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Abstract—Measurement-based timing analysis (MBTA) is a
hybrid approach that combines execution-time measurements
with static program analysis techniques to obtain an estimate
of the worst-case execution time (WCET) of a program. The
most challenging part of MBTA is test data generation. Choosing
an adequate set of test vectors determines safety and efficiency
of the overall analysis. So far, there are no feasible criteria that
determine how well the worst-case temporal behavior of program
parts is covered by a given test-suite.

In this paper we introduce a relative safety metric that
compares test suites with respect to how well the observed worst-
case behavior of program parts is exercised. Using this metric,
we empirically show that common code coverage criteria from
the domain of functional testing can produce unsafe WCET
estimates in the context of MBTA for systems with a processor
like the TriCore 1796. Further, we use the relative safety metric to
examine coverage criteria that require all feasible pairs of, e.g.,
basic blocks to be exercised in combination. These are shown
to be superior to code coverage criteria from the domain of
functional testing, but there is still a chance that an unsafe WCET
estimate is derived by MBTA in our experimental setup. Based
on the outcomes of our evaluation we introduce and examine
Balanced Path Generation, an input data generation technique
that combines the advantages of all evaluated coverage criteria
and random input data generation.

Index Terms—Real-time systems, validation, worst-case execu-
tion time, structural code coverage

I. INTRODUCTION

A real-time computer system is a computer system in which
correctness does not only encompass functional behavior, but
also compliance to temporal constraints. If the violation of
the timing constraints can have catastrophic consequences we
speak of a hard real-time system. Otherwise, it is called soft
real-time system. An example of the latter is a mobile phone
application that can tolerate minor communication delays. As
an example for hard real-time systems, an airbag not releasing
in time or a non-reacting aircraft control unit can lead to
catastrophic consequences. Consequently, there is an inherent
interest in verification and validation techniques that focus on
the temporal behavior of real-time systems.

Many real-time computer systems are implemented as a
collection of individual tasks in order to handle complexity.
A valid schedule for those tasks ensures the adherence to
temporal dependencies [1]. Most of the common scheduling
algorithms rely on the Worst-Case Execution Time (WCET) of
each single task.

Determining the WCET of a program by simple end-to-
end measurements exercising the program with different input
data is unlikely to find a safe upper bound on the real WCET,
i.e., a bound that is never exceeded under any circumstances.
As a more systematic approach that provides much higher
confidence into safety of the obtained WCET bound, static
WCET analysis is based on the provision of an accurate
timing model of the processor [2]. Given that the involved
analysis techniques are sound and that the timing model is
correct, static WCET analysis can yield a safe upper bound
on the WCET. However, timing properties of modern archi-
tecture features like caches, branch predictors or out-of-order
execution are hard to analyze precisely. As a consequence,
static analysis struggles to deliver precise results, i.e., WCET
bounds that are only slightly larger than the real WCET, due
to conservative assumptions it has to act on in order to be safe.
Further, the manual construction of a detailed timing model is
often only economically feasible for processors used in safety-
critical systems where comprehensive verification efforts are
mandatory for certification.

Thus, measurement-based timing analysis has emerged,
where the timing model is obtained from execution-time
measurements [3].
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Fig. 1. The three phases of measurement-based timing analysis (MBTA)

A. Measurement-Based Timing Analysis

Measurement-based timing analysis (MBTA) is a hybrid
WCET analysis technique. It combines static program analysis
techniques and execution time measurements. As shown in
Figure 1, measurement-based timing analysis typically consists
of the three phases Analysis and Decomposition, Execution
Time Measurement, and Timing Composition.



• Analysis and Decomposition: For WCET analysis, the
maximal end-to-end execution time of the software is of
interest. In general, to obtain a perfectly accurate timing
model, we would have to consider the execution time of
all possible operation sequences that can be performed
by the computer for all possible initial states of the
system under scrutiny while executing the given computer
program. Measuring all these sequences is intractable in
general, as there are simply too many. Therefore, reducing
the number of execution time measurements is crucial.
Usually, MBTA approaches try to access the local WCET
of program segments (subgraphs [4]–[6], sequences be-
tween instruction points [7], down to basic blocks [4]).
All these decomposition techniques of execution-time
measurements imply heuristics for selecting representa-
tive test data for covering the worst-case timing effects
of the program. The effectiveness of such a heuristic
depends on the nature of the target hardware, e.g., for
processors with caches we also need to consider global
effects.
However, there are also approaches that estimate the
global WCET of a program without decomposing it by
considering end-to-end execution times using evolution-
ary algorithms [8], [9].

