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Abstract 

 

A series of studies were conducted with the aim of showing that the Representational 

Redescription (RR) model (Karmiloff-Smith, 1992) can be used a general model of 

cognitive development. In this thesis, 3 aspects of the RR model were explored.  

 

The first set of experiments involved analysing the generalisability of RR levels across 

tasks in a domain. In an initial study, the levels of the RR model were successfully 

applied to a balance scale task. Then, in a subsequent study, children’s RR levels on the 

balance scale task were compared with their RR levels on a balance beam task (see Pine 

et al, 1999). Children were seen to access the same level of verbal knowledge across both 

tasks. This suggests that it is verbal knowledge which provides the basis for 

generalisation of knowledge. The second set of experiments involved a consideration of 

the RR model in relation to the domain of numeracy. The levels of the RR model were 

applied to children’s developing representations for the one-to-one and cardinality 

principles. The RR levels were shown to have utility in predicting children’s openness to 

different types of “procedurally based” and “conceptually based” teaching interventions, 

with pre-implicit children benefiting from procedural interventions, and children who 

have implicit and more advanced representational levels benefiting from conceptual 

interventions. The final study involved a microgenetic analysis of children’s 

representational levels on the balance beam task. The findings from this study indicated 

the importance of a period of stability prior to a cognitive advance, and demonstrated that 

cognitive advances can be driven by changes in the verbal explanations that are offered, 

rather than changes in successful performance. This provides support for the mechanism 

of change proposed by Karmiloff-Smith, 1992. 

 

Together, the findings indicate that the RR model provides a useful perspective about the 

cognitive development of children. In particular, the thesis highlights when children can 

use the same representations for different tasks in a domain and suggests the mechanism 

that brings about representational change.   
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Chapter 1: Literature review 

 

 

The object of cognitive developmental psychology 

 

“We shall not cease from exploration 

And the end of all our exploring 

Will be to arrive where we started 

And know the place for the first time” (T.S. Eliot) 

 

Psychology can be thought of as an attempt to explore and describe the human mind.  

Like poetry, psychology often depends on metaphors. The above quote from T.S. Eliot 

for example can be thought of as capturing the course of development as described by the 

Representational Redescription model (Karmiloff-Smith, 1992) which will be described 

at length in this thesis. The human mind as being like a computer processor is currently a 

predominant metaphor, both in psychology in general, and in developmental psychology. 

It provides a blueprint for how we think about the mind, by providing use with a set of 

structures and computational processes which may be able to describe how humans think.  

 

Moving on from metaphors, there is a desire in psychology to present fully described 

theories or models which depict the mind in greater detail – to elucidate and build upon 

the metaphor. In developmental psychology, Piaget’s cognitive developmental model has 

been hugely influential in defining the developing mind. Piaget described the child 

developing through a series of developmental stages, which proceed from early sensory-

based stages, to later stages where children can begin to engage in formal-logical thought 

(Flavell, 1963). Within this model, the stage of development is a crucial aspect of the 

theory – for example, the earliest stage involves “sensorimotor” thought. During this 

stage children respond to objects in their environment, In Piaget’s model, cognitive 

development eventually results in “formal logical” thinking, whereby adolescents can 

internalise objects, and reason independently of the environment in a logical manner.  
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The importance of general theories such as Piaget’s is that they allow for a 

comprehensive overview of developmental psychology, highlighting important 

developmental phenomena, describing the course of development, and the impetus for 

this development. It is in the context of Piagetian theory for example that the 

conservation task (Piaget 1952, Greco, 1962) gains its importance. Conservation in itself 

is a relatively small phenomenon, where children think that a longer row of objects 

contains more objects than a shorter, more densely packed row of objects. This 

demonstrates “pre-operational thinking”, as children do not appreciate that the numeric 

value of the set does not change when it is more widely spaced out. Within Piagetian 

theory, this simple task takes on significance, and can be compared to similar findings in 

other areas (e.g. tasks on conservation of number, and volume) of pre-operational 

thinking. The general model provides a context in which to recognise similarities in the 

process of development across different domains. General models can also be used to 

provide general implications for teaching and learning – they can for example be used to 

provide a basis for designing school curricula. 

 

Piaget’s theory has been much criticized over the last 30 years (Donaldson, 1976, Siegler, 

1996, Karmiloff-Smith, 1992). Critiques have ranged from problems with tasks which 

underestimate children’s competence on tasks (e.g. Donaldson, 1976), a lack of emphasis 

on social aspects of development (e.g. the Vygotskian perspective), through to specific 

problems with aspects of stage theory (Karmiloff-Smith, 1992, Siegler, 1996). One of the 

biggest problems with the Piagetian model is that it is largely descriptive, rather then 

explanatory. The stages of thinking are described in great detail across a number of 

domains (e.g. Piaget 1928,1932,1958, 1960, 1974, 1976), but the process of how this 

change occurs through a process of “accommodation, assimilation and equilibration” is 

underdescribed.  These criticisms leave a gap, a need for a modern developmental model 

which can add to Piaget’s in providing key insights into children’s developing mind. In 

the absence of a general model, there is the possibility of fragmentation occurring in 

cognitive developmental topic, as findings from one domain (for example on theory of 

mind; see Wellman, 2002), which is a much-studied current topic – general implications 

cannot be derived from studies on theory of mind in the absence of a general framework 
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which described children’s general mental processes.  That is to say, in the absence of a 

general framework, it is impossible to draw any general conclusions about children’s 

thinking in relation to the theory of mind, but only to say how children think specifically 

regarding the theory of mind.  

 

In this literature review, some of the critiques of Piaget will be highlighted, and a more 

recent general model, Karmiloff-Smith’s (1992) Representational Redescription (RR) 

model will be described, and its unique features highlighted. This literature review will 

include the following sections: 

 

1. A description of the RR model 

 

2. A contrast between the RR model and Piaget’s developmental model, to highlight 

unique aspects of the RR model 

 

3. Reaction to the RR model, and recent research involving the RR model, to highlight 

questions arising from the experimental literature 

 

4. A description of contemporary cognitive models, and comparison of the RR model 

with another contemporary model, the Overlapping Waves model, and a description of 

modern research using the Microgenetic Method, arising from this model. 

 

5. The research questions arising for the RR model for this PhD 

 

6. A description of the issues for the specific domains (e.g. the domains of balance and 

numeracy) investigated in this PhD 

   

 

The key underlying aim is to show that the RR model can provide unique insights into the 

developing mind – that it has validity as a general model of cognitive development, as it 

addresses key developmental issues, both generally (e.g. by addressing general 
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developmental issues such as generalisability of knowledge and the process of change), 

and in relation to specific domains (e.g. by increasing our understanding of the 

development of knowledge in specific domains, such as children’s developing 

understanding of number).  

 

1. The Representational Redescription Model 

 

The RR model describes the development of representations, along an implicit-explicit 

continuum. The representation acts as the unit of analysis, with children being assigned 

representational levels, as will be seen, on the basis of their ability to perform tasks. 

Initial implicit representations involve knowledge encoded in a procedural format (i.e. an 

ability to perform a task), but are eventually redescribed into more explicit formats. 

Children’s final representations within this model involve having verbally accessible 

knowledge. Karmiloff-Smith (1992) describes a series of representational levels which 

children pass through, to emphasise that change along the “implicit-explicit” continuum 

occurs gradually. These representational levels capture the form and content of children’s 

thinking in relation to their performance on a domain-related task. Karmiloff-Smith 

(1992) initially describes 3 recurrent phases that occur within the RR model. The first 

phase focuses on information from the external environment, to create what Karmiloff-

Smith terms “representational adjunctions” which lead to Behavioural Mastery for tasks 

within a domain. The second phase is internally driven, during which “system-internal 

dynamics take over such that internal representations become the focus of change” 

(Karmiloff-Smith, 1992, page 19). This internally-focused phase can lead to downturns in 

performance; it is important to note however that this “downturn” is simply at the level of 

performance on a task, but not in representational level or children’s level of knowledge 

within a domain. The final phase involves a reconciliation of internal representations and 

external data, as children achieve a complete representation in which children can 

perform a task successfully and have explicit verbal knowledge for the concept 

underlying the task. 
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These 3 phases are linked to “at least 4 levels at which knowledge is represented and re-

represented” ((Karmiloff-Smith, 1992, page 20). Karmiloff-Smith talks of implicit level, 

and 3 explicit levels, which reflect children’s verbal access to knowledge. The implicit 

level maps on quite well to the first phase described by Karmiloff-Smith, with 

“representational adjunctions” which are “Implicit”, or procedurally based only. The rest 

of the development is taken up with redescribing representations into increasingly 

explicit knowledge; though Karmiloff-Smith states that explicit verbal knowledge is not 

achieved until E3, the final phase.   In her 1992 work, Beyond Modularity, Karmiloff-

Smith described how this process may apply in the domains of language, physics, 

mathematics, psychology, and notation. It is important to note however that Karmiloff-

Smith’s (1992) interpretation of experimental findings were usually applied to her model 

in a post-hoc manner. 

 

1.1. Applying the levels of the R-R model to a balance beam task  

 

An example will now be given to describe the path of development for children’s 

representations according to the RR model. Pine et al (e.g. 1999, 2001, 2003) applied the 

levels of the R-R model to a balance beam task similar to that used by Karmiloff-Smith 

and Inhelder (1974).  Children were given a series of symmetrical and asymmetrical 

beams, with blocks of wood at either end of the beam, acting as weights. The children 

were asked to balance the beams along a fulcrum. Table 1.1 below shows the course of 

children’s development as described by the RR levels. It is very important to note at this 

point that the RR levels described in Table 1.1, and descriptions of the level hereafter 

refer to the research of Pine et al (1999, 2001, 2003) in applying the levels of the RR 

model to the tasks, as Karmiloff-Smith (1992) has done relatively little experimental 

work in which RR levels are applied to children for a domain based on their performance 

on a task and their ability to verbalise the concept underlying that task. On the balance 

beam task, children are initially able to balance both types of beams, but cannot explain 

why the beam balances (e.g. behavioural mastery, accompanied by implicit verbal 

explanations, indicating no verbal access to knowledge). This behavioural mastery is 

interpreted as an implicit representation of balance, which is initially purely procedural in 
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format. The next level in development is abstraction nonverbal, at which point children 

begin to focus on the most prominent variable; that of weight, and overgeneralise it. 

Because of this, children no longer balance asymmetrical beams. This gives rise to a U-

shaped curve (Strauss, 1982) in development in terms of behavioural success in relation 

to verbal access to knowledge. At this point, the child does not have explicit verbal 

access to this knowledge, but at the next level, Abstraction Verbal, they begin to provide 

explicit weight-based explanations for why the asymmetrical beams do not balance  

  

 The final level within the model is called E3. When children achieve this level for a 

domain, verbal knowledge (for the domain of balance, this would include knowledge of 

the role of distance as well as weight in knowing how objects balance) is accompanied by 

behavioural mastery once more. 

 

Table 1.1: Coding scheme for representational levels for the balance beam task 

Representational 

Level  

Expected Level of Performance Levels of verbal Knowledge 

expected 

Implicit Balances both symmetrical and 

asymmetrical beams 

No explicit explanations 

offered 

Abstraction 

Nonverbal  

Balances symmetrical but not 

asymmetrical beams 

No explicit explanations 

offered 

Abstraction 

Verbal 

Balances symmetrical beams, but 

not asymmetrical beams 

Explicit, weight based 

explanations offered 

E3 Balances both symmetrical and 

asymmetrical beams 

Explicit, weight and distance 

based explanations offered 

 

 

From this description of the model, both Karmiloff-Smith’s (1992) description, and the 

work carried out by Pine et al (1999) it is clear that the main impetus of the model is to 

describe children’s increasing verbal access to knowledge. This is one of the key unique 

features of the RR model, as will be seen when comparing it with other theoretical 

models.   
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2. Comparing the RR Model with Piaget’s theory 

 

The representational redescription (Karmiloff-Smith, 1992) model marks an attempt to 

move away from stage models in the light of criticisms of Piagetian theory. Three key 

departures of the RR model from Piagetian theory will be focused on, to highlight the 

significant and innovative features of the RR model, though it is important to note that 

certain aspects of Piagetian theory (such as the constructivist focus) are maintained. 

 The first departure from Piagetian theory is that the levels of the representational 

redescription model are domain specific, rather then domain general stages. The RR 

model envisions the same developmental processes occurring in all domains, but does not 

state that children should display the same levels simultaneously across all domains. The 

process of redescription is thought to be applicable to all domains, though it does not 

necessarily occur simultaneously across the domains.  

 

The RR model is not only based on aspects of Piaget’s model, but also reacts to Fodor’s 

views on Modularity. Fodor (1982) stated that the mind is composed of separate, and 

“domain specific” modules, which are “informationally encapsulated” – that is to say, 

information available to one particular module is not available to others. Karmiloff-Smith 

(1992) follows this path of reasoning, to a certain extent as the RR model states that 

children’s representational levels will differ from domain to domain, rather than maintain 

general stages of development as Piaget does. If a child is at a certain representational 

level for one domain; the domain of balance for example, it does not mean that children 

will be at the same level for all other domains. In this way, representational levels are 

clearly differentiated from Piagetian stages – levels refer to discrete domains, whereas 

Piagetian stages were thought to be universal, and apply across multiple domains at any 

one time. A domain is “the set of representations sustaining a specific area of 

knowledge” (Karmiloff-Smith, 1992, page 6). Domains such as language, physics and 

mathematics are given as examples by Karmiloff-Smith, and she also speaks of micro-

domains within these domains; counting for example would be a micro-domain within 

mathematics, and balance would be a micro-domain within physics. Domains as defined 

by Karmiloff-Smith (1992) differ greatly from Fodor’s (1982) modules, as they are not 
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thought to be informationally capsulated (e.g. the process of redescription renders the 

information in a domain more accessible to other operators).   

 

The second departure from Piagetian theory is that children’s representations develop 

gradually along an implicit-explicit continuum, rather than through the Piagetian stages 

which focus on developing logical thought. Representations therefore refer to children’s 

knowledge for a concept, which may be implicit, and “encoded in procedural form” 

(Karmiloff-Smith, 1992, p 20), or in some other format, with the end-point being an 

explicit and verbally accessible format. This compares with the Piagetian model which 

focuses on changing structures of thinking, from sensorimotor through to formal logical 

thinking.  

  

Conscious access to knowledge plays an important part in the development of 

representations. Nelson (1999) notes that Piaget “viewed language as a component of the 

representational function, but not as an important contributor to cognition per se” 

(p189). Within the RR model, verbal access to knowledge is an integral part of the 

developmental process. Indeed, there is some evidence that getting children and adults to 

provide self-explanations following tasks can produce better understanding of the 

concepts underlying those tasks (Chi et al, 1994) or bring about cognitive change 

(Siegler, 1995). Ability to verbalise concepts is therefore a central, potentially driving 

force for change within the RR model, rather then simply being a developmental 

outcome. 

 

The third difference between the RR model and Piagetian theory relates to how cognitive 

change occurs. Piagetian theory states that cognitive change arises through cognitive 

conflict – failure on a task brings about a series of processes of “accommodation”, 

“assimilation”, and “equilibration”. Karmiloff-Smith notes that Piagetian theory focuses 

solely on change being brought about “when the system is in a state of disequilibrium” 

(1992, page 25). Karmiloff-Smith on the other hand states the importance of stability in 

bringing about change; “it is representations that have reached a stable state that are 

redescribed” (1992, p 25). Furthermore, it is not necessarily failure on a task that brings 
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about redescription. Rather “positive feedback is essential to the onset of representational 

redescription” (Karmiloff-Smith, 1992, p 25). This positive feedback, thought to be based 

on a stable period of success, allows for the redescription of knowledge – using the 

example of the balance beam task, it is thought that a stable or consolidation period of 

sustained success is needed in order for the internal-phase to occur; a stable 

representation must exist, in order for it to be redescribed into more explicit formats. 

  

Representational redescription is thought to involve the redescription of knowledge 

which is initially procedurally based, into gradually more explicit and consciously 

accessible formats. Representational change is based on increasing conscious access to 

knowledge. Therefore, the RR model offers an alternative model for how cognitive 

change may occur, and states how stability may be necessary for change to occur, rather 

than negative feedback 

 

 

3. Reaction to the Representational Redescription model 

 

What response has the representational redescription model evoked? An article in the 

journal Behavioural and Brain Sciences (Karmiloff-Smith, 1994, 1997) brought about a 

series of commentaries from many major names (Bloom & Wynn, Campbell, Dartnall, 

Freeman, Goldin-Meadow and Alibali, Kuhn, Rutkowska, Smith, Zelazo). A number of 

the commentaries focus on the lack of detail in reference to the process of redescription, 

and in the model in general. Bloom and Wynn (1994) stated that “mental mechanisms 

capable of generating new concepts or structures simply do not exist” (p 708). Campbell 

(1994) focuses on the lack of a clear description of what representations are and how they 

get redescribed. Freeman (1994) similarly noted that assessing how representational 

change occurs is difficult “in the absence of an explicit account of representation”. Olson 

(1994) downplays redescription as a form of reanalysis of data, rather then “one of the 

human instincts for inventiveness” (Karmiloff-Smith, 1992, p 193). Scholnick (1994) 

notes a need for a “rich model of the early implicit and early explicit codes” and a need 
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“to specify the limits of cognitive transfer and conscious access to cognitive structure” (p 

728).  

 

There were a number of negative responses. Foster-Cohen (1994) questioned whether 

language could be thought of as a “module” in and of itself.  Zelazo (1994) also mentions 

the failure of the model to account for age-related domain general changes in reflection 

and the control of behaviour. There were also positive responses. Goldin-Meadow and 

Alibali (1994) make a positive contribution in light of their own research in noting that 

redescription can occur without mastery.  Similarly, Kuhn (1994) highlighted the 

importance of explicit knowledge as well as implicit processes. There was also a great 

deal of debate about what the RR model can contribute to cognitive science (Grush, 1994, 

Dartnall, 1994, Hampson, 1994, Rutkowska, 1994, Shultz, 1994).  

 

In summary, the main points arising from these commentaries were that aspects of the 

RR model were underdescribed, especially with regard to the process of change. What 

was lacking however amidst the welter of commentary, praise and questioning, was a 

drive to apply and work with the model on a practical level. There is also a need to 

validate the model as a general model by attempting to address the concerns raised in 

these commentaries. 

 

3.1 Additions to the RR model following experimental research 

 

Pine et al. (e.g. 1999, 2001, and 2003) have provided empirical support for part of the RR 

model, by replicating and building on the work of Karmiloff-Smith with reference to the 

concept of balance (Karmiloff-Smith and Inhelder, 1974). Their research has provided 

cross-sectional evidence for the representational levels at different ages as well as quasi-

longitudinal (Pine and Messer’s 2003 study which tested children’s representational 

levels on the balance beam task across 5 days) evidence of children’s movement through 

these levels in the order laid out in Table 1.1 above. By studying the performance of large 

groups of children modifications have been suggested to the details about the levels of 

representation. First, Pine et al (2003) introduced “transitional” representational levels 
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which are thought to capture gradual change from representational level to 

representational level. They introduced an implicit transition level which denotes children 

who are thought to be moving between Implicit and Abstraction Nonverbal levels, and 

Explicit transition levels for children who seem to be moving between Abstraction Verbal 

and E3 levels. These transitional levels also allow for periods where children may show 

greater variability in performance than the RR model’s levels would normally allow. The 

second addition to the RR model is based on the research of Pine et al (2003) which 

focused on the flexibility of children’s representational levels beyond simply being able 

to balance beams and provide verbal explanations on the balance beam task. A prediction 

task (e.g. children were asked if they could balance a particular beam before being 

presented with it) showed that children may have had access to some form of knowledge 

even when displaying implicit representations for the balance task. Children clearly 

therefore have some access to knowledge, and indeed can verbalise this knowledge prior 

to achieving E3 representational levels. 

 

 

3.2 Other research involving the RR model 

 

The RR model has been used by a number of researchers, in a number of domains – these 

include Balance (Horst et al, 2005, Philips and Tolmie, 2007), training in pedestrian skills 

(Tolmie et al, 2005), literacy (Critten et al 2007a, Critten et al, 2007b) drawing (Barlow, 

Hollis and Low, Picard), and number (Dixon and Bangert, 2006, Chetland et al, 2007). 

These will briefly be summarised in turn, to demonstrate in part the domains within 

which the RR model has been applied, and the extent to which the 3 unique features of 

the RR model highlighted already have been investigated.  

 

3.3. Balance 

 

With regard to balance, Horst et al (2005) questioned whether redescription occurred in 

children’s knowledge on the balance beam task. They looked at children’s ability to 

balance beams across sessions, to see if children followed the U-shape curve as described 
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by Karmiloff-Smith (1992). Children were given a set of 5 symmetrical and asymmetrical 

beams to balance. Horst et al (2005) looked for the U-shape curve in performance on the 

balance beam task in relation to age, rather than in relation to children’s verbal 

knowledge, which is the basis for the U-shaped curve in the RR model. They did not 

record children’s verbal knowledge. Horst et al (2005) found “quasi-linear” 

improvements in performance in terms of symmetrical and asymmetrical beams balanced 

across different age groups (4, 5, 6, and 8 year olds). In contrast to this however, Pine and 

Messer (2003) showed that children did move through the RR levels in the hierarchy laid 

out in Table 1.1, as they were tested each day across 5 days. It is important to highlight 

that the U-shaped curve arises in relation to children’s verbal knowledge, which Horst et 

al (2005) did not measure within their study. It is also important to note that the “U-

shaped” curve is a metaphor to easily describe the fact that children can show decreases 

as well as increases in performance as they show changes in verbal knowledge. It is not 

therefore surprising that the cross-sectional type of experiment carried out by Horst et al 

does not reveal a U-shaped curve in terms of performance on the balance beam task in 

relation to age. 

   

Phillips and Tolmie (2007) on the other hand focused on children’s explanations about 

balancing, and on the type of language used by those teaching them about the balance 

scale. They looked at the effect of parental input either through describing strategies for 

use on the balance scale task, or providing explanations for the principle underlying the 

concept of balance (e.g. the rule of torque). Children given this sort of input were found 

to show gains in integration of performance and understanding, and in the use of similar 

complex explanations themselves, though Phillips and Tolmie (2007) state that the effect 

of these interventions may be constrained by initial representational level. 

 

3.4 Pedestrian skills  

 

Tolmie et al (2005) looked at the RR model in relation to teaching children pedestrian 

skills. As with Phillips and Tolmie (2007), the focus was on the use of adult discussion 

and peer discussion. In this case the focus was on their use in aiding the development of 
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children’s pedestrian skills, to the point where they would have generalisable verbal 

knowledge, which is taken to be E3 type representations(e.g. verbally accessible and 

generalisable knowledge about pedestrian skills, with regard to what precautions need to 

be taken when crossing roads). They reported that the specific teaching methods used did 

help to develop E3 level representations, where verbal knowledge was generalisable. The 

study reported above assumes E3 representational levels as the point at which knowledge 

becomes generalisable. In this regard Shultz (1994) notes that research on the RR model 

has been restricted to individual tasks, rather then attempting to look in depth to see if 

knowledge, once consciously available, does become available for other tasks within that 

selfsame domain (but see Messer, Pine & Butler, 2007). There is a need to see at what 

point in development along the representational levels knowledge does in fact become 

generalisable. 

 

3.5. Literacy 

 

Critten et al (2007a) have applied the levels of the RR model to spelling and reading 

development. Critten’s research has focused on children’s overgeneralisations which lead 

to phonological and morphological errors (e.g. overgeneralising the –ed rule for verbs in 

the past tense). In particular, their findings have supported key aspects of the model with 

regard to literacy which have been described by Pine et al (1999) with regard to the 

concept of balance. Critten et al have shown that children do have explicit verbalisable 

knowledge prior to E3. A longitudinal study (Critten et al, 2007b) has also supported the 

hypothesised path of development through the representational levels set out by Pine et al 

(2003).  

 

3.6 Drawing  

 

A number of researchers have looked at the RR model in relation to drawing. As Picard 

notes, this area has been used to “study internal representational changes and to reveal 

the constraints acting on such changes” (Picard and Vinter, 2006, p 529). Their study 

focused on the role of flexibility in Representational redescription. This is based on 
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Karmiloff-Smith’s (1990) study on children’s drawing. The focus of these types of 

studies is on children’s increasing flexibility in terms of their ability to draw objects, and 

their ability to deviate from strict procedures in drawing objects – drawing a human body 

without a head for example. Barlow et al (2003) provide evidence that children are not as 

rigid in applying their procedures as presumed by the RR model, though in this case the 

drawings in question were of familiar objects, and may therefore have been more 

advanced in terms of representational level then Barlow et al (2003) assume. Another 

study by Hollis and Low (2005) looks at generalisations within a domain – children were 

taught to draw “pretend” humans (e.g. drawings that deviate from the normal human 

body), and were later asked to draw “pretend” houses (e.g. including novel parts, or 

removing normal features such as doors, windows, etc.). No transfer between these two 

domains was found. This again draws attention to the question of whether children can 

show generalisation of knowledge across tasks within a domain. 

 

 

3.7 Mathematics 

 

The final domain in which the RR model has been used in research is mathematics. 

Chetland et al (2007) have shown how in basic cardinality tasks (e.g. the “give me x” 

task) children continue to show development in their use of more advanced strategies 

following behavioural mastery. This study discusses the Overlapping Waves model 

(Siegler, 1996) alongside the RR model, and will be returned to when the Overlapping 

Waves is being described. The work of Dixon and Bangert (2006) also includes the RR 

model, though in this case the process of “redescription” as a means of cognitive change 

is being contrasted with a “theory revision” approach. This approach is interesting insofar 

as it reduces the RR model to the process of change, rather then incorporating the levels. 

There is a need therefore to show that the levels of the model do in fact contribute to our 

understanding of our knowledge of mathematical concepts. 
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Summary of RR model and questions to be addressed: 

 

3.8 Generalisation 

 

A number of issues have been addressed with regard to the RR model. Clarification is 

still needed for several issues however. These can be linked back to the unique features of 

the RR model. The first feature related to the model’s levels being domain-specific rather 

then universal. Two issues emerge from this based on the studies described above. First, 

within the RR model, children’s representations are supposed to gradually become more 

verbally accessible, and more generalisable. At this point, one can look at generalisability 

in two ways – one can talk about the generalization of knowledge from one modality to 

another: therefore the RR model describes a process of how generalization comes about, 

as procedural information becomes redescribed into a verbally accessible format. A 

second point of view looks at when knowledge, in whatever format, becomes available to 

be utilized for another task within a domain. This is the aspect of generalization being 

focused on in this thesis. Is verbal knowledge, once it is achieved within a domain, 

generalisable? In other words, is verbal knowledge automatically accessible to other 

tasks? 

