tricalcium phosphate 
(β- TCP) 

700-750, 
690 

(Destainville, et 
al., 2003) --------------- ----------- --------------- ----------- --------------- 

Phosphate (stretch PO4
3-) 1154, 1075,1046, 

1010 & 1020 or 975 

(Destainville, et 
al., 2003; Han J-
K., et al., 2006; 
Mobasherpour 

and 
Heshajin,2007; 
Raynaud, et al., 

2002) 

1028, 1064, 1073, 1072,  
and 1106 -PO4

3- - Not present Not present Not 
present Not present 

HA crystal 
Ca 10(PO4)6(OH)2 

1080 - 1089 
(Kwon, et 
al.,2003: 

Alò et al., 2009) 
Ca 10(PO4)6(OH)2 Not Present Not  Present Not  

Present 
Not Present 

Polysaccharides Below 690 

(Gómez-Ordóñez 
et al., 2011; 
Parikh et al., 

2006). 

Below 690- Polysaccharide Not Present Not Present Not 
Present Present 
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Table 5.2: Spectrum of molecules detected by FT-IR treated RASMCs with LPS+IFN-γ, CB, or in combination:  

Data from Literature review Data from current studies 
Stretch or bend of 

chemical compound 
wave number 

(cm-1) Citation Expected Wave number 
(cm-1) CB LPS+IFN-γ LPS+IFN-γ+CB 

Amide I-(CON stretch), 
Amide II (NOH bend), 
Amide III (COH stretch, 
NOH bend) 

1620-1632, 
1515-1540, 
1216-1290 

(Alò et al., 2009; 
Dritsa, 2012; Lin 

et al., 2007) 

1620, 1621, 1623, and 1629 
(Amide-I), 1512, 1531, 

1534, 1537 (Amide-II),1237 
and 1240 (Amide-III) 

Present Present Present 

Carbonate 
and Calcite (-CO3

2-) 

 
1430-1480 

 

(Raynaud, et al., 
2002) 

1441, 1447, 1450, and 1450  
-CO3

2-CO3
2 Present Present Present 

Tricalcium phosphate 
(TCP), 

β-Tricalcium phosphate 
(β- TCP) 

700-750, 
690 

(Destainville, et 
al., 2003) --------------- Present ---------------- Present 

Phosphate (stretch PO4
3-) 1154, 1075,1046, 

1010 & 1020 or 975 

(Destainville, et 
al., 2003; Han J-
K., et al., 2006; 
Mobasherpour 

and 
Heshajin,2007; 
Raynaud, et al., 

2002) 

1028, 1064, 1073, 1072,  
and 1106 -PO4

3- - Present Present Present 

HA crystal 
Ca 10(PO4)6(OH)2 

1080 - 1089 
(Kwon, et 
al.,2003: 

Alò et al., 2009) 
1080 or Ca 10(PO4)6(OH)2 Present Not present Present 

Polysaccharides Below 690 

(Gómez-Ordóñez 
et al., 2011; 
Parikh et al., 

2006). 

Below 690- Polysaccharide Not present Present Present 
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5.3.3-Effects of diethylenetriamine/nitric oxide adduct (NOC 18) on calcification of 
RASMCs.  
 

To determine whether NOC 18 was able to regulate calcification of RASMCs, experiments 

were conducted where cells were pretreated with the compound either alone or for one hour 

prior to the addition of CB. In parallel studies, NOC 18 and CB were added together to see 

whether availability of calcifying agents in the presence of immediate NO release had any 

effects on calcification that were different to those seen when cells were pre-exposed to NO 

before inducing calcification.  

In these studies, RASMCs coincubated with different concentrations of NOC 18 resulted in a 

dose and time dependent release of NO production with 10 µM, 30 µM and 50 µM resulting 

in approximately 0.06±0.02 nmole µg -1 protein, 0.16 ±0.09  nmole µg -1 protein and 0.26  

±0.07  nmole µg -1 protein of NO being detected respectively 24 hours after exposure to cells. 

These concentrations increased to 0.10 ±0.05, 0.19 ±0.06, and 0.31±0.08   nmole µg -1 protein 

at day 7, respectively (Figure 5.6 B).  Levels of NO detected in controls in the absence of 

NOC 18 was 0.002 nmole µg -1 protein on day 7 (Figure 5.6 B). These levels of NO were not 

significantly altered in the presence of CB either when added together with or 1 hour after 

NOC 18 (Figure 5.6 A1, 2, 3). A summary of the trends described are shown in Figure 5.6 B.  

Analysis of calcification of cells in the presence of NOC 18 alone (10, 30, and 50 µM) 

showed a degree of elevation of calcium levels which was more pronounced when compared 

to controls at days 1 and 3, but the changes at days 5 and 7 although above controls did not 

appear to be statistically different (Figure 5.7 B). Moreover, the responses to NOC 18 were 

not concentration dependent in that changes in calcium occurred to approximately the same 

levels irrespective of the concentration used (Figure 5.7 A1,2,3). As already demonstrated 

previously, CB alone (0.7 ±0.1  nmole µg -1 protein) induced calcification of RASMCs but of 
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more importance is the observation that when added to cells 1 hour after NOC 18 

pretreatment, induced significantly greater calcification of RASMCs [(0.9 ±0.08  nmole µg -1 

protein; 10µM, 1.2 ± 0.22 nmole µg -1 protein;30 µM, 1.3 ± 0.17  nmole µg -1 protein;50 

µM)]. The enhancements appear greater in cells pretreated with NOC 18 and particularly at 

the earlier time periods (1 and 3 days). Once again the changes were not dependent on the 

concentrations of NOC 18 used and these trends are more clearly demonstrated in the 

summary graph shown in Figure 5.7 B. 
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Figure 5.6 A: Effects generation of NO from NOC 18 in RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control) or treated with NOC 18 at different 
concentrations in the presence or absence of CB (7mM CaCl2, 7mM β-GP). NOC 18-CB represents data from cells pretreated with the NO donor 
for 1 hour before adding CB, and NOC 18+CB represents coincubation of both for 3 days.  Total NO was quantified by the Griess assay as 
described in methods (section 2.3). The data represents means ± S.E.M. from 3 experiments. 
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Figure 5.6 B: Summary data of the time dependent generation of NO from NOC 18 in RASMCs.  

Cells cultured to ~90% confluency were incubated either with culture medium alone (control) or treated with NOC 18 at different concentrations 
in the presence or absence of CB (7mM CaCl2, 7mM β-GP). NOC 18-CB represents data from cells pretreated with the NO donor for 1 hour 
before adding CB, and NOC 18+CB represents coincubation of both for 1, 3, 5, and7 days.  Total NO was quantified by the Griess assay as 
described in methods (section 2.3). The data represents means ± S.E.M. from 3 experiments. 
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Figure 5.7 A: Effect of NOC 18 on calcification of RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control) or treated with NOC 18 at different 
concentrations in the presence or absence of CB (7mM CaCl2, 7mM β-GP). NOC 18-CB represents data from cells pretreated with the NO donor 
for 1 hour before adding CB, and NOC 18+CB represents coincubation of both for 3 days. Total calcium was quantified as described in methods 
(section 2.6). The data represents means ± S.E.M. from 3 experiments. * denotes p< 0.05 and ** denotes p< 0.01 compared to control cells while 
# denotes p< 0.05 compared to CB alone. 
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Figure 5.7 B: Summary data of the effects of NOC 18 on calcification of RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control) or treated with NOC 18 at different 
concentrations in the presence or absence of CB (7mM CaCl2, 7mM β-GP). NOC 18-CB represents data from cells pretreated with the NO donor 
for 1 hour before adding CB, and NOC 18+CB represents coincubation of both for 1, 3, 5, and7 days. Total calcium was quantified as described 
in methods (section 2.6). The data represents means ± S.E.M. from 3 experiments.   
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5.3.4- Staining of calcific plaques with ARS: 

As shown in  Figure 5.8, plaques representative of calcification were not detectable in cells 

incubated with  medium alone; NOC18 at 10, 30 and 50 µM alone; NOC 18 10, 30 and 50 

µM +CB.  Plaques were only detected in cells pretreated with 30 and 50 µM NOC 18 prior to 

CB. Coincubation of NOC 18 and CB at the same time failed to show any staining suggesting 

perhaps the absence of calcification. This however contrasts with the data above showing that 

NOC 18 plus CB caused significant increases in calcium irrespective of whether the NO 

donor was preincubated or added together with CB. With preincubation of NOC18 the 

mineralisation of HA occurred in the cells when CB was added. However, the alternate 

protocol whereby NOC18 and CB were added together did not appear to promote 

mineralisation.  

 

 

 

 

Figure 5.8: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated either with culture medium alone 
(control), CB. NOC 18-CB represents data from cells pretreated with the NO donor for 1 
hour before adding CB, and NOC 18+CB represents coincubation of both for 5 days. Cells 
were treated with 1x of ARS (1: 10 stock solution) at the end of the treatment period as 
described in method (Section 2.8). The images are representative of 3 individual experiments 
which were taken with an inverted Olympus microscope at 10X magnification using GX 
capture programme. 
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5.3.5- Effects of Sodium nitroprusside (SNP) on calcification of RASMCs.  

As with NOC 18, addition of SNP at concentrations of 10, 30 and 50 μM resulted in a 

concentration and time dependent increase in NO detected in the culture medium as nitrite 

(Figure 5.9 B). Addition of CB 1hour after SNP or in combination with did not cause any 

significant changes in NO production as seen in (Figure 5.9A1, 2 &3). In the experiments 

carried out to detect changes in calcification, there were significant increases in calcium when 

cells were coincubated with different concentrations of SNP compared to control cells but the 

response did not show any concentration dependency. (Figure 5.10 A1, 2 &3) at day3.           

The addition of CB either an hour after or together with SNP marginally enhanced the 

calcium levels seen with CB alone but significantly enhanced that caused by SNP alone 

compared to the control, not to CB alone. The summary data of the trends observed is shown 

inFigure5.10B. 
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Figure 5.9 A: Effects generation of NO from SNP in RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control) or treated with SNP at different concentrations 
in the presence or absence of CB (7mM CaCl2, 7mM β-GP). SNP-CB represents data from cells pretreated with the NO donor for 1 hour before 
adding CB, and SNP+CB represents coincubation of both together for 3 days.  Total NO was quantified by the Griess assay as described in 
methods (section 2.3). The data represents means ± S.E.M. from 3 experiments.  
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Figure 5.9 B: Summary data of the time dependent generation of NO from SNP in RASMCs.  

Cells were cultured to ~90% confluency and incubated either with culture medium alone (control) or treated with SNP at different concentrations 
in the presence or absence of CB (7mM CaCl2, 7mM β-GP). SNP-CB represents data from cells pretreated with the NO donor for 1 hour before 
adding CB, and SNP+CB represents coincubation of both  for 1, 3, 5, and 7 days.  Total NO was quantified by the Griess assay as described in 
methods (section 2.3). The data represents means ± S.E.M. from 3 experiments.  
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Figure 5.10 A: Effects of SNP on calcification of RASMCs.  

Cells cultured to ~90% confluency were incubated either with culture medium alone (control) or treated with SNP at different concentrations in 
the presence or absence of CB (7mM CaCl2, 7mM β-GP). SNP-CB represents data from cells pretreated with the NO donor for 1 hour before 
adding CB, and SNP+CB represents coincubation of both together. Total calcium was quantified as described in methods (section 2.6). The data 
represents means ± S.E.M. from 3 experiments.  ** denotes p<0.01 and *** denotes p< 0.001 compared to control cells.   
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Figure 5.10 B: Summary data of the effects of SNP on calcification of RASMCs.  