• Execution Time Measurement: Once the program is
decomposed, the execution time is estimated for each
segment. Execution times are measured on real hardware,
which allows us to take hardware characteristics into ac-
count without modeling them in full detail. In general, the
MBTA approach does not provide sufficient coverage of
all system states to guarantee that the maximal observed
execution time (MOET) for a segment is indeed the
WCET. This is due to hardware features like pipelines,
caches, and out-of-order execution that blow up the state
space of the processor. Further, all possible system states
at the entry of a code fragment would have to be covered
in order to guarantee that the WCET is among the
MOETs. Thus, we strongly advocate coverage criteria
that aim for exercising the worst-case temporal behavior
of program segments by considering the aforementioned
hardware effects.

• Timing Composition: The timing results from all seg-
ments are composed via IPET [10], [11] or a tree-based
approach [7], [12] to obtain a global WCET estimate (we
call a WCET estimate safe, if it does not fall below the
real WCET).

In contrast to static WCET analysis, MBTA does not try
to guarantee safety for all of its results. It rather aims for
balancing analysis efforts to serve both needs: to yield safe
results on the one hand and to be precise on the other
hand. Obviously, compromises have to be made. With respect
to the verification of temporal requirements in embedded
systems, this implies that MBTA targets soft real-time systems
primarily, where precision of a calculated WCET bound is as
crucial as safety. However, MBTA can also be used to verify

hardware models used in static WCET analysis or for design
space exploration of both hard and soft real-time systems.

This article will focus on the aspect of safety in MBTA,
while a survey of the competing aspect of precision is provided
in [13]. Recall that MBTA involves test data generation as
an essential step in the Execution Time Measurement phase.
So far, no coverage metric has been shown to adequately
determine if a code segment is exercised sufficiently by a given
test suite for obtaining an adequately safe WCET estimate.
Recall that the main benefit of MBTA is that is does not require
a hardware model of the system under scrutiny, which leads
us to a dilemma: to guarantee that a coverage metric does
imply the coverage of execution scenarios that can be used to
obtain an upper bound of the WCET it requires a sophisticated
hardware model of the system.

Our first contribution is a relative safety metric that com-
pares test suites with respect to how well the observed worst-
case behavior of program parts is exercised. The metric only
uses observations from measurements and does therefore not
rely on a hardware model.

As a second contribution, given this metric to quantify rel-
ative safety, we empirically show that the following common
code coverage criteria from the domain of functional testing
can produce unsafe WCET estimates in the context of MBTA
for systems with a processor like the TriCore 1796:
• Random Testing
• Basic Block Coverage [14]
• Condition/Decision Coverage [15]
• Modified Condition/Decision Coverage (MC/DC) [16]
Further we use the relative safety metric to examine cover-

age criteria that require all feasible pairs of, e.g., basic blocks
to be exercised in combination. These are shown to be superior
to code-coverage criteria from the domain of functional testing
but still reveal safety insufficiencies in the context of MBTA.

The final contribution is the introduction and examination of
Balanced Path Generation, an input data generation heuristic
that tries to combine the advantages of all other evaluated
coverage criteria while minimizing their disadvantages. For
our experimental setup, Balanced Path Generation performed
best in terms of minimizing the chance that a WCET estimate
by MBTA is not safe enough.

Section II elaborates on the evaluated coverage criteria
and software models. Section III discusses existing work on
coverage criteria for MBTA. An empirical evaluation of the
mentioned coverage criteria from the domain of functional
testing is presented in Section IV as well as the corresponding
examination of pair coverage criteria. Balanced Path Genera-
tion is introduced and evaluated in Section V, followed by a
summary and conclusion in Section VI.