 

There has been some focus on the generaliseability and flexibility of children’s 

representations (Tolmie et al, 2005, Hollis and Low, 2005, Pine and Messer, 2003). There 

have been conflicting findings here – Tolmie’s findings follow Karmiloff-Smith’s RR 

model and presume that generalisation of verbal knowledge occurs at the E3 level. Hollis 

and Low (2005) found that children could not generalise abilities from drawing one type 

of object (e.g. humans) to another (e.g. houses). Finally, Pine et al (2003) did find 

evidence that children could access knowledge at the Abstraction Verbal level to be able 

to make predictions about the balance beam task. These different findings suggest a need 

to clarify to what extent children’s representations are in fact generalisable, and more 

importantly what aspects are generalisable. There is a need to explore at what point 

knowledge, and or behaviours become generalisable to other tasks within a domain – 

when do children become able to generalise verbal knowledge /and or strategies from one 
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task to another within a domain? Given that Pine and Messer et al (03) showed signs that 

children have access to the same knowledge across multiple tasks, do children show the 

same verbal knowledge, and the same ability to perform tasks on different tasks within a 

domain? This has important implications as if children show generalisable knowledge or 

verbaliseable knowledge prior to E3, it must be removed as an indicator of “E3” or that 

children have achieved the most advanced level of knowledge for a domain. If children’s 

verbal knowledge is inaccurate or is an incomplete representation (which would seem to 

be the case from the example of the domain of balance of Pine et al, with children giving 

solely weight-based verbal explanations), and if this information is generalisable to other 

tasks within a domain it is important insofar as it shows that incomplete representations 

can generalise as well as complete representations. If children can and do show explicit 

verbal knowledge prior to E3, this also has important methodological implications, as 

experimenters should try to devise ways to access this verbal knowledge from children at 

a younger age then might be currently the case in studies. 

 

3.9 Applying the levels of the RR model to different domains  

 

 Second, there is a need to apply the levels of the RR model, both to different domains, 

and to different tasks within a domain, to demonstrate that the validity of using the RR 

model as a general cognitive developmental model. With the exception of Pine et al (e.g. 

1999) and Critten et al (2007), none of the research above has actively applied the levels 

of the RR model to tasks. The importance of applying the levels arises due to the fact that 

a number of the studies mentioned above (Dixon and Bangert, 2006, Tolmie et al, 2005, 

Picard and Vintner 2006) have merely cited the RR model, and made general predictions 

from the model .The work of Pine et al (2003) has shown that the levels of the RR model 

were underdescribed in Karmiloff-Smith’s (1992) original description of the model. 

There is a need to apply the levels in different domains, to see first if they apply, to 

understand the characteristics of the levels in different domains, and then to see to what 

extent predictions from the model can be made. The RR model remains limited if it can 

only be applied to very rigid types of tasks, in only a small number of domains, as these 

tasks or may either be not representative of a domain, or the characteristics of the task 
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may elicit the type of behaviour which is codable into RR levels, as was the case of 

Siegler’s (1976) rules model.   

 

3.10 The importance of access to verbal knowledge, and its role in cognitive change 

 

The second unique feature of the RR model was its focus on the role of increasing access 

to verbal knowledge as a key component of development. The work of Tolmie et al 

(2005), Phillips and Tolmie, (2007), the work of Pine et al (1999), have  explored this 

aspect, though some researchers have not focused on this particular aspect of  change 

within the RR model (e.g. Dixon and Bangert, 2005). Given that increasing access to 

verbal knowledge is supposed to play a key role in representational change this is 

certainly an issue that needs to be addressed. Does increasing access in fact drive the 

process of development and change, as the RR model suggests? This links back to some 

extent  to the discussion on generalization above, though here the focus is on change 

 

 The third unique feature of the RR model is its unique description of how cognitive 

change comes about. There is a need to explore how cognitive change actually occurs in 

this model. This is particularly important given that, as a number of commentators have 

stated (e.g. Campbell 1994, Freeman 1994) this particular aspect of the RR model is 

underdescribed. As stated in the previous paragraph, there is a need to explore how 

change occurs within the RR model, as this is an aspect of the model that has yet to be 

researched in any great detail – given that one of the key points of the model is that, as 

opposed to Piaget’s model, it tries to give a clearer description of how change occurs, 

there is a need to test this process of change, and the roles of both stability and increasing 

access to verbal explanations driving this change. 
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4. Contemporary cognitive developmental models: 

 

Up to now a key point of comparison with the RR mode has been Piagetian theory. 

However, other significant and contrasting theoretical models have emerged since 

Karmiloff-Smith’s RR model. The main theory with which the RR model will be 

compared is Siegler’s (1996) Overlapping Waves Model, though a number of other 

models will also briefly be described, to show what the RR model has to offer as a 

general model in relation to other contemporary models of cognitive development. The 

Microgenetic Method, will then be described, as it is a context in which many relevant 

studies for these models have been conducted.       

 

4.1 The Overlapping Waves Model 

 

Siegler’s (1996) book Emerging Minds criticises his own Rule assessment methodology 

(Siegler, 1976) and the general stage based approach to development. In 1976 Siegler 

described a rule assessment methodology, which describes a series of rules through 

which children were thought to develop in solving tasks on a balance scale (see Figure 

1.1 for an example of the balance scale apparatus). Rules were typically presented as 

binary decision trees (e.g. in the case of the first rule for the balance scale task, children 

would simply look at the number of weights on either side of the scale; if there are the 

same number on either side of the fulcrum it balances, if not, it doesn’t), akin to basic 

computer programs, with children applying specific rules depending on the situation 

facing them. The rules progressed from the initial simple ability to focus on one 

dimension of a task at hand (e.g. focus solely on weight in a balance task), to being able 

to integrate multiple dimensions, with the rule approximating the actual normative rule 

(e.g. the rule of torque in the case of balance). The rules were shown to apply to various 

types of task, including understanding of projection of shadows and fullness (Siegler 

1978, Siegler and Vago, 1978), conservation of liquid quantity, solid quantity and 

number (Siegler, 1981), and time, speed, and distance (Siegler, 1983, Siegler and 

Richards, 1979). Siegler even found evidence that children were at similar stages in their 

development of rules across different tasks (Siegler, 1981). 
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Figure 1.1: The Balance Scale Apparatus used by Siegler (1976)  

 

 

 

 

 

 

        

 

Siegler (1996) highlights criticism of this approach, and in particular, the tasks to which 

the rules were applied. The main criticisms of the rules based model were (a) that they 

arose on tasks that children typically would not have encountered prior to the experiment. 

(b) These tasks tended to have 2 dimensions to them (e.g. weight and distance in the case 

of the balance scale [e.g. Siegler1976]), one of which tends to dominate. This could lead 

to children being more single-minded in their thinking than is the case in more typical 

tasks.  

 

The overlapping waves model on the other hand depicts children’s thinking as involving 

“a gradual ebbing and flowing of the frequencies of alternative ways of thinking, with 

new approaches being added and old ones being eliminated as well” (Siegler,1996, p87). 

Children have at their disposal a number of different strategies to solve specific tasks. 

These strategies may be more or less sophisticated. For example, to perform a simple 

addition sum, a child may use a number of strategies: they may remember the answer, 

having previously done the sum, they may guess, they may add the 2 numbers (either 

starting from zero, or starting from the first number in the sum), or they may use more 

advanced strategies such as the min strategy, where the child starts adding on from the 

highest number, rather then automatically adding on from the first number in the sum 

(which is not always the highest number). In these everyday tasks, children have a variety 

of different ways of arriving at an answer. The introduction of new, more sophisticated 

strategies does not however mean that children stop using older, simpler strategies (Kuhn 

et al., 1988, Kuhn and Phelps, 1982, Schauble, 1990, Metz, 1985, Siegler and Jenkins, 
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1989). Rather, children show variability, using different strategies to solve the same task 

on different occasions. However, it is assumed that there is a gradual change in the 

frequency of strategy use, and the introduction of new ways of thinking. 

 

Chen and Siegler (2000) state that the pattern of use of strategies “arises through the 

working of five component processes” (Chen and Siegler, 200, page 8). These processes 

are: (1) acquiring new strategies, (2) mapping the strategy onto novel problems. (3) 

strengthening the newly acquired strategy. (4) refining choices among competing 

strategies, and (5) increasingly effective execution of strategies. Strategies are acquired, 

are used in different tasks, and are increasingly used accurately, or to put it another way, 

children become increasingly good at choosing which strategy is most appropriate for a 

specific task. In the study described by Chen and Siegler (2000), children are trying to 

reach toys which are beyond their reach. One clear finding is that older infants (children 

ranged from 1 ½ years old to 2 ½ years old) were increasingly consistent in their choice 

of strategy (using a toy cane or rake to reach for a toy beyond reach). Therefore, one of 

the outcomes of the overlapping waves model is a movement towards a kind of stability 

in strategy use.     

 

The main starting point for the overlapping waves model is variability, which forms the 

main argument against stage models – these static models fail to capture children’s 

variable strategy use across time. By assigning a child a simple “stage”, variability is 

ignored.  These stage models also fail to describe change accurately or in any depth, as 

changes are usually depicted as occurring suddenly. Stage models have also been referred 

to as staircase models (Siegler, 1996), where change is thought to occur through sudden 

upwards shifts, whereas the overlapping waves model shows that changes occur more 

gradually. Indeed, the overlapping waves model in some ways dispenses with change as a 

discrete concept, as children’s thinking is regarded as being more or less in a constant 

state of flux.  

 

Siegler (2005) also identifies five dimensions along which cognitive change can be 

analysed within the overlapping waves model. These dimensions are: source, path, rate, 
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breadth, and variability. The latter two, breadth (e.g. the extent to which learning 

generalises) and variability (e.g. in contrast to the focus of the RR model on stability 

preceding representational change) tie in with 2 of the themes that have been highlighted 

with relation to the RR model – generalisability and the role of stability in cognitive 

change. This issue will be returned to when describing the Microgenetic Method. 

 

It is important at this point, however, to highlight the differences between the RR model 

and the Overlapping Waves model in terms of the unit of analysis. The RR model focuses 

on representational levels, which encompass the ability to perform a task and conscious 

access to this knowledge. The Overlapping Waves model on the other hand focuses on 

“strategies”. These strategies are not considered in relation to access to thinking in 

relation to the implicit-explicit continuum. The Overlapping Waves model focuses 

exclusively on strategy use, which may be thought of simply as a child’s behaviour, 

whereas the RR model tries to look at the link between children’s performance on a task 

with their verbal knowledge. The verbal knowledge components provides a specific 

element which can be thought of as being more “cognitive” than the Overlapping Waves 

model which is more oriented towards behaviour. Indeed, Siegler’s (2005) review of 

microgenetic studies discusses the contrast between “learning” and “development”. 

Siegler suggests that new strategies are “learnt”, moving away from the notion that 

children are “developing” new and more sophisticated ways of thinking about concepts. 

Studies involving the Overlapping Waves method will be described in relation to the 

microgenetic method, after considering another important contemporary model of 

cognitive development, the dynamic systems model. The other key difference between 

the RR and Overlapping Waves model is that the RR model emphasises the importance 

of stability in representational levels, which is thought to be important for bringing about 

redescription. While Chen and Siegler (2000) state that stability may be an endpoint for 

development in the overlapping waves model, a period of stability is not necessarily the 

endpoint in the RR model, where a period of stability is thought to be necessary in order 

for the type of qualitative change in knowledge envisioned within the RR model (e.g. the 

development of explicit verbally accessible knowledge from an initially procedural 

format).  The Overlapping Waves model emphasises variability in children’s thinking, in 
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the form of different strategies used to solve a task, but does not go beyond looking at 

strategy use to try and provide any detail of the cognitive system that the child has, which 

underlies or compliments the strategies they use.  

 

The fundamental issue to be addressed however when trying to compare the RR model 

and the Overlapping Waves model, is to ask whether children best depicted as being 

variable in their thinking as the overlapping waves model states, or are they generally 

stable, as the RR model implies?   

 

A final important point to mention in relation to the RR an Overlapping waves models’ is 

the nature of the models. Karmiloff-Smith (1992) described her model as being “soft-

core”, as it is merely described verbally the model, rather then specifying it in such a way 

as to be implementable as a programme, or connectionist framework. The work of Pine et 

al (2003) have gone some way towards moving the model to a more “hardcore” set-up, 

where the different levels are clearly specified, and one can begin to make more easily 

testable predictions from the model. The Overlapping Waves model would also be 

thought of as being “softcore”, as its 5 sequential components of strategic change, along 

with the 5 dimensions which are important for change are descriptive rather than 

explanatory. The RR model, as currently envisioned in this thesis, and following the 

additions to the model from the work of Pine et al (e.g. 2003) is a more “hardcore” and 

clearly specified model of cognitive development than the overlapping waves model.   
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4.2. Other contemporary developmental models 

 

The Overlapping Waves model has been focused on as the key contemporary model for 

comparison. Other contemporary models will now briefly be described. In the 2002 

edition of the Blackwell handbook of cognitive development, it is interesting to look at 

the section covering models of cognitive development. It is hardly surprising to find a 

chapter on Piaget, and a chapter on Vygotsky. Other models of normal development are 

summarised in one chapter on “information-processing models of cognitive 

development” (Halford, 2002), which includes a very brief description of the RR model. 

This chapter covers Neo-Piagetian models (McLaughlin, 1963, Pascual-Leone, 1970, 

Case, 1992) which focus mainly on development being driven by an increasing 

processing power. This is contrasted with the RR models which is described as a “levels 

of processing” approach. These models do not provide much scope for further 

comparison with the RR model, given their general adherence to Piagetian thinking – 

Case’s (1992) model states that children pass through 4 neo-piagetian stages 

(sensorimotor, inter-relational, dimensional, and vectorial stages) which are comparable 

to Piaget’s stages. The criticisms arising from stage models Karmiloff-Smith made in 

relation to Piaget would equally apply to these neo-piagetian models.  

 

One modern developmental model not covered in this Blackwell handbook of cognitive 

development is the dynamic systems model (Thelen and Smith, 1994).This model 

(Thelen and Smith, 1994), alongside both the RR model and the Overlapping Waves 

model, involved a critique of stage models. Thelen and Smith contrast a view of 

development “from afar”, where “the grand sweep of development seems neatly rule 

driven. In detail however development is messy. As we turn up the magnification of our 

telescope, we see that our visions of linearity…break down” (p xvi). The notion of 

general stages of development, based on broad cross-sectional studies are contrasted with 

more in depth views following an individual child’s development across time, which is 

shown to be much more variable than stage models would indicate. The dynamic systems 

model borrows ideas from contemporary chemistry and physics. Rather than having a 

“closed” system with specified endpoints as classical stage models do (e.g. formal-logical 
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thinking as the end-point in Piaget’s stage theory), Dynamic Systems theory focuses on 

open systems, and their properties, which, like the Overlapping Waves model, focus on 

change, rather then stability. Equilibrium is an important concept for Thelen and Smith – 

at points of change “the system loses its ability to maintain these patterns and the 

fluctuations become enhanced. At these points, the system is dominated by these 

fluctuations and may display transient behaviour where no stable pattern can be 

discerned” (1994, p 63). For a system to change, it must first become unstable (Thelen 

and Corbetta, 2002). Because dynamic systems theory is rather complicated, this section 

will limit itself to pointing out this distinction between the RR model and Dynamic 

Systems theory – the fact that dynamic systems theory states the importance of instability 

in bringing about cognitive change. Indeed, it serves to reinforce points made in relation 

to the overlapping waves model – the fact that both models emphasise the importance of 

variability, and move further away from a stage-based model than the RR model. 

 

Another approach not mentioned in the Blackwell Handbook is the work of Katherine 

Nelson (1996). Her focus is on the role of language development in children’s thinking. 

In her book “language in cognitive development” she touches on the RR model, but takes 

a more social rather then a purely cognitive approach to development, looking at the 

emergence of language as an important “mediating” factor, which is importantly driven 

by social factors. The approach owes more to Vygotsky then to Piaget in this sense.  

 

The final research to be touched on here is the work of Carey (1985). Carey focused on 

the types of change that occur in children’s thinking. Does change involve simple 

enrichment of already present structures, or does it involve significant and conceptual 

change? Carey has described children’s thinking in a number of domains (e.g. children’s 

concepts of animal, plants, alive, eat, breath sleep, etc, Carey 1985, 1988, as well as the 

physical concepts of matter, material, kind, weight and density (Carey et al 1991, Smith, 

Carey and Wiser, 1985). The question of enrichment or change is very relevant to the RR 

model, in terms of how “redescription” is thought of. It may be thought of as 

“enrichment”, as knowledge that was available in one format is simply redescribed so 

that it is available in another format. The resulting change from this “enrichment” is 
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qualitative in nature, with the knowledge being in a new format which is thought to allow 

for greater generalisability. In this way redescription within the RR model emphasises 

that the distinction between enrichment and conceptual change may in fact be a false 

dichotomy.  

 

4.3 The Microgenetic Method 

 

As new theoretical approaches such as the Overlapping Waves model and the dynamic 

systems model emerged, so too has a new methodology has emerged which involves 

looking in detail at variability, and its relation to cognitive change; the microgenetic 

method. The microgenetic method is used to look at change in great detail. This approach 

has been championed by major figures within cognitive development (e.g. Karmiloff-

Smith, 1984, Kuhn et al, 1982, Siegler and Crowley, 1991). Despite it being a fairly 

recent phenomenon, it does in fact have roots in the works of both Werner (1948) and 

Vygotsky (1930). The microgenetic method involves looking in detail at periods of 

change. A high density of testing is done in relation to the rate of change, in order to 

capture the immediate precursors of change, and to delineate the progress of change.  

 

As has already been stated, within the Overlapping Waves model, 5 dimensions have 

been identified which can be used to analyse change; source, path, rate, breadth, and 

variability. The latter two are directly related to two of the unique aspects of the RR 

model highlighted so far – generalisability and the role of stability (as opposed to 

variability) in cognitive change. Microgenetic studies focusing on these aspects will now 

be described to provide a basis for the development of methodologies to investigate these 

two features of the RR model.  
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4.3.1 Microgenetic studies on the breadth of knowledge – can children generalise 

knowledge 

 

Siegler’s (2006) review of microgenetic studies identified a number of instances of 

failure to show generalisation from one task to another – in learning to walk for example 

(Adolph, 1997), and in transferring strategies from one mathematical task to another 

(Alibali, 1999, Alibali and Goldin-Meadow, 1993). Children have also been shown to 

over-extend strategies – applying a new strategy to a superficially similar task or domain 

in maths tasks (e.g. Siegler, 2002), or in overextension or overuse of a newly learned 

word (Bowerman, 1982). There has been some evidence of transfer of learning in more 

general studies of acquisition of a “control of variables” study (Chen and Klahr, 1999). 

These types of study focus on whether children can manipulate a number of variables 

within an experimental situation (an example would be if children had control over a 

number of different variables on a car in a computer simulation, and tested to see which 

combination of variables was quickest). Children were found to be able to transfer this 

newly acquired skill to structurally similar types of task (Chen and Klahr, 1999). 

 

It seems that children’s strategies do not generalise to different tasks – this is not 

surprising, as strategies can often be unique to a specific task. By using this level of 

analysis, it may be difficult to assess whether children are in fact accessing the same type 

of knowledge and applying it to different tasks within a domain. Therefore, this approach 

may in fact mask the generalisability of children’s knowledge. An attempt will be made 

to address this issue by looking at children’s RR levels with relation to different tasks 

within a domain. 

 

 

4.3.2. Microgenetic studies on the role of variability in cognitive change  

 

One of the key findings of microgenetic studies has been the high incidence of variability 

in children’s thinking across a range of different tasks – in terms of strategies used when 

learning to walk (Adolph, 1997), in maths tasks (Grupe, 1998, Alibali, 1999), control of 
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variable tasks (Schauble, 1990), logical inference task (Kuhn et al, 1992), amongst 

others. There have been findings indicating that high initial variability in strategy use can 

predict later learning (Coyle and Bjorklund, 1997, Siegler, 1995, Perry and Elder, 1997). 

There have also been findings indicating that variability may be cyclical in nature – with 

children beginning by systematically using one type of incorrect strategy, through a 

period of variability, followed by a later shift to consistent use of a more accurate strategy 

(Siegler and Chen, 1998, Siegler and Svetina, 2002, Van der Maas and Molenaar, 1992, 

Hosenfeld et al, 1997). There has been much focus on the role of variability in bringing 

about cognitive change – either based on the notion arising from the Dynamic System 

theory which states that for a system to change, it must become unstable (Thelen and 

Corbetta, 1997). Another theory arising is that this variability may reflect children 

beginning to activate multiple conflicting representations, which may for example be 

operating in different modalities (e.g. a child utilising one representation verbally, whilst 

displaying a different representation in hand gestures, Goldin-Meadow, 2002). 

 

The large amount of data gives a strong indication that variability does play a key role in 

cognitive change, though it is not clear yet what role(s) this variability may play. It is this 

variety of different findings emerging that indicates the need for a model to try and 

explain the role of variability in change. The overlapping waves model does not seem 

sufficient here, due to its lack of description of how the 5 variables which are thought to 

be important for describing change (e.g. path, rate, breadth, source, and variability). 

There is no clear theoretical link between these 5 variables and the fundamental 

phenomenon of the ovberlapping waves model. Whether or not children show stability in 

maintaining a representational level prior to change has not been addressed within any of 

these studies. One of the aims of the PhD is to address this gap in the literature. 
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4.4 The Representational Redescription model in light of the overlapping waves 

model: 

 

The description of the overlapping waves model and the microgenetic method, in which 

many studies based on this model has been carried out, give a clearer picture of the 

questions which need to be addressed with regard to the RR model. 

 

A key distinction can be made between the units of analysis for these different theories. 

The RR model maintains a hierarchical structure of levels, based on performance and 

verbal knowledge which are not apparent within the overlapping waves model. Indeed, 

the Overlapping waves model seems to focus only on strategies, rather than looking in 

greater detail at the contents of children’s knowledge (e.g. they look at what children can 

do, rather than what they know). There is therefore a need to show that these levels have 

validity and utility, if the RR model is to be of use as a general model for cognitive 

development. In this case, validation of the RR levels means showing that children are 

relatively stable in their performance and access to verbal knowledge for a domain across 

time, rather then being as variable in these measures as the Overlapping Waves model 

may suggest.  In light of findings on variability with regard to strategy on various tasks, 

and lack of generalisation of strategies, there is a need to demonstrate that this does not 

also apply to representational levels. 

 

It is also important to note the variety of tasks and domains that have been studied using 

the microgenetic method. The levels in the RR model on the other hand have thus far 

only been actively applied to 2 domains – that of balance (Pine et al, 1999), and literacy 

(Critten et al, 2007). There is a need therefore to study the levels of the RR model to 

different domains, in order to show that it can apply, and can add to our knowledge of 

different domains within cognitive development. This PhD will address some of the 

issues raised so far with regard to the concept of balance. Other issues will be addressed 

by applying the RR model to another domain, that of number. A more thorough review of 

relevant work within the domain of balance will follow, alongside a review of literature 
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about number. These will help to show how the 3 unique features within the RR model 

that have been highlighted so far will be addressed as specific research questions. 

 

 

5. Summary of questions for the RR model 

 

In this literature review, the RR model has been described, and by focusing on (1) 

contrasts arising from a comparison with the RR model (2) Issues arising from 

experiments involving the RR model, and (3) A comparison with the Overlapping Waves 

model, a set of unique features arising from the RR model are translated into more 

specific research questions. 

 

The first key point of the RR model was its use of domain-specific levels of thinking, 

rather than universal stages. These levels are thought to capture children’s thinking for a 

domain. The research described so far has only focused on single tasks within a domain 

(e.g. Pine et al, 1999). There have been questions about when children may begin to 

generalise knowledge within a domain (Tolmie et al, 2005). The evidence from 

microgenetic studies indicates that children may be very poor at generalising across tasks, 

bringing into question what knowledge children can generalise to other tasks within a 

domain.   

 

The levels of the RR model are domain specific. In spite of the research cited above, the 

levels have only been actively applied in 2 domains; balance (Pine et al, 1999), and 

literacy (Critten et al, 2007). An important part of the process of validating the RR model 

as a general model for cognitive development is by showing that the levels apply across 

different domains, in the same manner that the overlapping waves model, and Piaget’s 

model in particular has been applied in different domains. One task of this thesis 

therefore is to show that the levels of the RR model are applicable to different domains, 

and to different tasks within a domain. 
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The second issue mentioned in relation to the RR model is its focus on the role of verbal 

knowledge as a key driving factor in children’s developing representations. This brings 

about a need to look at the generaliseability of verbal knowledge 

 

This links well with the third key feature of the RR model, and its unique perspective not 

only on the role of increasing access to verbal knowledge, but also the role of stability in 

relation to cognitive change. Given the fact that a number of commentators note that the 

processs of change in the RR model is underdescribed, and that a number of microgenetic 

studies (along with both the Overlapping Waves model and in particular Dynamic 

systems theory) have highlighted the fact that variability plays a major role in cognitive 

change, there is a need to study variability in the context of the RR model.     

 

The final part of this literature review will give a general overview of the specific 

domains which will be covered in this thesis – the domains of balance, and numeracy, 

and the issues with regard to the RR model that will be addressed in relation to these 

domains. 

 

 

 

6. Review of the Domains in which the RR model is applied in this thesis 

 

6.1. Studying children’s representations across tasks within a domain 

 

In studying cognitive development there are advantages in considering more than one 

task in a domain. This will obviously give more insight into children’s thinking about the 

domain (See Messer, Pine and Butler, in print), as well as removing the possibility that 

findings apply to only one task, rather then an entire domain. This is particularly 

important given that all the work on the RR model within the domain of balance, with the 

exception of the work of Messer et al (in print) has used only one task, the balance beam 

task.  In addition, the use of more than one task will answer some of the criticisms that 

Siegler made of his own work within this domain. 
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The balance scale task used by Siegler (1976), which formed the basis for his Rule 

Assessment Methodology, involved asking a child whether or not a scale (see Figure 1.1) 

with weights on either side of the fulcrum, would balance, or tip down on one of the 

sides, if both sides of the scale were unsupported.  This task was criticised by Siegler 

(1996) for being a novel and unusual task, rather then something that children would be 

exposed to in day-to-day life (though interestingly, for the balance beam task employed 

by Pine et al, children regularly note the similarity between the beams on the fulcrum, 

and a see-saw, indicating that balance might be a relatively commonly experienced 

domain for children). Wilkening and Anderson (1982, 1992) also criticised the task 

because it did not give children an opportunity to interact with the scale itself. By simply 

asking children whether or not the scale would balance unsupported, this approach may 

mask knowledge, which could be displayed if children were given an opportunity to 

balance the scale themselves. 

 

In spite of this, Siegler’s balance scale task has been used by a number of researchers, in 

relation to a number of different developmental theories (see Andrews and Halford, 2002, 

who applied the Relational complexity theory to the concept of balance, and Zelazo, 

2002, who applied the cognitive complexity and control theory to this domain). Piaget 

(Piaget and Inhelder, 1958) used a balance scale task in support of his stage based 

developmental framework. The fact that a single domain has been used to support various 

different theories raises questions about generalising to a whole domain from a single 

task.  