Cells cultured to ~90% confluency were incubated either with culture medium alone (control) or treated with SNP at different concentrations in 
the presence or absence of CB (7mM CaCl2, 7mM β-GP). SNP-CB represents data from cells pretreated with the NO donor for 1 h before adding 
CB, and SNP+CB represents coincubation of both for 1, 3, 5, and 7days. Total calcium was quantified as described in methods (section 2.6). The 
data represents means ± S.E.M. from 3 experiments.   
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5.3.6- Staining of calcific plaques with ARS: 

 Coincubation of RASMCs with different concentrations of SNP did not form mineralised 

plaque as observed with cells incubated with CB alone. In addition, incubation of cells with 

SNP in the presence of CB did not cause the formation of HA crystal as no staining was 

observed with ARS (Figure 5.11). These results were unexpected especially as SNP plus CB 

cause similar elevations in calcium as CB alone. The reason for this discrepancy is unclear.  

 

 

 

 

Figure 5.11: Alizarin red staining of calcified RASMCs. 

Cells were cultured to ~90% confluency and incubated either with culture medium alone 
(control), CB. SNP-CB represents data from cells pretreated with the NO donor for 1 hour 
before adding CB, and SNP+CB represents coincubation of both for 5 days. Cells were 
treated with 1x of ARS (1: 10 stock solution) at the end of the treatment period as described 
in method (Section 2.8). The images are representative of 3 individual experiments which 
were taken with an inverted Olympus microscope at 10X magnification using GX capture 
programme. 
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5.3.7 - Effects of different concentrations of GW274150, NOC 18, and SNP on cell 
viability: 
 

Figure 5.12 shows that RASMCs incubated with a concentration range of GW274150 (3, 10, 

20, 50, and 100 µM) in presence or absence of CB and/or LPS+IFN-γ did not cause any 

significant change in cell viability except at day 7 where marginal decreases (28%) in 

viability were observed and surprisingly this was more pronounced when GW274150 was 

used alone.  Similar trends were also seen with NOC 18 and with SNP (Figure 5.13) which 

all goes to support that all compounds and conditions were well tolerated at the earlier time 

points.



 

 

235 
 

 

  

Control GW 3 mm GW10 mm GW 20 mm GW 50 mm GW 3mm GW10  mm GW 20 µm GW 50 µm 
0

20

40

60

80

100

120

140 Day1
Day3

Day5
Day7

CB+LPS+IFN-γ

%
 C

el
l v

ia
bi

lit
y 

to
 c

on
tr

ol
 c

el
ls



 

 

236 
 

Figure 5.12: Effects of different concentrations of GW274150 with/without LPS+IFN-γ + CB on cell viability 

Cells were plated in 96 well plates to ~90% confluency and incubated with either medium alone or with increasing concentrations of GW274150 
in the presence of LPS+IFN-γ and CB. When used, GW 274150 (GW) was added to cells for 30 minutes prior to the addition of CB+LPS+IFN-γ 
for 1, 3, 5 and 7 days. The medium was subsequently removed from each well and the cells incubated with 0.5mg ml-1 MTT in complete culture 
medium as described on method (Section 2.7). The data is represented as % change of cell viability taking controls as 100%. The values 
represent the mean ± SEM from 3 experiments. 
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Figure 5.13: Effects different concentrations of NOC 18/ SNP with or without CB on cell viability.  

Cells were plated in 96 well plates to ~90% confluency and incubated with either medium alone or with increasing concentrations of 
NOC18/SNP or in combination with CB for 1, 3, 5, 7 days. The medium was subsequently removed from each well and the cells incubated with 
0.5mg ml-1 MTT in complete culture medium as described on method (Section 2.7). The data is represented as % change of cell viability taking 
controls as 100%. The values represent the mean ± SEM from 3 experiments.
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5.4-Discussion:  

It was demonstrated in the previous chapters that activation of  RASMCs with CaCl2 or CB in 

absence of NO production enhanced calcium levels. Furthermore, LPS or together with IFN-

γ   were used in order to stimulate the pathway of NO production resulting in potentiation of 

this process. Interestingly, these inflammatory mediators induced increases in calcium level 

even in the absence of calcification inducers. The incubation of RASMCs with LPS + IFN-γ  

in the presence of calcification inducers caused further induction of NO by iNOS and was 

associated with elevations in calcium levels. In term of iNOS expression, the protein was 

found to be significantly expressed compared to the response to the LPS + IFN-γ alone.  

The previous chapter also detailed the levels of iNOS expression determined in different 

conditions. Interestingly, when the cells were incubated in a combination of LPS and IFN-

γ the production of NO by iNOS was induced. The addition of CB to the media with 

LPS+IFN-γ significantly enhanced the production of NO/iNOS, which was sustained at day 3 

compared to LPS+IFN-γ alone. This elevation of NO production and iNOS expression may 

be because LPS induces, while IFN-γ stabilises the iNOS mRNA (Raghavan et al., 2001) and 

this could explain why NO was produced by iNOS in response to LPS and IFN-γ in 

RASMCs.  While the addition of CB and LPS+IFN-γ  caused more elevation of NO/iNOS 

and this reason might be referred to the CB leading to sustainable effect of NO/iNOS 

compared to LPS+IFN-γ 

Further investigations detailed in chapter 4 used ARS and FT-IR analysis to determine HA 

crystals formation indicating calcification. Using ARS, it was found that mineralisation 

required the presence of CaCl2 either with both LPS and IFN-γ or when β-GP was present. 

Furthermore, the mineralisation was greater when CB and both inflammatory mediators were 
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also present. Thus, when the cells were incubated in the media containing a combination of 

CB +LPS and IFN-γ the mineralisation was greatest compared to that seen with CB alone.   

On the other hand, FT-IR analysis showed the characteristic vibrational molecule peak for the 

HA crystal was present only in samples from RASMCs incubated in either LPS+CB, IFN-

γ+CB, LPS+ IFN-γ + CaCl2 or LPS+ IFN-γ + CB. Thus, most of these results confirmed the 

induction of NO production by iNOS, and the elevation of calcium levels were linked to the 

formation of HA crystals detected via ARS staining and FT-IR analysis.  

The investigations detailed in this chapter aimed to test how the presence of NO in the cell 

media was related to calcification. The protocol used for these experiments was adjusted in 

order to ensure that no nitric oxide was present in the cell culture before calcifying conditions 

were introduced. This was achieved by pre-incubating cells with the selective iNOS inhibitor 

GW274150.Coincubation of cells with GW274150 at 10, 50, and 100 µM either in the 

presence of LPS+IFN-γ or with CB inhibited NO production significantly, which is to be 

expected as GW274150 blocks the activity of iNOS and has been demonstrated by other 

studies to be a selective competitive inhibitor of iNOS (De Alba et al., 2006). Furthermore, 

minimal levels of endogenous NO were detected in the cell culture, which is to be expected 

under the control conditions. In addition, the use of CB in combination with LPS+IFN-γ 

again caused a significant expression of iNOS compared to that seen with LPS+IFN-γ. Αs 

already discussed in chapter 4 iNOS mRNA is stabilised and expression sustained under 

these conditions (CB+LPS+IFN-γ). However, the occurrence of such results in RASMCs has 

not yet been published, thus this represents a novel mechanism established in RASMCs.  

While the presence of GW274150 either at 10 or 50 µM concentrations appeared not to affect 

the expression of iNOS at day 3 in comparison to when it was absent, the production of NO 

by iNOS was significantly inhibited. This is to be expected as GW274150 reduces iNOS 
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activity rather than expression itself (Chatterjee et al., 2003). In contrast, with the use of 100 

µM of GW274150 in the presence of LPS+IFN-γ with/without CB resulted in both the 

inhibition of iNOS activity and the inhibition of iNOS expression and this was an unexpected 

observation. No other studies have demonstrated GW274150 altering iNOS expression. This 

is the first study showing this result and therefore unique in the literature. This result may be 

due to one of several reasons including the following: a) GW274150 at 100 µM could be 

acting to reduce the amount of NF-kB available and thus reduce the amount of iNOS mRNA 

transcribed, in turn reducing the amount of iNOS protein produced; b) at the high 

concentration of 100 µM GW274150 may be acting non-selectively. It may be blocking the 

pathway which leads to generation of iNOS without direct interaction with the iNOS enzyme 

itself. This is based on the observation that at lower concentration of GW274150 iNOS 

expression is enhanced rather than repressed; c) at this concentration GW274150 may be 

acting translationally by reducing the half-life of iNOS mRNA, and thus reducing the amount 

of iNOS protein produced. Other studies have found drugs such as dexamethasone and 

rapamycin acting in this manner (Korhonen et al., 2002; Lisi et al., 2011); d) GW274150 

competes with L-arginine via inhibition of iNOS activity resulting in reduced NO production 

for the active site. Therefore, at this concentration GW274150 may be involved in activation 

of negative feedback mechanisms controlling expression of iNOS, in order to minimise the 

level of NO produced. 

Previous studies have demonstrated that concentrations of 5 μM were able to inhibit iNOS by 

50% (Chatterjee et al. 2003). However, concentrations used in vitro have varied widely 

between 1nM (Chatterjee et al. 2003), 1 μM (Baydoun et al., 2006),10 μM (Schurgers et al. 

2010) and 100 μM (Alderton et al. 2005). The range used in our study covered the extremes 

of these concentrations, being between 10 and 100 μM. However, GW274150 has been never 
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shown to inhibit expression of any protein in vivo or in vitro at any concentration. This 

mechanism of reduced expression needs to be determined. 

In relation to calcification cells coincubated with CB+LPS+IFN-γ had a significant elevation 

of calcium compared to the control or LPS+IFN-γ or CB alone. LPS may trigger expression 

of pro-calcific proteins such BMP 2 and ALP by stimulating TLR2 and 4 which in turn result 

in acceleration of the transition of VSMCs into osteoblast like cells (Tintut et al., 2002; 

Zehnder et al., 2002). IFN-γ has a role in inducing calcification through the activation of 

1alpha-OHase (Stoffels et al., 2006) and this converts 25-(OH)2D2 (Calcidiol) to 1,25 (OH)2 

D3(Calcitriol), resulting in elevated calcium level leading to hypercalcemia (Somjen et al., 

2005). The studies detailed in previous chapters demonstrated mineralisation with IFN-γ, 

LPS and CB combined; and elevated calcium with IFN-γ with CaCl2 from day 1 and CB day 

3 onwards. NO production appears to be stimulated and sustained by the combined presence 

of LPS and IFN-γ, however there is a significant reduction in NO when GW274150 was 

present at all the concentrations used. GW274150 by itself did not cause calcification but 

instead significantly blocked calcification caused by LPS and IFN-γ without altering the 

effect of CB. The fact that GW274150 is a selective inhibitor of iNOS activity suggests that 

10 and 50 µM of GW274150 inhibit NO and enhanced calcium levels marginally compared 

to LPS+IFN-γ alone, and this was not led to enhance of HA crystal formation possibly caused 

through NO production, e.g. the presence of NO may promote crystal nucleation. Moreover, 

there may be the possibility that NO reacts with alizarin thus blocking the staining of the HA 

or it could be the limitation of calcium presence in the medium. However, there is no proof 

for this. Further the result of the FT-IR was also negative, so this possibility can be 

disregarded. Moreover, it may also be a non-selective effect of GW274150 at the highest 

concentration of 100 µM could potentially block other pathways that mediate calcification 
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therefore inhibition of calcification that may be seen but this may not be related to NO. 