II. PRELIMINARIES

In order to express the coverage criteria under analysis we
need a software model that is more detailed than the Control
Flow Graph (CFG) with respect to control flow decisions. We
therefore represent a program by means of a δ-Control Flow



Graph (δ-CFG) that combines a control flow graph with the
statement-level precision of a control flow automaton [17]:

Definition II.1. A δ-CFG of a program P is a tuple 〈G, v0, `〉
where G = (V,E) is a directed graph with vertices V and
edges E ∈ V × V with v0 as the unique start of P . Further,
vertices and edges may be labeled by ` : S ⊆ (E ∪ V ) →
{T,F}.

v1:while(a)v0

v2:a=c

v3:if(!b)

v4:if(1) v5:if(c)

v6:a-=1

v7:b=a v8:if(0)

v9:a-=1

F

T

T F

T

F

T

F T

F

Fig. 2. δ-CFG for the example program in Listing 1

i n t a , b , c ;
whi le ( a ){

i f ( ! b | | c ){
a−=1;
b=a ;

}
a−=1;

}
a=c ;

Listing 1. Example C
program

Consider the example C program in
Listing 1. A corresponding δ-CFG is
illustrated in Figure 2. The main differ-
ence to the CFG is that short-circuit eval-
uation is made explicit by assigning one
vertex to each condition of a boolean ex-
pression (v1, v3, v5 are condition vertices
in the example δ-CFG). Labels T and F
refer to positive and negative outcomes
of conditions respectively. Also, basic
blocks (instruction sequences of maxi-
mal length where only the last instruc-
tion might be a jump) are not atomic

entities in the δ-CFG: each program instruction is modeled
by a single vertex.

A. Coverage Metrics

Although common coverage metrics such as condition cov-
erage are widely used, they lack a standard definition and are
interpreted distinctly by different tools. We shall therefore give
a definition of those coverage metrics to be evaluated in this
article. Before, we need some basic notations.

Definition II.2. Given a program P , a test vector π assigns
values to variables in P . A test suite is a set Γ of test vectors.
We say Γ |= γ iff a test suite Γ satisfies a coverage criterion
γ. Let ΠP(π) denote the δ-CFG path that results from an
execution of P where all free variables are assigned with
respect to π. We say vertex v is exercised by Γ iff there is a
π ∈ Γ such that v is in the path ΠP(π). v is feasible iff there

Basic Block Coverage: Let each basic block vi of a program P be
expressed by a sequence of δ-CFG vertices vi = vi1, . . . , v

i
k . Γ |= Basic

Block Coverage iff for all vi there is a j such that vij is exercised by
Γ. Basic block coverage is also referred to as line coverage or statement
coverage [14]. Regarding the example program and its δ-CFG in Figure 2,
it would for instance suffice to exercise v0, v2, v6 and v9. An example
for a test suite satisfying basic block coverage is {{(a, 2), (c, 1)}}.

Decision Coverage: All feasible outgoing branches of control flow
decisions are visited. Here, control flow decisions denote those in if-
statements, while/for-statements, switch statements and conditional ex-
pressions ?:. Also referred to as branch coverage [15]. For our example,
{{(a, 2), (c, 1)}, {(a, 2), (b, 1), (c, 0)}} is a test suite that covers all
decision outcomes (v1, v3), (v1, v2), (v4, v6), (v8, v9) and therefore
satisfies decision coverage.

Condition Coverage: All feasible outcomes of all atomic conditions are
exercised. This includes conditions in assignments such as a=a>2||c;.
In our example, condition coverage requires (v1, v3), (v1, v2), (v3, v4),
(v3, v5), (v5, v4), (v5, v8) to be exercised. Note that a test suite that
satisfies condition coverage does not satisfy decision coverage in general.
E.g. {{(a, 2), (b, 0), (c, 0)}, {(a, 2), (b, 1), (c, 1)}} satisfies condition
coverage but does not satisfy decision coverage in our example because
!b||c never evaluates to F.

Condition/Decision Coverage: The union of condition coverage and
decision coverage: all feasible outcomes of all atomic conditions and
feasible outgoing branches of control flow decisions are exercised.