 

 

In light of these criticisms of Siegler’s balance scale task, one of the aims of this thesis is 

to look at children’s representations for the domain of balance using a number of balance 

tasks. This will help to address 2 specific issues for the RR model, which arose in relation 

to the research on the RR model already described in this literature review; (1) whether 

the levels of the RR model measure a child’s knowledge for a domain, or just for a task, 

and (2) the generalisability of knowledge across tasks within a domain. Given the 
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problems in using Siegler’s (1976) balance scale task, there is a need to identify different 

types (though these criticisms do not stop Siegler from still using this task in experiment 

[Siegler and Chen, 1998]) of balance task, to which the RR model may be applied. 

 

6.2 Studying cognitive change using a balance task 

 

The second issue that will be addressed within the domain of balance is cognitive change. 

This domain was chosen due to the fact that the levels of the RR model have been 

comprehensively described (e.g. Pine et al, 1999, Pine et al, 2003), making it easier to 

study change within this domain. A number of studies have looked at change occurring 

within this domain – Pine and Messer (2003) have provided evidence that children do 

pass through the levels of the RR model in the sequence laid out in Table 1, and also 

shown that gesture-speech mismatches may indicate a readiness to learn and show 

cognitive change. Siegler and Chen (1998) have also studied children’s developing Rule 

use, using the Rule Assessment Methodology, on Siegler’s balance scale task, looking at 

the role of distal and proximal variables in the development of new and more complex 

rules. Siegler and Chen’s (1998) study does not use the RR model, and does not therefore 

aid us in relation to studying the process of change within the RR model. Pine et al 

(2003) use the RR model, and look at children’s increasing access to knowledge, which is 

one of the key features for representational change highlighted in this literature review. 

There is still a need however to look at the role that stability is supposed to play in 

representational change.  This is particularly important in the light of the introduction of 

transitional representational levels by Pine et al (2003) – do these transitional levels 

indicate that stability is not necessarily present immediately prior to representational 

change occuring?  
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6.3. Beyond Balance 

 

The domain of balance serves as a neat example of a domain in which cognitive 

developmental models can be applied. Developmental models have been applied in this 

domain by Siegler, 1976, Inhelder and Piaget, 1954, Halford et al, 2002, Zelazo et al 

2002. It is however a relatively discrete domain, which is not as important for children as 

other domains. For educational purposes, the domains of literacy and numeracy for 

example are much more important. Karmiloff-Smith (1992) claims that the RR model is a 

general theory of cognitive development, and she cites examples of the way it can be 

used to explain development in a number of domains (balance, drawing, etc).  For the RR 

model to be more generally relevant, it must be shown to apply to more central domains 

in cognitive development. Examples of such central domains are given by the chapter 

headings of Karmiloff-Smith’s (1992) Beyond Modularity – “The child as a linguist”, 

“the child as a physicist”, “the child as a mathematician”, “the child as a psychologist”, 

and “the child as a notator”. There is a need to show that the RR model can be actively 

applied to other domains - indeed the validity of the RR model as a general model for 

cognitive development rests to some extent on showing that it can be actively applied to 

these different domains. There is a need to show that the same can be said for the RR 

model. Karmiloff-Smith (1992), as already noted, marked out a number of territories; 

language acquisition, notation (writing and drawing), physics, and maths. Mathematics 

seems a conducive area of study, for a number of reasons. First, a central domain in 

mathematics can be identified; number. Mathematics is a very accessible domain for the 

purposes of child development. Number is a very visible and accessible part of our 

environment. From a very early age, number forms an important part of our environment, 

with examples of number liberally strewn across our visual and aural environment. Maths 

is taught from a much earlier age in schools then physics, and is considered a core part of 

the modern curriculum (one of the three r’s no less!).   
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6.4 Children’s developing knowledge of number: Counting 

 

A basic issue about maths/number is defining what number is. This is in itself a difficult 

task, as number is an elusive concept. Frege (1893) noted that number could not be 

defined – therefore it was not a concept which could be taught. The inference drawn from 

this is that number must be an innate concept. Numerous studies have attempted to prove 

this, by showing that animals have strong concepts of number (see Dehaene, 1997, in 

particular, the accumulator model). Infant studies have also been conducted (Starkey and 

Cooper, 1980, Spelke, 1991, Antell and Keating, 1983, Loesbroek and Van Smitsman, 

1990, Starkey et al, 1990, Clearfield and Mix, 1999), to show that children are sensitive 

to aspects of number, from birth onwards. These studies form a substantial body of work 

which heavily influence the field of study of children’s developing knowledge of number. 

Research in older children (e.g. verbal children) has centred on children’s knowledge of 

Counting. This area has been dominated by Gelman and Gallistel’s (1976) 5 principles 

which aim to define a valid counting system. These principles are thought to provide the 

logical underpinning for the counting system, and, as will be seen, show how and when 

counting should be used. Counting is thought to provide the basis for an understanding of 

number. 

  

6.5 Gelman and Gallistel’s Counting Principles      

 

Gelman and Gallistel’s principles are generally considered in 2 groups – the first three 

principles relate to how one may count, followed by 2 more general principles which 

constrain how and when this counting system may be applied. The first counting 

principle is the 1-to-1 principle, which assumes that one counting word/symbol is used 

for each object in the array being counted. This involves two processes; first the child 

must partition each individual item, and then each item must be individually tagged with 

a number word. These two processes must of course be coordinated. One method for co-

ordinating these processes involve pointing, and some work has been done in looking at 

the utility of pointing gestures in learning to count (e.g. Alibali and DiRusso, 1999). The 

second principle is the stable order principle, which states that the number words used to 
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count should be arranged in a stable, unchangeable and repeatable order. This order can 

be arbitrary, and need not necessarily (though normally it does) match the conventional 

number system used in society, as long as they are applied in an invariant manner; a child 

may even count “one, three, four, two”, as long as they always use this particular 

sequence in this particular order. If they do so, they comply with this principle. The third 

principle, that of cardinality, states that the value of any set or array of objects should 

equal the value of the last number tag associated with a member of the array. This 

principle builds on the previous two, to begin to provide a use for counting, as they 

provide a meaning for the value which numbers are thought to entail.  

 

The final two principles do not apply directly to counting as the previous three have done. 

The fourth, abstraction principle states that the three principles discussed so far can be 

applied to any array of objects, be they real or imagined. The final principle is the order-

irrelevance principle, which states that the order in which we count an array of objects 

does not affect the numeric value of the array. We may count from left to right, from 

right to left, from the middle outwards, etc, but the cardinal value of the array remains the 

same. The number tag is the most important aspect for numeric purposes. This principle 

states clearly the arbitrariness of counting, and in some ways echoes Piaget’s views on 

post-formal logic, in understanding the uses of systems, in this case the counting system. 

 

6.6 Research on the counting principles 

 

 This review has already mentioned some of the research which purports to support the 

theories of Gelman and Gallistel (e.g. infant number studies, as it has been theorised that 

these principles are innately specified). The original work was based on the findings of 

their “magic” experiment (Gelman and Gallistel, 1976). In this experiment, children were 

shown 2 sets of arrays, and told which one is the “winner”. They were then shown a 

number of different sets of arrays, and asked in each case to choose which of 2 examples 

was the “winner” and why. The game becomes more complex as the arrays are hidden 

and shuffled around, and sometimes magically changed, and the child must explain why 

the chosen array is not in fact the winner. This particular test was found to produce 
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sufficient evidence of counting in order to support the theory that children show evidence 

of use of the principles outlined above. It is important to note the restricted numerosities 

used in this experiment; between 2 and 5 objects in any array. Because young children 

have more difficulties as larger amounts of objects are presented to them, this narrowing 

down represents a search for competency, rather then looking at whether children can 

continue to apply these principles in larger arrays at this early age. The sets used were 

homogenous and arranged in a linear manner (e.g. children may not count non-

homogenous objects as one set, and may have problems keeping track of objects if they 

are not linearly arranged). 

 

Children as young as two years old for example showed 80% error free performance in 

terms of the 1-to-1 principle, with performance rising to near-perfect in 3 to 4 year olds. 

The 2 year olds were the main group who did not use the conventional word lists for 

number.  Similar findings of competence were found for the other four principles in 

young children, suggesting at least an early level of skill-based competence in counting. 

Whether this translates to having strong or explicit conceptual knowledge is another 

matter however. 

 

 

6.7 The principles within a theoretical framework 

 

Gelman and Gallistel claim (1983, 1984, 1986) that the principles for counting are innate. 

Based on this, they have predicted that the ability to detect errors in others’ counting 

should precede counting skills; young children should be able to detect errors, even 

though they cannot themselves accurately apply the principles in their own counting. 

Thus, children are supposed to have the capacity to deal with number before they can 

accomplish this with words. This provides a very different developmental path to that 

proposed in the RR model, as their approach states that children detect deviations from 

the normal counting procedure prior to their being able to perform this procedure 

themselves.  A number of error detection studies have been carried out over the years, 

with varying results. Gelman and Meck (1983) performed a study where children were 
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asked to watch puppets counting arrays of objects. Some puppets counted correctly, and 

some puppets made errors. Gelman and Meck (1983) found that the majority of 3 and 4 

year olds could in fact detect these errors. What they did not look at however, was 

children’s abilities to explain the errors made in the error detection task, which for the R-

R model is the most important aspect of conceptual knowledge, and allows us to measure 

whether their conceptual knowledge for a specific counting principle is implicit or 

explicit approach. 

 

Briars and Siegler (1984) took a slightly different approach. They showed children a 

wider array of counting examples, displaying correct counts, a number of different 

counting errors, and “pseudo errors” (see chapter 4 for greater details.). Briars and Siegler 

found that older children were more likely to detect errors in counting (4 and 5 year olds 

were much more likely to detect errors where they occurred than the 3 year olds). 

Younger children detected the pseudo errors as true errors a significant proportion of the 

time. These results suggest that younger children were much less likely to regularly reject 

real errors in counting than was found in the studies of Gelman and Meck (1983). 

Gelman and Meck (1986) argued that these findings were due to procedural differences, 

with children given much more opportunity to detect errors by repeating the trials in the 

method of Gelman and Meck (1983). The difference between the findings of Briars and 

Siegler (1984) and Gelman and Meck (1983) remain unresolved, leaving unanswered the 

basic question as to whether or not children’s conceptual knowledge precedes counting 

skills. Both Siegler (Rittle-Johnson and Siegler, 1998) and Gelman (Gelman and Meck, 

1986) maintain their stances.  

 

The RR model would state that children’s ability to count should precede their ability to 

detect and explain errors’ in others’ counting, in line with the findings of Briars and 

Siegler (1984). It is important to note however that the RR model does include the 

possibility of “innate predispositions”, which may be in line with Gelman and Gallistel’s 

(1992) later work which talks about children being born with innate “constraints on 

counting”. The question in this case becomes what is the nature of children’s early 

knowledge of the counting principles – do they begin with early implicit type 
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representations which enable to apply the counting principles, or do these develop at a 

later stage. 

 

The approach of the RR model, with its focus on developing access to verbal knowledge 

alongside an ability to perform a task is relevant to current theorising in this area. This 

approach is similar to Baroody’s (1998) mutual development approach – instead of 

looking at which aspect of counting knowledge, be it procedural or conceptual 

knowledge, we should look at how they develop together (1998). This is also in accord 

with the views of Sophian (1998) who stated that with regard to developing concepts for 

number, the research focus should move beyond looking at when basic competences 

emerge, and look at how it actually develops throughout childhood. Another good reason 

for the use of the R-R model in general with regard to counting, given its focus on verbal 

knowledge is that as Ginsburg (1976) notes, development of initial number knowledge is 

in fact largely verbal (e.g. children learn to count aloud, on their fingers, etc. before they 

are formally introduced to written number). Therefore, there is a need for a model which 

emphasises that a large part of early learning with regard to counting is verbal in nature. 

 

 

6.8 The role of verbal knowledge in the development of children’s representations 

for counting principles  

 

Applying the R-R levels to children’s knowledge of counting principles is an important 

first step for this domain. The R-R model must also have some utility; it must provide 

predictions for the course of development. Pine et al (e.g. 2000) have looked at the effect 

of various types of intervention on children’s representations for the concept of balance. 

In Pine et al’s (2000) study the effect of explaining another person’s actions on the 

balance beam task on children’s representational levels has been analysed. A study by 

Muldoon and Freeman (2003) has focused on a similar effect (e.g. looking at children’s 

explanations of other people’s actions) with regard to the concept of cardinality. They 

studied children’s ability to compare sets of objects, and found that children’s ability to 

detect and reason about someone else’s miscounts was the best predictor of performance 
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on the comparison task. This suggests, as Pine’s (2000) work does, that being able to 

explain other people’s performance on a task can play an important role in development. 

Muldoon et al’s study was not intervention-based however, so it still needs to be shown 

that giving children the opportunity to detect and explain others’ miscounts may bring 

about improvements in children’s ability to perform a comparison task.  

 

Another study of interest here was conducted by Rittle-Johnson (2001) on children’s 

knowledge of fractions. Rittle-Johnson was testing an iterative model which focused both 

on children’s ability to verbalise concepts, and their ability to perform the task, which she 

argues are linked. She predicted that improvements in what she terms “conceptual 

knowledge” leads to improvements in “procedural knowledge”, and vice versa. Pine and 

Messer (1998) on the other hand noted that the effect of interventions on children’s 

representations can be mediated by their prior representational levels (see also Tolmie et 

al, 2005). This leaves open the question as to whether these different types of intervention 

are equally effective at different points in time. 
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Summary 

 

The aim of this PhD is to demonstrate that the RR model can be adopted as a general 

model for cognitive development. Three sets of research questions are addressed to show 

that the RR model may be useful as a domain general model for cognitive development: 

(1) The first set of questions focus on the applicability of the RR model to different tasks 

within the domain of balance to assess the model as a domain-based rather then a task-

based model, and to assess the generalisability of knowledge within a domain. (2) The 

second set of questions focus on applying the levels of the RR model to the domain of 

counting, and showing that the model can add to our theoretical understanding of this 

domain, and provide input on how to bring about cognitive change within this domain. 

(3) The final set of questions focus on clarifying the processes of “representational 

redescription” (Karmiloff-Smith, 1992) which are thought to play a key role in cognitive 

change within the RR model.    
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Chapter 2 Exploring children’s representations of balance using 

different balance tasks 

 

Introduction 

 

How generalisable are children’s representations? According to Karmiloff-Smith (1992), 

children’s representations as they develop should become more consciously accessible 

and generalisable across tasks and domains. In this thesis, it is thought that gaining verbal 

access to the data is the key in being able to generalise knowledge across task.  The aim 

of the current study is to begin to assess whether or not this is in fact the case. An attempt 

will be made to apply the levels of the RR model to different types of balance tasks. This 

will serve 2 purposes: (1) To begin to show that children’s representations are 

generalisable, as the levels of the RR model can be applied to different types of balance 

task, and (2) to show what types of task the levels of the RR model can be applied to.  

  

This introduction will begin with a brief recap on studies focusing on generalisability of 

knowledge within the RR model. Following on from this will be a description the 

research carried out by Pine et al. on the balance beam task. Other research on balance 

tasks will be discussed, with the aim of setting out balance tasks to which the levels of the 

RR model may be applicable.  

 

1. Generalisability and the RR model 

 

An important aspect of the RR model (Karmiloff-Smith, 1992) is that as children’s 

representations develop, they become more “cognitively flexible”, and consciously 

accessible. It is this access and flexibility which allows for generalisation of knowledge. 

Given that the key aspect of development described by the RR model is increasing verbal 

access to knowledge, it is likely that the process of increasing verbal access to knowledge 

plays a large part in this flexibility, and ability to generalize knowledge. This means that 

children should be able to begin to apply knowledge learnt from one task in one domain, 
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to another task within that domain, or indeed to other domains. It is thought that 

verbalisable knowledge is what allows for generalisation; as this is the format in which 

information is redescribed into, and which is thought to be openly accessible in format; to 

other tasks in a domain, or indeed to other domains. The current focus however is on 

generalisation within a domain. The question of how and when children develop the 

ability to generalise knowledge is key. Piagetian theory for example states that children 

are at any one stage in time broadly applying the same form of thinking universally 

(Flavell, 1963). In his review of microgenetic studies, Siegler (2006) found relatively 

little evidence of generalisation – though the focus of these studies were mainly on 

strategies, which may not be easily generalisable, as “strategies” may only work on one 

type of apparatus or one type of task, and not be transferable to other tasks within a 

domain. For example, on the balance beam task used by Pine et al (1999), a strategy often 

used is for children to place the place the centre of a beam on the fulcrum. This strategy 

can not be used on a balance scale task, where children are asked to place weights on 

either side of the scale. Therefore, the focus for generaliseability is on explicit verbal 

knowledge, which may be used in relation to different tasks within a domain.  

 

Studies by Pine et al. (2003) and Tolmie et al. (2005) have looked at generalisability 

within the RR model. Pine et al. (2003) looked at children’s ability to predict whether or 

not they could balance beams, and found evidence that at an early developmental level 

(e.g. implicit transition), children showed access to knowledge in terms of being accurate 

in their predictions. Tolmie et al. (2005) on the other hand focused on generaliseability as 

occurring at the E3 level, as per Karmiloff-Smith’s (1992) original description of the 

model. Given the findings of Pine et al (2003), there is now an open question as to when 

and how children begin to generalise knowledge. As Shultz (1994) notes, one of the 

problems with the RR model is that it has generally only been applied to one task within 

a domain.    

 

Therefore, it is difficult to assess how “generalisable” representations are, and indeed to 

talk about the levels that emerge from a task as “representations” which cover an entire 

domain. The ideal way to assess generalisability therefore would be to apply the levels of 
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the RR model to 2 tasks within a domain, and then to compare children’s representational 

levels on these 2 tasks. A secondary aim is to see to what extent children use the same 

types of verbal explanations on different tasks within a domain. The aim of the current 

chapter is to apply the levels of the RR model to different balance tasks, to begin to 

assess generalisability in this way.  

 

 

2. Applying the levels of the  RR model to the domain of Balance 

 

Pine et al. (1999, 2001, 2003) have successfully applied the levels of the RR model to a 

balance beam task, based on a task first used by Karmiloff-Smith and Inhelder (1974). 

This task involved asking children to balance beams of wood, with blocks on either end 

acting as weights, on a fulcrum. Children were asked to explain for each beam why it did 

or did not balance. Children’s performance on the task and their verbal explanations 

provided the basis for coding Representational levels (see Table 1.1 in the literature 

review). Pine et al. (2001) have shown that for the balance beam task, children can 

display verbal knowledge at the first stage of abstraction (e.g. they can show explicit 

knowledge of weight, rather then having to wait until the last level before children 

display explicit verbal knowledge). As children’s knowledge of the concept develops, 

this knowledge becomes available for conscious access, and can readily be applied to 

different types of task. 

 

 

Figure 2.1: the balance scale apparatus 
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3. Other research in the domain of balance 

 

So far, the levels of the RR model has only been applied to one type of balance task – 

Pine et al.’s (1999) balance beam task. Are these patterns of performance and verbal 

explanations unique to this specific task? This question is important given the variety of 

different theories which have used the concept of balance to illustrate their theories – e.g. 

Piagetian stage theory ( Piaget and Inhelder, 1958), Siegler’s Rule assessment 

methodology (Siegler 1976), relational complexity theory (Halford et al., 2003),  and 

cognitive complexity and control theory (Zelazo, 2002). For the RR model to be judged a 

valid model, it should give a comprehensive description of the course of development of 

the concept of balance, across more then one different type of task. 

 

In this experiment an attempt will be made to apply the RR model to different types of 

task. It must be clearly stated that the levels of the RR model can not be applied to every 

task. For example the levels of the RR model are not applicable to Siegler’s balance scale 

task, as this task does not include a performance element. Messer et al. (2007) have also 

shown that task characteristics can play an important role in children’s access to their 

knowledge. In light of this, the current experiment, an attempt will be made to apply it to 

different types of balance scale task, whose backgrounds are described next. One aim of 

the experiment will be to see how children’s pattern of performance and verbal 

explanations differ on these different types of task.  

  

3.1 The balance scale production task 

 

The Balance scale task (Siegler, 1976) and Balance beam task (Pine et al., 1999) are not 

the only tasks that have been used to investigate children’s concepts of balance. There 

have been a few other studies involving the balance scale which have utilised different 

methodologies. Messer et al. (in print) for example attempted to apply a similar 

methodology as used in the balance beam task used by Pine et al. (e.g. 1999) to the 

balance scale. The experimenter puts a number of weights on the pegs on one side of the 
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scale. The child is given a specific number of weights to put on their side of the scale in 

order to make the scale balance and stay straight. 

 

The scale used by Messer et al. (in print) had only 4 pegs on each side, and children were 

only given 2 weights at most. Ceiling levels of performance were found for this task, with 

a majority of children succeeding across all 6 trials given them. Children’s performance 

was consequently not codable into R-R levels. This ceiling affect may be due to the 

limited number of pegs and weights given to the child, or to the small number of trials 

involved in the task. One aim of this experiment is to expand on this task – using a scale 

with more pegs on each side, and giving children a greater number of weights, to see if 

this eliminates the ceiling effects, and allows for the application of the RR levels.  

 

3.2 The fixed-peg balance scale task 

 

A second type of task which deviates from Siegler’s balance scale task was introduced by 

Surber and Gzesh (1984).  Surber and Gzesh (1984) carried out a balance task similar to a 

production task using the balance scale, with one subtle difference. For some of the trials, 

instead of being given a number of weights to place on their side of the scale, they are 

shown a specific peg, and asked how many weights would have to be placed on that peg 

in order to make the scale balance. This places a greater emphasis on the variable of 

distance from the fulcrum, and acts as a possible bridge between the balance scale and 

balance beam tasks.  

 

One could therefore predict from the RR model that children with Abstraction verbal 

representational levels (see Table 2.4) should not be able to successfully balance the trials 

where they are asked how many weights should be placed on a specific peg, as they do 

not yet have any explicit knowledge of the role of distance in the concept of balance. A 

comparison with the normal type of production task could elucidate whether this type of 

task configuration either elicits different verbal data or different behavioural success 

levels. Unfortunately, Surber and Gzesh (1984) do not report any verbal data, or 

behavioural data in an easily interpretable format. One aim of the current study is to 
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replicate this task, in order to see what patterns of performance and verbal knowledge 

emerge from this task, to see if the levels of the RR model can be applied.  

 

3.3 The Unconstrained Balance scale task 

 

Finally, a number of experiments have been conducted involving unconstrained access to 

the balance scale. Kliman (1987) for example used a loose interview format, which 

provided opportunities for free exploration and for some direct questioning. Children 

were free to place weights on both sides of the scale to explore different ways to make 

the scale balance and stay straight. A key advantage with a free or unconstrained format 

of course is that it shows what children will produce of their own volition. The direct 

questions of course also highlights areas that children may not necessarily explore 

themselves. This could also highlight the process of implicit knowledge – which is of 

course by Karmiloff-Smith’s definition information that they do not know that they know 

(e.g. a balance configuration they can produce themselves, but which they can not 

explicitly explain). Kliman’s study showed that children’s knowledge was built on local 

observations, on individual cases rather then on generalisations. Oshima and Okada 

(1996) used a test involving a “hypothesis testing” element, where children were asked to 

test what the variables they thought were involved in balancing. Thus Oshima and Okada 

(1996) emphasise how goal-orientation played a part in knowledge acquisition, 

emphasising the utility of unconstrained tasks as offering the opportunity to develop new 

theories or test old notions. In the current study, an unconstrained balance scale task will 

be used, in an attempt to apply the levels of the RR model to this task. 

 

Summary 

 

The current study aims to apply the levels of the RR model to different types of balance 

task. This serves 2 aims: (1) To begin to show that the levels of the RR model are 

generalisable within a domain, by demonstrating that they can be applied to more than 

one balance task. (2) To look at what task characteristics are required in order for the 

levels of the RR model to be applicable. 
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Method 

 

Participants 

 

A convenience sample of 39 children from years 1 to 3 (see Table 2.1 for demographic 

information) in a mainly middle class Hertfordshire primary school participated in this 

experiment. Table 2.2 shows how many children participated in each of the 3 types of 

balance scale task. 

 

Table 2.1: Demographic data 

Year Group Number of 

participants 

Age range 

(months) 

Mean Age 

(months) 

Sex ( Boy / 

Girl) 

Year One  11 66-77 73.8 5 / 6 

Year Two 14 80-89 85 8 / 6 

Year Three 14 90-101 96.4 6 / 8 

Total 39 66-101 86.1 19 / 20 

 

 

Table 2.2: Number of children who performed each task: 

Task Number of children 

Balance scale Production Task 13 

Fixed Peg balance scale production task 12 

Unconstrained balance scale task 14 

 

 

Materials 

 

A wooden scale was used for the 3 different balance scale tasks (see Figure 2.1). The 

scale consisted of a 60 cm long beam of wood, centred on a wooden fulcrum.  There were 

6 wooden pegs on each side of the beam at regular intervals of 5 cms. Seven identical 

metallic rings, which could be placed upon the pegs, were used as weights. No rests were 
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used to stop the movement of the scale as children placed the rings on the pegs. All 

experimental sessions were recorded with a digital video camera to allow for later coding 

of the data, using the computer-based Noldus Observer system. 

 

Procedure 

 

Children were brought from their class to a quiet room where the apparatus was set up. 

The child sat in front of the balance scale, with the video camera facing them. The child 

was shown the balance scale apparatus, and the weights, which were to be placed on the 

scale. The child was then introduced to the puppet. The children were told that they 

would be asked to show to the puppet how the scale works, and explain it to the puppet.  

The experimenter then explained to the child the specific task they were going to be 

asked to do.  Each subject was randomly assigned to one of the 3 experimental tasks 

used. The sessions were all videotaped, with the recording commencing prior to the 

children starting the task. 

 

1. Balance Scale Production Task 

 

This task was based on the procedure used by Messer et al. (in press). The experimenter 

explained to the child that the he would place rings on one side of the scale. The child 

was given a specific number of rings to put on the other side of the scale, to try and make 

the scale balance and stay straight. There were 2 types of trial; (1) Symmetrical trials, 

where children were given the same amount of weights as are placed on the scale by the 

experimenter. It is possible in this trial to balance the scale by copying the figuration laid 

out by the experimenter. (2) Asymmetrical trials, where children were given either more 

or less weights then the amount the experimenter places on his side of the balance scale. 

The children must compensate for this weight difference by considering the distance from 

the fulcrum on which to place the weights. Children were allowed make as many moves 

of the rings as they wanted in order to make the scale balance. A move is defined as 

occurring when all the rings the child has have been placed on their side of the fulcrum.  
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Children were asked to balance 6 symmetrical and 6 asymmetrical trials, ranging from a 

simple symmetry of 1 weight on each sides, to a complex asymmetrical state where there 

are 3 weights on the experimenter’s side, and the child is given 4 weights to place on 

their side of the beam in order to make the scale balance and stay straight.  

For each trial, the child is asked to explain to the puppet why the scale did or did not 

balance.  

 

2. Fixed Peg Balance Scale Task 

 

This task was based on the experimental procedure used by Surber and Gzesh (1984). 