However, there are no studies that demonstrate that GW274150 may cause changes in cell 

signalling and this would need to be investigated in the future in order to understand the 

mechanism that mediates the suppression of iNOS expression and calcification by high 

concentrations of GW274250. Previous studies have demonstrated that GW274150 reduced 

the inflammation in synovial fluid caused by inflammatory mediators which stimulated NO 

production by iNOS. In the model of osteoarthritis the disease mechanism involved the 

formation of HA crystals between the cartilage in the knees and arms (Genovese et al., 2005; 

Víteček et al., 2012). Thus, the inhibition of HA formation by GW274150 supports the latter 

observations. 

The levels of calcium were enhanced when 10 and 50 μM of GW274150 were used in the 

presence of LPS+IFN-γ or with CB alone, however at the same concentrations GW274150 

appeared to partially suppressing the level of calcium significantly when LPS+IFN-γ+CB 

were all present. The experiments in the previous chapters demonstrated that CB and 

inflammatory mediators together had an additive effect on increasing iNOS expression and 

NO production. Thus, the effect of GW274150 may be related to its influence on calcium 

levels rather than its effect on NO production directly.  

It is important to clarify why GW274150 had different effects at different concentrations and 

it may be helpful to conduct further experiments using alternative selective inhibitors of 

iNOS activity such as Byk 191023 (Su et al., 2010) to understand whether the blockade of 

iNOS activity might regulate calcification of smooth muscle cells. Further studies examining 

the effect of GW274150 on the vascular calcification would help to determine the mechanism 

of GW274150 action on smooth muscle cells in order to support potential therapeutic use in 

the future. 
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To investigate the effects of NO on calcification RASMCs were incubated with two different 

NO donors, NOC 18 and SNP. These have different NO release profiles and therefore can 

help to identify whether the induction of calcification may be regulated directly by the NO 

molecule. Two set of experiments were carried out in which cells were exposed to either 

NOC 18 or SNP together with CB; added either simultaneously, or after the cells were pre-

incubated in media containing the NO producers for one hour before addition of CB.  

As shown in previous chapters the presence of CB in the media resulted in significantly 

elevated calcium level at day 5 as well as HA crystal formation. The result was the same 

when the cells were preincubated with 30μM and 50μM of NOC18 prior to addition of CB. In 

contrast, at the lower concentration of 10μM NOC18 while the level of calcium was also 

elevated significantly at day 3, HA crystals were not formed in this condition. This suggests 

that the lower level of slow released NO may be the limiting factor in HA formation. When 

comparing this to the results when both NOC18 and CB were added to the media together, 

calcium was more significantly elevated, and no HA crystals were observed via ARS. This 

indicates that the NO needs to be elevated prior to the influx of extracellular calcium for HA 

formation.  

However, when both NOC 18 and CB were added to the cells together there may be a delay 

the activation of the calcification by the spontaneous release of NO and the results of this 

method should be further investigated in future. These results could contribute to the 

determination of the role of pro-calcific factor such as Runx2 in calcification.  

NOC 18 did not appear to have any pharmacological effect on RASMCs as the NO levels 

were not significantly elevated in most conditions, apart from when the highest concentration 

of 50μM was used on its own, or used to preincubate the cell culture prior to adding CB. At 

this higher concentration it may be that NO in the media released by NOC18 is entering the 



 

 

245 
 

cells to increase NO levels above the basal level. This result supports the possibility that 

NOC18 or indeed NO may contribute to calcification and agrees with previous studies 

demonstrating that NOC 18 elevates mRNA level of osteocalcin and may therefore contribute 

to the mineralisation process (Otsuka et al., 1998). A further study has demonstrated that 

NOC 7 or NOC 18 caused the induction of intracellular cGMP in rat calvarial osteoblastic 

cells (ROB) and this in turn promotes mineralisation. This study aimed to establish whether 

the induction of cGMP could be linked to the induction of mineralisation of ROB. 

Interestingly, NOC 7/NOC 18 induced an increase in levels of osteocalcin mRNA, the pro-

calcific marker, but did not affect ALP and may therefore not be involved in the mechanism 

of mineralisation caused by ALP (Otsuka et al., 1998). The authors suggested that NO plays a 

pivotal role in the formation of mineralised nodules in the osteoblast cells. 

Furthermore, a study was done by Yasuhara and coworker which showed that NO could be 

considered to participate in mineralisation and differentiation of pulp cell growth. Their 

results showed that incubation of cells with β-GP, ascorbic acid, dexamethasone, and 

KH(2)PO(4) in the presence of NOC 18 caused formation of mineralisation plaques 

(Yasuhara et al., 2007). The result could be explain by the fact that continuous release of NO 

by NOC 18 could support a reaction of NO and free molecular oxygen (O2) present into cells 

resulting in formation of ONOO - which in turn induced increases in calcium levels into the 

cells. Another possibility could be that NOC 18 activates the calcium-sensing receptor 

(CaSR) which potentiates the mechanism of VC.  

Studies have demonstrated that NOC 18 may cause stimulation of c-GMP production leading 

to prevention of the activity of calcification inducers via signalling to induce NO production 

by reducing TGF-β expression. This in turn elevates the phosphorylation of Smad2/3, which 

is involved in calcifying smooth muscle cells (Kanno et al., 2008). The same pathway might 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Yasuhara%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17251517
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be used by NOC 18 in the current experiment, meaning HA crystallisation did not occur. This 

needs further clarification.  

With regards to SNP, incubation of the cells with this compound for an hour prior to addition 

of CB, or addition together with CB did result in slight inhibition of NO. Furthermore, when 

both CB and SNP are present together the levels of calcium at day 7 are higher than when CB 

was present by itself. The increase maybe be because SNP has a short half-life and over the 3 

day incubation period there may no longer be any NO available to suppress calcification thus 

the increases seen albeit marginal. The study by Huitema et al. (2006a) supports this as it 

shows that SNP inhibited the progression of calcification in the ATDC5 cell and suggested 

that it could also inhibit calcification in VSMCs (Huitema et al., 2006a).  

Unlike NOC 18, the incubation of cells with SNP did not cause any significant changes in 

calcification. It seems that the short half-life of SNP and its profile of releasing NO could not 

result in the induction of mineralisation. This result goes in parallel with other studies 

illustrating that SNP inhibits the mineralisation of ATDC5 cells. This inhibition occurred 

when cells were coincubated with β-GP or inorganic phosphate in the presence of SNP for 21 

days. The results suggested that the addition of SNP within the range of 1-1000 µM resulted 

in significant inhibition of calcification process and that is why no plaques were observed by 

ARS. SNP may act via c-GMP independently and this was confirmed by  incubating cells 

with 1 H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an  inhibitor of the soluble 

guanylyl cyclase (sGC)  in presence of SNP,  which inhibited elevation of calcium levels 

when compared to the analog of  cGMP (Huitema et al., 2006a; Huitema et al., 2006b). 

Therefore, the incubation of cells with SNP would play a beneficial role as target for treating 

VC.  
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The cell viability studies conducted demonstrated that while the cells tolerate most of the 

agents used in the experiments well, CB does have an impact on cell viability as well as 

combined with GW274150, or NOC 18/SNP.  At day 7 the presence of CB reduced cell 

viability by approximately 20%. It is interesting to note that a loss of RASMCs viability has 

been linked to VC under atherosclerotic conditions (Shin and Kwun, 2014). Further the 

elevation of extracellular calcium has been linked in increased intramitochondrial production 

of ROS, which can lead to apoptosis (Voccoli et al. 2014). The results of this study are 

therefore supported by previously published work.  

 

In summary, the studies carried out to date show that inhibition of NO/iNOS by GW274150 

caused reduction of calcium levels in a calcifying environment and this might be a pivotal 

link between NO/iNOS and calcification. Moreover, increased extracellular NO appears to 

enhance calcium levels, when a slow NO releasing agent NOC18 is used rather than fast 

releasing SNP; especially with the CB after NO increase. However with the fast release of 

NO by SNP no effect on calcium level is observed.  
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CHAPTER  VI 

RESULTS 
 

Signal transduction mechanisms that 
regulate iNOS expression, NO production 
and calcification in cultured RASMCs 
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6.1- Introduction:  

Data presented in chapter 3 showed that  activation of RASMCs by LPS + IFN-γ  caused the 

elevation of calcium levels above control and further elevation was determined when cells 

were coincubated with CB/CaCl2 which lead to the formation of HA crystal indicative of 

calcification. These effects were observed together with increases in NO production /iNOS 

expression as shown in chapter 4 and suggest that various signalling processes may be 

activated in the cells to cause calcification and/or NO production through the induction of 

iNOS.  

The pathway that activates the formation of iNOS causing NO production in RASMCs is well 

known and is reported to occur through different signalling molecules including the p38 

MAPK (Hattori et al., 2003;Yamakawa et al., 1999) and Akt (Rzucidlo et al., 2007) amongst 

others.  Similarly, there has also been considerable studies carried out to establish the signal 

transduction mechanism that regulate calcification and the pathways identified include AMP-

activated protein kinase (AMPK) (Cao et al., 2013), and p 38 MAPK (Li et al., 2002). 

Currently, it is not clear whether there is overlap between these pathways in regulating iNOS 

expression and calcification nor has it been established whether the regulation of activation of 

any of these pathways using pharmacological interventions simultaneously alters the process 

of calcification and induction of iNOS. This has therefore been investigated as part of this 

thesis. 

 In addition, further experiments were carried out investigating changes in expression of the 

pro-calcific marker Runx2 by western blotting in order to understand whether the regulation 

of calcification and/or NO/iNOS is also associated with changes in expression of Runx2. This 

transcription factor was selected because previous studies have demonstrated evidence of a 

link between activation of Erks and Runx2 in osteoblast cells.  
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Ge and coworkers found that incubation of MC3T3-E1 cells with ascorbic acid containing 

BMP2/7 regulates mineralisation through activation of the Erk pathway leading to increased 

expression of Runx2. Furthermore, induction of Runx2 is associated with phosphorylated Erk 

expression, but without changes in p38 MAPK in osteoblast cells. This was thought to 

contribute to the induction of the calcification process (Ge et al., 2012). In contrast, a study 

by Lee and coworker found that the p38 MAPK pathway together with Smad caused the 

induction of Runx2, which in turn resulted in the release of TGF-β and BMP2 in the 

mouse myoblast cell lines (C2C12 cells). These effects contributed to triggering osteoblast 

differentiation (Li et al., 2002). 

Furthermore, inflammatory cytokines such as TGF-β cause activation of Tak1, which 

significantly reduces the formation of osteoblast cells, resulting in severe osteopenia. This 

activity leads to the regulation of Runx2 through p38 MAPK phosphorylation. Therefore, the 

phosphorylation of p38 MAPK plays a significant role in the activation of Runx2 into 

osteoblast cells (Greenblatt et al., 2013). However, it is not clear whether calcified smooth 

muscle cells are regulated by p38 MAPK leading to the induction of Runx2.  

In this thesis two different time courses were used; as the activation of some signalling 

molecules may occur earlier or later. Regarding this, cells were activated with LPS alone, or 

together with IFN-γ, in the presence or absence of calcification inducers over a time course 

ranging from 1- 48 hours or 1-5 days. For instance, cells were preactivted with LPS alone, or 

LPS+CB; or in another set of experiments LPS+IFN-γ by themselves or together with CB 

over 1-48 hours. A second time course used LPS+IFN-γ, either alone or together with either 

CaCl2, β-GP or CB over 1-5 days. This time range was identified following the results of 

previous experiments to determine the time point of induction of maximal calcification. 
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The main objective was to establish whether signalling molecules including p 38 MAPK, 

Akt, and Erk1/2 are phosphorylated in RASMCs in response to calcifying agents, in either the 

absence or presence of LPS+IFN-γ. 

