
Sequential Learning with LS-SVM for

Large-Scale Data Sets

Tobias Jung1 and Daniel Polani2

1 Dept. of Computer Science, Univ. of Mainz, 55099 Mainz, Germany
2 Dept. of Computer Science,...

Abstract. We present a subspace-based variant of LS-SVMs (i.e. reg-
ularization networks) that sequentially processes the data and is hence
especially suited for online learning tasks. The algorithm works by se-
lecting from the data set a small subset of basis functions that is sub-
sequently used to approximate the full kernel on arbitrary points. This
subset is identified online from the data stream. We improve upon ex-
isting approaches (esp. the kernel recursive least squares algorithm) by
proposing a new, supervised criterion for the selection of the relevant
basis functions that takes into account the approximation error incurred
from approximating the kernel as well as the reduction of the cost in the
original learning task. We use the large-scale data set ’forest’ to compare
performance and efficiency of our algorithm with greedy batch selection
of the basis functions via orthogonal least squares. Using the same num-
ber of basis functions we achieve comparable error rates at much lower
costs (CPU-time and memory wise).

1 Introduction and Related Work

Introduction. In this paper we adress the problem of sequential learning when
the predictor has the form of least squares SVM (LS-SVM). Since there is no way
we can achieve this using one independent parameter for each training example,
we use a projection-based technique that only considers a small subset of all
possible basis functions. This subset is selected online from the training data by
just inspecting the most recent example. Our resulting algorithm is conceptually
similar to the kernel recursive least squares (KRLS) algorithm proposed in [4],
yet improves it in two important ways: one is that we consider a supervised
criterion for the selection of the relevant basis functions that takes into account
the error incurred from approximating the kernel as well as the reduction of the
cost in the original learning task. Since the per-step complexity only depends
on the size of the subset, making sure that no unnecessary basis functions are
selected ensures more efficient usage of otherwise scarce resources. And second,
by considering a pruning operation we can also delete basis functions from the
subset to have an even tighter control over its size. Overall the algorithm is very
resource efficient, and only depends on the number of examples stored in the
subset.



Related work. The unfavorable O(n3) scaling of kernel-based learning has
spawned a number of approaches where the exact solution is approximated by a
solution with lower complexity. Well known examples are the Nyström method
[13] or the subset of regressors method (SR), mentioned e.g. in [7, 12, 10]. Both
methods work by projecting the kernel onto a much smaller subset of kernels
chosen from the full data, say of size m � n, and reduce computational com-
plexity to O(nm2). To select the subset we can categorize the various approaches
as being unsupervised and supervised. Unsupervised approaches like random se-
lection [13] or the incomplete Cholesky decomposition [5] do not use information
about the task we want to solve, i.e. the response variable we wish to regress
upon. Random selection does not use any information at all whereas IC aims
at reducing the error from approximating the kernel matrix. Supervised choice
of the subset does take into account the response variable and usually proceeds
by greedy forward selection, using e.g. matching pursuit techniques [11] or the
recent Cholesky decomposition with side information [1]. However, none of these
approaches are directly applicable for sequential learning, since they all use in-
formation from the complete data set. Working in the context of GPR, [2] and
also [4] have proposed an online variant, which adds examples directly from the
data stream and is the basis of our work presented here.

2 Background

Traditional setup. Given t examples {(xi, yi)}
t
i=1 with xi ∈ X ⊂ R

d being the
inputs and yi ∈ Y ⊂ R being the outputs, the goal is to reconstruct (learn) the
underlying function. Consider as the space of candidate functions the reproduc-
ing kernel Hilbert space (RKHS) Hk of functions f : X → Y endowed with repro-
ducing kernel k, where k : X ×X → Y is a symmetric, positive definite function
(e.g. think of Gaussian RBF). The underlying function can be reconstructed solv-

ing the Tikhonov functional: minf∈Hk
J [f ] =

∑t

i=1

(

yi − f(xi)
)2

+ γ ‖f‖2
Hk

with
γ > 0 being the regularization parameter. The Representer theorem tells us
that any solution to this variational problem has a representation in the form
f(·) =

∑t

i=1 βik(xi, ·) i.e. as a sum of kernels centered on the data. Plugging this
back into the original variational problem leads to the optimization problem

min
β∈Rt

‖y −Kβ‖
2

+ γβT Kβ (1)

with y being the t × 1 vector of observations, K being the dense t × t kernel
matrix [K]ij = k(xi,xj) of pairwise similarities and β being a t×1 vector. From
(1) the coefficients β can be obtained by solving

(

KT K + γK
)

β = KT y (2)

which gives the solution as β = (K + γI)−1y due to K being symmetric and
positive definite. Solving (2) is generally a matter of O(t3) operations. The over-
bearing computational burden stems from the fact that every training example
will contribute one parameter to the resulting model.