There were 2 types of trial. The first type of trial used exactly the same procedure as 

described in the first task, using a limited number of 3 symmetrical and 3 asymmetrical 

trials. In the second set of trials, instead of being given a specific number of weights to 

place on their side of the scale, the child was directed to a specific peg, and asked how 

many weights would have to go on that peg in order to make the scale balance and stay 

straight. There were 3 symmetrical and 3 asymmetrical trials; symmetrical trials involved 

the experimenter pointing at the same pegs on the child’s side of the scale as the pegs on 

which the weights were on his side. Asymmetrical trials, involved the experimenter 

pointing to different pegs on the child’s side of the scale than the pegs on which the 

weights were on his side. For each of these trials, children were asked to explain to the 

puppet why the scale did or did not balance and stay straight. 

 

 

3. Unconstrained balance scale task 

 

For this task, children’s manipulation of the balance scale was unconstrained. Children 

were encouraged to place weights on both sides of the scale in order to find out all the 

different ways in which the balance scale could be made to balance and stay straight. 

Children could produce both symmetrical and asymmetrical balance combinations. As 

they went along, the child was encouraged to explain their movements to the puppet – 

questions such as “why is the scale balancing now?” and “why is that side going down?” 
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were asked to ascertain children’s verbal knowledge for the concept of balance. When the 

child had exhausted the balance possibilities, they were asked 2 specific questions, based 

on specific balance situations set out by the experimenter (e.g. with weights placed on 

both sides of the scale by the experimenter). First they were asked about what would 

happen if there were more weights on one side of the scale. They were asked to explain 

their answer. They were then asked what would happen if the same number of weights 

were on both sides of the scale, but placed on different pegs. Again, they were asked to 

explain their answer. These questions helped to address situations which the child may 

not have shown or explained during their exploration of the scale. 

 

For all three types of task, when they were finished, the children were thanked for their 

participation, and asked whether they had any questions. The camera was then switched 

off and the child was brought back to class.    

 

Measures 

 

Performance was measured along a number of dimensions: verbal explanations offered, 

types of successful balance combinations produced (e.g. ability to balance symmetrical, 

asymmetrical configurations), and number of moves used (in the two constrained tasks). 

 

Verbal Explanations  

 

In all 3 balance tasks, children were asked to explain why the scale did or did not 

balance. Their verbal explanations were coded into categories (see Table 2.3). In the 

unconstrained balance scale task, children were encouraged to produce explanations and 

provide a commentary as they were manipulating the scales. In the constrained task the 

children were asked to provide an explanation following their success or failure in 

balancing a specific trial. For all tasks, the children were asked to explain themselves so 

that a puppet, who was trying to learn about balance, might understand better how to 

make things balance. The coding scheme used by Pine et al. (2000) was used as a basis 

for the current study. The weight and distance categories denote an explicit level of 
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explanation. For the balance scale tasks, a number of adjustments were necessary. First 

was a superficial change of the “middle” category to a “same” category (e.g. instead of 

saying that the beam was in the middle for the asymmetrical beams, children note that the 

scales have the same configurations on both sides of the fulcrum). Second, a large 

number of explanations were offered which involved mention of either weight or distance 

which did not seem to go beyond procedural knowledge – in other words explanations 

that did not seem to merit being classified as “explicit conceptual knowledge”. Table 2.3 

below shows examples of these types of implicit weight and distance explanations. These 

implicit types of explanation seem more procedural in nature, rather than demonstrating 

explicit knowledge of the role of weight and distance in the concept of balance.  

 

 

Table 2.3: Coding scheme for verbal explanations offered in the balance scale tasks 

Coding category Examples of explanations 

Implicit “I don’t know” “just a guess”, doesn’t offer an explanation 

Implicit (weight) “I put one on”, “there are 2” (explanations that are purely 

numeric, without reference to weight, or weight-based terms) 

Implicit (distance) “I put it on that one” “on the fifth one” “I put it there” (reference 

to the pegs, without reference to relative distance in relation to 

weights on the other side, or relative to the fulcrum) 

Weight “it’s a bit heavy”, there aren’t the same amount of weights” 

Distance “it’s closer to the start”, “I put it on the end”,  

Middle/Same “it’s in the middle”, “same on both sides” “it’s symmetrical”  

 

 

Type of successful balance combinations produced 

 

Of particular interest is children’s ability to balance symmetrical and asymmetrical 

balance configurations; the amount successfully balanced is important in determining 

levels within the RR model, with an inability for example to produce any asymmetrical 

balance, along with weight based explanations, indicating performance a level of 
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abstraction (abstraction verbal). Table 2.4 sets out the criteria for coding performance and 

verbal explanations into RR levels, using a simplified 3 levels of representations. 

 

 

Table 2.4:  Criteria for coding RR levels on the balance scale tasks 

Representational 

Level 

Balance Performance Verbal explanations 

offered 

Implicit Performance Balances both symmetrical and 

asymmetrical configurations 

No explicit explanations offered 

Abstraction Verbal Balances symmetrical, but 2 or less out 

of 6 asymmetrical trials 

Weight based explicit 

explanations offered 

E3 Balance symmetrical and  

asymmetrical configurations 

Weight and distance based 

explicit explanations offered 

 

 

Number of Moves 

 

Because children were given more than one chance to make the scale balance and stay 

straight, it is of interest to see how many moves it takes a child to make the scale balance, 

in order to check whether children’s successful balances are due to trial and error, or due 

to purposeful and systematic placement of the weights on their side of the scale. A move 

is defined as being completed when the child has placed all his/her weights on their side 

of the scale. This measure is of course not possible within the unconstrained task, due to 

the fact that the child may not necessarily place all the weights on the scale, leaving it 

impossible to define a “completed” move. 

 

 Reliability of the coding schemes for verbal explanations and RR levels 

 

For the balance scale tasks, a selection of nine children, three for each of the different 

types of balance task were chosen. For each of the three tasks, the second coder coded the 

verbal explanations into the categories described in Table 2.3, and for the unconstrained 

balance task, the second coder coded children to RR levels based on the criteria set out in 
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Table 2.4. For the verbal explanations, there were agreement levels above 80% for all 

three balance tasks (see Table 2.5). There was agreement for RR levels on all 3 of the 

unconstrained balance scale tasks.   

 

 

Table 2.5: reliability of coding of verbal explanations on the 3 balance tasks, and RR 

levels on the unconstrained balance task 

Task Level of agreement on verbal 

explanations (Kappa statistic in 

brackets) 

Level of agreement on RR 

levels (Kappa statistic in 

brackets   

Balance scale 

production task  

91.66% agreement (kappa = .8897, 

p < .001) 

- 

Fixed peg balance 

scale task  

88.88% agreement (kappa = .861, 

p < .001) 

- 

Unconstrained 

balance task 

84.21% agreement (kappa = .811, 

p < .001 ) 

100 % agreement (kappa = 1, 

p = .014) 
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Results 

 

The results are split into 2 sections: (1) Application of the levels of the RR model to the 

balance scale tasks. (2) Performance on the tasks to which the levels of the RR model 

were not applicable. 

 

1. Applying the Levels of the RR model to the 3 balance scale tasks: 

 

The levels of the RR model were only applicable to one of the three balance scale tasks – 

the unconstrained balance scale task. Figure 2.2 below shows the distribution of these 

levels, highlighting the fact that most of the children have not achieved an explicit 

understanding of the concept of balance. A substantial group of children could produce 

both symmetrical and asymmetrical balance configurations, without being able to 

verbally explain why the scale balanced. A second group of children could only produce 

symmetrical balance configurations, and provided weight-based explanations. 2 children 

who were given this task could produce symmetrical and asymmetrical balance 

configurations, and provided explanations mentioning the role of weight and distance in 

determining how a scale could balance.  

 

Figure 2.2: Representational levels coded for the unconstrained balance scale task  
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2. Performance on the tasks to which the levels of the RR model were not applicable 

 

The 2 tasks were analysed in terms of children’s performance on the task, and the verbal 

explanations used. 

 

2.1 Children’s performance on the Balance Scale Production Task and the fixed 

peg production task 

  

For the balance scale production task, children showed close to ceiling levels of 

performance in terms of being able to balance the scale in symmetrical trials, and is very 

high for the asymmetrical configurations (See Figure 2.3). Only one child showed any 

significant inability to make the scale balance, only managing to make one asymmetrical 

configuration balance. All other children balanced at least 4 of the 6 asymmetrical trials 

given to them. 

 

Figure 2.3: Performance on the balance scale production task 
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For the fixed peg balance scale construction task, the child undertook 6 trials which 

involved the experimenter pointing at a fixed peg and asking how many weights would 

have to be put on that peg in order to make the scale balance. The other 6 trials followed 

the balance scale production task, above and these two sets of results are separated (see 

Figure 2.4). For the normal balance scale production trials, the same pattern is repeated as 

is seen in Figure 2.3, with a majority of the children managing to balance all the trials, 

both symmetrical and asymmetrical. The same pattern repeats with the fixed-peg trials, 

with a majority of children again being able to balance the scale on a majority of these 

trials.  

 

Figure 2.4: Performance on the fixed-peg balance scale task 
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2.2. The number of moves used per trial 

 

Children showed ceiling levels of performance in these 2 tasks. Was this due to children 

making multiple moves per trial, until they managed to get the scale to balance? The 

focus in particular is on the asymmetrical configuration trials. A move is defined as a 

situation in which all the weights given to the child have been placed on the scale. The 

aim in looking at the number of moves made is to try and pin down children who 
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managed to make the scale balance through trial and error – at what stage though can we 

move from describing children’s moves as purposeful through to mere trial and error? 

Figure 2.5 shows the number of moves children made on the asymmetrical trials on the 

balance scale production task. A majority of children successfully balanced these 

asymmetrical trials within 3 moves, indicating that children weren’t merely continuing to 

guess and make moves until the scale balanced.  

 

Figure 2.5: Number of moves taken to successfully balance asymmetrical trials on 

the balance scale production task  
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Figure 2.6 shows the same finding for asymmetrical the trials in the fixed peg production 

task that did not involve a fixed peg. Finally, Figure 2.7 shows the number of moves 

required to solve the 3 asymmetrical fixed peg trials. A clear majority of children 

managed to balance these trials within 2 moves, indicating that trial and error did not play 

a major part in their successful performance on these 2 tasks. 
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Figure 2.6: Number of moves taken to successfully balance asymmetrical trials on 

the non-fixed peg trials for the fixed peg balance scale task 

number of moves taken to balance asymmetrical trials on the asymetrical trials 
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Figure 2.7: number of moves taken to successfully balance asymmetrical trials on 

the fixed peg balance scale task 

number of moves required to successfuly balance the fixed peg asymmetrical 

trials for the fixed peg production task
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2.3.Verbal explanations offered 

 

It is clear from above that children showed ceiling levels of performance on these 2 

particular balance tasks. What patterns emerge for the verbal explanations offered? 

Figure 2.8 below shows the most complex form of explanation offered, focusing on 

whether or not children produced an explicit type of explanation (weight, distance, or 

same). Because of the relatively small occurrence of distance explanations generally 

given, and the fact that the main focus was on the occurrence of explicit verbal 

explanations rather than the content, a simple distinction was made between whether the 

most complex verbal explanation was implicit or explicit. A majority of the children 

showed some ability to produce an explicit type of explanation, regardless of the nature 

of the task. The largest occurrence of children who did not produce explicit explanations 

was in the unconstrained production task. 

 

Figure 2.8: Most complex explanation offered by children on the 3 balance tasks 
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While children were capable of producing explicit explanations, they were by no means 

always the most common type of explanation offered, as Figure 2.9 below shows. For the 

3 different tasks, different patterns arise. For the first, balance scale task, all the most 

common explanations are implicit, with a large number of children giving implicit 
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distance explanations most commonly. A similar pattern holds for the fixed peg 

production task, though in this case, implicit weight explanations are as common as 

implicit distance. It is interesting to note for 2 children, explicit distance was the most 

common explanation offered. For the third, unconstrained balancing task, the pure 

implicit explanation was by far the most common type offered. 

 

Figure 2.9: Most common verbal explanations offered by children on the 3 balance 

tasks 
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Clear differences can be seen in performance on these 2 balance tasks – but there are no 

strong clear differences in terms of the verbal explanations offered. 
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Discussion 

 

 

The aim of the current study was to begin to apply the RR model to different types of 

balance task. This served 2 purposes – first, to show that the levels of the RR model 

could be applied to different tasks within a domain, and to begin to assess to what extent 

children’s representations may generalise. The second aim was to look at the task 

characteristics necessary in order for the levels of the RR model to be applied.  

 

1. Applying the levels of the RR model to different balance tasks 

 

The levels of the RR model were applicable to the unconstrained balance scale task. The 

same patterns as seen by Pine et al. (1999) on the balance beam task seem to also apply to 

this particular balance scale task. This shows that these levels are NOT unique to the 

balance beam production task. The same patterns of performance are seen, alongside the 

same types of verbal explanation. This implies that the representations for balance can 

emerge following the pattern set out by the RR model on more than one type of balance 

task. This provides an important first step in showing that representations are 

generalisable. Children may therefore be less variable then the overlapping waves model 

implies – i.e. they may show the same types of RR level, and therefore the same levels of 

performance, and in particular the same levels of verbal knowledge across tasks within a 

domain.  It is important to note however that the current study focuses on generalisation 

of the concept across tasks, rather then generalising to different domains, in order to 

avoid an interpretation of the current research stating that the RR model is a domain 

general rather then a domain specific model (though Pauen and Wilkening [1997] report 

some evidence of children being able to make analogies between a balance task and 

another physics based task).   

 

This work marks an important step in validating the RR model as a potential model for 

general cognitive development. It is not constrained by being applicable to only one 

single type of task. The criticisms levelled by Wilkening and Anderson (1982, 1992) 
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against Siegler’s balance scale prediction task, and the rule-based model are not 

applicable, as children are given multiple opportunities, through providing verbal 

explanations, and through interacting with the scale as part of the trials, to show their 

levels of knowledge about the concept of balance. Similarly, the fact that the levels arise 

from 2 very different types of task (e.g. Pine et al.’s balance beam task and the 

unconstrained balance scale production task) are a strong defence against the arguments 

levelled by Siegler against the balance scale task he used (Siegler, 1976) being levelled 

against the RR model. 

 

Therefore, there is some evidence for the validity of the levels of the RR model as a 

potential general model, due to their being applicable to a number of different types of 

task, rather then simply being a pattern unique to one specific task. The next step in this 

process of validation is to analyse children’s representational levels across the 

unconstrained balance scale task and the balance beam task (Pine et al., 1999). If 

children’s representational levels capture the development of knowledge across a whole 

domain, children should the same representational levels across these 2 tasks. This will 

be the focus of the next chapter. 

 

It is worth noting in relation to generalisation that the same types of verbal explanations, 

derived from Pine et al (1999) was applicable to all 3 tasks, with a majority of children 

giving explicit explanations in all three tasks. This implies that the same verbal 

knowledge may well be applicable across different tasks within a domain. It is also worth 

noting that in the unconstrained task, once again children showed access to verbal 

knowledge prior to reaching E3; therefore, they showed an ability to generalise and 

access verbal knowledge prior to achieving the final level of development – meaning that 

children can generalise inaccurate knowledge.   

 

2. Task characteristics necessary for the application of the RR model 

 

Although the levels of the RR model were applicable to one of the 3 balance tasks used 

here, they were not applicable to the other 2 balance tasks used. In order to understand 
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better the characteristics necessary for a task for the levels of the RR model, two 

comparisons will be made – first a comparison between the unconstrained balance scale 

task, and Pine’s balance beam task, and second a comparison between the unconstrained 

balance scale task and the other 2 balance scale tasks used in this experiment.  

 

There are clear differences between the unconstrained balance scale task and the balance 

beam task used by Pine et al. (1999). First, there are obvious differences between the 

apparatus used. There are also differences in the methodologies, with children being 

given free access in the unconstrained balance task, whereas in the balance beam task, 

children are given specific beams which they attempt to balance. There are clear 

differences in terms of perceptual features and task characteristics (Messer et al., 2007). 

Nonetheless, the levels of the RR model are visible in both types of task.  

 

Comparing the unconstrained balance scale task with the other two balance scale tasks 

used in this experiment, the only clear differences are in terms of methodology. Children 

displayed behavioural mastery on both the balanced scale production task, and the fixed 

peg construction task. This was not the case with the unconstrained balance scale task, 

with a number of children failing to produce asymmetrical balance configurations on the 

unconstrained task. What is the reason for this? The key difference seems to arise from 

the methodologies – in the unconstrained task, the child must attempt to produce 

asymmetrical configurations spontaneously, whereas on the other 2 tasks, children were 

given a clear number of opportunities to balance asymmetrical configurations. Another 

key factor is the introduction of “implicit weight” and “implicit distance” verbal 

explanation categories. These categories captured children who gave purely numeric 

explanations (e.g. “I put 2 on” or “I put it on the second peg”), which seem to be more 

procedural in intent, rather then actually focusing on the role of weight and distance in 

causing the scale to balance. 

 

This may be the key difference – on the other 2 tasks, children seem to be able to 

successfully create symmetrical and asymmetrical balance configuration, without 

necessarily having any explicit knowledge of the concept of balance. On the other hand, 
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children’s performance on the unconstrained balance task is coloured by what they think 

is possible – some children for example do not even attempt to create asymmetrical 

configurations. The unconstrained balance task seems to be the type of task where 

children’s verbal knowledge can play a part in constraining their performance on the task 

– this seems to be the key similarity between the unconstrained balance scale task and 

Pine’s balance beam task. This characteristic also seems to arise in the spelling tasks used 

by Critten et al. (2007). Therefore, there is a need within this thesis to investigate the 

applicability of the levels of the RR model to tasks which do not have this characteristic. 

 

While Siegler (1996) notes that the Rule Assessment Methodology may be based on 

specific characteristics of the task, this need not necessarily be looked on as purely a 

negative thing. The levels of the RR model may only be applicable to certain types of 

task, where performance is directly effected or constrained by their knowledge, whether 

verbalisable or not. These types of task may however be the most suitable for  developing 

thinking within that domain. Certainly it seems logical to state that children are most 

likely to develop fully explicit representations using the constrained balance scale task 

used in this study rather than either of the other 2 balance scale tasks, even though 

children showed higher levels of performance on those 2 tasks. There is a need to 

investigate further the types of task to which the levels of the RR model can be applied. 

  

Summary 

 

Two important conclusions emerge from this study. First, the levels of the RR model are 

not unique to the balance beam task within this domain. This goes some way to showing 

that the levels of the RR model can be used as a general model for the development of a 

domain, rather than simply showing the development of competence for a particular task. 

This acts as a first step in looking at whether or not children’s representations are 

generalisable to other tasks within a domain. Verbal knowledge in particular is shown to 

be similar across the 3 different tasks with a majority of the children providing similar 

explicit type explanations across both tasks.  The second finding is that for the levels of 

the RR model to be applicable to a task, children’s performance may have to be in some 
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way constrained by their levels of knowledge (e.g. tasks where ceiling levels of 

performance do not become apparent).  
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Chapter 3: Generalisability within the RR model: Comparing children’s 

representational levels across balance tasks 
 

Introduction 

 

Do children’s representations capture a child’s level knowledge for a domain? Do 

children show generalisation of knowledge across tasks within a domain? In this 

experiment, the aim is to look at children’s representations on 2 balance tasks in order to 

address these questions. 

 

 

Children’s representations for domains  

 

The RR model (Karmiloff-Smith, 1992) describes the development of children’s 

representations for domains. These representations are thought to capture children’s 

knowledge for a domain, rather then a single task within that domain. It is important to 

note that these representations initially develop through interaction with a single task – 

this model describes a route of development whereby behavioural mastery precedes 

explicit verbal knowledge for a domain. Children’s first implicit representations for a 

domain are initially tied to the task which children are introduced to. Implicit 

representations do not allow for “intra-domain” or “inter-domain” representational 

links”(Karmiloff-Smith, 1992, p 20). A child who has an implicit representation cannot 

use the approach learned from one task to another in the same domain, or in other 

domains. As children’s representations become more explicit, and consciously and 

verbally accessible, they become generalisable, so that these representations may be 

thought of as capturing children’s general knowledge about the domain. For example, if 

children show fully explicit representational levels on one balance task, they should 

similarly show the same level of knowledge on other balance tasks. This brings into 

question the status of children’s representational levels – do children’s representational 

levels arising from one task, a balance beam task for example (Pine et al., 1999) tell us 

about children’s general knowledge for the domain of balance? From what has been 

outlined above, children should, once they have explicit representations on one task, be 
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able to show that same explicit representational level on another task. If they display 

implicit representations for one balance task, one can infer from the lack of explicit 

generalisable knowledge from one task that they should similarly show only implicit 

types representations on the other task. It is important to note however that in the current 

experiment, explicit verbal knowledge is expected to arise at an earlier point in time 

developmentally than Karmiloff-Smith’s RR model originally states. At the first level of 

abstraction, children have been found to give explicit verbal explanations on the balance 

beam task, and are likely to as well for the balance scale task. 

 

Another issue, raised by Messer et al. (2007) is that perceptual and task characteristics 

may affect children’s cognitions, so that they may display different cognitions depending 

on the tasks in front of them. One aim of the current study therefore is to compare 

children’s representational levels on different balance tasks to see whether or not these 

representational levels may be used as a domain general measure of children’s knowledge 

about a concept.  

 

This question is especially important in light of the fact that other contemporary theories 

for development, such as the Overlapping Waves Model (Siegler, 1996) and Dynamic 

Systems theory (Thelen and Smith, 1994) have moved away from level-type models in 

favour of models which characterise children as being much more variable in their 

thinking. There is a need to establish the utility of representational levels, by showing that 

children do show the same representational levels across different balance tasks, 

establishing that children can and do show consistency in their thinking across different 

balance tasks. As Shultz (1994) notes, the levels of the RR model have not been applied 

across tasks within a domain, and therefore this particular aspect of the RR model has yet 

to be addressed experimentally. 
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Do children show generalisation in verbal knowledge across balance tasks? 

 

If a child has verbalisable, explicit knowledge which they apply to one balance task, 

within the RR model they should be able to apply the same knowledge in other balance 

tasks. The opposite should also apply – if a child has not got explicit verbal knowledge in 

one balance task, they should not have explicit verbal knowledge for the other balance 

task, otherwise, they would be able to generalise it. Findings from other studies are not 

equivocal however. Pine et al. (2003) showed that children could access their knowledge 

by being able to predict whether or not they would be able balance the beams presented 

them. This can be interpreted as showing that they have access to knowledge, but is not, 

strictly speaking, being applied to a separate task. Tolmie et al. (2005) on the other hand 

focus on generalisation occurring when children reach E3 representational levels, as per 

Karmiloff-Smith’s (1992) original description of  the RR model. The current study also 

aims to look at whether children generalise verbal knowledge from one balance task to 

another – do they show similar levels of verbal knowledge on the 2 balance tasks prior to 

reaching E3, as Pine et al. (2003) imply, or does generalisation not occur until children 

achieve E3 representations, at which point they would provide weight and distance based 

explanations on both tasks  

 

There are also the findings related to children’s drawing to take into account. As 

described in the literature review, there are contrasting findings on the degree that 

children can generalise knowledge across tasks within a domain, with findings indicating 

both that children can (Barlow et al., 2003), and cannot (Hollis and Low, 2005) 

generalise skills used in one drawing task to another. The question arising from this is – 

what does actually generalise? Do children show similar types of procedures in tackling 

single tasks within a domain, or does only verbal knowledge generalise?   

 

The previous study used an “implicit weight” verbal explanation category on the 

unconstrained balance scale task. One important aim of this study is to see if this same 

type of verbal explanation also arises for the balance beam task used by Pine et al. (e.g. 

1999).  This will provide further evidence about the generalisation of knowledge across 
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tasks, especially in relation to differences in the perceptual and task characteristics 

between the 2 balance tasks to be used. 

 

The question of generalisation is again important in light of the fact that Siegler (2006) 

reports that microgenetic studies conducted in relation to the overlapping waves model, 

whose findings tended to show that children do not show generalisation across tasks. 

Does this same finding apply in the case of the verbal knowledge that children access on 

different balance tasks?   

 

 

 

Summary 

 

In summary, the aim of this current experiment is to address the complimentary questions 

of whether children’s representations capture their general knowledge for a domain, and 

whether children show generalisation in verbal knowledge across 2 balance tasks. 
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Method 

 

Participants 

 

A sample of 87 participants in years 1 to 3 was recruited from 4 primary schools in the 

Hertfordshire area. These schools were predominantly middle-class schools in towns 

surrounding the university of Hertfordshire. Children’s ages ranged from 5 years 6 

months to 8 years and 8 months, with a mean age of 87.4 months (standard deviation = 

11.62 months). The sample comprised of 48 males and 39 females. 

 

Materials 

 

Two sets of balance apparatus were used, a balance scale, and balance beams.  The 

balance scale consisted of a long wooden beam balanced at the geometric centre (see 

previous chapter for further details). The wooden beam had 5 equidistant pegs on either 

side of the fulcrum, on which a number of metallic weights (seven in total were available) 

could be placed (see Figure 3.1). 

 

Figure 3.1: The Balance Scale Apparatus 
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The balance beam task involved a series of long wooden beams ranging in length 

between 25cm and 45 cm (see appendices for experimental sheets used, and a full 

description of the different beams used). Wooden or metallic blocks were placed at either 

end of the beams acting as weights. Nine beams in all were used, of which three were 

symmetrical (e.g. the same number of weights on either end of the beam, see Figure 3.2) 

and six were asymmetrical (e.g. there were more weights on one side of the beam than on 

the other, see Figure 3.3). These beams could be placed on a fulcrum which consisted of 

a raised plane of wood, 1cm above a wooden board, and 1 cm in width. Children were 

asked to try and place the beams across this fulcrum in such a way as to make the beam 

balance and stay straight. 

 

Figure 3.2: example of a symmetrical balance beam 
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Figure 3.3: example of an asymmetrical balance beam 

 

 

 

Procedure 

Children were taken from their classroom to the room in which the experiment was 

conducted. They were asked to sit at a Table where the balancing apparatus and a video 

camera were set up. On the way, the experiment was explained in general term to the 

child – they were told that they would be playing a few “balancing games”. The child sat 

at the Table, and was shown the two types of balance tasks. The puppet sitting beside the 

camera was introduced to the child, and the child was told that the experimenter would 

like them to try and help the puppet learn about how to make things balance. The video 

camera was pointed out to the child, who was told that the experiment would be recorded 

so that the puppet would be able to watch it over again later to see how the child made 

everything balance. The child was asked whether he/she had any questions, and then the 

video camera was switched on and the experiment commenced. The order of presentation 

was counterbalanced, so half of the participants performed the balance scale task first, 

and the other half performed the balance beam task first. 
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 Procedure for the Balance Beam Task  

 For the balance beam task, the child was shown the fulcrum, on which children were 

asked to place the beams in such a way as to make them balance and stay straight. It was 

emphasized that they would be trying to show the puppet how to make the beams balance 

and stay straight. Verbal explanations were also to be directed towards the puppet. For 

each beam, the child was told: 

 “I would like you to try and make this beam balance and stay straight on top of this 

piece of wood here (the fulcrum)”.  