 

  



 

 

252 
 

6.2- Experimental protocol: 

Cells were cultured and quantification of total protein and identification of protein expression 

by western blotting were performed as described in chapter 2, section 2.6 and 2.10 

respectively. The protease inhibitors cocktail (the dilution factor is 1:200 1x lysis buffer 

explained in chapter 2 at section 2.4 and this product contains; AEBSF, Aprotinin, Bestatin, 

E-64, Leupeptin, and Pepstatin A). The phosphatase inhibitors was diluted by 1:100 lysis 1x 

buffer containing; Sodium orthovanadate, Sodium molybdate, Sodium tartrate, and 

Imidazole. Both products were used for extracting cells after incubating with LPS + IFN-

γ/calcification inducers, or in combination. The effect of SB203580 or LY294002 at 10 µM 

of both were involved in this study in order to understand the role of p 38 MAPK  or PI3K 

and see whether play a role as down or upstream molecule in calcified RASMCs.  

 

6.2.1- Expression of Runx2 and p 38 MAPK in cells incubated with calcification 

inducers with or without LPS/ LPS+IFN-γ. 

RASMCs were cultured to ~90% confluence and incubated with LPS alone / LPS + IFN-γ , 

CB alone or together with CB. The activation of p38 MAPK was measured at 1, 6, 12, 18, 24 

and 48 hours. Another set of experiment activated cells with LPS+IFN-γ followed by the 

addition of calcification inducers and the p 38 MAPK measured during 1, 3, and 5 days. In 

Akt phosphorylation, it was determined during 1, 6, 12, 18, 24 and 48 hours of activation. At 

the same time calcification and iNOS protein (and thus NO production) were simultaneously 

induced, as in previous experiments (chapter 4), in order to determine whether Akt regulates 

this induction. Detection and quantification of Runx2 was also determined by western 

blotting over the time course of 1, 3, and 5, days. This time point was identified by a previous 

experiment to identify the point of maximal calcification induction. 
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6.2.2- The effect of GW2742150 on Runx2 expression in RASMCs: 

 RASMCs were cultured to ~90% confluence and incubated with LPS and IFN-γ, CB , or  in 

combination  in presence or absence of GW274150. Quantification of Runx2 was determined 

by western blotting at 3 days and this was the time point found previously from the first 

experiment to induce maximal calcification.  
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6.3-Results:  

6.3.1- Effect of LPS/IFN-γ with/ without CaCl2, β-GP, or CB on the p38 MAPK 
phosphorylation in RASMCs: 
 

Incubation of cells with medium only (control) did not result in the activation by 

phosphorylation of p38 MAPK activation, as no phosphoprotein was detected in the western 

blots obtained using the phospho-p38 antibody (Figure 6.1). Compared to the response of the 

control cells, the use of LPS alone showed significant induction of p38 MAPK 

phosphorylation, which peaked at 12 hours, and was sustained until the last time point; 48 

hours. When CB alone was used for cell incubation, the phosphorylation of p38 MAPK was 

activated at 6 hours, followed by further increase until a maximum at 24 hours, followed by a 

sustain thereafter (48 hours). This result is comparable to the response seen with LPS alone 

(18-24 hours) as shown in Figure 6.1. The combination of CB and LPS did not enhance the 

phosphorylation of p38 MAPK compared the response to CB alone. It is notable that using 

the p38 MAPK specific inhibitor SB203580, and Akt specific inhibitor LY294002, 

significantly reduced (p<0.01) phosphorylation of p38 MAPK at 24 hours. This indicates that 

these perhaps have the either same or diverse upstream targets which are neither p38 MAPK 

nor Akt.  

Figure 6.2 shows the measurement of p38 MAPK phosphorylation over a 48 hour time 

period. The use of both LPS+IFN-γ with and without CB, resulted in the significant induction 

of p38 MAPK phosphorylation, compared to the responses seen with either CB alone or CB 

with LPS, at 18 hours and 24 hours. The maximum induction with LPS+IFN-γ by themselves 

occurred at 48 hours, and this was designated as 100%.  CB alone also induced p38 MAPK 

phosphorylation, and levels of phosphorylation were marginally higher to responses with 

LPS+IFN-γ at all time periods. The peak of phosphorylation was seen at 24h and there was 
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no further potentiation when LPS+IFN-γ were present together, or present together with CB. 

Again, using either the p38 MAPKs specific inhibitor, SB203580, or the Akt specific 

inhibitor LY294002 partially reduced expression of p38 MAPK. 

The phosphorylation of p38 MAPK, was also followed over a longer time period, up to 5 

days. For these studies, cells were incubated with LPS+IFN-γ in either the presence or the 

absence of CaCl2 Figure 6.3 A, β-GP Figure 6.3 B, or CB Figure 6.3 C. Activation of cells by 

LPS+IFN-γ followed by the continuous addition of LPS+IFN-γ for next 24 hours resulted in 

induction phosphorylation of p38 MAPK at day 1, which rapidly declined thereafter.  In 

contrast with the use of CaCl2 alone, an elevation of phosphorylated p38 MAPK was found at 

day 1, which increased over time and was sustained over the whole 5 days. While, when 

incubated with CaCl2 and LPS+IFN-γ  together, the induction of p38 MAPK phosphorylation 

was close to that of CaCl2 alone, but declined rapidly to control levels at day 3.  

Similarly, with the use of β-GP and LPS+IFN-γ together, phosphorylation of p38 MAPK 

peaked at day 1, and declined rapidly over the time course. While with β-GP alone 

phosphorylation of p38 MAPK resulted in the elevation from day 1, peaking at day 3 

following by sustained levels at day 5. The same results were also seen when CB alone was 

used, however when placed together with LPS+IFN-γ  the peak of phosphorylation was at 

day 1 followed by a decline. This was significantly reduced thereafter, compared to the 

response with CB alone.   
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Figure 6.1: Effects LPS, CB or in combination on p 38 MAPK phosphorylation in RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 µg.ml-1), CB (7mM CaCl2+7mM β-GP) 
or in combination for 1, 3, 6, 12, 18, 24, 48 hours. Phospho p38 expression was determined by western blotting using a phosphor-specific p38 
monoclonal antibody as described in the methods (Section 2.10). The data is represented as % change of p 38 MAPK taking the LPS response at 
48 hours as 100%. The values represent means ± S.E.M. from 3 individual experiments.  # denotes p<0.05 and ## denotes p<0.01 compared to 
LPS.   
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Figure 6.2: Effects LPS+ IFN-γ, CB or in combination on p 38 MAPK phosphorylation in RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 µg.ml-1)+ IFN-γ (100 U ml-1), CB (7mM 
CaCl2+7mM β-GP) or in combination for 1, 3, 6, 12, 18, 24, 48 hours. Phospho p38 expression was determined by western blotting using a 
phosphor-specific p38 monoclonal antibody as described in the methods (Section 2.10). The data is represented as % change of p 38 MAPK 
taking the LPS+IFN-γ response at 48 hours as 100%. The values represent means ± S.E.M. from 3 individual experiments.  # denotes p<0.05 and 
## denotes p<0.01 compared to LPS+IFN-γ alone. 
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Figure 6.3: Effects CaCl2, β-GP, or CB with/without LPS+IFN-γ on p 38 MAPK phosphorylation in RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 hours 
followed the addition of CaCl2 (7mM; Panel A), β-GP (7mM; Panel B) or CB (Panel C) in the continued presence of LPS and IFN-γ and 
incubated for a further period of 1, 3, and 5 days. The data is represented as % change of p 38 MAPK taking the LPS+IFN-γ response at day 1 as 
100%. Phospho p38 expression was determined by western blotting using a phosphor-specific p38 monoclonal antibody as described in the 
methods (Section 2.10).The values represent means ± S.E.M. from 3 individual experiments.  # denotes p<0.05 and ## denotes p<0.01 compared 
to LPS + IFN-γ. 
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6.3.2- Effect of LPS+IFN-γ with/ without CB on phosphorylation of Akt in RASMCs: 

Pretreating cells with LPS+IFN-γ in the presence or absence of calcifying agents did not 

cause phosphorylation of the Akt protein after 1, 3, and 6 hours of incubation. The control 

cells showed no phosphorylation of Akt, while incubation of cells with either LPS+IFN-γ, 

CB or in combination, did produce the phosphoprotein at 12 hours, but the peak was 

observed at 24 hours, but declined thereafter (Figure 6.4). The induction of Akt 

phosphorylation was more significant with CB alone at 24 hours, and this was not further 

enhanced when LPS + IFN-γ were coadministered (Figure6.4).
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Figure 6.4: Effects LPS+IFN-γ, CB, or in combination on the Akt phosphorylation in RASMCs  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 µg.ml-1)+ IFN-γ (100 U ml-1), CB (7mM; 
CaCl2+7mM; β-GP) or in combination for 1, 3, 6, 12, 18, 24, 48 hours. Phospho Akt expression was determined by western blotting using a 
phosphor-specific Akt monoclonal antibody as described in the methods (Section 2.10). The data is represented as % change of Akt taking the 
LPS+IFN-γ response at 48 hours as 100%. The values represent means ± S.E.M. from 3 individual experiments. # denotes p<0.05 and compared 
to LPS + IFN-γalone
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6.3.3- Effect of LPS+IFN-γ with/ without CaCl2, β-GP, or CB on the phosphorylation of 
p44/42 MAPKs (Erk-1/2) in RASMCs: 
 

In parallel with the studies above, additional experiments were carried out to establish 

whether other signalling molecule such as p44/42 MAPKs may also be activated under the 

conditions that induce iNOS expression and/or calcification in RASMCs. Cells incubated 

with medium only did not show any phosphorylation of the Erks while cells activated by 

LPS+IFN-γ or in combination with CaCl2, β-GP, or with CB caused induction of the 

phosphorylation of Erks (Figure 6.5). The level of phosphorylated Erks was marginally 

higher with the presence of calcification inducers when compared to LPS+IFN-γ alone. 

Coincubations of calcification inducers with LPS+IFN-γ did not further enhance the 

phosphorylations and in fact appear to suppress the process (Figure 6.5). The level of Erk’s 

phosphorylation was more than 200% at day 3 when either CaCl2 or β-GP, or CB were 

present by themselves. This time period was selected as previous experiments had indicated 

that maximum calcification in RASMCs was achieved at day 3  but  the time constrain to 

follow as p 38 MAPK experiments.  
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Figure 6.5: Effects LPS+IFN-γ with and without CaCl2, β-GP, or CB on 
phosphorylation of Erk1/2 in RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone 
(control), LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 hours followed the addition of 
CaCl2 (7mM), β-GP (7mM) or CB in the continued presence of LPS plus IFN-γ and 
incubated for a further period of  3 days. The data is represented as % change of Erks 
taking the LPS+ IFN-γ response as 100%. Phospho Erks expression were determined by 
western blotting using a phosphor-specific Erks monoclonal antibody as described in the 
methods (Section 2.10).The values represent means ± S.E.M. from 3 individual 
experiments.  # denotes p<0.05 and compared to calcification inducers with LPS+ IFN-γ . 
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6.3.4-Effects CaCl2, β-GP, CB with/without LPS+IFN-γ on Runx2 expression in 
RASMCs: 
 

Cells coincubated with medium alone did not show significant expression of Runx2. 