The subset of regressors method. Consider a subset {x̃i}
m
i=1, m � t, of data

points selected from the full set {xi}
t
i=1, without loss of generality assume that

these are the first m examples. We approximate the kernel on arbitrary points
through linear combination of kernels from the subset (termed the dictionary or
set of basis vectors BV in [2] which we adopt for the remainder of this paper) in
the following way: k(x, ·) ≈

∑m

i=1 aik(x̃i, ·). The m× 1 vector a = (a1, . . . , am)T

is determined such that the distance in Hk

δ = min
a

∥

∥

∥

∥

∥

k(x, ·) −

m
∑

i=1

aik(x̃i, ·)

∥

∥

∥

∥

∥

2

Hk

(3)

is minimized. The solution to this problem follows as

a = K−1
mmkm(x) (4)

where the m × m matrix Kmm is the kernel matrix corresponding to the dic-
tionary (i.e. the upper left m × m submatrix of K) and m × 1 vector km(x) is
shorthand for vector km(x) = (k(x̃1,x), . . . , k(x̃m,x))T . For arbitrary x,x′ we
thus have the approximation

k(x,x′) ≈ [km(x)]T K−1
mmkm(x′). (5)

If either x or x′ are in BV then (5) is exact. Replacing the true kernel by (5) gives
KT

tmK−1
mmKtm ≈ K as an approximation to the true kernel matrix K, where Ktm

is the t×m submatrix of the first m columns of K (again, corresponding to the
BV). Defining the t × m matrix A with rows aT

i = K−1
mmkm(xi), i = 1, . . . , t

from (4) we can write
Ktm = AKmm. (6)

In the SR-method [7, 11, 10] instead of using the full representation we only use
the kernels in BV, i.e. f(·) =

∑m

i=1 βik(x̃i, ·), and obtain in place of (1) the
penalized least squares problem

min
β∈Rm

‖y −Ktmβ‖2 + γβT Kmmβ (7)

which has the solution β =
(

KT
tmKtm + γKmm

)−1
KT

tmy. Despite its cursory
similarity with (2) we have gained much since now we are only dealing with m
parameters and computational complexity is down to O(tm2).

Csató and Opper’s sparse greedy online approximation. Still, the SR-
method is not directly applicable for online learning. Assume that the data
arrives sequentially at t = 1, 2, . . . and that only one pass over the data set is
possible, so that we cannot select the subset BV in advance. Working in the con-
text of GPR, [2] and later [4] have proposed sparse greedy online approximation:
start from an empty set BV and examine at every time step t, if the current ex-
ample needs to be included in BV or if it can be processed without augmenting



BV. The approximation in (5) is modified such that it uses the most recent ver-
sion of BV and sets to zero those entries from a that correspond to basis vectors
added in future time steps. Thus the matrix used in (7) no longer equals the
submatrix Ktm from (6), since now K̃tm =def AKmm is only an approximation.

The one crucial advantage of this approach is that now we can use (penal-
ized) least squares methods as in (7) together with online growing and pruning
operations for sequential learning by using only the examples memorized in the
set BV. (Otherwise, to augment or prune an existing model we would need to
work with all previously seen data or resort to a window of the last M ones.)

3 Time-recursive LS-SVM

In this section we present the main contribution of our work: online LS-SVM
using sparse online approximation and a novel criterion for the selection of rel-
evant basis functions to include in the subset. The algorithm works along the
lines of recursive least squares, i.e. propagates forward the inverse of the cross
product matrix.