The beam was handed to the child, and they were encouraged to place the beam on the 

fulcrum. Children were given 9 beams; 3 symmetrical and 6 asymmetrical (see 

appendices for full details of the beams). The order of the beams was partially 

counterbalanced. Half of the children were presented with a symmetrical beam as the first 

beam, and half of the children were presented with an asymmetrical beam as the first 

beam. The order of presentation of the rest of the beams was randomised. When the child 

successfully balanced or failed to balance a beam, they were asked to explain to the 

puppet why the beam balanced, or why it didn’t balance. Children were given every 

opportunity to balance the beams, and were only asked to provide an explanation after 

they had stopped manipulating the beam for more than 30 seconds, or if they stated that 

the beam could not be made to balance.  

 

Procedure for the Balance Scale Task 

 For the balance scale task, children were shown the scale apparatus, and the child was 

presented with the metallic rings, which they were told could be used as weights and 

placed on the different pegs, and told: 

“I would like you to play with the scale, and show the puppet all the different ways you 

can make this scale balance and stay straight.”  
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Children were asked if they understood what they were to do, and then allowed to start 

the task. Children were encouraged to explain to the puppet as they went along the 

different balance configurations, and why they did / did not balance. Children were 

encouraged to explore the different permutations until they could not think of any other 

way to make the scale balance. This was taken as having happened if the child said they 

could not think of any other ways to make it balance, or they stopped moving weights on 

the scale. They were asked:  

“Can you think of any other ways to make the scale balance and stay straight?” 

When the child gave a negative reply to this question, the experimenter removed the 

weights from the child, and said that he had a few questions to ask the child about the 

scale:  

“To make sure the puppet understands about how the scale balances” 

The purpose of these questions was to ensure that children had a further opportunity to 

provide verbal explanations, in case they had not supplied many explanations 

spontaneously, and to specifically look at children’s knowledge for the variables for the 

concepts of weight and distance with regard to balance. The experimenter placed one 

weight on the peg nearest the centre, on either side of the fulcrum. The experimenter 

stated that the scale was now balancing and staying straight. The experimenter then asked 

what the child thought would happen if an extra weight was placed on one side of the 

scale. The child was asked 

“Will the scale still balance and stay straight, will it go down this side (points to the side 

of the scale on which the extra weight would be placed ), or will it go down this side (the 

other side of the scale)” 

The child was encouraged to think about this question, and was not permitted to 

manipulate the scale in order to come up with an answer.  The child was asked to explain 

their answer to this question to the puppet. They were then asked a second question. The 

experimenter asked the child what they thought would happen if the weight on one side 

of the scale was moved to the second peg from the centre. The child was again asked:  
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“Will the scale still balance and stay straight, will it go down this side (points to the side 

of the scale on which the extra weight would be placed), or will it go down this side (the 

other side of the scale)” 

Again they were asked to justify their answer to the puppet. When the child had 

completed the two balance tasks, they were thanked for their participation and asked if 

they had any questions. They were then brought back to their classroom. 

 

Coding children’s performance across the balance tasks 

 

Following the experiment, the videotapes taken of the session were subjected to intensive 

coding using the computer-based Observer system (See Table 3.1). For the balance beam 

task, children’s performance in terms of the number of symmetrical and asymmetrical 

beams balanced was coded, alongside the initial placement of the beam (e.g. did they 

place the beam initially at its geometric centre, or did they tend to place the beam off-

centre). Children’s verbal explanations and gestures were also coded.  

 

Table 3.1: the variables coded on the balance beam and balance scale tasks 

 Balance Beam Task Balance Scale Task 

Performance Number of Symmetrical and Asymmetrical 

beams balanced 

Number of Symmetrical and Asymmetrical balance 

configurations produced 

Strategy Initial placement of the beams (e.g. did 

children attempt to balance beams in their 

geometric centre) 

Number of asymmetrical non-balance configurations 

produced (e.g. did children attempt to produce non-

symmetrical balance configurations) 

Verbal 

Explanations 

Children’s verbal explanations coded using a 

coding scheme (see Table 2) 

Children’s verbal explanations coded using a coding 

scheme (see Table 2) 
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 For the balance scale task, children’s performance was coded in terms of symmetrical 

balance configurations (e.g. a configuration where the scale balances, where children 

have placed the same amounts of weights on the same pegs on either side of the scale) 

and asymmetrical configurations (e.g. a configuration where the scale balances, where 

children have not placed the same amounts of weights on the same pegs on either side of 

the scale), as well as the number of general non-symmetrical configurations (e.g. where 

the scale did not balance) produced by the child. Children’s verbal explanations were also 

coded for the balance scale task.  

 

Coding children’s verbal explanations 

 

Children’s verbal explanations were coded using a revised coding scheme derived from 

the coding scheme used in the previous experiment. The implicit – explicit continuum 

used by Pine et al. (2001) is maintained, alongside a new set of “implicit weight” and 

“implicit distance”, categories. These categories arose from findings on the balance scale 

task that children tended to give numeric explanations such as “I put two on” or “I put it 

on the second one”, which shows some indication of knowledge of weight and distance, 

but does not supply enough explicit knowledge to justify being categorised as showing 

explicit knowledge of weight or distance. That is to say, an inference must be made about 

the statement made by the child, which means it should not be coded as “explicit”, 

though there is some sign of knowledge on the child’s behalf.  Table 3.2 below gives 

examples of the types of explanations coded within these different categories. The 

categories are formed in a quasi-hierarchical manner – distance is placed after weight as a 

variable not because it is more complex, but because it is less common for children to 

give distance explanations, so therefore it is more interesting when children in fact do 

give distance-based explanations.  
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Coding the children into representational levels requires a focus on the categories of 

explanation offered, but for the purposes of further analysis within the representational 

redescription model, the main distinction is whether or not children produced explicit 

explanations. The most complex form of explanation given by the child is used as the 

basis for coding children’s representational level, as long as the child has provided this 

type of explanation on more then one occasion (for example, children will have to give 

more then one explicit weight explanation in order to be coded to the Abstraction Verbal 

level, see Tables 3.3 and 3.4). 

 

Table 3.2: Coding scheme for verbal explanations on the two balance tasks 

Coding 

Category 

Examples of explanations 

Implicit Explanations which do not show any signs of explicit knowledge of the variables of weight or distance.  

Examples: “I don’t know”  “I guessed” “I thought really hard” “I just tried” “it’s the same as the others” 

Implicit 

(weight) 

Explanations which enumerate the set of weights placed on the scale, or the number of blocks on the 

beam, without any use of explicit, weight-based words.  Examples:” I put one on” “  “there are 2”  

Implicit 

(distance) 

Explanations which describe numerically the peg on which weights were placed for the scale, or vague 

distance-based explanations which lack any explicit mention of distance based terms (e.g. centre, far, or 

near). Examples:” I put it on that one” “I put it there” “one of them’s on the last one” 

Same/ 

Middle 

Explanations which focus on how the two sides are the symmetrical, or how the geometric centre of the 

beam was placed on the fulcrum. Examples: “in the middle” “they’re symmetrical”  

Weight Explanations which give explicit mention of the weight of the blocks, or the weights placed on the pegs, or 

which give some mention of weight-related terms. Examples: “It’s a bit heavy” “there aren’t the same amount 

of weights” “It doesn’t have a weight at the other end” 

Distance Explanations which focus on the relative placement of the weights in relation to each other, or in relation 

to the fulcrum. Examples: “It’s closer on this side” “I put 3 near the end” “They’re not on the same 

peg”” “It’s further out” 
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Coding Children’s RR levels on the balance beam and balance scale tasks 

 

Tables 3.3 and 3.4 below contain the criteria used for assigning a child to representational 

levels on the balance beam and balance scale tasks respectively. These criteria are 

derived from the work of Pine et al. (2002). For the balance beam task, the important 

criteria include the number of asymmetrical beams successfully balanced (e.g. the beams 

stay balanced around the fulcrum after the child has finished manipulating them), the 

initial placement of the beams (e.g. whether the child placed beams at their geometric 

centre to start with, or whether they initially placed them off-centre), and the explanations 

offered. For the balance scale task, the important variables are the number of symmetrical 

and asymmetrical balance configurations produced, whether or not they showed a 

tendency to only produce symmetrical weight placements, and the type of explanations 

offered. The answers to specific questions about weight and distance at the end of the 

balance scale task further elicit the extent of their conceptual knowledge, in the event of 

children not giving any explanations during the balance scale task, and measures the 

extent of their explicit knowledge about the concepts of weight and distance with regard 

to the balance scale task. 
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Table 3.3: Criteria for coding RR levels on the balance beam task 

RR Level Number of beams balanced Initial Placement of beam Verbal explanations 

offered 

Implicit Successfully balances 2 of 3 

symmetrical beams, and at least 4 of 6 

asymmetrical beams 

No bias in initial placement across the 

beams (e.g. initially places the beams in the 

geometric centre for less then 5 of the 9 

beams) 

No explicit explanations 

offered 

Implicit 

Transition 

Successfully balances 1 of 3 

symmetrical beams at most, and at best 

2 of 6 asymmetrical beams 

No bias in initial placement across the 

beams (e.g. initially places the beams in the 

geometric centre for less then 5 of the 9 

beams) 

No explicit explanations 

offered 

Abstraction 

Non-Verbal  

Successfully balances at least 2 of 3 

symmetrical beams, and at best 2 of 6 

asymmetrical beams 

Initially places the beam in the geometric 

centre for at least 6 of the 9 beams 

No explicit explanations 

offered 

Abstraction 

Verbal  

Successfully balance all symmetrical 

beams, and 2 or less asymmetrical 

beams 

Initially places the beam in the geometric 

centre for at least 6 of the 9 beams 

At least two explicit 

Weight / centre based 

explanations offered 

Explicit 

transition 

Successfully balances all symmetrical 

beams, and 3 or more asymmetrical 

beams 

Initially places the beam in the centre, with 

adjustment to place heavier side closer to 

the fulcrum, for at least 3 of the 6 

asymmetrical beams   

At least two explicit 

Weight/centre based 

explanations offered 

E3 Successfully balances all symmetrical 

beams, and 4 or more asymmetrical 

beams 

Initially places the beam in the centre, with 

adjustment to place heavier side closer to 

the fulcrum, for at least 3 of the 6 

asymmetrical beams   

At least two explicit 

explanations involving 

both weight and  two 

explicit explanations 

involving distance 
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Table 3.4: Criteria for coding RR levels on the balance scale task 

RR level Number of balance 

configurations achieved 

Placement Explanations 

Implicit Produces both symmetrical  and 

asymmetrical  balance 

configurations  

Produces both 

symmetrical and 

non-symmetrical 

arrangements on 

the scale 

No explicit explanations offered 

at all, weight and distance 

questions may be answered, but 

without explicit explanation 

Implicit 

Transition 

Produces 2 or less symmetrical 

configurations, no successful 

asymmetrical configuration  

Produces 1 or less 

non-symmetrical 

configurations  

No explicit explanations offered, 

can answer weight and distance 

question correctly 

Abstraction 

non-verbal  

Produces 2 or more symmetrical 

configurations, no successful 

asymmetrical balance configuration 

Produces 1 or less 

non-symmetrical 

configurations 

No explicit explanations offered, 

can answer weight but not 

distance question correctly  

Abstraction 

verbal  

Produces 2 or more symmetrical 

configurations, no successful 

asymmetrical balance configuration 

Produces 1 or less 

non-symmetrical 

configurations 

At least one explicit Weight 

based explicit explanation 

offered, can answer weight but 

not distance question 

Explicit 

transition 

Produces 2 or more symmetrical 

configurations, and more then 1 

asymmetrical balance configuration 

Produces  more 

then 1 non-

symmetrical 

configurations 

At least one Weight based 

explicit explanation offered, can 

answer weight and distance 

questions 

E3 Produces 2 or more symmetrical 

configurations, and more then 1 

asymmetrical balance configurations 

Produces both 

symmetrical and 

non-symmetrical 

configurations on 

the scale 

At least one explicit Weight and 

one explicit distance based 

explanation offered, can answer 

both weight and distance 

questions 
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Reliability of the coding schemes 

 

To ensure the reliability of the coding schemes for verbal explanations and RR levels, a 

second coder recoded the verbal explanations and RR levels on the two balance tasks. 

Table 3.5 shows significantly high levels of agreement both in terms of coding verbal 

explanations, and assigning RR levels for both the balance beam task and the balance 

scale task.  

 

Table 3.5: Reliability of coding of verbal explanations and RR levels for the 1-to-1 

counting principal 

Task Level of Agreement of 

Verbal Explanations 

(Kappa Figure in brackets) 

Level of Agreement of 

Verbal Explanations 

Balance Beam Task  91.35% agreement (Kappa 

= .896, p < .001) 

88.88% agreement (Kappa 

= .864, p < .001) 

Balance Scale Task 85.1% agreement (Kappa 

= .821, p < .001) 

77.77% agreement (Kappa 

= .727m p < .001) 
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Results 

 

The results are split into 2 sections – (1) Children’s representational levels across the 2 

balance tasks (2) Verbal explanation offered by children across both tasks 

 

1. Children’s representational levels across the 2 balance tasks 

 

Figure 3.4 below shows the distribution of representational levels on the two tasks. An 

initial perusal indicates that children do not show the same patterns of representational 

level on both tasks, with children being most likely to show Explicit transition 

representational levels on the balance scale task, with a much more even distribution of 

representational levels on the balance beam task.  

 

Figure 3.4: Percentage of children allocated to each RR level on the balance scale 

and beam tasks 
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Table 3.6 below shows that very few children in fact showed the same representational level 

across both tasks. A chi square analysis χ² (25) = 52.12, p = .001, Cramer’s V = .358, gives a 

significant result, but only 22 out of 84 children showed the same representational level across 

both tasks.  

Table 3.6: Crosstabulation of children’s RR levels on the balance scale and  balance 

beam tasks 

 Implicit (Balance 

scale task) 

Implicit 

Transition 

Abstraction 

Non Verbal 

(E1) 

Abstraction 

Verbal 

Explicit 

Transition 

E3 

Implicit 

(Balance 

beam task) 

3 0 2 1 6 2 

Implicit 

Transition 

1 0 4 1 1 0 

Abstraction 

Non Verbal 

(E1) 

4 3 2 2 8 0 

Abstraction 

verbal 

1 0 1 6 13 1 

Explicit 

Transition 

0 0 1 2 6 0 

E3 1 0 0 1 6 5 

 

By collapsing the levels using a simple implicit-explicit dichotomy (with Abstraction 

nonverbal being classified as implicit, due to the fact that no explicit explanations are 

given) a further indication is given that children tend to have the same representational 

levels across both tasks (Table 3.7, χ² [1] = 15.5, p < .001, phi = .445). A majority of 

children showed the same basic type of representational level across both tasks (e.g. an 

implicit or an explicit level). However, a significant proportion of children were 
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classified as implicit for the balance beam task were found to have explicit 

representational levels on the balance scale task. A large part of this finding seems to be 

due to the fact that so many children were classified at explicit transition level on the 

balance scale task. Is it simply due to differences in performance on the 2 tasks, or do 

children show different levels of verbal explanations on the 2 tasks? 

Table 3.7: Crosstabulation of children’s implicit and explicit RR levels on the 

balance scale and balance beam tasks 

 Implicit Representational level 

for the balance scale task  

Explicit representational level 

for the balance scale task 

Implicit Representational Level 

for the balance beam task 

19 21 

Explicit Representational level 

for the balance beam task 

4 40 

  

 

2. Verbal explanation offered by children across both tasks 

 

Children’s verbal explanations, alongside their performance on the task, form the basis for 

coding children’s representational levels. The successful application of the same coding 

scheme across both the balance scale and balance beam tasks provides initial evidence for the 

validity of the coding scheme, as children’s verbal explanations were all coded across both 

tasks into one of the categories in the coding scheme (Table 3.2). 

 

Of specific interest when comparing children’s explanations across the 2 tasks is whether or 

not children’s most complex explanations were the same across the two tasks. Following a 

prediction of the RR model, if children have access to explicit explanations (includes explicit 

weight and distance explanations) on one balance task, these same explicit explanations should 

also be available for the other balance task. Table 3.8 below shows the most complex 
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explanations offered by children on both tasks. It is clear that children who offered weight 

explanations on one of the balance tasks were highly likely to also provide weight explanations 

on the other tasks, χ² (20) = 43.46, p = .002, Cramer’s V = .319. For the implicit weight and 

implicit distance categories, it is notable that children who did offer this explanation on the 

scale task were more likely to show the same category as the most complex explanation on the 

balance beam task then the other category.  

 

 

Table 3.8: Crosstabulation of the most complex explanations offered by children on the 

balance scale and the balance beam tasks 

 Implicit 

(balance 

scale task) 

Implicit 

Weight 

Implicit Distance Middle Weight Distance Weight and 

distance 

Implicit 

(balance 

beam task) 

0 1 0 0 0 0 0 

Implicit 

weight 

0 5 4 0 4 1 0 

Implicit 

distance 

0 1 0 0 2 2 0 

Middle  0 2 0 1 2 2 0 

Weight 0 3 2 0 27 13 0 

Distance 0 0 0 0 8 4 0 

Weight 

and 

distance 

0 0 0 0 0 0 0 

 

 

By taking the same approach as looking at the representational levels in terms of implicit and 

explicit representational levels, it is clear from Table 3.9 that a majority of children who gave 

at least one explicit explanation on one task give at least one explicit type explanation on the 

other balance task (χ² [1] = 16.73, p <.001, phi = 0.457). Thus, the two balance tasks seem to 

elicit similar levels of verbal knowledge, along the implicit-explicit continuum. This leads to 

the conclusion that the two tasks elicited similar levels of verbal knowledge, in spite of the 

differences in the apparatus, and in terms of the task (e.g. because children had differing 
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opportunities to provide explanations across the two tasks). Children who have access to 

explicit verbal knowledge on one task also have access to that explicit verbal knowledge on the 

other task, acting as a validation of the application of the coding scheme across both tasks, and 

acting as support for the prediction of the RR model that explicit knowledge, once achieved 

within a domain, should be available to other intra-domain tasks.    

 

Table 3.9: Crosstabulation of implicit and explicit weight explanations offered as the 

most complex form of explanation on the balance scale and balance beam tasks  

 Implicit explanations offered 

(balance scale task) 

Explicit explanations offered 

(balance scale task) 

Implicit explanations offered 

(balance beam task) 

11 9 

Explicit explanations offered 

(balance beam task) 

8 59 
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Discussion 

 

The discussion focuses on the following points: (1) representational levels as a measure of 

knowledge for a domain. (2) Generalisation of knowledge across tasks. 

 

1. Representational levels as a measure of knowledge for a domain 

 

The first aim of this experiment was to explore whether representational levels derived from 

one task could be used as a measure of knowledge for the domain on which a task is based – 

does a representational level derived from a balance beam task tell us about children’s general 

level of knowledge for the domain of balance? It is important to note that the initial 

development of representations within the RR model is thought to be task-specific, as initial 

representations are “encoded in procedural form” (Karmiloff-Smith, 1992, p. 20). If these are 

the limits of knowledge for implicit representation, it follows that on different tasks for the 

concept of balance the same restrictions should apply, and they should similarly be implicit in 

their representational levels. Table 3.7 indicates that this seems to be the case. Simply using 

the implicit-explicit dichotomy of representational levels, children tended to show the same 

type of representational level on the same balance task. Table 3.6 showed a weaker association 

when focusing on specific representational levels – for example children might show 

abstraction verbal representational level on the balance beam task, and explicit transitional 

levels on the balance scale task. It seems therefore that task and or perceptual characteristics, 

as suggested by Messer et al.. (in print) may play some role in determining which specific 

representational level will show on a specific task. Regardless of the type of task though, 

children seem likely to show the same type of representational level in terms of the implicit-

explicit dichotomy.  

 

It follows therefore that this provides evidence that the levels of the RR model may be thought 

of as a measure of a child’s knowledge for the domain of balance – and that by focusing on 

developing children’s representations based on one task, children’s general knowledge for the 

domain of balance is also being developed. This provides a view of how children’s knowledge 

can develop from a simple task, to the point where they have generalisable knowledge, and the 
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levels of the RR model begin to have the same type of utility as Piagetian stages, in terms of 

being able to predict children’s likely level of knowledge for a task, though only with regard to 

a specific domain. This stands in contrast with other modern cognitive developmental models 

such as the Overlapping Waves model (Siegler, 1996) and the dynamic systems model (Thelen 

and Smith, 1994), which eschew stability in favour of looking at the importance of variability 

in development. In the current study children showed a high enough degree of similarity in RR 

levels, at the implicit-explicit level. Obviously if children showed the exact same 

representational level, this would be much stronger evidence of the children having access to 

the same representation to solve both balance tasks, and to access the same verbal knowledge. 

Certainly these findings indicate that children are not necessarily as variable as the overlapping 

waves model indicates. The current findings show a majority of children maintaining the same 

type of representational levels, in terms of whether they are implicit or explicit in nature, 

across 2 balance tasks within one session. There is therefore a need for a cognitive model 

which takes this stability in thinking across tasks within a domain into account – like the RR 

model does. 

 

 

2. Generalisation of knowledge across tasks 

 

The second, related issue for this experiment was the generalisation of knowledge. Pine et al.. 

(2003) noted that children were able to predict whether or not they would be able to balance 

the beams, prior to having explicit representations. This provides evidence that children have 

access to knowledge about the concept of balance, even prior to displaying explicit 

representations for the balance beam task. This study provides further evidence in support of 

the notion that children have access to knowledge which they can apply across different types 

of balance task. A majority of children provided explicit explanations on both tasks – thus 

showing that they could apply explicit knowledge to other tasks within the domain of balance 

(Table 3.9). The data seems less clear with regard to implicit explanations – it is not the case 

that a majority of children who used only implicit explanations on one task showed only 

implicit explanations on the other task. This finding may be explained by 2 factors – (1) An 

order effect, with children showing first use of explicit explanations on the second task they 
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were exposed to, (2) task characteristics, as children were given 9 beams, and therefore gave 9 

explanations for the balance beam task, whereas for the balance scale task, the number of 

verbal explanations was based on how many balance configurations the child produced. The 

evidence therefore seems to support Pine et al.’s (2003) findings that children can begin to 

generalise knowledge prior to having achieved fully explicit (e.g. E3) representational levels. 

In other words, the point at which children have generalisable knowledge, or knowledge that 

can be applied to different tasks within a domain is when they have explicit verbal knowledge 

– providing evidence that it may well be this form of knowledge which drives generalization. 

It is important to note that the “implicit weight” and “implicit distance” verbal explanation 

categories that emerged from the balance scale task were also applicable to the balance beam 

task. As Table 3.8 shows, though children may have given implicit weight explanations on 

both tasks, a majority of children gave explicit weight explanations on both balance tasks. 

Therefore, it is important to note that explicit verbal knowledge does not by any means 

indicate the end of a phase of development within a domain, as the verbal knowledge, though 

it may be accessible for other tasks within a domain, is not necessarily complete knowledge for 

that domain.  

 

These findings also help address the studies involving the RR model and generalisability in 

relation to drawing (Picard and Vintner, 2006, Barlow et al.., 2003, Hollis and Low, 2005). 

The findings from the current study indicate that it is verbal knowledge which is generalisable, 

and not “procedures” – this can explain Hollis and Low’s findings that children’s ability to 

draw counterfactual humanoid objects did not generalise to being able to drawing other types 

of counterfactual objects (e.g. try drawing a house that differs in some way from what they 

should normally look like). It is simply the case that children have access to the same verbal 

knowledge for different tasks within a domain, but not necessarily the same procedures. This 

makes sense within the RR model, where the initial “Level-I representations are bracketed, 

and hence no intra-domain or inter-domain representational links can yet be formed” 

(Karmiloff-Smith, 1992, page 20). The clear implication to be drawn from this is that the 

procedural-type knowledge may stay in format which is not available for access to other tasks. 

This knowledge is rather redescribed into a verbal format, with the initial procedural data 

remaining in the same format and unaccessible.    
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In general, these findings showed that children could access the same knowledge across both 

balance tasks. It adds a note of caution to the work of Tolmie et al. (2005), or more precisely 

the original description of the RR model by Karmiloff-Smith (1992), as children can show 

general access to verbal knowledge prior to E3. Therefore, the finding that children can apply 

knowledge across tasks within a domain is not an indication that children have reached the 

final point in achieving fully explicit representations for that domain. This finding is also at 

odds with the findings mentioned by Siegler (2006) with regards to the overlapping waves 

model and generalisation. This may well be due to the fact that studies involving the 

overlapping waves model tend to focus on strategy use (e.g. Siegler, 2002). Strategies may 

often be task-specific – there are no clear examples of strategies which may be used on both 

the balance scale and balance beam tasks used in this experiment for example. Nevertheless, it 

is clear that children do have access to the same knowledge on both tasks – and the utility of 

the RR model is clear as it is the only one of the contemporary cognitive developmental 

models (e.g. overlapping waves and dynamic systems models) which addresses this issue   

 

 

  Summary 

 

The aim of this study was to explore whether children’s representations captured knowledge 

for a concept, and look at generalisation of knowledge across balance tasks. Using a simple 

implicit-explicit dichotomy, children tended to show the same types of representational level 

across the 2 tasks, and similarly showed the same types of verbal explanations across both 

balance tasks. This provides clear evidence that representational levels can be used as a general 

measure of knowledge for a domain, and that children can and do show generalisation of 

knowledge to other balance tasks.  
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Chapter 4: Using the RR model to describe the development of 

children’s one-to-one principle for counting  
 

 

Introduction 

 

How do children learn to count? In this chapter, the focus shifts from the domain of 

balance to look at children’s representations for counting principles. The current research 

on children’s developing knowledge of number will briefly be recapped, and the 

advantages of applying the RR model will be outlined. Following this, 3 research 

questions are stated. (1) First, can the levels of the RR model be applied to describe the 

development of children’s representations for the 1-to-1 principle for counting? (2) A 

large part of this question involves looking at whether children show an ability to detect 

and explain counting errors before being able to count accurately themselves? (3) Finally, 

what role does pointing play in the development of representations for the one-to-one 

principle for counting? 

 

1. Children’s developing concepts for counting  

 

Gelman and Gallistel’s (1976) work provides the main basis for current research into 

children’s developing concepts for counting. They outlined 5 basic principles which are 

thought to underpin a valid counting system, which provides a logical underpinning for 

all more complex mathematical functions, as well as helping to provide a meaning for 

number. The first principle, which will be the focus of this chapter, is the one-to-one 

counting principle, which states that for every single object counted, a single counting 

term must be used. Gelman and Gallistel (1976) proposed that children had an innate 

concept of number. Further studies (e.g. Starkey and Cooper, 1980, Starkey et al, 1990, 

Wynne 1992, Clearfield and Mix, 1999) have focused on infants’ numerical abilities, to 

see whether or not they are in fact innate. This has lead to neglect in researching the 

developing concepts of older children – e.g. when they begin to use verbal and notational 

counting systems. How do these principles develop – how do children develop an explicit 

representation for the one-to-one counting principle, for example? Sophian (1998) has 
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stated that when studying children’s developing concept of number, competence on a task 

should not be the sole criteria used to measure children’s knowledge. Like the RR model, 

Sophian is interested in looking “beyond competence”. Similarly, both Baroody (1992) 

and Rittle-Johnson and Siegler (1999) advocate models which focus both on children’s 

understanding of a concept, alongside their ability to perform a task.  