Modified Condition/Decision Coverage (MC/DC): According to [16],
both of the following properties must hold:
• The respective test suite must guarantee condition/decision coverage.
• Each condition in a decision has been shown to independently affect

that decision’s outcome.
We consider the definition to target only feasible conditions. For our ex-
ample program, {{(a, 2), (b, 0), (c, 0)}, {(a, 2), (b, 0), (c, 1)}, {(a, 2),
(b, 1), (c, 0)}} satisfies MC/DC coverage.

Pair Coverage: Given a coverage specification γ. Then γ2 = γ × γ
requires that all feasible pairs of instances in γ must be exercised. For
example, (basic block coverage)2 requires for a test suite to execute all
basic blocks in combination at least once if the combination is feasible.

TABLE I
COVERAGE METRICS

exists a test vector π such that v is exercised. The maximal
observed execution time for vertex v in the path ΠP(π) is
denoted tP(v, π)). If v is not in ΠP(π), we set tP(v, π) to
−1.

Recall that given a program and a test suite, a coverage
metric determines how well the program is tested/covered by
the test suite. We will only examine complete test suites,
i.e., those that fulfill 100% coverage. Hence, it is sufficient
to define for each coverage metric those test suites that
completely achieve the respective coverage. Table I provides
definitions for the coverage criteria investigated in this article.

III. RELATED WORK

The only research on coverage criteria for measurement-
based timing analysis that we know of has been done by
Betts et al. [18]. They propose three coverage metrics for
processors with pipelines: simple pipeline coverage, pairwise
pipeline coverage, and hazard pipeline coverage. The latter



requires a processor-specific pipeline model and is therefore
not in our scope. Both simple pipeline coverage and pairwise
pipeline coverage are defined with respect to the instruction
point graph [7] of a program whereas we use the δ-CFG.
Apart from that, simple pipeline coverage is subsumed by
condition/decision coverage and pairwise pipeline coverage is
subsumed by both basic block/condition/decision pair cover-
age and extended basic block/condition/decision pair coverage.
Further, we investigate the applicability (safety and feasibility)
of the coverage criteria under scrutiny based on experiments
where Betts et al. use explanatory examples. The major
difference that distinguishes our work is that we do not restrict
the analysis to execution time jitter due to structural and
data hazards in pipelines. We compare the maximal observed
execution times of program segments which can result from
all hardware features the TriCore 1796 processor includes
(branch prediction, instruction cache, pipeline effects, etc.).
Colin et al. showed in [19] that considering the hardware of
a system under scrutiny, caches have the greatest influence on
a program’s temporal behavior.

It is an interesting observation that the selection of adequate
test vectors is crucial for MBTA on the one hand, but little
studied on the other hand. We consider this fact as one more
evidence that the dilemma of finding an appropriate coverage
metric without modeling the hardware in detail is hard to
solve. Our pragmatic approach (restricted to the TriCore
processor and some benchmarks) should therefore be seen as a
constructive step towards finding a metric that is applicable for
most of the microprocessors and program types in the domain
of embedded real-time systems.

IV. EVALUATION OF COMMON COVERAGE CRITERIA

As stated in the introduction, we do not want to model
hardware features in MBTA. Consequently, we do not know
the WCET of program segments and cannot give an absolute
metric to determine if a segment is exercised sufficiently.
Instead, we check how well a given coverage metric covers
the worst-case behavior of program segments in relation to all
other coverage metrics under investigation: for each δ-CFG
vertex we identify the maximal observed execution time and
calculate the differences to the maximal observed execution
time considering all test suites for all coverage criteria. Then
we sum up all differences to get the relative safety metric Φ.

Definition IV.1. Given a program P with n test suites such
that (Γ1 ∪ . . .∪Γn) = Γ∪. The relative safety of test suite Γk
is quantified by function Φ:

ΦP(Γk) =
∑
v∈VP

[moet (v,Γ∪)−moet (v,Γk)]

moet (v,Γ) = max
π∈Γ

[tP(v, π)]

Consequently, the lower the value of Φ, the better a program
is covered in terms of exercising the worst-case execution
times of the program’s vertices in relation to all test suites
under analysis. We have no means to reason about safety in

an absolute way. For instance, if Φ is zero for a test suite
Γ, this does not imply that the real worst-case execution time
has been observed for any δ-CFG vertex. However, it shows
that there is no test vector in any test suite under analysis that
exercises a higher execution time, from which follows that
test suite Γ is superior to all other test suites under analysis
in terms of safety.