Let t be the current time step, (xt+1, y
∗) the currently observed input-

output pair and assume that from the past t examples {(xi, yi)}
t
i=1 the m exam-

ples {x̃i}
m
i=1 were selected into the dictionary BV. Consider the penalized least

squares problem that is LS-SVM (restated here from (7) for clarity)

min
β∈Rm

Jtm(β) =
∥

∥

∥
yt − K̃tmβ

∥

∥

∥

2

+ γβT Kmmβ (8)

with K̃tm = AtmKmm being the (approximated) t × m design matrix from (6)
and yt being the t × 1 vector of the observed output values. Note that we are
using a double index to indicate the dependence on the number of examples t
and the number of basis functions m. If we define the m×m cross product matrix
Ptm = (K̃T

tmK̃tm+γKmm) then the solution to (8) is given by βtm = P−1
tmK̃tmyt.

Finally we introduce the costs ξtm = Jtm(βtm). Assuming that {P−1
tm, βtm, ξtm}

are known from previous computations, every time a new example (xt+1, y
∗) is

presented we will perform one or more of the following update operations:

1. Normal step: Process (xt+1, y
∗) in the usual way using the fixed set of basis

functions BV.
2. Growing step: If the new example is sufficiently different from the previous

examples in BV (i.e. the reconstruction error in (3) exceeds a given threshold)
and strongly contributes to the solution of the problem (i.e. the decrease of
the loss when adding the new basis function is greater than a given threshold)
then the current example is added to BV and the number of basis functions
in the model is increased by one.

3. Pruning step: If the current size of the BV set exceeds the allowed maximum
number of BVs specified prior to starting the algorithm, remove from BV the
basis function that contributes the least to the reduction of the cost function.



Integral to these updates are two well-known matrix identities for recursively
computing the inverse of a matrix: (for suitable matrices)

if Bt+1 = Bt + bbT then B−1
t+1 = B−1

t −
B−1

t bbT B−1
t

1 + bT B−1
t b

(9)

which is used when adding a row to the design matrix. Likewise,

if Bt+1 =

[

Bt b

bT b∗

]

then B−1
t+1 =

[

B−1
t 0

0 0

]

+
1

∆b

[

−B−1
t b

1

] [

−B−1
t b

1

]T

(10)

with ∆b = b∗ − bT B−1
t b. This second update is used when adding a column to

the design matrix.

3.1 Normal step: from {P
−1
tm, βtm, ξtm} to {P

−1

t+1,m, βt+1,m, ξt+1,m}

Let kt+1 be kt+1 = (k(xt+1, x̃1), . . . , k(xt+1, x̃m))T , then

K̃t+1,m =

[

K̃tm

kT
t+1

]

and yt+1 =

[

yt

y∗

]

.

Thus Pt+1,m = Ptm + kt+1k
T
t+1 and we obtain from (9) the well-known RLS

updates

P−1
t+1,m = P−1

tm −
P−1

tmkt+1k
T
t+1P

−1
tm

∆
, βt+1,m = βtm +

%

∆
P−1

tmkt+1

ξt+1,m = ξtm +
%2

∆
(11)

with scalars ∆ = 1 + kT
t+1P

−1
tmkt+1 and % = y∗ − kT

t+1βtm. The set BV is not
altered during this step. Operation count is O(m2).

3.2 Growing step: from {P
−1
tm, βtm, ξtm} to {P

−1

t,m+1, βt,m+1, ξt,m+1}

How to add a BV. When adding an additional basis function (centered on
xt+1) to the model we augment the set BV with x̃m+1 (note that x̃m+1 is the
same as xt+1 from above). Again, define kt+1 = (k(x̃m+1, x̃1), . . . , k(x̃m+1, x̃m))T

and k∗ = k(x̃m+1, x̃m+1). Adding a basis function means appending a new t× 1
vector q to the design matrix and appending kt+1 as row/column to the penalty
matrix Kmm, thus

Pt,m+1 =
[

K̃tm q
]T [

K̃tm q
]

+ γ

[

Kmm kt+1

kT
t+1 k∗

]

.