 

1.1 Why apply the RR model to children’s representations for counting principles? 

 

Why apply the RR model to this area? There are clear parallels between the type of 

model proposed by Sophian (1998), and the approach laid out by Rittle-Johnson and 

Siegler (1999), and the RR model, insofar as it looks beyond children’s competence on a 

task, and looks at the development of children’s explicit knowledge. Second, as Ginsburg 

(1975) notes, the early development of concepts of number is mainly verbal in nature, 

and it is exactly this type of development of verbalisable knowledge which the RR model 

focuses on. Furthermore, the levels of the RR model allow a possible framework within 

which to study children’s developing representations for the counting principles, rather 

then simply focusing on whether or not they are innate.  

 

This provides an opportunity to apply the RR model to a domain apart from the domain 

of Balance. As was discussed in chapter 2, there is a need to explore the types of tasks 

and domains to which the RR levels can be applied. So far, the levels have only been 

applied in tasks which show signs of a marked U-shaped curve (e.g. Pine et al’s balance 

beam task, and the spelling task used by Critten et al, 2007). Do the levels, and indeed the 

process described generally by the RR model still apply when there is either a less 

prominent U-shaped curve (or no U-shaped curve at all) as children develop explicit 

verbal knowledge for the one-to-one principle? The current approach is also in keeping 

with Siegler’s (1996) statement that the focus of developmental psychology should be in 

describing and explaining the development by looking at everyday tasks, such as 

counting. The RR model specifically states a course of development of a concept 

whereby an ability to perform a task precedes explicit understanding of a concept – is this 

the case for the one-to-one principle for counting? 
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2. Can children detect and explain counting errors prior to being able to count 

accurately?    

 

Gelman and Gallistel (1976) have stated that children show competence in applying the 

one-to-one counting principle from an early age, though the “magic” experiment (where 

children had to guess the “winner” from a selection of sets, based on the numeric 

properties of the set, in comparison with the “winner” in a demonstration trial) gives an 

indirect view at best of children’s ability to employ counting principles accurately 

themselves. Following evidence that children were not in fact able to apply this concept 

to their own counting from an early age (e.g. Briars and Siegler, 1984, Baroody, 1984, 

Fuson and Hall, 1983), Gelman et al (1984) proposed a more complex model, whereby 

children have innate conceptual knowledge, which is masked by initial lack of procedural 

and utilization competence – e.g. they know the principle, but are unable to use it yet 

when they count themselves. 

 

To provide evidence for this approach, Gelman et al (1983) conducted an error detection 

study – by their reasoning, children should be able to detect errors in others’ counting, 

because of their knowledge of the one-to-one counting principle. This does not require 

any utilization competence, as all the child has to do is to monitor another person 

counting. Gelman et al (1984) state simply that “implicit” knowledge of the one-to-one 

principle governs the detection of errors. The RR model on the other hand states that 

implicit representations are based on behavioural mastery – e.g. the ability to detect 

errors in other’s counting, even if they cannot provide an explicit explanation to explain 

the error made. Therefore, children should be able to apply a principal accurately in their 

own counting prior to being able to detect errors in others’ counting. Gelman et al (1983) 

performed a study with 24 three and four year olds, who were asked to watch puppets 

counting arrays of between six and twenty objects. Some puppets counted correctly, and 

some made errors. Objects were either skipped over or counted twice. Gelman et al 

(1983) found that a majority of these children could detect counting errors. 
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Briars and Siegler (1984) on the other hand found that four and five year olds were much 

more likely to detect errors in others’ counting then three year olds. Younger children 

were much less likely to regularly reject real errors in counting than was found in Gelman 

and Merk’s (1983) study, though Gelman et al (1984) attribute this to procedural 

differences between the two studies. Gelman and Merks’ studies emphasised that the 

child knows more about counting than the puppets, which was not emphasised in Briars 

and Siegler’s study. They also gave children more then one opportunity to indicate 

whether the count was right or wrong. Briars and Siegler (1984) also looked at the 

abilities of the children to count, and concluded that actual counting skills preceded 

knowledge of underlying principles. That is to say, the ability to detect errors does not 

seem to precede their own ability to count, and therefore innate conceptions for number 

are not necessarily needed. They did not provide any great details on children’s ability to 

count however. 

 

Gelman et al (e.g. Gallistel and Gelman, 1992) and Briars and Siegler (e.g. Rittle-

Johnson, 1999) continue to assert the veracity of their viewpoints. Which one is in fact 

correct? The RR model includes implicit levels representations, whereby children should 

be able to detect errors, even though they cannot provide explicit explanations to describe 

the error made. This implicit representation involves behavioural mastery however. The 

implicit level involves “information (which) is encoded in procedural form” (Karmiloff-

Smith, 1992, p.20). In this case, the ability to detect errors would not precede being able 

to count accurately.  In order to find out whether this is in fact the case, an experiment 

will be carried out taking into account the methodological differences between the studies 

conducted by both groups. One important issue is that the sample sizes in the studies of 

Gelman et al (1983) and Briars and Siegler (1984) were relatively small – around 30 

participants in each experiment. A larger sample is necessary to achieve significant 

outcomes either way. As was noted above, the experiments conducted by Gelman 

involved telling the child that the puppet that was being taught was learning to count, so 

made mistakes, whereas in Briars and Siegler’s study, the children are told that the 

puppets know their numbers. In this study, the children will be told that the puppets are 

learning, so that they will point out errors if they think they are made, rather then thinking 



 114

that the puppet knows how to count so it must be correct. Another point noted by Gelman 

et al (1986) is that their tests were done in a very interactive way, so that many trials were 

conducted more then once, allowing a greater possibility that children would detect 

errors. In this study, for the error detection task, 2 puppets will be used. For each trial, 

one of the puppets will count accurately and the other will make a mistake (the children 

are not told this!). Therefore, for each array of objects, children will see accurate and 

inaccurate counting. This may provide a basis for detecting errors, but it eliminates the 

possibility of errors not being detected because children have not seen an example of 

accurate counting for an array of objects. This experiment will also have a greater focus 

on children’s own ability to count – do children truly detect errors in others’ counting 

before being able to apply the one-to-one counting principle in their own counting? 

 

3. What role does pointing play in the development of representations for the one-to-

one principle for counting? 

    

As well as looking at the development of children’s verbal knowledge of the counting 

principles, children’s hand movements whilst counting can also be analysed. In recent 

times, children’s gestures have been viewed as a source of information of children’s 

knowledge. Goldin-Meadow and Alibali (1993) have found that new and emerging 

concepts may be seen in children’s gestures prior to children verbalising the particular 

concept. The role of pointing in counting has been explored by Alibali and DiRusso 

(1999), and Graham (1999). Graham asked whether children honoured the 1-to-1 

principle for counting in their pointing prior to their verbal counting. The focus in 

Graham’s study was on “gesture-speech mismatches”, rather then focusing on whether or 

not children pointed accurately in accordance with the one-to-one counting principle, 

regardless of their verbal counting. Do children actually point accurately before they 

apply the one-to-one counting principle in speech, or do pointing and verbal errors 

coincide?  A further question that has not been addressed is the continuing role of 

pointing in children’s counting. Alibali and DiRusso (1999) note 2 possible roles played 

by pointing in learning to count: keeping track of the items counted, and co-ordinating 

between the counting words and the counted items. Graham (1999) raises the possibility 
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that children may point whilst counting “to reduce the cognitive load in acquiring the 

counting principles” (p. 336). If pointing does play an important developmental role in 

initial learning to count, do children continue to rely on pointing once they have achieved 

fully explicit representations for the one-to-one principle?  

 

Graham (1999) also conducted an error detection task to see if children were more likely 

to recognise errors in the 1-to-1 principle in pointing then in speech. This contrasts with 

the error detection task of Briars and Siegler (1984) which identified pointing errors as 

“pseudo errors”, which children tended to recognise – again this could be due to the 

procedural differences mentioned by Gelman and Merk (1986). Graham’s study used a 

sample of 2-4 year olds, and only a small set of objects (the biggest set was 6 items), so a 

replication would be desirable, with a wider range of sets. Furthermore, the error 

detection trials used by Graham (1999) were unnecessarily complicated, as there was no 

clear separation between trials where there are pointing errors, and trials where there are 

speech errors. They define the puppets’ counting in terms of the relation between the 

amount of number words and the amount of times children pointed, so that pointing 

errors coincide with speech errors. It is not clear therefore if errors detected are simply 

cases where the child has noticed the inappropriate pointing, or the inappropriate 

counting. The question to be asked here then is do children detect errors in pointing as 

“true” counting errors, even if they don’t impinge on the verbal counting being 

conducted? 

 

Summary 

 

The aim of this experiment is to begin to apply the RR model to children’s knowledge of 

the one-to-one counting principle number. Three sets of questions are asked to explore 

the beginnings of children’s representations for this principle: (1) Can the levels of the 

RR model be applied to children’s developing knowledge of the one-to-one principle for 

counting? (2) Do children learn to count accurately first, or can they detect and explicitly 

explain errors in others’ counting before they can count accurately themselves? (3) What 

role does pointing play in children’s developing representations for this principle?  
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Method 

 

Participants 

 

A convenience sample of 106 children was recruited from a nursery / junior school in 

Hertfordshire. This was a middle class school in a town near the University of 

Hertfordshire. Permission to conduct the experiment in the school was given by the head 

teacher, and consent letters were sent out to parents to sign. The sample comprised of 67 

females and 39 males, with an age range of 3 years 10 months to 6 years and 10 months 

(mean age = 65.67 months, standard deviation = 9.44). Three separate age groups of 

children were tested: children in the nursery (n= 21, mean age = 51.76 months, standard 

deviation = 3.93), children in the reception year (n=46, mean age = 63.65 months, 

standard deviation = 3.88), and children in year one (n=39, mean age =75.54 months, 

standard deviation = 2.98).   

 

Design 

 

Table 4.1: Design for the counting task and the error detection task 

 Counting task Error Detection Task 

Type of objects 

used 

2D (e.g. an array of 

objects on a page)  and 

3D objects 

2D (e.g. an array of objects on a 

page)  and 3D objects 

Numbers of objects 

used 

4,6,8,10, and 12 objects – 

both 2D and 3D (10 

trials) 

4,6,8,10, and 12 objects – both 2D 

and 3D (10 sets of trials) 

Number of counts 

per trial 

One count by the child The 2 puppets count each set of 

objects. One counts correctly, the 

other does not 
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Children were asked to perform two types of task, as described in Table 4.1 above. For 

the counting task, children were asked to count arrays of 2D or 3D objects. In the error 

detection task, they watched as two puppets each counted arrays of 2D and 3D objects. 

Each array was counted by both puppets, with one puppet counting correctly, and one 

puppet making a mistake for each array. The error detection task involved a total of 20 

counts being made by the puppets, with half of the counts containing mistakes, and half 

of the counts being accurate. On half the trials, the mistake was made in the first count, 

and in the other half, the error was made when the second puppet counted. It is 

emphasised to the children that the puppets need to learn how to count, so errors must be 

highlighted. This acts as a staunch against criticism that children might be unlikely, due 

to politeness, or some other factor, to point out a mistake made by the puppets. Four 

types of counting error were made (see Table 4.2), two involved verbal errors, and two 

involved gesture errors. Each type of error was made twice by one of the puppets during 

their counting, with 2 further examples of counting where a puppet made both a speech 

and a gesture error in the course of one count. This gave a total of 4 counts involving 

speech errors, four counts involving gesture errors, and a further 2 counts involving both 

speech and gesture errors. 

 

Table 4.2: Types of error made in the error detection task 

 Speech Error Gesture error 

Skip over an object Fail to count an object in speech Fail to point at an object 

Count an Object 

Twice 

Count an object twice in speech Point twice at an object 

 

The order of the counting and error detection tasks was varied, so that half the children 

performed the error detection task first, and half the children performed the counting task 

first. This was done to ensure no systematic biases became apparent – e.g. all the children 

pointing whilst counting, after witnessing the puppets pointing while they counted in the 

error detection task. 
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Materials 

 

A variety of 2D arrays and 3D objects were used as counting materials (see appendices 

for samples of the 2D arrays, and description of the 3D objects used). 2D arrays were 

comprised of laminated pages with homogeneous rows of common objects (fruits, 

vegetables, pets, circles, squares and triangles). 3D objects included toy soldiers, 

dominos, wooden blocks and small circular counters, all items that a child would be 

familiar with. Children were shown arrays of 4, 6, 8, 10, and 12 objects. Children were 

given 10 counting trials. These consisted of 5 sets of 2D arrays, and 5 sets of 3D arrays. 

Two hand puppets were also used in this experiment – a puppy and a kitten. Each of them 

performed in the error detection task, and the children were asked to explain to the puppet 

if they counted correctly, or if they made an error, what that error was.   

 

Procedure 

 

Children were taken from the classroom and told that they would be playing counting 

games with puppets. The child was sat down at a chair in front of a Table, facing a 

camera. The child was introduced to the two puppets (a dog and a cat puppet). The child 

was told that the 2 puppets wished to learn about counting, and wanted the child to help 

them. They were going to do some counting, and wanted the child to watch them and tell 

them if they were counting properly. They also wished to watch the child do some 

counting to see how he/she did it. The child was shown the camera, and told that the 

games were going to be recorded so that the puppets would be able to watch them again 

later. The child was asked if they were happy to participate in the experiment, and 

understood what had been told to them. The camera was then started and the experiment 

commenced. 

 

Counting Task 

 

Children were first presented with either the counting or the error detection task. For the 

counting task, children were presented with 2d and 3d arrays and were asked simply to 
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count the objects. Children were not asked how many objects there were; cardinality was 

not addressed. The child was neither encouraged nor discouraged from counting verbally 

or from gesturing. If the child stopped before they had finished counting, or became 

distracted, they were asked “could you count them all for me please”. The children’s 

performance on the task was coded in terms of the number of trials where errors were 

made, and the types of error were noted. Errors in counting came in 3 categories – errors 

in verbal counting, errors in pointing, and errors involving both verbal and pointing errors 

in a single trial. Children’s spontaneous use of pointing whilst counting was also coded.  

 

Error detection task 

 

For the error detection task, the child was told to watch the two puppets as they counted, 

to see if they counted “properly”. The experimenter had the puppet on his hand and the 

experimenter counted aloud in a puppet’s voice. The puppet pointed to each object as 

they counted. When a puppet had finished counting an array, the child was asked whether 

the puppet had counted properly. If they stated that the puppet had not counted properly, 

they were asked to explain to the puppet what they had done wrong. The puppet could 

either make an error in speech or in gesture. Speech errors involve the puppet skipping an 

object in their verbal counting or counting one object twice, with no accompanying 

gesture error. Gesture errors involve the puppet pointing twice at an object, or skipping 

an object in their pointing, without any errors in the verbal counting. Two of the 10 trials 

involve both speech and gesture errors, where the puppet skips an object in their count 

both verbally and in gesture, or counts an object twice, both in their gesture and their 

speech.   

 

When both tasks were completed, the child was told that the experiment was finished. 

They were thanked for their participation, and asked if they had any questions, before 

being escorted back to their classroom. 
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Coding schemes 

 

Coding verbal explanations offered on the error detection task 

 

A set of categories was generated based on Karmiloff-Smith’s R-R model (see Table 

4.3), and on explanation categories previously used for tasks to which the RR model has 

been applied (e.g. Pine et al, 1999). This basically means that explanations were broken 

down into Implicit type explanations (where children could not state the nature of the 

error), and Explicit type explanations (where children could verbally state the nature of 

the error made, in relation to the concept being studies). Two specific subtypes of implicit 

explanations were identified during testing, and based upon initial viewing of the 

experiment tapes. One type involved the child repeating the count, including the error 

made. The second type involved simply counting, and demonstrating how it should be 

counted, omitting the error.  

 

  

 

Table 4.3: Coding scheme for verbal explanations offered on the error detection 

task 

Category Example 

None No error detected 

Implicit No explanation offered, don’t know, “it’s 6”  

Repetition Repeats the puppet’s counting, including gesturing, and repeating the 

error 

Demonstration Counts the set accurately, gesturing 

Explicit “he counted too many/too few”, “he skipped that one” “he didn’t point 

properly” “he pointed two times” “she counted on” “she counted that 

one twice 
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Coding children’s RR levels for to one-one counting principle 

 

Using children’s verbal explanations on the counting errors, alongside their ability to 

perform the counting task, a set of criteria for coding children to RR levels can be set out. 

Table 4.4 below indicates four levels, ranging from children who have yet to achieve 

behavioural mastery, through to children who can count accurately, and explicitly explain 

errors made in others’ counting. 

 

 

 

Table 4.4: Coding scheme for RR levels for the one-to-one principle for counting 

Representational 

Level 

Performance on the 

Counting Task 

Verbal explanations offered on the 

error detection task 

Pre-implicit 1 or more counting 

errors made 

No explicit verbal explanations 

offered 

Implicit No counting errors 

made 

No explicit verbal explanations 

offered 

Abstraction Verbal 1 or more counting 

errors made 

At least one explicit explanation 

offered 

E3 No counting errors 

made 

At least one explicit explanation 

offered 

 

 

 

 Inter-rater reliability for verbal explanation codings and RR levels on the one-to-

one counting principle 

 

 

For the 1-to-1 counting principle tasks, a second coder viewed and coded 9 children’s 

explanations for the error detection task, according to the verbal explanation coding 

scheme given. Using this data, and a measure of performance given to them, the second 

coder assigned each of the children a representational level( see Table 4.5). For the verbal 
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explanations offered, there was a 92% level of agreement between the 2 (46 out of 50 

verbal explanations agreed on). Similarly, for RR levels, there was a 100% level of 

agreement (9 out of 9). This finding helps to validate the verbal and representational level 

coding schemes for this particular task by affirming the reliability of the coding schemes 

used.    

 

Table 4.5: reliability of coding of verbal explanations on the 3 balance tasks, and RR 

levels on the unconstrained balance task 

Task Level of agreement on verbal explanations 

(Kappa statistic in brackets) 

Level of agreement on RR levels 

(Kappa statistic in brackets   

 92% (Kappa = .9, p < .001) 100% (Kappa = 1, p < .001) 
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Results 

 

The results are split into 2 sections, based on the 3 main questions broached in the 

introduction: (1) Children’s ability to detect errors in others’ counting in relation to their 

own ability to count (2). Application of the levels of the RR model to the one-to-one 

principle for counting. (3) Children’s ability to honour the one-to-one principle in 

pointing and in counting, and their detection of others’ pointing errors whilst counting. 

For the first 2 sections, only errors in speech within the error detection task are focused 

on, with pointing errors in the detection task being focused on in the third section. 

 

 

 

1. Children’s ability to detect and explain other people’s errors in relation to 

their own ability to count  

 

This section will focus first on children’s ability to count in relation to their ability to 

detect errors, and then focus on their ability to count in relation to the verbal explanations 

they give when explaining errors.  

 

1.1 Children’s ability to count in relation to their ability to detect errors in 

others’ counting 

 

Figure 4.1 below shows children’s ability to count in relation to their ability to detect 

errors in others’ counting. Children who made one error or less in their own counting 

were highly likely to detect speech errors made during the error detection task (χ² [12] = 

42.24, P < .05), whereas children who made many errors were unlikely to detect these 

errors.  
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Figure 4.1: number of counting errors made by children in the counting task, in 

relation to their ability to detect speech errors in the error detection task 
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To emphasise this point, the youngest age group, the nursery class children, are focused 

on. Figure 4.2 below shows that only one child at this age group detected four speech 

errors made by the puppet in the detection task. This child made no counting errors 

themselves. There were three children who detected three speech errors made by the 

puppets in the detection task, without being able to count accurately themselves. 

However, the main pattern emerging from this group is of children not being able to 

count accurately themselves, and not being able to detect errors.  
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Figure 4.2: number of counting errors made by nursery class children in the 

counting task, in relation to their ability to detect speech errors in the error 

detection task 
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1.2 Children’s ability to count in relation to their ability to explain errors in 

others’ counting 

  

Figure 4.3 below shows the verbal explanations provided by children in relation to their 

own ability to count accurately. This distinction is based on the most complex 

explanation offered by children (see Table 4.3). If children offered at least 1 explicit 

explanation, they were coded as having provided an explicit explanation as the most 

complex explanation, if not they were coded as having only given implicit explanations. 

The categories of “repetition” and “demonstration” are interpreted as implicit type 

explanations. Children who made no counting errors in their own counting were more 

likely to offer explicit type explanations in the error detection task, whereas children who 

made multiple counting errors tended not to offer explicit explanations (χ² [6] = 14.59, p 

< .05, Cramer’s V = .393). This fits in with the data on children’s ability to detect errors. 
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Figure 4.3 Number of counting errors made by children in the counting task by 

most complex explanation given in the error detection task 

number of counting errors made by the children in comparison with the most 

complex explanation offered on the error detection task
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2. Applying the levels of the RR model to the one-to-one principle for counting 

 

Table 4.4 (in methods section) shows the general patterns of performance on the counting 

task in relation to children’s ability to detect and explain errors in other people’s 

counting. The major patterns of the levels can be detected in the current study. First, there 

are pre-implicit children, who offer no explicit verbal explanations, and make multiple 

errors when they count. These errors involve either counting an object twice, or skipping 

an object whilst counting. The second group identified are implicit level children, who 

show behavioural mastery without explicit knowledge, which is represented by children 

who made no counting errors but gave only implicit type explanations in the error 

detection task. There were seventeen children who showed this pattern of performance 

(see Figure 4.4). Nineteen children showed a pattern of performance in keeping with the 

Abstraction Verbal level – explicit verbal explanations, though accompanied by counting 

errors. Finally, 50 children showed E3 levels of behaviour, representing a fully explicit 

knowledge of the principal, coupled with no counting errors made. The distribution of 

levels was tested using a chi square, and a significant association was found (χ² [n=106, 

df =6] = 39.3, p < .05, Cramer’s V = .431). Younger children were more likely to be at 
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lower levels in the model, whereas for the older children, a majority displayed fully 

explicit knowledge. This fits in with the developmental model set out by Karmiloff-Smith 

(1992), with a majority of year one children showing fully explicit representations for the 

one-to-one counting principle. 

 

Figure 4.4: Distribution of RR levels by age group 
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3. The role pointing plays in children’s developing representations for the one-to-

one counting principle 

 

This section will focus first on children’s own pointing while they count – looking first at 

children’s accuracy in speech and in pointing whilst counting. The focus will then shift 

onto children’s ability to detect pointing errors in other people’s counting. 

 

3.1 Children’s accuracy in speech and in pointing whilst counting 

 

This section focuses on whether or not children’s ability to apply the one-to-one principle 

in their pointing emerges prior to them applying it accurately in their verbal counting. 

Children’s spontaneous pointing in the counting task was coded. Table 4.6 indicates that 

the nursery children made as many gesture errors as speech errors. For this group, many 
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children made multiple mistakes in a single trial. There were 27 (out of a total of 51 

instances where counts included an error for the nursery group) instances of nursery 

children making more then one error in a single count, as opposed to 8 instances for 

reception children, and no instances at all in year one children. It seems that this young 

group of children often make both counting and pointing errors in a single trial, 

indicating that children don’t honour the one-to-one principle in their pointing or in their 

counting at this early point in development. 

 

 

Table 4.6: Number of counting mistakes made by age group: (percentages by age of the 

total amount of errors made by that age group) 

 

Age Group Number of 

Mistakes Made 

Number of participants who made 

counting errors 

Gesture errors Speech errors 

Nursery 79 17 45.6% 54.4% 

Reception 43 15 25.6% 74.4% 

Year one 9 8 11.1% 88.9% 

Total 131 40 37.4% 62.6% 

 

 

 Looking at the 2 older groups of children, gesture errors become much less prevalent, in 

proportion with speech errors. This coincides with the children making many fewer errors 

in general however. Therefore, though the older groups of children are less likely to make 

pointing then speech errors, there is no definitive proof that the youngest children are less 

likely to make pointing then speech errors in their counting. Figure 4.5 below shows the 

prevalence of pointing used by children in the counting task. It is clear that a majority of 

children point spontaneously in the counting task. 

 

 

3.2 Children’s pointing in counting in relation to R-R level 

 

Figure 4.5 looks at children’s use of pointing in relation to their representational levels. A 

majority of children at all levels point for a majority of trials, though there is some 
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evidence that at E3, a certain group of children stop pointing whilst counting for a 

majority of trials. Figure 4.5 shows more than ten children who were at the E3 level who 

pointed for less than 3 of the trials (e.g. less than a third of the trials) in the counting task. 

This indicates that once children have explicit representations, they may be less 

dependent on pointing to aid them in their counting. 

 

Figure 4.5 How often children pointed in the counting task, in relation to their RR 

level 
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3.3. Detection of errors in pointing made by others whilst counting 

 

In the error detection task, children were unlikely to detect trials which included a 

pointing error on the part of the puppets as being wrong, with less then a quarter of the 

gesture errors being detected (see Figure 4.6 below). Children were more likely to detect 

speech errors then gesture errors. Children were also much more likely to detect errors in 

trials where there was both speech and pointing errors then trials where there are only 

pointing errors.  
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Figure 4.6: Frequency of Speech, Gesture and speech and gesture errors on the 

error detection task, and how often they were correctly identified  
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Figure 4.7 below further breaks down the data according to age. The youngest children 

failed to the greatest extent to detect gesture errors, and were also less likely to detect 

speech errors then the older children. The older groups were much more accurate in 

detecting speech errors, but not so much so in detecting gesture errors. In terms of 

absolute numbers of errors detected, the older two groups of children were found to be 

more likely to detect speech errors (χ² [n= 105, df = 8] = 56.11, p < .05, Cramer’s V = 

.514) then the nursery children, but there was no significant association for gesture (χ² [8] 

= 12.43, p = .133, Cramer’s V = .242), as they both seemed equally likely not to detect 

gesture errors as counting errors 
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Figure 4.7: Percentage of errors in the error detection task detected by children by 

class 

Percentage of different types of errors detected, by class
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Discussion 

 

This discussion focuses on 3 points – (1) the applicability of the levels of the RR model 

to the one-to-one counting principle. (2) Children’s ability to detect and explain errors’ in 

others’ counting in relation to their own ability to count. (3) The role of pointing in 

children’s developing representations of the one-to-one counting principle.  