A. Experimental Setup

All measurements are performed on the TriCore 1796
microprocessor by Infineon. Programs under analysis are
compiled with HighTec’s GCC1 compiler. The TriCore 1796
includes branch prediction, a superscalar pipeline and an
instruction cache. Furthermore, it provides On-Chip Debug
Support (OCDS) level 2 for cycle-accurate execution tracing.
We utilize the Lauterbach LA-7690 Powertrace device to
extract both timing and flow of control. Code instrumentation
is thereby obsolete and measurements are cycle-accurate. For
benchmarking our methods, we use the following programs in
ANSI C:
• bs and bsort: Two implementations of the binary

search and bubble sort algorithm, respectively, taken from
the Mälardalen WCET Project2. The size of the input list
for bsort is reduced from 100 to 10 as we utilize a
bounded model checker (see below) that does not scale
well for this particular benchmark.

• lift_control: The central control unit for an elevator
that we translated to C as it is originally intended for the
Java Optimized Processor [20]. The original version is
used in the field and can be found on the web3.

• An engine control unit from our industry partners.
The code is generated by Matlab/Simulink and in-
volves a more complex control flow structure than
lift_control.

All benchmarks have been manually modified such that there
is no short-circuit evaluation in boolean expressions, e.g.,
“if(a&&b){” is rewritten as “if(a){if(b){”. Conse-
quently, every decision is also an (atomic) condition after the
translation process and any test suite that satisfies condition
coverage also satisfies basic block coverage, condition/deci-
sion coverage and MC/DC for all benchmarks. We performed
these modifications for two technical reasons: first, these
changes ensure that the modeling and analysis tools we employ
agree with our definition of a δ-CFG. Second, there is no doubt
about the precise definitions of conditions, hence we are sure
the formal semantics of FQL (see next paragraph) match our
intuitive description in Table I.

All test suites (except for random input data generation) are
specified by the FShell Query Language (FQL) [21] for our
experiments. FQL is designed to specify test suites over source
code and is expressive enough to describe the coverage metrics
that we study in the following sections. Further, because FQL

1http://gcc.gnu.org/
2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3http://www.soc.tuwien.ac.at/trac/jop/browser/java/target/src/bench/jbe/lift



follows precise semantics, we can be sure that the specified
test suites conform to the definitions in Section II.

To generate a test suite for a given specification in FQL
we utilize FShell4, a prototype implementation based on the
principles described in [22], [23]. FShell relies on the C
Bounded Model Checker (CBMC), version 3.8 [24]. The
experiments are performed on a 2.66 GHz Intel Core2 Quad
host equipped with 8 GB RAM.

Recall that Φ can quantify relative safety of test suites
only. However, our goal is to evaluate safety of coverage
criteria and input data generation techniques. Usually, there
are many different test suites that satisfy a coverage criterion
or that result from a generation process such as random input
data generation. For illustration, imagine a test suite that
satisfies coverage criterion Y and that yields a higher Φ-
value than another test suite satisfying criterion Z. This would
only give an evidence that Y yields safer WCET estimates
than Z. Consequently, the more samples (i.e., test suites) are
compared, the more trust we gain that we can generalize safety
assertions for test suites to coverage criteria or generation
techniques. Thus, for each coverage criterion or input data
generation method under scrutiny, we produce 10 different
test suite instances and compute the corresponding expectation
value E(X) of a quantity X and the standard deviation
σ(X). This should minimize the probability that we draw
conclusions from an extreme case. Further, a low standard
deviation suggests that an input data generation technique is
stable as the jitter in relative safety is low. Consequently, in
order to give a recommendation for using a specific input data
generation technique in the context of MBTA, both E(Φ(Γ))
and σ(Φ(Γ)) must be low for many different test suites Γ that
are produced by the respective input data generation technique.
The same holds for coverage criteria.

As we investigate only one target architecture and a re-
stricted set of benchmarks, we cannot claim that the obser-
vations and conclusions we encounter in our experiments are
valid for real-time systems in general. Still, we are confident
that the TriCore 1796 microprocessor and our benchmarks are
representative for the automotive domain.