However, activation of cells with LPS+IFN-γ resulted in expression of Runx2 at day 1 

followed by a declined thereafter day 3 and 5 as shown in Figure 6.6. The use of the 

calcification inducers independently induced Runx2 expressions which were higher than the 

levels seen with LPS+IFN-γ. Moreover, the responses unlike those seen with LPS+IFN-γ, 

were sustained over the time course of the experiments. Coincubation of CaCl2, β-GP or CB 

with LPS+IFN-γ resulted in a suppression in levels of Runx2 at days 3 and 5 which were well 

below the levels seen even with LPS+IFN-γ alone (Figure 6.6). 
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Figure 6.6: Effects LPS+IFN-γ with and without CaCl2, β-GP, or CB on Runx2 in RASMCs.  

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 
hours followed the addition of CaCl2 (7mM), β-GP (7mM) or CB  in the continued presence of LPS and IFN-γ and incubated for a further 
period of 1, 3, and 5 days. The data is represented as % change of Runx2 taking the CB response at day 1 as 100%. Runx2 expression were 
determined by western blotting using  Runx2 monoclonal antibody as described in the methods (Section 2.10).The values represent means ± 
S.E.M. from 3 individual experiments.  # denotes p<0.05 and compared to CB alone. 
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6.3.5- Effect of GW274150 on LPS+IFN-γ, CB or in combination on Runx2 expression 
in RASMCs: 
 

Our previous results showed that incubation of cells with GW274150 at 100µM caused 

significant inhibition of calcification especially when cells were treated with CB+LPS+IFN-γ 

at day 3 and this time period was selected as previous experiments had indicated that 

maximum calcification in RASMCs was achieved at day 3.Further experiments have 

therefore been carried out to establish whether GW274150 regulated Runx2 expression.   

As can be seen from Figure 6.7, the control cells did not showed any expression of Runx2. 

However, activation of cells with LPS+IFN-γ with/ without inhibiting the activity of iNOS 

using GW274150 resulted in no changes in the expression of Runx2 (Figure 6.7). 

Furthermore, GW274150 did not caused any significant changes in Runx2 in cells treated 

with CB or with CB in the presence of LPS+IFN-γ (Figure 6.7). Thus, it seems GW274150 

does not have any significant effect on Runx2 expression induced by LPS+IFN-γ or by CB 

and may therefore not regulate calcification through suppression of this transcription factor.  
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Figure 6.7: Effect of LPS + IFN-γ, CB with/ without GW274150 on Runx2 in RASMCs 

Cells were cultured to ~90% confluency and incubated with culture medium alone (control), 
LPS (100 μg ml-1) + IFN-γ(100 U ml-1) for 24 hours followed the addition of CB (7mM; 
CaCl2+ 7mM; β-GP) in the continued presence of LPS and IFN-γ with/without GW274150 at 
100µM and incubated for a further period of  3 days. The data is represented as % change of 
Runx2 taking the CB response as 100%. Runx2 expression were determined by western 
blotting using Runx2 monoclonal antibody as described in the methods (Section 2.10).The 
values represent means ± S.E.M. from 3 individual experiments.   
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6.4- Discussion: 

As discussed in the previous chapters, inflammatory mediators such as LPS and IFN-γ play a 

critical role in the induction of calcium levels leading to enhanced VC.  The experiments in 

this chapter were conducted to understand the signalling mechanisms that may regulate 

calcification and establish whether these overlap with those that regulate iNOS expression 

and thus NO production. Several studies have considered the phosphorylation of p38 MAPK, 

Akt and Erks to be among the primary targets for activation leading to iNOS expression 

(Chan et al., 2001; Liao et al., 2008; Zhao et al., 2012).  

Experiments in chapter 5 investigated the importance of NO on calcification of RASMCs 

incubated with different NO donors such as NOC 18 and SNP. The results showed that cells 

concinubated with the slow NO producer NOC 18, especially in the presence of CB caused 

elevations of calcium levels, as well as plaque formation, which was confirmed by positive 

staining with ARS. The selective iNOS inhibitors, GW274150, was subsequently used to 

confirm whether the NO derived from iNOS regulated calcification, and the results showed 

that concentrations lower than 100μM  of GW274150 suppressed NO production, which in 

turn enhanced calcium levels. This suggests that NO may suppress calcification. Further 

experiments may however be needed to conclusively demonstrate this. There may be a 

threshold concentration of NO, below which calcification is inhibited, while above this level 

calcification may be promoted by NO. 

 

The current study demonstrates that cells incubated with LPS and IFN-γ resulted in induction 

of p38 MAPK. Interestingly, inducers of calcification also induced phosphorylation of p38 

MAPK. Of these, the highest level of activation was with CaCl2 or β-GP by themselves, 

although this was not dissimilar to the level seen when they were combined in CB.  
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However, with CB the levels of p38 MAPK were sustained over 5 days at over 120% of that 

induced by LPS+IFN-γ. In combination with any of the calcifying agents, when observed 

over 5 days, the presence of LPS+IFN-γ modulated the effect of the agents to reduce the level 

of p38 MAPK activation. Thus, NO production via iNOS may reduce p38 MAPK activation 

through an unknown mechanism. Moreover, when observed over 48 hours the highest level 

of p38 MAPK activation was noted with CB alone at 24 hours, which was greater than that 

with LPS or LPS+IFN-γ.  

Using the Akt inhibitor LY294002 in the presence of LPS+IFN-γ had a significant effect of 

p38 MAPK phosphorylation, while the use of the inhibitor SB203580 with LPS+IFN-γ which 

blocks both of p38 MAPK and Akt; had the greatest reduction effect in activating p38 

MAPK. Identifying the reason for this needs further investigation, as it cannot be attributed 

only to an increase of iNOS/NO production.  

As this coincides with the induction of iNOS, it is reasonable to speculate that calcification 

inducers regulated iNOS expression and NO production, which was reported in chapter 4 

through phosphorylation of p38 MAPK. It is clear now that NO promotes the progression of 

calcification in RASMCs, as the experimental evidence shows that when RASMCs were 

activated by LPS + IFN-γ  and when either CB or CaCl2 was present, an elevation of NO 

through iNOS was obtained. This in turn induced increases in calcium levels above the 

control, and these increases led to the formation of HA crystals, which were indicative of 

calcification.  

From the literature, it is known that LPS and IFN-γ have signal transduction at the cell 

surface. LPS binds the LPS binding protein which ligands the CD14, and this stimulates 

intracellular signalling via TAK1-Binding Protein-1 to activate downstream phosphorylation 

of p38 MAPK (Choi et al., 2012).  
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Cross talk at the TLR4 activates NF-kB downstream which induces expression of iNOS. On 

the other hand, IFN-γ binding to the IFN receptor stimulates the downstream expression of 

IRF1. This in turn increases the half-life of iNOS mRNA. However, the mechanism of LPS 

and IFN-γ promotion of calcification in RASMCs is still undetermined. Nevertheless it is 

known that an in alternative pathway involving the NF-kB ligand RANKL, binding of 

RANKL to its receptor at the cell surface activates downstream signalling to promote 

calcification via increased BMP4 expression (Panizo et al., 2009; Walsh et al., 2014). 

Furthermore, there may be another unknown pathway which is yet to be identified that 

produces the synergistic effects observed. Several factors are possible for having a role in 

linking iNOS expression/NO production with calcification. These include p38 MAPK, Akt 

and Runx2. The phosphorylation of p38 MAPK activates its signal pathway which can result 

in increased iNOS expression. This can be blocked by a specific inhibitor in smooth muscle 

cells (Jin et al., 2014). 

 Activation of the p38 MAPK pathway has also been found to be involved in the calcification 

of smooth muscle cells. These evidences together provide a good case for investigating a link 

between NO and calcification via p38 MAPK phosphorylation. It is important to state that 

conclusions about the role of p38 MAPK in inducing iNOS cannot be made as the levels of 

iNOS and calcification were not quantified in this study. This work is recommended for the 

future. One way to investigate this would be to compare the calcification achieved when p38 

MAPK is inhibited. 

The induction of p38 MAPK may also contribute to the calcification process and in support 

of this, studies have found that calcifying agents and IL-6 contribute to the stimulation of the 

p38 MAPK and Akt but not to the Erk1/2 signalling molecules, especially at 24 hours of 

incubation. This may directly enhance matrix mineralisation (Abedin et al, 2006).  
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In addition, the calcification aortic valve interstitial cells (AVICs) has been reported to 

involve p38 MAPK (Cortizo et al., 2006) and inhibiting p38 MAPK caused a reduction of the 

calcification process in osteoblast cells (Deng et al., 2014). In contrast, the mineralisation of 

smooth muscle cells has been shown to be regulated through Akt at an earlier time course (24 

hours) followed by a decline at later time, although this may not be related. The selection of 

this earlier time course was based on the findings of previous study (Abedin et al., 2006).  

Our study found that the phosphorylation of Akt was highest at 24 hours with CB alone, this 

being greater than when LPS+IFN-γ and CB were together in the media or LPS+IFN-γ alone. 

It appears at 24 hours that iNOS/NO by LPS+IFN-γ may be modulating Akt phosphorylation. 

However, at 48 hours the greatest phosphorylation of Akt was due to LPS+IFN-γ and CB 

together. Thus, it may be that CB activates phosphorylation of Akt earlier than LPS+IFN-

γ. Using the inhibitor SB203580 activity of Akt was reduced with LPS+IFN-γ present, but 

using LYS294002 gave the greatest reduction to approximately 25% of that seen with 

LPS+IFN-γ. Again due to the actions of these inhibitors identifying the reason for this needs 

further investigation. Comparing p38 MAPK activation with Akt activation, both had a peak 

at 24 hours. Both were also most activated by calcification inducers alone. Put together these 

suggest a common upstream activation point.  

Our data has demonstrated that the treatment of cells with LPS+IFN-γ lead to the activation 

of phosphorylation p38 MAPK, causing the iNOS protein in smooth muscle cells to reach a 

maximum at 48 hours. Moreover, cells coincubated with LPS + IFN-γ caused activation of 

Akt at earlier time course (24 hours). The amount of calcium detected with inflammatory 

mediators was also significantly induced compared to the response of control cells. These 

results are in agreement with previous studies in which IL-6, LPS and TNF-α also exerted 

similar effects through phosphorylated p38 MAPK (Chan et al., 2001).   
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Moreover, cells incubated with LPS + IFN-γ in the presence of calcification inducers 

promoted the induction of the extracellular matrix mineralisation with much more elevated 

levels of calcium than measured with the calcifying agents only. Significant phosphorylation 

of p38 MAPK was detected at an earlier incubation time point, especially at 18 and 24 hours, 

but was not detected at days 3, and 5. This could mean that p38 MAPK was stimulated at an 

earlier time course in which its activation potentiates the action of calcification performed on 

iNOS expression during a longer period of time. However, beyond 3 days the mineralisation 

on RASMCs is not regulated by p38 MAPK, but rather another pathway is involved. In 

addition, Abedin and coworker indicated that Erk1/2 was not phosphorylated at 24 hours. 

Therefore, the activation of Erk1/2 by phosphorylation only at day 3 was investigated.  From 

our results in the case of Erk1/2, the regulation of calcification induced in RASMCs via NO 

release by iNOS did not appear to be regulated via the phosphorylation of Erk1/2. Following 

Erk1 and Erk2 over 3 days indicated that the CB alone induced the greatest level of 

phosphorylation, which were all very similar. When combined with LPS+IFN-γ the levels of 

phosphorylation were reduced to around one third. This suggests that iNOS/NO reduced the 

activation of Erk1 and Erk2 in RASMCs, while calcium levels and calcification increases 

this. 