 

1. The applicability of the levels of the RR model to the one-to-one counting 

principle 

 

This study was a first step in applying the levels of the RR model to the domain of 

mathematics. It shows that the levels of the RR model are not uniquely applicable to the 

domain of balance (Pine et al, 2001, see also Critten et al’s, 2007 work applying the 

levels of the RR model to spelling tasks). Evidence that these levels can be applied to 

different types of tasks, in different domains continues the process of validating the RR 

model as a general model for cognitive development. This is important as, though 

Karmiloff-Smith (1992) discussed the applicability of the RR model across various 

important domains (e.g. chapters in beyond modularity focusing on language, physics, 

maths, and notation for example), most of the experiments discussed involved a post-hoc 

application of the RR model to explain the findings, rather than an experiment being set 

out to see whether or not the levels could actively be applied to a child’s developing 

representation for a domain. 

 

In the current study, two separate tasks were used to assess children’s representational 

level for the one-to-one counting principle. A counting task was used to assess their 

ability to accurately apply this principle in their own counting. An error detection task 

was used to measure their ability to verbalise this concept by explaining errors made in 

relation to the one-to-one principle.  These were straightforward tasks, following 

Siegler’s (1996) dictum that simple, everyday tasks should be used to truly capture how 

children’s thinking develops.  
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The levels of the RR model were clearly applicable to this concept. It is interesting to 

note that a “pre-implicit” representational level was codable in this study – which has not 

been possible with the balance tasks (though see Critten et al, 2007 – pre-implicit 

representational levels have also been applied for spelling and reading tasks). For this 

principle, children do not have innate “implicit level” representations. They cannot count 

accurately, and do not provide explicit verbal explanations in the error detection task, as 

they do not in fact detect any of the errors. This has clear implications for the next 

section, as it provides clear evidence that children do not have the ability to detect and 

explain errors in other people’s counting prior to being able to count themselves.  The 

levels depict the development of explicit verbal knowledge of the one-to-one principle, 

moving from a state where children cannot explain the errors made by the puppets in 

their counting, to a point where they can explicitly state the error made by the puppet, 

either by counting one object twice, or by skipping over an object. The verbal 

explanations provided by the children provide a clear signal of explicit verbal knowledge 

of this principle.    

 

The “U-shaped curve” in terms of performance was less prominent in this particular 

study than in Pine et al’s work – that is to say, Pre-implicit and E3 representational levels 

were clearly prominent for the youngest and oldest groups of children, but the abstraction 

verbal level was not as prominent as has been found in studies using the balance beam 

task (e.g. Pine et al, 1999, where in fact a majority of children are at the abstraction 

nonverbal and abstraction verbal levels). This is important insofar as the levels of the RR 

model are not limited in only being applicable to tasks which involve this type of 

pronounced U-shaped curve. The lack of a prominent U-shaped curve indicated that for a 

majority of children, the first abstract / explicit representation may not necessarily be 

inaccurate in the way that seems to be the case for the domain of balance. Another 

important aspect of the current experiment is that separate tasks were used to measure 

their ability to apply the one-to-one counting principle in their own counting, and their 

ability to verbalise this principle. This marks a different approach to those used by Pine et 

al (2001), where children’s ability to balance the beams and their verbal knowledge was 
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ascertained using one task. The possibility was raised in the first experimental chapter 

that perhaps the RR levels could only be applicable to tasks where there was a clear and 

appreciable link between performance on the task and levels of verbal knowledge. The 

approach of this particular experiment shows one way that the levels of the RR model can 

be applied to domains in which U-shaped curves are less predominant, by using different 

tasks to measure performance and verbal knowledge.   

 

One final point is that by applying the levels of the RR model is the implication that the 

process of redescription described by Karmiloff-Smith, and the process of change of the 

RR model can occur within this domain. The next step obviously is to provide evidence 

that this process of redescription does actually occur as Karmiloff-Smith (1992) describes 

it.  

 

 

2. Children’s ability to detect and explain errors’ in others’ counting in relation to 

their own ability to count 

 

The question of whether children could detect and explain errors in others’ counting has 

clear theoretical implications. Gelman et al (e.g. 1982) stated that children’s ability to 

detect errors arose from innate principles, which could be used to detect errors, though 

they could not yet be utilised properly by children. Briars and Siegler (1984) on the other 

hand found that children’s ability to detect errors did not precede their own ability to 

count.  

 

The current study took into account the methodological differences between Briars and 

Siegler’s (1984) approach, and that of Gelman et al (1982). The approach of Gelman et al 

(1982) was taken, whereby children were told that the puppets were only learning to 

count, so would likely to make mistakes. Yet, the evidence of this study did not 

correspond with their findings. There was no evidence that children could consistently 

detect errors in others’ counting prior to being able to count accurately themselves. 
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Gelman et al (1984) states that children’s ability to detect errors stems from “implicit” 

knowledge of the one-to-one counting principle, which is not yet verbalisable. The 

comparison is made to grammar – children can recognise grammatical errors, even if they 

cannot describe the grammatical rule in question. This comparison is problematical as 

this ability to detect grammatical errors does not precede children’s ability to speak, and 

employ grammar themselves. In the same way, the evidence from this study indicates that 

children do not begin to detect errors in others’ counting prior to being able to count 

themselves. It is interesting to note that within the RR model, an Implicit representational 

level is found with regards to the one-to-one principle. At this stage, children can detect 

errors in others’ counting, but cannot yet verbally explain the error, which is of course a 

complete contrast to the meaning of “Implicit” for Gelman. There is clear evidence of a 

pre-implicit representational level existing, which is particularly prevalent among the 

nursery school children, indicating strongly that the ability to detect errors does not 

precede the ability to count accurately. 

 

The evidence of this study, though only cross-sectional indicates that children’s 

developing representations of the one-to-one counting principle correspond to the path set 

out by the RR model (see Pine et al 2003). There is even evidence of an “abstraction 

verbal” representational level, e.g. a downturn in children’s own ability to perform a 

count accurately, which is thought to accompany first use of explicit knowledge of the 

one-to-one counting principle. It is interesting to note that within this study, only 4 

representational levels were necessary, with the most interesting inclusion being the pre-

implicit level, which was most prominent amongst the nursery children. 

 

What does this tell us about whether or not children have innate concepts of number? The 

RR model states that innate predispositions can have an influence on developing 

representations. The evidence from Starkey et al (1990) may indicate that infants are 

predisposed to certain numerical aspects of the world, but this does not go so far as 

providing an “implicit” set of counting principles for children to utilise in their own 

counting. Gelman et al (1986) move towards talking about innate abilities in terms of 

“constraints” on counting - which are more in line with the “innate predispositions” that 
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Karmiloff-Smith (1992) describes. Though children may be born with these innate 

predispositions, there is still an ongoing process of development that needs to be 

described, and the results of the current study show that the RR model may describe the 

development of these principles. That is to say, if there are innate components, they are 

more developmentally primitive than the implicit level of knowledge laid out within the 

RR model. 

 

 

3. The role of pointing in children’s developing representations of the one-to-one 

counting principle 

 

Two sets of questions are asked in relation to children’s to the role of pointing in 

counting. The first relates to children’s own use of pointing – do they honour the one-to-

one principle in their pointing prior to honouring it in their counting? Do children 

continue to use spontaneous gesturing once they have achieved fully explicit 

representations for the principle? The second set of questions relates to children’s ability 

to detect gesture errors – do they detect them as errors, or are they only detected when 

accompanied by verbal errors? 

 

3.1 Children’s pointing whilst counting 

 

In this experiment, children were not specifically asked to point as they counted, yet a 

majority did so spontaneously (see Fuson, 1988; Gelman, 1980). The nursery children are 

the most interesting group here, as a majority of them are yet to apply the one-to-one 

principle consistently in their own counting. A majority of this group made multiple 

errors within a single count. – i.e. they pointed at an object twice, and counted it twice. 

Therefore, it seems that young children make both pointing and counting errors, 

indicating that they do not initially honour the one-to-principle in either format. On the 

other hand, for the reception and year one children, counting errors are much more 

common then pointing errors, indicating that errors made by these children are purely 

related to their counting, not to their pointing. Therefore, there is some evidence to 
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suggest that children may indeed honour the one-to-one counting principle in pointing 

prior to being able to honour it in speech. How do these relate to the findings of Graham 

(1999)? Graham focuses in her analysis on “gesture-speech mismatches”. Her findings 

were that younger children tended to make more “gesture-speech mismatches”, whereas 

this study simply reports that the youngest children tended to make more errors – both 

counting errors and pointing errors.  

 

But what role does pointing play? Graham (1999) stated the possibility that pointing may 

help to reduce cognitive load as children acquire an explicit representation for the one-to-

one counting principle. If this were the case, children who have achieved fully explicit 

representations for this principle might not use pointing so much. Figure 4.5 shows that a 

certain group of children who achieve E3 representational levels no longer predominantly 

point whilst counting. This provides some evidence to back-up Graham’s claim, though a 

majority of children who are shown to have fully explicit representations for the counting 

principle do still point whilst counting, indicating that pointing may also fulfill 

continuing roles such as keeping track of what has been counting and coordinating 

number words and the objects to be counted. In summary, it seems clear that as children 

develop more explicit representations for the one-to-one principle, they may become less 

dependent on pointing in order to count accurately. 

  

 

3.2 Detecting pointing errors in others’ counting 

 

The second question with to be asked regard to pointing is whether or not children detect 

errors in pointing in other peoples’ counting as errors. Graham’s (1999) error detection 

task failed to distinguish between speech errors and pointing errors. In this study, a 

majority of children failed to detect pointing errors as errors (see Figure 4.6). This is at 

odds with the findings of Briars and Siegler (1984) – where children were often found to 

detect these errors in pointing which they termed “pseudoerrors” (as children’s verbal 

counting was accurate in the trial, in spite of the pointing error). This difference in 

findings may arise due to the different methodologies used, though this seems unlikely as 
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the children were told in this study that the puppets were just learning how to count, 

whereas in Briars and Siegler’s study (1984) the children were told that the puppets knew 

their numbers. Another difference between the 2 studies is the larger sample size in this 

study, making the current set of data more reliable.  

 

It is interesting to note that children were much more likely to detect errors in the trials 

with speech and pointing errors, than in trials which only contained pointing errors. This 

was true for all age groups – therefore, this inability to detect pointing errors may be due 

to 2 causes – (1) a lack of knowledge of the 1-to-1 principle early on, as children 

generally fail to detect errors, or (2) pointing errors are not viewed as “true errors” as 

such, unless accompanied by a speech error. The latter, which is the case in this study, 

implies that “pointing errors” on their own are indeed, as Briars and Siegler termed them 

“pseudoerrors”. Therefore, though children’s pointing may indeed play an important role 

in children’s learning to count, there seems little utility in focusing on children’s ability 

to detect pointing errors which do not coincide with speech errors. 

 

Summary 

 

This study showed that children do not detect errors in other people’s counting prior to 

being able to count accurately themselves. The levels of the RR model were applied to 

children’s ability to count and their ability to detect and explain errors in others counting. 

This provided a clear model of the developing one-to-one principle beyond competence 

in applying it in counting through to explicit verbal knowledge of the principle, in line 

with the recommendations of Sophian (1997) and Rittle-Johnson and Siegler (1999). The 

study provided some evidence to confirm that children did honour the one-to-one 

counting principle in pointing prior to in speech. Continuing use of pointing when 

children achieved fully explicit representations indicates that reducing cognitive load to 

aid in acquiring the principle is not the only role that pointing plays in the development of 

counting principles. Finally, this study found that children did not detect pointing errors 

in others’ counting as errors, when there was no accompanying verbal counting error. 
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Chapter 5: Using the RR model to predict the effect of different types of 

intervention on children’s representations for the cardinality principles 

for counting  
 

 

Introduction 

 

What can the RR model contribute towards the teaching of numerical knowledge? 

 In this chapter, the focus will shift to the cardinality principle for counting. A number of 

contemporary models which have been applied to children’s developing mathematical 

knowledge which have implications for teaching will be described, and the implications 

for the RR model in particular will be contrasted with these model. The research looking 

specifically at the concept of cardinality will also be focused on, in order to address 2 key 

issues – (1) can the levels of the RR model be applied to children’s developing 

representations for the cardinality principle for counting, and (2) Does the efficacy of 

different types of teaching intervention depend upon the child’s representational level? 

 

 

1. Models for the development of mathematical knowledge 

 

In the previous chapter, it was noted that few if any models have been put forward which 

attempt to describe the ongoing development of children’s numerical knowledge. This 

current study will focus on two models which have more recently been applied to specific 

mathematical tasks – Rittle-Johnson et al’s (2001) iterative model, and Bermejo’s (1996) 

model for the development of knowledge for cardinality. This model will be contrasted 

with the RR model in terms of the implications for teaching.    

 

1.1. Rittle-Johnson et al’s (2001) iterative model 

 

Rittle-Johnson et al (2001) propose an iterative model whereby children’s conceptual and 

procedural knowledge develop in a cyclical manner (see Figure 1). Procedural knowledge 

is based on children’s ability to perform a task.  Conceptual knowledge is defined as 
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“implicit or explicit understanding of the principles that govern a domain” (Rittle-

Johnson et al, 1999, p 346). They sidestep the question of whether procedural or 

conceptual knowledge comes first by stating that either may develop first, depending on 

how common the concept or task is within the everyday environment (initial development 

is thought to be conceptual if the child does not engage in concept specific tasks in the 

everyday environment, whereas if the child does do so, then initial development should 

be procedurally based – for the concept of number, as it occurs in the everyday 

environment, initial development should presumably be procedurally based). Their 

experiment related to the development of knowledge about decimal fractions. The study 

used a complicated design and methodology which cannot be gone into in any great detail 

here, but the main findings stated that not only does initial conceptual knowledge predict 

later improvement in procedural knowledge, but also improvements in procedural 

knowledge predict gains in conceptual knowledge (see Figure 5.1). This relation is 

moderated by a variable called “representation of the problem” which arises from verbal 

explanations offered by children. The main conclusion to be drawn here is that there is 

claimed to be an open-ended relationship between ability to perform a task and explicit 

verbal knowledge. Therefore, at any point during development, it would appear from this 

open-ended model, interventions aimed at improving conceptual and procedural 

knowledge would be equally effective in improving children’s knowledge.    

 

Figure 5.1. Rittle-Johnson et al’s (2001) Iterative model for the development of 

conceptual and procedural knowledge 
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1.2. Bermejo’s (1996) model for the development of knowledge for cardinality 

 

Bermejo’s (1996) work has focused specifically on the cardinality principle. Gelman and 

Gallistel (1978) state that the cardinality principle entails knowing that the last counted 

word in a set represents the numeric value of that set. Though some understanding of 

cardinality can be attributed to children who can state the value of a single set, Bermejo’s 

(1996, 2004) model states that this is not the endpoint in terms of children’s 

understanding of cardinality. Cardinality is thought to be a key concept as a fully 

developed concept of cardinality allows children to move from simply being able to 

count, to begin to apply this counting to mathematical problems. Bermejo’s model 

involves a number of levels of understanding based on children’s ability to perform a 

counting task. It is important to note that no clear attempt is made within the model to 

describe how children move through these levels. The model only focuses on cardinality 

in relation to task involving one set of objects. A more goal-focused approach is taken by 

Sophian (1993, see also Muldoon (2003). The most important application of the 

cardinality principle is that it allows one to compare groups of objects.  Thus, the 

important aspect of cardinality is based on an ability to compare two sets, rather than 

simply being able to ascribe a value to a single set. This rules out for the present study the 

possibility of using tasks where a single set is used, such as tasks involving simply asking 

“how many objects are there” (Fuson et al, 1982, Frye et al, 1989), and “give me x” 

objects tasks (Wynn, 1990, Fluck et al 2005). Comparative tasks such as those used by 

Sophian (1993) provide a basis for examining children’s knowledge using this working 

definition of cardinality. An example of a task used was placing a series of 

complementary objects beside each other, for example bottles and bottle tops, and asking 

the child if there are enough bottle tops to go on each bottle. It is important to note for 

these studies that children were NOT asked to count the objects, but simply to state 

whether or not there were enough tops to go on all the bottles. 

 

Bermejo has described a series of levels which children pass through in developing 

knowledge about cardinality in a single-set test. There is also a need to describe how 

children’s knowledge, and their ability to use the cardinality principle to compare 2 sets, 
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develops across time. Having already applied the RR model to the 1-to-1 counting 

principle, it stands to reason that the levels of the RR model should also be applicable to 

the cardinality principle. With regard to the RR model, measures of verbal explanation 

and performance are necessary. The comparison test used by Sophian (1992) provides a 

good opportunity to elicit verbalisations, as the child justifies why they think the two sets 

are, or are not, numerically equivalent. A second experiment described by Sophian 

(1992) involves the production of a set of objects which is numerically equivalent to a 

second set. Two different types of set-up were used – children were asked either to make 

the new set by placing the new objects beside the original set in such a way as to make 

them symmetrical, or asking children to make a new set with a different spatial 

configuration. As has been noted (Fuson, 1988), children find it easier to deal with 

objects which are organised in straight lines, as opposed to sets of objects which are not 

arranged in straight lines. This may give rise to a U-shaped curve in performance, in 

keeping with the RR model (Figure 2).     

 

1.3 The RR model 

 

The RR model presents a different description of the developing relation between 

procedural and conceptual knowledge than Rittle-Johnson et al’s (2001) model. In this 

model, task performance and verbal knowledge do not simply mutually progress. The RR 

model allows for a U-shaped curve in children’s ability to perform a task in relation to 

their verbal knowledge. This means that the RR model allows both for increases and 

decreases in performance on the task. Initial behavioural success can be followed by a 

downturn in performance which arises from the development of a verbally accessible but 

oversimplified conception for a domain (e.g. for the concept of balance described already 

in this thesis, there is a simplified notion that weight is the only aspect of interest, so that 

if there are more weights on one side of the beam, it can not be balanced). In this case, 

increases in verbal knowledge are not always linked to improvements in performance on 

a task. Pine et al (2000) have shown that children’s sensitivity to teaching interventions is 

likely to depend on their representational level, indicating that specific types of 
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intervention are more likely to be certain points in development, rather then the open-

ended model specified by Rittle-Johnson et al (2001). 

 

2. Teaching interventions to improve mathematical knowledge 

 

One key recent study which has focused on children’s developing understanding for the 

concept of cardinality was conducted by Muldoon et al (2003). Muldoon et al (2003) 

looked at the relation between children’s ability to use counting to compare sets and their 

ability to detect and reason about other people’s miscounts. Muldoon et al (2003) argue 

that a focus on developing explicit representations, and being given an opportunity to 

conceptualise the rules surrounding a particular concept is necessary for the development 

of these concepts. The findings were that children’s ability to detect other people’s 

miscounts and reason about why these miscounts were inaccurate was the best predictor 

of performance on numeric comparison tasks. Again, the value of looking at children’s 

verbalisations are emphasised, and given a central role in the development of 

mathematical abilities. Rittle-Johnson et al’s (2001) study similarly focused on 

“improving representations for problems” implying a focus on conceptual knowledge. 

Muldoon et al (2003) concluded from their research that giving children an opportunity to 

reason about others’ miscounts may provide an important opportunity for children to 

develop their understanding of cardinality. 

 

How can this hypothesis (and with regard to testing within an intervention-based 

methodology, it so far remains only a hypothesis) be interpreted in relation to the RR 

model? As has already been pointed out, Pine et al (2000) have shown that initial 

representational level may play an important role in terms of the types of teaching they 

may be receptive to. One could predict from the RR model for example that children who 

have yet to achieve an explicit level of representation would not benefit from 

conceptually derived teaching methods, such as those espoused by Muldoon et al (2003) 

and by Rittle-Johnson et al (2001). Without behavioural mastery, underpinned by initial 

procedurally based implicit representations for the task or domain, there is no solid 

framework within which the child may begin to verbalise a concept. Therefore it is 
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hypothesised that a procedurally-focused teaching method aimed at fostering behavioural 

mastery would be more efficacious for children who have yet to achieve implicit 

representations – with a focus on improved performance for cardinality tasks. Similarly, 

it is hypothesised here that conceptually-based teaching methods may be most efficacious 

for children who have yet to achieve explicit verbal knowledge (see Table 5.1), because 

as has been noted, they have already got adequate frameworks to allow them to solve 

tasks, and conceptual interventions afford them an opportunity to verbalise the principles 

arising from these initially implicit frameworks, leading to more complex and varied 

types of explanations being offered. 

 

Table 5.1: Predicted effects of the procedural and conceptual interventions, in 

relation to initial representational level 

Initial 

Representational 

Level 

Predicted effect of 

Procedural Intervention on 

representational level at post-

test 

Predicted effect of Conceptual 

Intervention on representational 

level at post-test 

Pre-Implicit  Should lead to an 

improvement in performance 

leading to a higher 

representational level 

No representational change at 

post-test 

Implicit Should lead to an 

improvement in performance 

leading to a higher 

representational level 

The child should begin to 

produce explicit verbal 

explanations, leading to a 

higher representational level 

Abstraction 

Nonverbal / 

Abstraction Verbal 

/ Explicit transition  

No representational change 

at post-test 

The child should produce more 

explicit verbalisations at post-

test, leading to a higher 

representational level 

E3 No representational change 

at post-test 

No representational change at 

post-test 
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Rittle-Johnson et al’s (2001) iterative model on the other hand would predict that both 

types of intervention should be equally effective at any point in development (see Table 

5.2), both in terms of improvement on the measure for which the intervention is focused 

(e.g. a procedural intervention improving performance on tasks at post-test) but also on 

the other measure (e.g. a procedural intervention bringing about improvement in 

procedural knowledge which in turn brings about an improvement in conceptual 

knowledge).   

 

 

Table 5.2: Predicted effects of the procedural and conceptual interventions 

according to Rittle-Johnson et al’s (2001) model 

 Effect on Conceptual knowledge Effect on Procedural Knowledge 

Conceptual 

Intervention 

Will bring about an increase in 

conceptual knowledge 

Increase in conceptual knowledge 

will bring about increase in 

procedural knowledge 

Procedural 

Intervention 

Increase in procedural knowledge 

will bring about an increase n 

conceptual knowledge 

Will bring about an increase in 

procedural knowledge 

 

 

 

Summary  

 

The aim of this experiment is to apply the RR levels to a set of tasks designed to measure 

children’s representations of cardinality. It is predicted that the effects of conceptual 

(derived from Muldoon et al 2003) and procedural interventions will be dependent on 

initial representational level (see Table 1). This is contrasted with Rittle-Johnson’s 

iterative model, which proposes a more open-ended relationship between conceptual and 

procedural knowledge.    
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 Method 

 

Subjects 

 

94 children were recruited from 3 primary schools in Hertfordshire. The children from 

these schools came from a mainly middleclass background. They were randomly 

assigned to two experimental groups (conceptual and procedural intervention groups), 

and a control condition. Because this was the first time an attempt was being made to 

apply the RR levels to the cardinality task, children could not be assigned to the different 

conditions based on initial RR level. Furthermore, there was no significant age difference 

between the three groups (F [2,91] = .293, p = .75). Thirty-two children were assigned to 

the conceptual intervention experimental group, twenty-eight children were assigned to 

the procedural intervention experimental group, and thirty-four children were assigned to 

the control group. Children were recruited from nursery, reception, and year one classes, 

to capture the full range of children’s competence for the tasks. The sample had a mean 

age of 66.5 months (Standard Deviation = 9 months). Children’s ages ranged from 48 to 

81 months. There were 58 boys and 36 girls. 

 

Materials 

 

A variety of small toys were used in this experiment as counting items. Children were 

given crayons, checkers counters, plastic bottle tops, dominoes (with the blank sides face 

up, to avoid potential confusion if the children counted the dots), toy soldiers, and large 

coloured blocks for the matching and comparison cardinality tasks. A set of large Lego 

blocks were used for the two interventions for the two experimental groups. Two hand 

puppets (a dog and a cat) were also used. For both the cardinality tasks and the 

interventions, the tasks involved both puppets having the same amount of objects.  
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Methodology 

 

The current experiment used a pre-test – intervention – post-test design (see Table 5.3). 

Children were given matching and comparison tasks, followed by an intervention, after 

which they were retested on the matching and comparison task. Children were randomly 

assigned to each of the 3 conditions. Because of the way the experiment was conducted, 

with children being drawn from different classes depending on the availability of a class 

on a particular day, it was not possible to attempt to ensure that children from the 

different age groups were equally represented in the three conditions. Similarly, it was 

not possible to ensure representational levels were equally presented across the three 

conditions. The order of the matching and comparison task was counter-balanced to 

ensure there were no possible order effects in performance on these tasks. 

 

Table 5.3: Layout of the methodology of the current study 

 Pre-test Intervention Post-test 

Conceptual 

intervention group 

Matching Task, 

Comparison task 

Conceptual 

Intervention 

Matching task, 

Comparison task    

Procedural 

intervention group 

Matching Task, 

Comparison Task 

Procedural 

Intervention 

Matching task, 

Comparison Task 

Control group Matching Task, 

Comparison Task 

Unrelated drawing 

task 

Matching Task, 

Comparison Task 

 

 

Cardinality Tasks 

 

The children were told that they would be performing a series of tasks in which they must 

ensure that the 2 puppets have the same number of toys. The two puppets were 

introduced to the child before the experiment commenced. 
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Matching Task 

 

For the matching task, the experimenter gave one of the puppets some toys and the child 

was asked to give the second puppet “exactly the same amount of toys to play with”. The 

toys given to the first puppet could be arranged in straight lines, or in a non-symmetrical 

arrangement. Arrays of between 2 and 11 objects were given to the first puppet, and 

placed in front of them on the Table. For each trial, the child was asked to give the 

second puppet exactly the same number of toys to play with as the first puppet. Children 

had 5 matching problems at pre-test, and another 5 matching problems at post-test (see 

appendices for full details). No feedback was given during the experiment; children were 

not told whether they had accurately matched the two sets.     

 

Comparison Task 

 

In the comparison task the two puppets were both given a number of objects by the 

experimenter, and children were asked whether or not the puppets had the same amount 

of objects each. Objects were placed in front of the two puppets on the Table, and 

children were asked – “do the two puppets have the same amount of toys each to play 

with, or does one of them have more?” Both possibilities were explicitly stated by the 

experimenter to eliminate the risk of instructional bias affecting children’s responses. 

After giving a response, children were asked to explain their answer – “how did you 

know that?” or “how did you Figure that out?” The objects could be arranged in straight 

lines, or in a non-symmetrical manner, as with the matching task, to make the task more 

difficult. The puppets had arrays of between 2 and 11 objects, across 5 comparison 

problems at pre-test and 5 comparison problems at post-test. For both pre-test and post-

test, in one of the five comparison problems, the two puppets had the same number of 

objects, in two of the problems a puppet had one object more then the other, and in the 

other two comparison problems a puppet had 2 objects more then the other (see 

appendices for experimental sheets). Children were not given any feedback or evaluation 

of their performance on the comparison tasks at pre or at post-test.  
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Interventions 

 

Procedural Intervention 

 

For the procedural intervention, children were shown an example of puppets performing 

a matching ask, using a “counting to compare” strategy across five trials. The first puppet 

was given a series of 3, 5, 7, 9, and 11 objects. The second puppet (manipulated by the 

experimenter) counted aloud the number of toys the first puppet had, and then counted 

out aloud the same number of objects for itself. The puppet physically picked out their 

own toys from a container. The second puppet copied the configuration of the other 

puppet’s toys – for 2 trials the toys were arranged in straight lines, and for 3 trials the 

toys were arranged in non-symmetrical formations. The child was then asked to repeat 

the strategy, to ensure that the puppet had been accurate in their performance. This 

procedure was repeated across 5 trials, giving children the opportunity to practice the 

“counting to compare” strategy used by the puppet. 