B. Experimental Results for Coverage Criteria from the Do-
main of Functional Testing

Regarding the experimental results shown in Table II we
can observe the following:

1) There are δ-CFG vertices that are not exercised using
random input data generation in all benchmarks except
bsort. There is no evidence that increasing the amount
of random test vectors will guarantee that all vertices are
exercised eventually as the experiments show almost no
difference between test suits of size 125 and 1000 in
benchmarks bs and lift_control.

2) For benchmark bsort, test suites from random input
data generation yield much better Φ values than both
basic block coverage B and the union of basic block,

4http://code.forsyte.de/fshell

condition and decision coverage B ∪ C ∪ D. In these
examples we use FQL queries of the form

IN @FUNC(foo) cover @BASICBLOCKENTRY

to request only basic block coverage in a function foo.
With the query

cover (@BASICBLOCKENTRY|@CONDITIONEDGE)

we specify the combination of basic block and condition
coverage and omit the restriction to function foo.

From (1) we can conclude that using random input data
generation exclusively in MBTA is problematic as it violates
our basic assumption of not modeling system hardware: if
parts of the program are not exercised, MBTA lacks data in
the timing composition phase. The user would have to insert
the data which requires detailed knowledge of the hardware.

Both basic block coverage B and the union of basic block,
condition and decision coverage B∪C∪D guarantee that each
vertex is exercised at least once which is a great advantage over
random input data generation. Still, from observation (2) we
can conclude that B, B∪C∪D as well as MC/DC (MC/DC is
subsumed by condition/decision coverage in our experimental
setup due to the discussed code modifications) are not always
the best choice.

C. Experimental Results for Pair Coverage

We have two motivations now to come up with a coverage
criterion that is superior to coverage metrics like B, B∪C∪D
and MC/DC in the context of MBTA:

1) Betts et al. propose pairwise pipeline coverage in [18]
to improve the coverage for pipelines. Their explanatory
examples to show the benefits of pairwise pipeline
coverage seem promising. However, experiments to back
up the claims have not been performed yet.

2) The evaluation of B, B ∪C ∪D and MC/DC show that
there is a potential for improvement with respect to the
relative safety metric Φ.

We evaluated both basic block pair coverage B2 which
requires that all feasible pairwise combinations of basic blocks
are exercised at least once, and (B ∪C ∪D)2, which requires
that all feasible pairwise combinations of basic blocks, con-
dition and decision branches are exercised at least once. To
specify pair coverage we use FQL queries of the form

IN @FUNC(foo) cover @BASICBLOCKENTRY ->

@BASICBLOCKENTRY

where “->” states that arbitrary statements may be executed
before the second basic block of a pair is reached.

Pairwise pipeline coverage as proposed by Betts et al. is
subsumed by both B2 and (B ∪C ∪D)2. Furthermore, B2 is
obviously subsumed by (B ∪ C ∪D)2.

We use the same experimental setup as before and show
the results in Table II. The experiments show that both pair
coverage criteria B2 and (B ∪ C ∪ D)2 outperform their
basic counterparts B and B ∪ C ∪ D considerably for all
benchmarks except bsort where all criteria perform equally



Benchmark Test suite Γk E(|Γk|) E(tgen) [s] E(#mv) E(ΦP(Γk)) [ns] σ(ΦP(Γk)) [ns]

bs Random input data generation 125 0.4s 2 8039 12.89
|V | = 14 Random input data generation 250 0.1s 2 8027 15.89

Random input data generation 500 0.1s 2 8035 10.69
Random input data generation 1000 0.2s 2 8019 20.16
B 1.7 0.2s 0 614 182.99
B ∪ C ∪ D 1.5 0.3s 0 802 134.93
B2 2.5 0.6s 0 397 194.15
(B ∪ C ∪ D)2 2.5 0.6s 0 395 104.64
Balanced path generation I 16.1 5.8s 0 122 16.60
Balanced path generation II 54.9 22.5s 0 87 9.94

bsort Random input data generation 125 0.2s 0 245 106.01
|V | = 15 Random input data generation 250 0.3s 0 175 102.32