The phosphorylation of Erk1/2 occurred independently of NO using of CaCl2 or β-GP alone, 

or in combination. This suggests a role for Erk1/2 in the regulation of calcium levels in the 

cell. The role of Erk1/2 has been investigated in other disease pathologies (Rodríguez-Peña et 

al., 2008) not related to VSMCs, where they appear to have a role in initiating the apoptotic 

cascade. Moreover, Erk1/2 has been shown to activate transcription factors involved in early 

gene responses (Roskoski, 2012). Erk1/2 activation is inhibited by U0126.Therefore, future 

studies should further investigate whether Erk1/2 is activated earlier than 3 days, whether the 

involvement of Erk1/2 in regulation of calcium is related to calcification and what is the 



 

 

279 
 

effect of using the inhibitor U0126 to block Erk1/2 phosphorylation on the calcification of 

RASMCs.  

Considering the link between Runx2 and calcification, Runx2 was investigated in this study 

to see whether it contributes to the induction of calcification in our studies.  As identified in 

studies detailed in previous chapters calcification was evident at day 1, peaked at day 3, and 

declined thereafter. Therefore, this time course was selected to determine whether Runx2 was 

active during the period, and whether a trend in activation matched the trend of calcification 

of RASMCs induced via iNOS production of NO. It is clear from the results that RASMCs 

incubated with calcification inducers alone activate the signalling pathways of p38 MAPK, 

Erk1/2, and Akt.  However, no evidence was found for the involvement of Runx2 in linking 

iNOS induction/NO to calcification in VSMCs. The presence of inflammatory mediators with 

calcifying agents did not cause any significant changes either with p38 MAPK or Runx2 at 

longer time intervals. This action does not seem to be regulated through p38 MAPK or 

Runx2, a finding not consistent with other studies for various cell lines, bone cells, and stem 

cells, excluding smooth muscle cells. Based on these finding, Artigas and coworker  explains 

that the activation of p38 MAPK results in an interaction between ostrix and Runx2, which in 

turn causes calcification in C2C12, Saos-2, and HEK-293T cell lines (Artigas et al., 2014). 

Furthermore, the activation of receptors of BMP9 stimulate the pathways of p38 MAPK and 

Erk1/2, which further potentiate pro-calcific markers such as ALP and OC into C3H10T1/2, 

C2C12, HEK293, and HCT116 cell lines (Mesenchymal Progenitor Cells) (Li et al., 2002). 

Interestingly, Lin and colleagues recently published their findings that Runx2 is necessary for 

the calcification of smooth muscle cells in mouse arteries, induced via vitamin D overload. 

Here Runx2 alters the cell phenotype to become osteogenic (Lin et al., 2015). However, its 

action does not involve altering either serum calcium or phosphate. Our study seems to agree 

with these findings. Thus, the Runx2 pathway does not feed directly into the pathway by 
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which iNOS expression is induced. Future studies could be conducted to determine the role 

of Runx2 in the rat using the methods described from Lin and colleagues. It was also found 

that the inhibitors of p38 MAPK can reduce the expression of Runx2 and Smads signalling 

molecules (Franceschi et al., 2003; Zhao et al., 2012). Thus, the calcified smooth muscle cell 

is regulated through p38 MAPK, which in turn significantly activates Runx2 in different cell 

line involving smooth muscle cells. Whether the release of NO by iNOS induced calcification 

needs to be determined in RASMCs.  

A recent study has highlighted a possible meeting point on the p38 MAPK, Akt, Erk1/2 and 

Runx2 pathways. The enzyme vascular peroxidase 1 appears to be necessary for downstream 

activation of these pathways, as knocking down the gene in VSMCs inhibited calcification. It 

is thought that the production of hypochlorous acid by this enzyme activates the pathways 

identified above (Tang et al., 2015). However, the role of iNOS in this process has not been 

determined. 

Based on the observations in this study, RASMCs coincubated with calcification inducers in 

the absence of LPS+IFN-γ were found to produce a significantly greater amount of Runx2, 

while the cells incubated with calcification inducers and LPS+IFN-γ produced less Runx2. 

The amount of calcium/calcification was however significant in RASMCs coincubated with 

calcification inducers and LPS+IFN-γ. The relevance of the reduction in Runx2 remains to be 

established. For example, cells incubated with calcification inducers only showed a 

significant induction of Runx2, and this supports the claim that RASMCs differentiate into 

osteoblast-like cells upon induction of artheroma. If Runx2 is not expressed, cells may 

develop into chondrocyte-like cells instead, although the amount of calcium and the 

formation of HA crystal were also extensively detected in the results for chapter 4.  
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A literature review has demonstrated that calcification of mesenchymal progenitor cells could 

differentiation into hypertrophic chondrocyte caused by chondrogensis marker [sex 

determining region Y (Sox9)], considered to be a negative regulator, whereas the activity of 

Runx2 controlled calcification acting as a positive regulator (Ikegami et al., 2011; Zhou et 

al., 2006). Another suggestion that may be of relevance in our study is that incubation of cells 

with calcification inducers in the presence of LPS+IFN-γ might  potentiate Sox9 leading to 

calcification. This suggestion needs to be confirmed, but agrees with a study demonstrating 

that β-GP resulted in the induction of Cbfa1, Msx2, and Sox9, but was inhibited by 

magnesium in BVSMCs (Kircelli et al., 2011). This also raises the possibility that in our in 

vitro model cells may be differentiating to chondrocytes like cells and not to osteoblast like 

cells. Thus, Runx2 may not play a significant role in calcification of smooth muscle cells 

activated by inflammatory mediators and calcification inducers. 

As mentioned before, high concentration of GW274150 inhibited the expression of iNOS and 

it has been at 100 µM, meaning that GW274150 possibly acts upstream of iNOS induction in 

a manner non selective for iNOS. Interestingly, GW274150 did not cause any significant 

changes to Runx2 expression in RASMCs when the cells were activated with CB+LPS+IFN-

γ in the presence of GW274150 compared to the presence of CB+LPS+IFN-γ alone. 

Furthermore, when the cells were incubated with CB in the presence of GW274150 there was 

no effect on Runx2 expression compared to CB alone. Thus, it may be possible to conclude 

that there is no link between NO/iNOS and Runx2. Therefore, there may be another 

transcription factor, which binds another gene, that it has not been identified by this study 

through which GW274150 achieves a reduction of smooth muscle calcification which is 

independent of Runx2.   
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Conclusions can be drawn from the work detailed in this chapter. Firstly, calcifying agents 

alone were able to induce phosphorylation of p38 MAPK, Akt, and Erk1/2. Together, these 

results indicate that these signalling molecule may be involved in the induction of 

calcification by the calcifying agents; CaCl2, β-GP and CB leading to activate Runx2. 

Secondly, iNOS/NO induced calcification by the presence of inflammatory mediators and 

calcifying agents appears to be involved in reducing the activation of p38 MAPK, Akt, and 

Erk1/2 via unknown mechanism. Lastly, Runx2 does not appear to be involved in the 

calcification of RASMCs specifically by iNOS/NO which another alternative pathway may 

be involved in this.  Figure 6.8 illustrates the mechanistic of action for calcified smooth 

muscle cells in the presence or absence of inflammatory mediators.  

 

 

 

 

 

 

 

 

 

 

Figure 6.8:  Potential mechanism of VC is caused with/without NO production /iNOS in 
RASMCs. 
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CHAPTER  VII 

General discussion, Conclusion, and 
Limitations & future work 
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7.1-Discussion:  

 

The studies described in this thesis were conducted in order to understand the role of 

NO/iNOS in relation to the potential mechanisms that may mediate the induction of 

calcification in RASMCs. In addition, parallel studies were carried out to establish whether 

the iNOS pathway may be regulated under conditions that induce VC in RASMCs, with a 

view to determining whether under the latter condition iNOS expression and thus NO 

production may be regulated in such a way that it in turn regulates the process of 

calcification. These studies in their entirety were initiated to clarify whether NO protects 

against or promotes VC. Indeed, as already highlighted, there are reports that NO production 

by iNOS protects against VC (Cao et al., 2013; Kanno et al., 2008) but these findings do not 

agree with other research, in various other cell types that suggests NO may enhance the 

mechanism of VC (Zaragoza et al., 2006; Yasuhara et al., 2007).  

The table below summarises the findings of the current research: 
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Table 7.1: The Importance of findings in the current study 

 

Aim/research 
question 

Factor tested Result Conclusion or inference 
 

Validation of in 
vitro calcification 
model 
(Patidar et al., 
2013) 

Calcification 
model 

There are differences 
in the absolute (no 
NO produced) 
versus cumulative 
levels of NO (by 
inflammatory 
mediators) in 
experiments  

Changing the cell culture 
media daily may represent a 
better model of the in vivo 
environment i.e. a constant 
flow of blood/fluid through 
the artery. 

Can calcification 
be induced using 
CaCl2 and/or β-
GP? 

CaCl2 • Elevated calcium.  
• No plaque 

formation. 
• No HA. 

CaCl2 independently induced 
mineralisation. 

β-GP Little change in 
calcium. 

β-GP alone showed little 
effect 
 

CB • Elevated calcium. 
• Plaque formation. 
• HA crystals. 

• Both CaCl2 and β-GP 
required for calcification. 

• Low calcium limits 
calcification in vivo. 

• Low β-GP limits 
calcification in vivo. 
 

Does NO 
production regulate 
calcification? 

LPS  • Marginal induction 
of iNOS 
accompanied by 
NO production. 

• Elevated calcium. 
• No HA. 

 
 
 
 
• Other factors required for 

HA formation are missing. 
 

IFN-γ • Limited iNOS/NO. 
• Elevated calcium. 
• No HA . 

• IFN-γ stabilises iNOS 
mRNA in the cell. 

• Other factors required for 
HA formation are missing. 

 
 
 
 
 
LPS + IFN-γ 

• Significant 
induction of iNOS 
peaking at day 3 
accompanied by 
elevated NO 
production. 

• Elevated calcium. 
 

 
 
 
 
 

• Other factors required for 
HA formation are missing. 
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LPS + CaCl2, 
or β-GP  

• Induction of iNOS 
accompanied by 
NO production. 

• No HA 

• iNOS/NO do not cause 
mineralisation of VSMCs. 

• iNOS/NO increase may be 
due to calcium 
enhancement. 

 LPS + CB • Induction of iNOS 
accompanied by 
NO production. 

• HA crystals. 
 

 

 IFN-γ + 
CaCl2, or β-
GP  

• iNOS not 
produced. 

• marginal increase 
in NO. 

• Greater elevation 
of calcium 
compared to 
CaCl2, or β-GP 
alone. 

• Significantly 
higher than LPS 
alone or in 
combination with 
CaCl2,/β-GP/CB. 

• Source of NO may be 
iNOS- limit of detection by 
Western blot. 

• Future work to confirm no 
iNOS mRNA using qPCR 
analysis. 

• IL-1 levels too low for 
iNOS induction. 

 IFN-γ + CB  • Induction of 
iNOS/NO 
produced. 

• HA crystals. 
 

 
• IFN-γ may cause 

hypercalcemia by direct 
action on 1alpha-OHase. 

 LPS + IFN-γ 
+ β-GP 

• Induction of 
iNOS/NO 
produced. 

• No HA crystals 
• β-GP modulates 

elevation of 
calcium. 

• Extracellular calcium 
required for HA 
mineralisation of VSMCs. 

• β-GP modulates elevation 
of calcium. 

 LPS + IFN-γ 
+CaCl2 or 
CB 

• Induction of 
iNOS/NO 
produced.  

• Faster rate of 
calcification 
compared to CB 
alone. 

• HA crystals. 
 