Invoking (10) we obtain the updated inverse P−1
t,m+1 via

P−1
t,m+1 =

[

P−1
tm 0

0 0

]

+
1

∆b

[

−wb

1

] [

−wb

1

]T

(12)



where simple but tedious vector algebra reveals that

wb = P−1
tm(K̃T

tmq + γkt+1)

∆b = qT q + γk∗ − (K̃T
tmq + γkt+1)

T wb. (13)

Without sparse online approximation this step requires us to recall all past
examples {xi}

t
i=1 since q is given by qT = (k(x̃m+1,x1), . . . , k(x̃m+1,xt))

T and
just obtaining (13) would come at the undesirable price of O(tm). However, we
are going to get away with merely O(m) operations and only need to memorize
examples in BV. Due to the sparse approximation q is actually of the form
qT =

[

K̃t−1,mat+1 k∗
]

with at+1 = K−1
mmkt+1 from (4). Hence new information

is injected only through the last component. Exploiting this special structure of
q equation (13) becomes

wb = at+1 +
δ

∆
P−1

t−1,mkt+1

∆b = (k∗)2 + δ(2δ − 2k∗ + γ) − δ2kT
t+1P

−1
t−1,mkt+1 −wT

b kt+1k
T
t+1wb (14)

where δ = k∗ − kT
t+1at+1 from (3). If we cache and reuse those terms already

computed in the preceding step (see Sect. 3.1) then we can obtain wb, ∆b in
O(m) operations.

To obtain the updated coefficients βt,m+1 we first multiply (12) from the

right side by K̃T
t,m+1yt =

[

K̃T
tmyt qT yt

]T
and get

βt,m+1 =

[

βtm

0

]

+ κ

[

−wb

1

]

(15)

where scalar κ is defined by κ = yT
t (q− K̃tmwb)/∆b. Again we can now exploit

the special structure of q to show that κ is equal to

κ =
−δkT

t+1βt−1,m

(1 + kT
t+1P

−1
t−1,mkt+1)∆b

+
(k∗ − kT

t+1wb)y
∗

∆b

.

And again we can reuse terms computed in the previous step (see Sect. 3.1).
Skipping the necessary computations, we can show that the reduced (regu-

larized) cost ξt,m+1 is recursively obtained from ξtm via the expression:

ξt,m+1 = ξtm − κ2∆b. (16)

Finally, every time we add an example to the BV set we must also update the
inverse kernel matrix K−1

mm needed during the computation of at+1 and δ. This
can be done using the formula for partitioned matrix inverses (10).

When to add a BV. To decide whether or not the current example xt+1 should
be added to the BV set, we employ a two-part criterion, similar to the one used
in resource-allocating networks [8]. The first part measures the ’novelty’ of the



current example: only examples that are ’far’ from those already stored in the BV
set are considered for inclusion. To this end we compute as in [2, 4] the squared
norm of the residual from projecting (in RKHS) the example onto the span of the
current BV set, i.e. we compute (restated here from (3),(4)) at+1 = K−1

mmkt+1

and δ = k∗ − kT
t+1at+1. If δ < TOL1 then xt+1 is well represented by the given

BV set and its inclusion would not contribute much to reduce the error from
approximating the kernel by the reduced set. On the other hand, if δ > TOL1

then xt+1 is not well represented by the current BV set and leaving it behind
could incur a large error in the approximation of the kernel.

However, using as sole criterion the reduction of the error incurred from
approximating the kernel is probably too wasteful of resources, since examples
could get selected into the subset that are unrelated to the original task [1]. We
want to be more restrictive, particularly because the computational complexity
per step scales with the square of basis functions in BV (so that the size of BV will
soon become the limiting factor). Aside from novelty we thus consider as second
part of the selection criterion the ’usefulness’ of a basis function candidate.
Usefulness is taken to be its contribution to the reduction of the regularized
costs, i.e. the term κ2∆b from (16). Both parts together are combined into one
rule: only if δ ·κ2 ·∆b > TOL2 then the current example will become a new basis
function and will be added to BV.

3.3 Pruning step: from {P
−1
tm, βtm, ξtm} to {P

−1

t,m\i
, βt,m\i, ξt,m\i}

How to delete a BV. First consider the case when we are trying to delete the
last one. Take as starting point eqs. (12),(15),(16) and switch the role of old and
new: eq. (12) becomes

[

P−1
t,m−1 0

0 0

]

= P−1
tm −

1

∆b

[

wb

−1

] [

wb

−1

]T

.