Random input data generation 500 0.5s 0 108 117.16
Random input data generation 1000 0.9s 0 100 92.80
B 1.1 3.9s 0 2337 242.48
B ∪ C ∪ D 1.0 2.6s 0 2238 191.60
B2 1.4 17.0s 0 2307 174.64
(B ∪ C ∪ D)2 1.4 18.0s 0 2083 211.25
Balanced path generation I 12 109.2s 0 1836 16.01
Balanced path generation II 30.7 99.9s 0 803 662.36

lift_control Random input data generation 125 1.2s 72 240143 1139
|V | = 119 Random input data generation 250 1.8s 72 240085 1131

Random input data generation 500 3.4s 72 239501 563
Random input data generation 1000 6.9s 72 238851 883
B 37.3 2.2s 0 8812 1474
B ∪ C ∪ D 37.0 2.1s 0 9560 1495
B2 191.8 29.5s 0 4316 888
(B ∪ C ∪ D)2 192.2 30.2s 0 4118 893
Balanced path generation I 220.2 18.1s 0 3656 567
Balanced path generation II 1107.3 296.6s 0 1879 889

engine_control Random input data generation 125 0.3s 77.6 325540 113851
|V | = 398 Random input data generation 250 0.6s 56.6 263447 58178

Random input data generation 500 1.0s 25.1 171492 39299
Random input data generation 1000 2.0s 20.5 150921 26938
B 15.6 9.8s 0 100626 1887
B ∪ C ∪ D 17.5 10.2s 0 100359 2496
B2 114.3 191.7s 0 80116 4285
(B ∪ C ∪ D)2 112.2 196.6s 0 82496 4154
Balanced path generation I 178.3 124.9s 0 78950 4590
Balanced path generation II 482.9 455.0s 0 62709 4226

B: Basic block coverage C: Condition coverage D: Decision coverage E(X): Expectation value for X
σ(X): Standard deviation of X #mv: Number of missed δ-CFG vertices |V |: Number of δ-CFG vertices tgen: test suite generation time

TABLE II
EXPERIMENTAL RESULTS

well. Another benefit of a pair coverage criterion is that the
acquired information about infeasible pairs can be useful
for the Timing Composition phase of MBTA. For instance,
an IPET problem can be refined in order to exclude those
infeasible pairs making the overall analysis more precise.

Still, for both investigated pair coverage criteria, the gap
in terms of Φ compared to random input data generation in
benchmark bsort remains considerable. Consequently, there
are WCET conditions for a δ-CFG vertex that cannot be
expressed sufficiently by a pair relation. An obvious next step
towards a safer coverage metric would be the consideration of
triples, quadruples, etc. up to path coverage in the δ-CFG.
However, we already run into complexity issues for triple

coverage – therefore we have to investigate an alternative
approach, which we discuss in the following section.

V. BALANCED PATH GENERATION

Recall that without a sophisticated model of the hardware of
the target system we cannot derive a perfect coverage metric.
All we can do is to react to observations in the experiments and
derive criteria and techniques in a best effort manner. Up to
now, the experiments show that random input data generation
performs best in our setup if the control flow of a program
is simple as in bsort. However, in general, there are parts
of a program that are not exercised if flow of control gets
more complex. The idea is now to combine the advantages



of random input data generation (efficiency, good values for
Φ for those parts of a program that are exercised) with those
of B ∪ C ∪D or (B ∪ C ∪D)2, where all (pairs of) δ-CFG
vertices/edges are guaranteed to be exercised at least once. We
now introduce two input data generation techniques that both
follow this idea: Balanced Path Generation (BPG) I and II.
Both methods try to efficiently generate many different δ-CFG
paths on the one hand and try to exercise all program parts
at a balanced level on the other hand: not only should there
be no δ-CFG vertices that are exercised more frequently than
others. Also, for any two measurements of a specific δ-CFG
vertex, the history (i.e., the execution sub-paths that end at the
δ-CFG vertex) should be different.