 

• Induction of iNOS linked to 
levels of calcium 

• LPS + IFN-γ enhance rate 
of calcification. 
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Does preincubation 
with LPS and/or 
IFN- γ before 
addition of 
calcifying agents 
induce 
mineralisation? 
 

The effect of 
preincubation 
with LPS 
and/or IFN- 
γ. 

• Elevated levels of 
calcium. 

• iNOS causes increase in 
calcium levels. This is an 
‘additive effect’. 

Does preincubation 
with CaCl2 / β-GP / 
CB before addition 
of inflammatory 
mediators induce 
iNOS?  

The effect of 
preincubation 
with CaCl2 / 
β-GP / CB. 

• iNOS only present 
at 18 – 48 hours 
post incubation. 

• calcium induces iNOS 
expression via a different 
pathway to LPS and IFN-γ. 

 
 
 
 
Does the induction 
of iNOS/NO 
regulate 
calcification? 

 
 
 
 
The effect of 
LPS and 
IFN-γ on 
calcification. 

 
 
 
 

• A significant 
increase in 
iNOS/NO. 

• A significant 
increase in 
calcium. 

 
 
 
 

• CB may modulate NO and 
iNOS production in 
RASMCs. 

• Either, LPS+IFN-γ 
modulates the activity of 
plasma membrane calcium 
channels indirectly, or 
causes the release of 
calcium stores in VSMCs, 
via an alternative pathway. 

• NO may enhance 
mineralisation of VSMCs. 

• Expression of iNOS 
enhanced under calcifying 
conditions – may lead to 
increased risk of plaque 
formation in vivo 

• Further in vivo investigation 
needed in animal model. 

What is the effect 
of GW274150? 

Presence of 
NO on 
calcium 
levels 

• NO production 
inhibited at 10, 50 
and 100µM. 
iNOS expression 
inhibited at 100 
µM except 10 and 
50 µM  

• Calcium elevated 
marginally at 10 
µM and 50 µM 
when either LPS 
+IFN-γ or CΒ 

 
• At high concentration 

GW274150 may non-
selectively inhibit iNOS 
expression. 
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alone not  LPS 
+IFN-γ+CΒ 
significantly 
inhabited elevation 
of calcium. 

• Calcium levels 
lower with 100 µM 
GW274150 when 
either LPS +IFN-γ 
or CΒ alone. 

• Lower elevation of 
calcium when LPS 
+IFN-γ+CΒ at all 
concentrations of 
GW274150. 

 
 

 
 
 
 

• Unknown cause of lower 
calcium levels. 

 
 

 
Does inhibition of 
iNOS effect 
mineralisation of 
VSMCs? 

 
Effect of NO 
on 
mineralisatio
n 

 
• GW274150 

eliminated HA 
formation. 

 
Lower levels of NO linked 
to elimination of HA 
formation. 

• NO is necessary for 
mineralisation. 

What is the effect 
of the presence of 
NO from NO 
donors? 

Presence of 
NO without 
iNOS 

• Significant 
elevation of 
calcium. 

• HA crystals in 
presence of slow 
releasing donor 
NOC 18 (30 and 
50 µM) prior to 
addition of CB. 

• No HA crystals in 
presence of fast 
releasing donor 
SNP. 

• Elevation of NO when CB 
+ LPS +IFN-γ are present is 
due to some interaction 
effect in RASMCs. 
 

• Sustained release of NO 
may contribute to increased 
mineralisation. 

• Fast NO release had on 
effect on calcium level. 

Is p38 MAPK 
involved in the 
signalling pathway 
for NO production? 

Effect of 
inflammatory 
mediators on 
p38 MAPK 
activation. 

• Significant 
increase in p38 
MAPK 
phosphorylation 
due to LPS at 18 
hours onwards. 

• There is common point for 
p38 MAPK pathway and 
the iNOS induction 
pathway at 18 hours. 

Is p38 MAPK 
involved in the 
signalling pathway 
involving elevation 
of calcium? 

Effect of 
calcifying 
agents p38 
MAPK 
activation 

• Increase in p38 
MAPK 
phosphorylation by 
CB only 

• Calcium involved in 
activation of p38 MAPK 
pathway by calcifying agent 
only in absence of NO via 
iNOS 
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Is Akt involved in 
the signalling 
pathway for NO 
production? 

 
Effect of 
inflammatory 
mediators on 
Akt 
activation. 

 
• No significant 

increase in Akt 
phosphorylation 
with inflammatory 
mediators. 
 

 
• No evidence for 

convergence of NO 
production and Akt 
pathway. 

 Effect of 
calcifying 
agents on Akt 
activation 

• Significant 
increase in Akt 
phosphorylation 
when CB present 
at early time point 
(12-24 hours) 

• There is common point for 
the Akt pathway and the 
pathway elevating calcium 

Is Erk1/2 involved 
in the signalling 
pathway for NO 
production? 

Effect of 
inflammatory 
mediators or 
calcifying 
agents on 
Erk1/2 
activation. 

• calcifying agents 
only caused 
significant 
induction of 
phosphorylation at 
day 3 

• Calcium modulates 
activation of Erk1/2 
signalling pathway in 
VSMCs 

Is Runx2 involved 
in the signalling 
pathway for NO 
production? 

Effect of 
inflammatory 
mediators or 
calcifying 
agents on 
Runx2 levels 

• calcifying agents 
only caused 
significant 
induction of Runx2 
at day 3 and 5 

• Runx2 lower with 
LPS+ IFN-γ 
compared to 
calcifying agents. 
 

• No link could be established 
between the activation of 
p38 MAPK or Akt and 
Runx2 when NO presence 
via iNOS 

• Calcium promotes Runx2 
levels linked to activation of 
p 38 MAPK when absence 
of NO via iNOS 

Is the inhibitory 
effect of 
GW274150 on 
iNOS expression 
via Runx2? 

Effect of NO 
on Runx2  

• Levels not 
significantly 
altered at day 3 

• NO/iNOS does not have a 
role in the Runx2 induction 
pathway.  

 

The findings of the research suggest that LPS activates the expression of iNOS and hence the 

levels of NO increase. In terms of IFN-γ, by itself this can cause elevation of calcium levels 

but does not increase expression of iNOS. Previous studies have shown IFN-γ to stabilise 

iNOS mRNA (Wileman et al., 1995). However elevated phosphate and calcium also activate 

the iNOS expression, via an alternate uncharacterised route. Thus, the presence of just the 

calcifying agents is sufficient to induce mineralisation of VSMCs. Furthermore, the 

experiments where VSMCs were preincubated with calcifying agents showed iNOS 
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expression from 18 hours post incubation, again suggesting that calcifying agents induce 

iNOS expression by an alternative pathway to LPS, and modulate the level of NO.  

This increased expression of iNOS may contribute to an increased risk of plaque formation in 

vivo. This phenomenon needs further exploration in the animal model to confirm the 

biological action in organs.  

When one or both inflammatory mediators and both calcifying agents, i.e. calcium and 

phosphate are present in the vascular smooth muscle environment, the effect of these 

substances is additive such that the level of NO is enhanced. This in turn accelerates the 

mineralisation process. A low level of calcium can limit the formation of HA crystals. The 

inflammatory mediators in combination can also increase the level of calcium in the VSMCs. 

Without the presence of IFN-γ, LPS and calcifying agents can cause mineralisation of cells, 

but both calcium and phosphate need to be elevated. Thus, even though NO is elevated, no 

HA is observed when either calcium or phosphate is low. This provides support for the idea 

that NO by does not cause mineralisation of VSMCs, rather it can contribute to increased 

mineralisation.  

Without LPS there appeared to be no induction of iNOS, despite NO being elevated. This 

may be because the limit of detection by Western blot could not confirm the presence of 

iNOS mRNA. This can be confirmed in the future using qPCR analysis. However again a 

suggestion of an alternate source of iNOS generation, e.g. another enzyme may be possible. 

This needs to be further explored. There may also be other unidentified limiting factors for 

iNOS expression.  

When both LPS and IFN-γ are present without any calcifying agents being added, the levels 

of calcium are elevated either by their indirect action on calcium channels of by in induction 

of release of calcium stores in VSMCs, via an alternative pathway. This however does not 
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result in HA crystal formation, despite NO being elevated; again supporting the idea that NO 

by itself is insufficient to cause vascular mineralisation. 

Using the iNOS inhibitor GW274150 produced a significant novel result. While at 10 and 50 

µM, its effect was inhibition of enzyme activity; at 100 µM its action involved possible 

upstream reduction of iNOS expression as a reduction of calcium elevation. Thus suggest a 

complex effect on the cell at physiologically high concentrations. GW274150 also eliminated 

mineralisation, suggesting that in contrast to previous experiments NO may an essential 

requirement for HA formation. However, using the donor of NO suggested that the level of 

NO may be less important than the speed of NO release. A slow sustained release of NO by 

NOC18 produced HA crystals in contrast to a fast release by SNP. The slow release is similar 

to what occurs in chronic inflammation, whereas fast release is acute, similar to an injury that 

is repaired by the immune system and cell repair mechanisms. Thus, the nature of NO release 

becomes the key factor. In fact, fast release of NO may be protective against mineralisation 

of VSMCs due absence of HA crystal even when CB was present. The literature survey 

suggests that evidence points towards NO being protective against vascular mineralisation 

(Kanno et al.,2008), as NO acts as a secondary messenger in the cell molecule. However, due 

to the toxic nature of NO, prolonged elevation of NO specifically inhibits mitochondrial 

respiration via the electron transport chain. This contributes to the cytotoxicity of NO.  

Lastly, when examining selected secondary messenger signalling pathways, the results 

suggested that NO and calcifying agents both enhance mineralisation, with additive effect, 

possibility independent on the activation of the p38 MAPK and Akt signalling pathways. 

Although, these two pathways are already well established in the literature in relation to other 

phenomenon. In terms of vascular calcification, Akt appears to be activated during smooth 

muscle injury (Fitzgerald et al., 2008, Stabile et al., 2003), or by inflammatory mediators 

(Hattori et al., 2003, Okazaki et al., 2009), which promotes expression of iNOS and 



 

 

292 
 

calcification. Akt involvement is also implicated in VSMC apoptosis (Allard et al., 2008).  

Mitogen activated protein p38 MAPK is activation is linked to promotion of vascular 

calcification (Abedin et al., 2006), and increases in apoptosis (Liao et al., 2013, Yang et al., 

2000, Loidl et al., 2004).  Furthermore, activation of p38 MAPK regulates expression of 

amino acid transporter such as the L-arginine transporter in vascular endothelium (Huang et 

al., 2004), and this links to an increase in NO production via iNOS. 

No involvement of Erk1/2 or Runx2 pathway activation was observed in the mineralisation 

process via NO produced /iNOS in the current study. A review of the literature indicates only 

a limited number of studies involved the study of Erk1/2 or Runx2 in VSMCs. Liao et al., 

2008 found that β-GP induced osteoblastic differentiation of VSMCs possibly through the 

activation of Erk1/2. Osteogenic differentiation was also linked to Erk1/2 by Huang and 

colleagues (2013b). While Tang et al., (2015) identified vascular peroxidase 1 production of 

hypochlorous acid being responsible for promoting activation of Akt, Erk1/2 and p38 MAPK, 

as well as expression of Runx2. In mice Runx2 deficiency has been linked to protection 

against vascular calcification (Sun et al., 2012), and that Runx2 regulates change of smooth 

muscle phenotype to osteoclast phenotype during atherosclerosis (Byon et al., 2011, Xia et 

al., 2015, Zhang et al., 2014).  