Both ∆b and wb can be obtained directly from P−1
tm: defining the (m − 1) × 1

vector u by P−1
tm(1 : m−1, m) (i.e. the first m−1 rows of the m-th column) and

scalar u∗ by P−1
tm(m, m) (i.e. the m-th diagonal element) we find ∆b = 1/u∗ and

wb = u/u∗. Hence
[

P−1
t,m−1 0

0 0

]

= P−1
tm −

1

u∗

[

u

−1

] [

u

−1

]T

(17)

where the left side is truncated to yield the (m − 1) × (m − 1) matrix P−1
t,m−1.

Likewise, to obtain βt,m−1 from βtm we turn around update (15)
[

βt,m−1

0

]

= βtm − κ

[

−wb

1

]

.

Again, we can see from update (15) that κ actually is the last component of
βtm. So, defining b∗ = βtm(m) we get

[

βt,m−1

0

]

= βtm +
b∗

u∗

[

u

−1

]

(18)



where the left side is truncated to yield the (m − 1) × 1 vector βt,m−1.

Finally, to obtain ξt,m−1 from ξtm we turn around update (16) to yield

ξt,m−1 = ξtm + (b∗)2/u∗. (19)

If we need to delete an arbitrary basis function i ∈ {1, . . . , m} instead of
just the m-th one, we exploit the fact that reordering the indices of the basis
function within the set BV is equivalent to reordering the columns/rows of P−1

tm.
So, to delete basis function i we just swap column/row i and m in all necessary
places (i.e. in P−1

tm, βtm,Kmm and BV). Afterwards we apply (17),(18),(19) as
described above. Overall, deleting a basis function requires O(m2) operations.

When to delete a BV. To identify from the BV set the basis function best
suited for removal we consider their contribution to the cost function. Compute
as in (19) the score

εi =
βtm(i)2

P−1
tm(i, i)

i = 1, . . . , m

for every basis function in BV and delete the one with the lowest score. The
computation of this criterion is very cheap and requires only O(m) operations.

4 Experiments

Comparing subset selection criteria. First, we compare our supervised ap-
proach with the unsupervised method used in the related KRLS algorithm [4].
As third competitor we consider greedy forward selection via orthogonal least
squares (OLS). All three methods use the same dictionary of basis function can-
didates (built from RBF-kernels centered on the training data) to choose the
subset from; note though that OLS is a batch method, whereas our method and
KRLS process the data sequentially. We chose three well-known problems: the
artifical sinc data set (noise σ = 0.2), and the small scale benchmarks boston

(train 400, test 106) and abalone (train 3000, test 1177) from the UCI reposi-
tory [3]. The data was scaled to have zero mean and unit variance. Parameters
governing subset selection were TOL1=10−2 and TOL2=10−4; for OLS we used
the GCV as stopping criterion. The remaining parameters were set as in [6].
Since our method and KRLS depend on the ordering of the data we used 100
different permutations of every training set. Table 1 shows the resulting predic-
tion error (MSE) along with the size of the subset. Our method shows a similar
performance as KRLS but uses fewer (sometimes far fewer) basis functions.

Large-scale real-world benchmark. Though our method is particularly tai-
lored to online learning we show that it is also useful when dealing with large-
scale data sets. To this end we chose the biggest data set available from UCI, the



data set forest. 1 Before we started training we set aside 81.012 randomly chosen
examples to serve as independent test set. All of the remaining 500.000 examples
were used to train. Since this is a rather large number (for OLS), we also consid-
ered smaller training sets of size 10.000, 50.000 and 200.000. In case of OLS we
used the ’rule of the 59’ [11] heuristic to restrict the search among all remaining
candidates to a subset of 59 randomly drawn ones (termed OLS-59). For our
approach we set σ = 1/d (with d = 54 the input dimensionality), γ = t · 10−5

(with t being the number of training examples), TOL1 = 10−2 and TOL2 = 10−4.
The generalization performance and also the CPU time will of course largely
depend on the number of basis functions in the model. Hence we examine dif-
ferent models using an increasing number of maximum basis functions. To rule
out the influence of randomness each single experiment was repeated 10 times.
Table 2 and Fig. 1 show the achieved classification error (given as percentage
of misclassified examples) on the independent test set along with the amount of
variation over the different trials (given in parentheses as one standard devia-
tion). Using the same number of basis functions, we could achieve a classification
performance that is comparable with OLS (only slightly worse). However, our
approach being an online method needs far less resources (both CPU-time and
memory) to achieve this result (see Fig. 1): the time needed for training is faster
at nearly an order of magnitude, while the memory consumption is only O(m2)
as opposed to O(tm) when using OLS. In both cases our results are in line with
the error rates achieved in the comparable experiments from [9].