A. Balanced Path Generation I

The key idea is to split up the problem of finding a test
suite that satisfies (B ∪ C ∪D)2 into n subproblems that are
processed by FShell consecutively: the first problem (denoted
by an FQL expression) describes a subset P1 of all pairs P =
(P1 ∪ . . . ∪ Pn) that are to be covered, the second problem
describes subset P2 ⊆ P that is disjoint from P1, and so forth.
In order to achieve this, we use FQL queries of the form

IN @FUNC(foo) cover (@CONDITIONEDGE |

@BASICBLOCKENTRY) -> (@LINE(45) | @LINE(39)

| @LINE(84))

to pair each basic block or condition outcome with lines 45,
39 and 84 only. We then repeat this process with analogous
queries for other lines.

After we have input all corresponding n FQL expressions to
FShell (i.e., we run FShell n times) the union of all test suites
satisfies (B ∪ C ∪ D)2 on the one hand. More importantly,
by partitioning the problem we end up with more generated
test vectors because FShell is prevented from minimizing the
size of the resulting test suite (by partitioning the test suite
specification FShell lacks context information for checking
which test goals are satisfied by a test vector candidate). The
experiments in Table II show that these additional test vectors
induce a positive effect in terms of safety: for all benchmarks
BPG I is rated to give safer local WCET estimates than B2

and (B ∪ C ∪D)2 in our experimental setup.

B. Balanced Path Generation II

Generating test suites that satisfy pair coverage has one
drawback: many combinations of, e.g., basic blocks are in-
feasible. Although this information can be quite useful for
the Timing Composition phase of MBTA, it prevents us from
generating many test vectors efficiently. Proving infeasibility
by a model checker is usually more computationally expensive
than finding a test vector for a feasible property. Consequently,
FShell spends most of its time proving infeasibility (yielding
no test vectors) when generating a test suite that satisfies pair
coverage.

Now, the idea is to generate a test suite that satisfies B ∪
C ∪D for which most of the test goals FShell has to process
are feasible. This implies that the number of generated test

vectors per execution unit of FShell is high. With the objective
to maximize the amount of test vectors, BPG II generates 30
different test suites (FShell offers an option to yield mutually
different test suites for an FQL expression), each satisfying
B ∪ C ∪D. Finally, the union of all 30 test suites forms the
result (our experiments revealed that 30 is an effective number
for the kind of benchmarks we investigated).

The experiments illustrate that Balanced Path Generation II
provides the best results in terms of Φ except for benchmark
bsort where random input data generation remains unbeaten.
The seemingly large expectation value of 62709 nanoseconds
for Φ in benchmark engine_control is still admissable
as the program is the largest in our experiment with 398 δ-
CFG vertices. The average observed underestimation per node
is therefore only 62709

398×1000 = 0.16 microseconds.

VI. SUMMARY, CONCLUSION AND FUTURE WORK

We illustrated the dilemma of investigating the safety of
measurement-based timing analysis (MBTA) without spending
the arduous effort for studying and modeling the system
hardware.

Using a relative safety metric and a set of representative
benchmarks, we have shown empirically for the TriCore 1796,
a commonly used microprocessor in the automotive domain,
that structural code-coverage criteria from the domain of
functional testing like basic-block coverage, condition cover-
age, decision coverage, or modified decision-decision coverage
(MC/DC) are not suited for measurement-based timing anal-
ysis if safety of WCET estimates is of uttermost concern.

Further we examined coverage criteria that require all fea-
sible pairs of program entities to be exercised in combination.
They are shown to be superior to code-coverage criteria from
the domain of functional testing but our experimental setup
also reveals that there is still a chance that unsafe WCET
estimates are derived.

Finally, we introduced Balanced Path Generation I and
II and showed by experiments that both perform better in
terms of relative safety than all other coverage criteria under
investigation.

However, the experiments also demonstrated that by using
Balanced Path Generation there is still a chance that local
WCET estimations are unsafe. Its improvement is therefore
subject to further research. One idea is to combine model
checking with heuristic search methods like genetic algo-
rithms.

Another open issue is that we still lack a coverage metric
for MBTA. We think that because such a coverage metric
is very hard (if not impossible) to derive without using a
sophisticated hardware model, it might be more productive
to define a convergence criterion for input data generation
techniques. The definition, motivation and evaluation of such
a criterion is also part of future work.
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