A deeper exploration of signalling pathways and other pro-calcific factor (such as BMP2) 

could show a novel mechanism in VSMCs. Table 7.2 below summarised the changes in 

signalling molecule activity over time course in VSMCs. 
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Table 7.2: The effect changes of signalling molecule activity by inflammatory mediators 
during time course in VSMCs. 
 
Inflammatory 
mediators   Signalling molecule  Start and peaked 

time point (minutes) Citation 

LPS 

p 38 MAPK 
activated at30 minutes 
then declined 
thereafter  

(Jacob et al., 2005) 

p 38 MAPK 

  

15 minutes and 
returning to the 
baseline at 120 
minutes.  

(Ohashi et al., 2000; 
(Jiang et al., 2010) 

  
  

p 38 MAPK 

  

30 minutes and 
sustained up to 240 
minutes. 

(Yamakawa et al., 
1999) 
  

LPS+IFN-γ p 38 MAPK 

Start at 30 minutes and 
peaked at 60 minutes 
following the declined 
thereafter between 120 
-240 minutes. 

(Lamon et al.,2010) 

LPS Erk1/2 
30 minutes and 
sustained up to 240 
minutes. 

  

(Yamakawa et al., 
1999) 

 

LPS+IFN-γ Erk1/2 
30 minutes to peaked 
at 60 and sustained at 
240 minutes. 

(Lamon et al.,2010) 

LPS Akt 

Begins at 15 minutes 
and peaked  to 60 
minutes followed by a 
declined thereafter 
(120 minutes) 

(Jiang et al., 2014) 

LPS+IFN-γ Akt 
 Begins at 15 mins and 
sustained up to 240 
minutes tested 

Hattori, Hattori & 
Kasai, 2003) 
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7.2-Conclusion: 

It has been found that the induction of iNOS and the subsequent production of NO under 

defined conditions may cause elevation of calcium level leading to HA crystal formation in 

RASMCs, observed by ARS staining and FT-IR. It appears that inflammatory mediators and 

calcification inducers may cause activation of the cellular calcification process not through 

MAPKs and Akt. It may be that production of NO generated by iNOS is regulated by another 

pro-calcific factor, which is not Runx2. This transforms factors in cells which in turn activate 

various the processes associated with VC. These findings confirmed that iNOS plays a 

modulatory role in the calcification of RASMCs. NO may significantly exacerbate 

calcification when produced within a calcifying environment. These together may contribute 

to enhanced calcification with potential detrimental consequences in vivo.  
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7.3- Limitations and Future work:  

Translating research science from the bench into medicines for use in clinical settings is a 

difficult and complex process. The current study used cell culture. Despite this being a 

sufficient model to explore deposition of HA crystals at the cellular level, this could be not 

the same as an organ or whole organism animal. Furthermore, the use of rat cells may not 

adequately model how the human VSMCs behave physiologically. The levels of substances 

tested can be toxic to the organism. In fact, the results did suggest a level of cytotoxicity due 

to the concentrations of substances tested. Thus, in physiological conditions, the toxicity 

itself may be sufficient to cause cellular dysfunction and vascular calcification. This could 

serve as a limitation to the study. 

In the investigations the concentrations of the calcium in the calcifying agents and the 

concentration of phosphate was kept the same, however future work may benefit from 

exploration of the effect of a range of concentrations. For example, the normal range of 

human plasma and tissue fluid calcium concentration is 2.2 - 2.6mM (Ihmoda, 2005), while 

in rats the level is 2.5mM (Lewin et al., 2002). Thus, 3mM concentration of extracellular 

calcium is considered to be hypercalcemic, whereas the concentration used in these studies 

was more than 2x higher, at 7mM. Furthermore, the levels of β-GP could also be varied, as 

this too had the fixed concentration of 7mM.  Therefore, the methods used could be modified 

to explore a wider variety of concentrations of calcium, phosphate, etc.  

It is interesting to note that in VSMCs free calcium concentrations vary, and intracellular 

signalling is partly achieved by waves of elevated calcium (Hill-Eubank et al., 2011). 

Altering extracellular calcium levels could disrupt the intracellular signalling as calcium 

enters the cell, for example through voltage gated channels. This is itself may contribute to 

cytotoxicity, and thus promote vascular calcification. 
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L-arginine is a requirement of iNOS for the synthesis of NO. The cells used were not 

supplemented with L-arginine. Therefore, any potential effect on the level of NO could be 

diminished if the level of L-arginine becomes limiting. The study could be extended by 

supplementing with L-arginine in a range of concentrations. 

GW2741250 has been shown to suppress iNOS expression, it would be interesting to 

establish whether this effect is mediated through regulation of iNOS gene expression using 

qPCR in parallel with the studies above. In this case cells will be activated with LPS and 

IFN-γ in the absence and presence of GW274150 at different concentrations. iNOS mRNA 

expression will  be analysed using iNOS specific primers. Parallel studies could induce 

iNOS, and then GW274150 added in a concentration dependent manner to see if the 

compound affects both the transcription of the iNOS gene, and the stability of the iNOS 

mRNA. 

It has been found that incubation of cells with IFN-γ in the presence of calcification inducers 

resulted in a significant increase of NO production, therefore it may be worth exploring 

whether this is due to induction of iNOS expression through enhanced gene transcription or 

whether IFN-γ as reported by others, acts to stabilise the iNOS gene. These studies could be 

carried out by probing for the stability of the iNOS gene using qPCR analysis of total mRNA 

isolate form cells treated with IFN-γ. Alternatively, cells could be activated with LPS and 

IFN-γ added to see if the gene stability was increased. 

The literature indicates that other signalling molecules such as IL-6 (Abedin et al., 2006) IL-2 

are also involved in vascular calcification. Therefore, the study could be extended to explore 

how variations in these can affect vascular calcification. This could also explore how 
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variations in cytokines and inflammatory mediators effect phosphorylation of p38 MAPK or 

Akt, as well as levels of Runx2 or BMP2, in VSMCs. 

The compound Carboxy-PTIO is a NO scavenger. It will be used in experiments to examine 

whether the absence of NO may inhibit or promote of calcification.  

Transfecting iNOS cDNA into RASMCs in future work will determine whether the 

expression of the enzyme and thus subsequent production of NO is in itself critical for 

calcification to occur in the absence of any potential inflammatory processes.  

The effect of other specific iNOS inhibitors (such as Byk 191023) on VSMC mineralisation 

could be explored and compared to the effect of GW274150, to confirm the effect of 

variations in NO levels. In addition, as stated above, the level of iNOS expression could be 

quantified via qPCR, to give an accurate picture of variations in expression in a specific time 

course.  

The current study used RASMCs as a model for mineralisation. However, a human cell line 

may show differences in the level of protein expression or ion levels, etc. Therefore, 

extension of the current research in this direction is recommended.  

The MTT assay used indicated cytotoxicity when the cells were incubated continuously for 

longer time periods in inflammatory mediators/calcifying agents. In these conditions the 

levels of NO were measured. While it is likely that cytotoxicity may interfere with NO levels, 

in chronic conditions such as cardiovascular disease involving vascular mineralisation, it is 

also likely that cytotoxicity is a phenomenon due to continuous inflammation (Willerson and 

Ridker, 2004). Furthermore, varying the replenishment of media allowed comparison of the 

effect continuous incubation periods, and as has been mentioned above continuous 

replenishment may serve as a better model for the continuous blood flow in vivo.  
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Bench based research provides a starting point for clinical research. It elucidates signalling 

pathways and identifies potential target for drug therapies. It also provides some indication of 

toxicity levels for tested substances. However, the physiological and biological effects can be 

complicated and based on a myriad of interactions, therefore continuous research is essential 

to refine any model, especially when complicated intracellular signalling networks are 

involved, and slight changes to concentrations can have a significant effect. In the case of NO 

for example, the study found the speed of release was important. Thus, any future work 

would need to focus on refining and pinpointing the length of time of chronic NO exposure 

which leads to calcification.  
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Table: Products name and supplier  

 

 

Product name Supplier 

Membrane filter Immobilon-P transfer 
membranes 0.45µm pore size 265mm x 3.75 
m Millipore 

Fisher Scientific 

Tris(hydroxymethyl) methylamine 'Tris 
buffer' 99.8% Fisher Scientific 

Tween 20 Fisher Scientific 
p-Coumaric acid-10G Sigma-Aldrich 
Biotinylated Protein Ladder Detection Pack cell signaling 
Kodak® processing chemicals for 
autoradiography films GBX 
developer/replenisher 

Sigma-Aldrich 

BCA protein Assay Reagent B, Thermo 
Scientific Pierce Fisher Scientific 

D-PBS Dulbecco’s Phosphate Buffered 
Saline (10X) liquid Fisher scientific 

BCA protein Assay Reagent A, Thermo 
Scientific Pierce Fisher scientific 

Hyperfilm ECL 18x24cm GE Healthcare Fisher scientific 
Glycine Fisher scientific 
Tris (hydroxymethyl) methylamine Fisher scientific 
Sodium dodecyl sulfate - 1KG Sigma-Aldrich 
Hyperfilm ECL 18x24cm GE Healthcare 
 Fisher scientific 

450ML PROTOGEL 30% SOLUTION AT 
37.5:1 RATIO Acrylamide:methylene Bis 
Acrylamide solution, National Diagnostics 
 

Fisher scientific 

100 ML Penicillin-streptomycin solution 
 Fisher scientific 

1 Kg Tris (hydroxymethyl) methylamine, 
Biological buffer Sigma-Aldrich 

Ammonium persulphate Acros Organics 

Anti-Rabbit IgG (whole molecule)–
Peroxidase antibody produced in goat Sigma Aldrich 

Biotinylated protein ladder detection pack New England Biolabs 

1 Kg Glycine Fisher scientific 
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Table: Ingredients of DEME 

Ingredients (Amino acid, vitamins, 
inorganic salts and other 

components) 

Molecular 
weight 

Concentration 
(g/L) (mM) 

Glycine 75 0.03 0.4 

L-Arginine hydrochloride 211.0 0.084 0.398 

L-Cystine 2HCl 313.0 0.063 0.201 

L-Glutamine 146.0 0.58 3.972 

L-Histidine hydrochloride-H2O 210.0 0.042 0.2 

L-Isoleucine 131.0 0.105 0.802 

L-Leucine 131.0 0.105 0.802 

L-Lysine hydrochloride 183 0.146 0.798 

L-Methionine 149 0.03 0.201 

L-Phenylalanine 165 0.066 0.4 

L-Serine 105 0.042 0.4 

L-Threonine 119 0.095 0.798 

L-Tryptophan 204 0.016 0.078 

L-Tyrosine 
181 0.072 0.398 

L-Valine 
117 0.094 0.803 

Choline chloride 
140 0.004 0.0286 

D-Calcium pantothenate 
477 0.004 0.008 

Folic Acid 
441 0.004 0.009 

Niacinamide 
122 0.004 0.033 

Pyridoxine hydrochloride 
206 0.004 0.019 

Riboflavin 
376 0.0004 0.001 
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Thiamine hydrochloride 
337 0.004 0.012 

i-Inositol 
180 0.0072 0.04 

Magnesium Sulfate (MgSO4-7H2O) 246 0.2 0.813 

Potassium Chloride (KCl) 75 0.4 5.333 

Sodium Bicarbonate (NaHCO3) 84 3.7 44.047 

Sodium Chloride (NaCl) 
58 6.4 110.345 

Sodium Phosphate monobasic 
(NaH2PO4-2H2O) 154 0.141 0.916 

D-Glucose (Dextrose) 
180 0.1 5.555 

Phenol Red 
376.4 0.015 0.0399 

Sodium Pyruvate 
110 0.11 1 
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