Table 1. Comparing subset selection variants in three benchmark data sets.

Data set OLS+GCV(subset) KRLS (subset) Our (subset)

Sinc 5.6e-4(10) 9.1e-4±1.5e-4 (14.36) 7.5e-4±3.1e-4 (11.06)
Boston 0.88 (44) 0.65±0.039 (220.65) 0.63±0.2 (59.24)

Abalone 0.35 (62) 0.35±0.014 (124.3) 0.37±0.05 (31.54)

Table 2. Classification error for different sizes of the subset (given in parentheses).

Data set OLS-59(100) Our(100) OLS-59(300) Our(300) OLS-59(500) Our(500)

Forest-10k 22.80±0.18 24.61±2.31 21.26±0.23 22.33±0.51 20.35±0.11 21.77±0.34
Forest-50k 22.63±0.11 23.99±1.96 20.58±0.15 21.93±0.36 19.63±0.12 21.24±0.42
Forest-200k — 24.49±1.64 — 21.83±0.36 — 21.19±0.30
Forest-500k — 23.80±0.64 — 21.77±0.39 — 21.17±0.32

1 Forest is a multi-class classification problem with 581.012 examples and 7 classes. As
in [9] we transformed the problem into a two-class classification task: classify class 2
against the rest, which makes the resulting partitions of roughly the same size. Forest

contains continuous as well as categorical attributes; the latter were transformed via
a binary encoding so that the input dimensionality of the problem became d = 54.
The inputs of the data were scaled to have zero mean and unit variance.



0 100 200 300 400 500
20

25

30

35

40

Number of basis functions

C
la

ss
ifi

ca
tio

n 
er

ro
r 

%

 

 
Orthogonal Least−Squares 59
Our approach

Forest 10k

0 100 200 300 400 500

20

25

30

35

Number of basis functions

C
la

ss
ifi

ca
tio

n 
er

ro
r 

%

 

 
Orthogonal Least−Squares 59
Our approach

Forest 50k

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

Number of basis functions

C
P

U
 T

im
e 

(s
ec

)

 

 

Our approach
(Forest−10k)

Our approach
(Forest−50k)

OLS−59
(Forest−10k)

OLS−59 (Forest−50k)

Fig. 1. Comparing our method with OLS

5 Conclusion

We presented a subspace based variant of least squares SVM especially geared
to online learning. It uses a novel criterion to select a subset of relevant basis
functions from the full data set. Experiments indicate that our method improves
upon the related KRLS algorithm by choosing a smaller subset and that it
can even compete with powerful greedy forward selection; an alternative only
amenable to offline learning and at considerably higher computational costs.

References

1. F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel meth-
ods. In Proc. of ICML 22, 2005.

2. L. Csató and M. Opper. Sparse representation for Gaussian process models. In
NIPS 13, 2001.

3. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine
learning databases, 1998.

4. Y. Engel, S. Mannor, and R. Meir. The kernel recursive least squares algorithm.
IEEE Trans. on Signal Processing, 52(8):2275–2285, 2004.

5. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tation. JMLR, 2:243–264, 2001.

6. Hoegaerts L., Suykens J.A.K., Vandewalle J., and De Moor B. Subset based least
squares subspace regression in RKHS. Neurocomputing, 63:293–323, 2005.

7. Z. Luo and G. Wahba. Hybrid adaptive splines. J. Amer. Statist. Assoc., 92:107–
114, 1997.

8. J. Platt. A resource-allocating network for function interpolation. Neural Compu-

tation, 3:213–225, 1991.
9. V. Popovici, S. Bengio, and J.-P. Thiran. Kernel matching pursuit for large

datasets. Pattern Recognition, 38(12):2385–2390, 2005.
10. J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate

Gaussian process regression. JMLR, 6:1935–1959, 2005.
11. A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In

NIPS 13, 2001.
12. A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine

learning. In Proc. of ICML 17, 2000.
13. C. Williams and M. Seeger. Using the nyström method to speed up kernel machines.

In NIPS 13, 2001.