 

Conceptual Intervention 

 

The conceptual intervention involved giving children an opportunity to detect and 

conceptualise other people’s miscounts. Children were asked to watch a puppet 

performing a matching task, and check to see whether the puppet’s performance had been 

accurate. Five examples were shown, with one puppet being given a number of objects 

(3, 5, 7, 9, and 11 objects respectively). The second puppet was manipulated by the 

experimenter, to take exactly the same amount of toys as the other puppet. The puppet 

used a “counting to compare strategy”; counting aloud the number of objects that the 

other puppet had, and then taking the same number of objects for itself. The puppet, 

controlled by the experimenter, picked out and counted toys from a container. There were 

2 accurate trials, and 3 inaccurate trials, with the puppets taking the wrong number of 

objects. The puppet used a counting-to-match strategy, but made a one-to-one counting 

error, miscounting the number of objects that the other puppet had, so that they took the 

wrong number of objects for themselves. The second puppet matched the configuration in 



 150

which the other puppet’s toys were laid out – the toys were arranged in straight lines for 2 

trials (where discrepancies would be more visually apparent), and in a non-symmetrical 

manner for 3 trials. Children were asked whether the puppet had performed the task 

accurately. The child was asked “do the two puppets have the same amount of toys each, 

or does one of them have more?” If the child did not recognise the error, they were 

encouraged to copy the puppet’s strategy, to see if they had counted accurately.  

 

When errors were pointed out, children were asked to try and explain to the puppet what 

they did wrong, or why they do not have the same amount of toys as the other puppet. 

This gives them the opportunity to conceptualise the error made by another in counting 

which Muldoon et al (2004) consider so influential. In all cases where an error was made, 

the second puppet ended up having less objects then the first puppet. 

 

Control group 

 

This group engaged in a non-numeric maze-based task, which took up a similar amount 

of time to the two intervention tasks (2-3 minutes). 

 

Procedure 

 

Children were taken from their class to the room where the experiment was being 

conducted. They were told that they would be playing a few games to try to teach puppets 

about counting and number. The child was sat down in front of the camera, and 

introduced to the puppets involved in the study. The basic nature of the tasks was 

explained to the children – that they would be playing games where they had to make 

sure that the two puppets had the same number of toys to play with. The Child’s assent 

was confirmed, and the camera was switched on. Children first performed the pre-test 

comparison and matching tasks as outlined above. The order of the matching and 

comparison tasks was counterbalanced, so that half the children performed the matching 

task first, and the other half performed the comparison task first, to minimise the 

possibility of order effects occurring. Children were randomly allocated into one of the 
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three intervention conditions, the conceptual intervention condition, the control condition, 

or the procedural intervention. Following this, they performed the post-test matching and 

comparison tasks, which were again counterbalanced, to avoid the possibility of 

systematic order effects occurring. When the experiment was finished, the children were 

thanked for their time, asked if they had any questions and were then brought back to 

their class room. 

 

Coding Schemes 

 

Two main variables are of interest for coding children’s representational level for the 

concept of cardinality. Children’s performance on the matching task is of importance, 

alongside the verbal explanations offered in the comparison task. The video recordings of 

the experiment were used to code these variables using a computer based coding system 

(the Noldus Observer System).  

 

For the verbal explanations offered in the comparison task a basic coding scheme with 3 

categories initially was envisaged, with a number of subcategories emerging following 

initial viewing of the video tapes of the experiment. The initial categories focused on 

simple, number-based explanations, visual-based explanations, and “other” or implicit 

explanations. As Table 5.4 below shows, a number of different subcategories of 

explanations were coded, to more fully elucidate the range of verbal explanations offered, 

with a particular emphasis on the variety of number-based explanations offered. Children 

could give number-based explanations where they mention the numeric value of both 

sets, and compare them. They could also simply mention the numeric value of one of the 

sets, or they could say that they counted the two sets, without further elaboration. Finally, 

children could also give irrelevant numeric explanations, focusing for example on another 

mathematical function – e.g. “because 2 + 2 is 4.” Visual explanations on the other hand 

eschew numeracy, and focus on the visual aspects of the two sets – whether or not one set 

just looks bigger then the other. Implicit explanations cover other non-specific 

explanations offered by children, ranging from “I don’t know”, through to the primitive 

numeric aspect which may be inferred from phrases such as “that one’s got more”. 
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Table 5.4 Coding scheme for the verbal explanations offered on the comparison task 

Category Category definition and examples 

Implicit  explanations without mention of number or any other relevant 

factor.  

“don’t know” “I just know” 

Implicit - More Explanations where the children simply state that one set has 

more objects, without further elaboration, or use of number to 

compare the two sets  

“because that one’s got more” 

Counting – 

gives non-

relevant 

mathematical 

explanation 

The child gives a numeric-based explanation, but one which is not 

relevant to the current task, such as giving addition based 

answers, without giving any mention of comparison between the 

two sets 

“Because 2 and 2 makes 4” 

Counting – I 

counted 

Explanations where the child says simply that they counted the 

objects, without any further elucidation, or mention of what they 

counted, or how many objects there were in either set 

“because I counted them” 

Counting – 

Mentions 1 

Value 

Explanations where the child states the numeric value of only one 

of the two sets, without mentioning the other, or any relation 

between the two sets 

“Because that one’s got 5” 

Counting – 

Mentions 2 

values (one for 

each set) 

Explanations where the child specifically states the numeric 

values of the two sets, and uses these values to justify their answer 

with regard to whether or not the two sets were equal 

“Because that one’s got 4 and this one’s got 5” 

Visual Explanations which are based on children’s visual assessments of 

the two sets, and their relative sizes where counting is not 

mentioned 

“that one looks longer” “I can see that one’s bigger” 
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 In terms of applying the RR model, the counting explanation where 2 values are 

mentioned is taken as an explicit type of explanation, as there is recognition of the 

relative importance of the values of both sets. This most closely matches the concept of 

cardinality, and children were required to offer this type of explanations in order to be 

coded to an explicit level of representation. Children were expected to give this type of 

explanation at least once, rather then using the most common form of explanation offered 

as the basis for coding children’s representational level. This approach was chosen due to 

the relatively small number of trials in which children could provide an explanation (five 

at pre-test and five at post-test). It is also chosen as a measure which shows the 

competence of the child, while recognizing, as per the overlapping waves model, that 

children may show some variability in the strategies they use or in the verbal 

explanations they use for a task.   

 

Children’s performance on the matching task was evaluated in terms of the number of 

correct matches they made for trials where objects were arranged in straight lines and 

trials where objects were arranged in a non-symmetrical manner. This division was made 

based on the findings that children have more difficulty with sets which are not arranged 

in straight lines (Fuson, 1988). Children at all levels should be able to perform matching 

tasks involving straight lines, whereas children have more difficulty with sets of objects 

which are not arranged in a linear manner. Children performing at the implicit level for 

example would accurately match both types of trial (e.g. trials involving sets of straight 

lines, and trials involving non-symmetrical sets, see Table 5.5), but would offer no 

explicit explanations on the comparison task. Children at the abstraction level on the 

other hand are able to offer explicit explanations on the comparison task, and are able to 

perform accurately on the matching task where the objects are organised in lines, but are 

not successful when the objects are not organised in lines. This distinction between 

objects arranged in straight lines or objects arranged in non-straight lines is broadly 

analogous to the distinction in performance made by Pine et al with regard to balance 

beams, where children’s ability to balance symmetrical and asymmetrical beams is 

juxtaposed. 
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Table 5.5: Coding scheme for applying the RR levels 

RR level Performance on the matching task Verbal explanations offered on the 

comparison task 

Pre 

Implicit 

0 out of 2 correct for straight line 

problems, 0 out of 3 correct for 

non-symmetrical problems 

No explicit explanations offered 

(e.g. counting explanation where 

two numeric values are compared) 

Implicit 2 out of 2 correct for straight line 

problems, 2-3 out of 3 correct for 

non-symmetrical matching 

problems 

No explicit explanations offered 

(e.g. counting explanation where 

two numeric values are compared) 

Implicit 

Transition 

1-2 out of 2 correct for straight 

line problems, 1-2 out of 3 correct 

for non-symmetrical problems 

No explicit explanations offered 

(e.g. counting explanation where 

two numeric values are compared) 

Abstraction 

Non Verbal  

2 out of 2 correct for straight line 

problems, 0-1 out of 3 correct for 

non-symmetrical problems 

No explicit explanations offered 

(e.g. counting explanation where 

two numeric values are compared) 

Abstraction 

Verbal 

2 out of 2 correct for straight line 

problems, 0-1 out of 3 correct for 

non-symmetrical problems 

At least one counting explanation 

where two numeric values are 

compared 

Explicit 

Transition 

2 out of 2 correct for straight line 

problems, 1-2 out of 3 for non-

symmetrical problems. 

At least one counting explanation 

where two numeric values are 

compared 

E3 2 out of 2 correct for straight line 

problems, 3 out of 3 for non-

symmetrical problems 

At least one counting explanation 

where two numeric values are 

compared 
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Inter-rater reliability for verbal explanation codings and RR levels on the 

cardinality principle experiment  

 

 

For the cardinality task, a second coder viewed and coded 10 children’s explanations 

offered for the error detection task (5 children at pre-test and 5 at post-test). Looking at 

the verbal explanations, there was a 93% level of agreement (43 of 46 explanations 

offered). For representational levels, there was a 90% level of agreement (9 out of 10). 

This helps again to demonstrate the reliability of the coding schemes used here to assign 

representational levels to children following the error detection task. Table 5.6 shows the 

high levels of agreement using Cohen’s Kappa, indicating the reliability of the coding of 

these  

 

Table 5.6. Reliability of the coding schemes for the verbal explanations and RR 

levels for the cardinality principal 

Level of agreement on verbal explanations 

(Kappa statistic in brackets) 

Level of agreement on RR levels 

(Kappa statistic in brackets   

93% agreement (Kappa = .924, p < .05) 90% (Kappa = .881, p < .001) 
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Results 

 

The results will be split into the following sections: (1) Application of the RR levels to 

the cardinality tasks. (2) Effects of intervention on performance on the matching task, and 

on explanations offered in the comparison task. (3) Effects of intervention on RR levels 

 

1. Application of the levels of the RR model to the cardinality tasks  

 

Table 5.5 in the methods section was used to apply R-R levels based on performance on 

the matching task, and verbal explanations offered on the comparison task (Figure 5.2). 

An immediately arresting fact is the polarity of the distribution – at pre-test a third of the 

sample are at pre-implicit or implicit levels of performance (and 20% at post-test), with a 

further 56 % (49% at post-test) at Explicit transition level of performance or above. Very 

few children seem to perform at the abstraction nonverbal, and abstraction verbal levels. 

The pre-implicit level of performance noted here gives a strong indication that children 

do have difficulties with the matching task, and that high levels of performance on this 

task are not simply a product of the task being too easy. 
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Figure 5.2: RR levels for the cardinality principle at pre and post-test 
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There is an interesting increase in children who are not classifiable into RR levels at post-

test. There are also increases in children classified into the highest E3 level of 

performance at post-test, alongside decreases in the percentage of children being 

classified into the pre-implicit and implicit transition levels at post-test.  

 

2. Effects of the interventions on performance on the matching and comparison 

tasks 

 

In this section, the effects of the interventions on the individual tasks will be assessed. 

The effects of interventions on both tasks will be assessed. Following this, 2 predictions 

from Rittle-Johnson et al’s model will be tested – increases in conceptual knowledge lead 

to increases in procedural knowledge, and increases in procedural knowledge lead to 

increases in conceptual knowledge.  
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2.1 The effect of the interventions on performance on the matching task at post-test 

 

Children’s performance on the matching task at post-test was tested by condition. A 

repeated measures ANOVA was carried out, with performance on non-symmetrical trials 

at pre-test and at post-test on the matching task as the repeated measures dependent 

variable, and condition as a factor. The non-symmetrical trials were focused on in the 

same way that the asymmetrical beams are focused on in the previous chapters, as 

children were likely to show ceiling levels of performance on the symmetrical trials. 

There was no significant interaction (F, [2,88] = .5, p = .6). As Figure 5.3 below shows, 

no appreciable interaction is notable, beyond a simple, non-significant mean 

improvement in performance from pre to post-test, across all 3 conditions.  

 

Figure 5.3: Performance on the non-symmetrical trials for the matching task at pre- 

and post-test, by condition 

0

20

40

60

80

100

conceptual procedural control

condition

P
e
rc
e
n
ta
g
e
 o
f 
n
o
n
-s
y
m
m
e
tr
ic
a
l 
tr
ia
ls
 

s
u
c
c
e
s
s
fu
ll
y
 m
a
tc
h
e
d
 a
t 
p
re
 a
n
d
 p
o
s
t 
te
s
t

pretest

posttest

     

 

 

 

 

 

 

 



 159

2.2. The effect of the interventions on the verbal explanations offered for the 

comparison task 

 

For the verbal explanations offered in the comparison task, it is of interest not only to test 

whether there has been an increase in specific types of explanations from pre to post-test 

(as already has been described in the initial results), but whether in particular the 

conceptual condition led to children offering explicit type explanations involving 

mentioning the values of both sets. Whether there was an increase in the variety of 

explanations offered at post-test was also of interest. Table 5.7 below indicates that in 

general there were no significant mean increases in the use of explanation categories 

from pre to post-test, with the exception of a significant mean increase in the number of 

“I counted” explanations, which can be interpreted as a fatigue effect – children were 

more likely to provide less detailed verbal explanations at post-test.   
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Table 5.7: Increases in use of explanation categories on the comparison task from 

pre- to post- test  

Verbal 

explanation 

category 

Mean number of 

times offered at 

pretest (+ Standard 

deviation) 

Mean number of 

times offered at 

post-test (+ 

standard deviation) 

df t p-value 

Other .5 (.96) .77 (1.07) 93 -1.83 .07 

Other – 

more 

.47 (.88) .59 (.9) 93 -1.15 .25 

Counting – 

“I counted” 

.47 (.9) .83 (1.27) 93 -3.29 .001 

Counting 

Irrelevant 

maths 

explanations 

.36 (.89) .3 (.64) 93 .65 .52 

Counting 

mentioning 

1 value 

.07 (.3) .16 (.68) 93 -1.09 .28 

Counting 

mentioning 

2 values 

2.06 (1.74) 1.78 (1.72) 93 1.75 .08 

Visual 

explanations 

.29 (.73) .4 (.75) 93 -1.21 .23 

 

Looking specifically at explicit type explanations (e.g. counting explanations where two 

values are mentioned and compared) in Figure 5.4 below, it is clear that there is no strong 

interaction. This finding was confirmed by a repeated measures factorial ANOVA, with 

the number of explicit explanations offered at pre and post-test as the repeated measures 

dependent variables, and condition as the factor (F [2,91] = 3.22, p = .08). A further 

question to be asked was whether children were more likely to introduce explicit 

explanations at post-test following the conceptual intervention. Of the 9 children who 
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gave explicit explanations at post-test, but not at pre-test, only 2 underwent the 

conceptual intervention, with 3 children in the procedural condition and 4 in the control 

condition also showing first use of explicit explanations at post-test. 

 

Figure 5.4: Mean number of times verbal counting explanations involving the 

comparison of 2 numbers are offered on the comparison task, at pre and post-test, 

by condition 
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2.3. Testing the predictions of Rittle-Johnson et al’s (2001) iterative model – The 

relation between gains in procedural knowledge and gains in conceptual knowledge 

 

One prediction derived from the work of Rittle-Johnson et al (2001) was that gains in 

procedural knowledge predicted gains in conceptual knowledge. Gains in procedural 

knowledge are measured by improvement in performance on the matching task from pre- 

to post-test. Gains in conceptual knowledge are measured by whether or not children first 

show use of explicit explanations on the comparison task at post-test. As Table 5.8 below 

shows, of the 8 children who did show first use of an explicit explanation at post-test, 

only 2 showed an improvement in performance at post-test on the matching task (χ² [1] = 
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0.21, p = 0.65, phi = -0.48). Similarly, first use of explicit explanations at post-test was 

not significantly associated with improvements in performance from pre- to post-test. 

 

 

Table 5.8: Crosstable indicating the occurrence of improvements in performance on 

the matching task from pre- to post-test in relation to first use of explicit verbal 

explanations at post-test 

 Children who first used 

an explicit explanations 

at post-test on the 

comparison task 

Children who did not 

show first use of  

explicit explanations at 

post- test on the 

comparison task 

Children who showed 

improvement in performance on 

the matching task from pre- to 

post-test 

2 27 

Children who did not show 

improvement in performance 

from pre to post-test 

6 55 

 

 

3. Effects of the interventions on RR level at post-test 

 

In order to look at the effect of the interventions on RR level, the change in RR levels 

between pre and post-test was coded. Children could show representational progression 

(to a later representational level), representational regression (to an earlier 

representational level), or no representational change. Figure 5.5 below shows 

representational change across the three conditions. A large proportion of children in the 

control group showed the same representational level at post-test as at pre-test. 

Representational progression occurred for 50% of the children in the procedural 

condition, whereas for the conceptual condition there was almost an equipotential for 
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progression, regression, or no representational change. The chi square Figure from this 

crosstable did not prove significant (χ² [4] = 4.57, p = .33, Cramer’s V = .159), indicating 

that neither the conceptual nor the procedural condition showed any trend towards 

representational change greater then chance, at the representational level. It has however 

been predicted that Initial representational level should significantly affect the efficacy of 

the interventions however, which we will look at next. 

 

 Figure 5.5: Representational change from pre to post-test, by condition (%ages by 

condition) 
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In the introduction (Table 5.1), a specific set of predictions was made with regard to the 

effect of the interventions, given initial representational level. It was predicted that 

children who show pre-implicit levels of performance would benefit more from a 

procedural intervention, which would help to improve performance on the matching task, 

whereas children who have achieved abstraction non-verbal levels of representation and 

higher would benefit more from the conceptual intervention, as it would give them a 

further opportunity to conceptualise errors, and therefore gain a clearer explicit 

knowledge of the cardinality principle. 
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3.1. The effect of the conceptual intervention on Representational change, in relation 

to initial RR level 

 

Figure 5.6 below shows how many children in the conceptual condition showed 

representational progression at post-test, by representational level (χ² [6] = 14.7, p = 0.02, 

Cramer’s V = 0.7). Due to the random nature by which children were allocated to 

conditions, and the limited number of children who were coded as showing abstraction 

non-verbal and abstraction verbal levels of representation, only 1 subject who showed 

one of these two particular levels which are of particular interest for this intervention, 

were allocated to the conceptual condition. For children showing Explicit transition levels 

of representation, the conceptual condition did not have any strong effect on whether or 

not children showed representational progression at post-test. It is interesting to note 

however that all children who were at the implicit level showed representational 

progression following the conceptual intervention. 

 

Figure 5.6: effect of the conceptual intervention on RR level at post-test, in relation 

to initial RR level 
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3.2. The effect of the procedural intervention on Representational change, in 

relation to initial RR level 

 

Figure 5.7 below shows whether or not children in the procedural condition showed 

representational progression at post-test, by initial representational level (χ² [6] = 16.6, p 

= 0.01, Cramer’s V = .77). Children at pre-implicit and implicit levels of representation 

showed representational progression at post-test following the procedural intervention, 

whereas by Explicit transition level (the next level where there was any appreciable 

number of children), the effect had disappeared. 

 

Figure 5.7 effect of the procedural intervention on RR level at post-test, in relation 

to initial RR level  
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Discussion 

 

This discussion will focus on the following aspects: (1) The application of the levels of 

the RR model for the concept of cardinality. (2) The efficacy of different types of 

teaching interventions in relation to initial representational level. 

 

 

1. The application of the levels of the RR model for the concept of cardinality 

 

This chapter followed on from the previous chapter which applied the levels of the RR 

model to the one-to-one principle for counting. The levels are in this case applied to the 

cardinality principle, and carry the same implications in terms of validating the RR model 

as indicated in the previous chapter. The specific interest in applying the RR model to the 

concept of cardinality lies in the importance of this concept for children’s ability to apply 

counting as a true mathematical tool. Within Gelman and Gallistel’s (1976) definition, 

the cardinality principle allows a person to know the value of a set. Using the definition 

derived from Sophian (1993), cardinality allows one to compare sets, and thus begin to 

apply counting to truly mathematical tasks involving multiple sets.  

 

The application of the levels of the RR model to this task again provide evidence that 

children do not have an innate implicit representation for this principle, as young children 

clearly have pre-implicit representations for the cardinality principle. As with the one-to-

one counting principle, by looking at children’s verbal explanations for how they knew if 

the 2 puppets had the same number of objects in the comparison task, a range of implicit 

type explanations (i.e. “ I just know”, “that one has more”), to the beginnings of 

understanding of the importance of number (e.g. a verbal explanation such as “because I 

counted”, or giving non-relevant mathematical explanations such as “because 2 and 2 

makes 4), through to a fully explicit verbal explanation mentioning the amount of objects 

both puppets have (i.e. “because that one has 4, and that one has 5”). Again, the RR 

model provides a description of the development of knowledge beyond simple ability to 

perform a task (Sophian, 1998). The verbal explanations also show a rich understanding 
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of the importance of cardinality for determining relative value, which is missing in much 

other work in this area, such as Piaget’s number conservation task, whose findings in fact 

indicate a very late onset understanding of the concept of cardinality. 

  

 With regard to the issue of innate knowledge of the counting principles, if children do 

have “innate” knowledge for these counting principles, they are more primitive than 

implicit representations within the RR model. What is important is the ability to describe 

a series of levels through which a child passes as they develop explicit knowledge of the 

cardinality principle. Bermejo (1996) has already described a series of levels which 

children pass through in their understanding of the cardinality task. That model however 

focused on children’s performance on a task involving only a single set (which involved 

children counting in reverse, and then giving the value for a set of items), rather than 

focusing on children’s use of cardinality to compare sets, as this experiment does. Neither 

does Bermejo’s (1996) model focus on children’s ability to verbalise knowledge for the 

cardinality principle. It is also important to note that there has been an argument over 

when a child has a full knowledge of the cardinality principle. On one side, children may 

be thought to have some knowledge of cardinality if children use the “last word rule” 

(e.g. they answer with the last counted number to state how many items are in a set), 

which occurs early on (Fuson and Hall, 1983). On the other hand, Piaget would state that 

children do not have a full understanding of cardinality until they can correctly answer 

number conservation tasks. The RR model offers a description of how explicit knowledge 

of this principle emerges, which allows for early ability to perform tasks, and give 

accurate answers to questions, without explicit knowledge of the principle. It is also 

important to state that a final advantage of the RR model in comparison with Bermejo’s 

model is that it is not a model specific to the development of knowledge of cardinality. 

Furthermore, as will be seen, it has general implications for how the concept of 

cardinality should be taught.  
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2. The efficacy of different types of teaching interventions in relation to initial 

representational level 

 

In the introduction, studies which focus on the use of interventions to improve 

“conceptual knowledge”, or children’s ability to verbalise mathematical concepts were 

emphasized (e.g. the studies of Rittle-Johnson et al, 2001, Muldoon et al, 2003). While 

the RR model emphasizes this aspect, it also recognizes the need for a base of 

behavioural mastery to allow for explicit, verbal knowledge to emerge. This is contrasted 

with Rittle-Johnson’s iterative model, which is open-ended. This model, because it lacks 

levels, cannot make the type of predictions that the RR model makes – instead it would 

seem that interventions based either on improving performance (e.g. procedural 

knowledge) or the ability to verbalise the cardinality principle (e.g. conceptual 

knowledge) would be equally effective at either point in development. These 

interventions could also potentially bring about improvements on both measures (e.g. 

verbal knowledge and performance on the matching task). 

 

The current study tested both these positions, and found no significant main effects for 

the interventions used. There was no simple effect on representational level at post-test 

for the interventions. Neither was there a simple effect on the individual measures – the 

procedural intervention did not bring about a significant increase in performance on the 

matching task, nor did the conceptual intervention bring about discovery and first use of 

explicit verbal explanations on the comparison tasks. The specific predictions of Rittle-

Johnson’s model was also not supported – mutual increases in both measures (e.g. 

“procedural knowledge” and “conceptual knowledge”) were not observed, though there is 

a possibility that a multi-session experiment might be necessary to observe these kinds of 

mutual increases.  

 

On the other hand the effects of the interventions seem dependent on the child’s initial 

RR level. Children who were at implicit or pre-implicit representational levels benefited 

from the procedural intervention. In the case of pre-implicit children, this likely gave 

them a strategy with which they could use to achieve mastery, and achieve implicit 
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representational levels. For the implicit level children, it seems likely that children used 

the strategy to consolidate their behavioural mastery, and begin to be able to verbalise the 

concept of cardinality. Conclusions for the conceptual intervention are more difficult to 

make. The conceptual intervention, was predicted as being helpful for children who had 

implicit or more advanced representational levels. The conceptual intervention gave 

children the chance to verbalise others’ miscounts, which Muldoon et al (2003) suggested 

may help improve children’s knowledge of cardinality. This provides an important 

theoretical basis for Muldoon et al’s (2003) findings by explaining how at a certain 

developmental level, this type of conceptual input may help children to develop more 

advanced representations for the cardinality principle. There were not enough children 

allocated to abstraction nonverbal and abstraction verbal representational levels to look at 

the efficacy of this intervention for children at those levels, though there is some 

evidence that children at explicit transition still find this particular intervention helpful in 

improving representational level. This does not warrant a strong conclusion on this 

particular intervention however, particularly given the nature of the experiment, being 

done within a single session. A larger study, either with a greater number of students, or 

over a longer time frame, is necessary to draw clearer conclusions  

 

Taking this caveat into account, it is worth noting that the current findings provides some 

support for the work of Pine et al (2000) who also stated that initial representational is 

likely to play an important role in determining the efficacy of teaching interventions. 

While it is important to note that the focus on conceptual knowledge in the studies of 

Muldoon et al (2003) and Rittle-Johnson et al (2001) is in agreement with a certain part 

of the RR model, there is a need to focus on both the child’s ability to perform a concept-

specific task, alongside their ability to verbalise this concept. This study did show some 

indication of support for Muldoon et al’s (2003) prediction that giving children the 

opportunity to conceptualise other people’s errors can help children improve their 

representations for the concept of cardinality, though this seems to depend on children’s 

initial representational level. It seems that for this task anyway (see Rittle-Johnson et al, 

2001), the ability to perform the task emerges prior to explicit verbalisable knowledge of 

the task. There is an emphasis therefore on children gradually developing explicit 
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representations for the cardinality principle, with different types of intervention 

potentially being effective at different points in development. It is important to note that 

the endpoint of explicit knowledge of the concept of cardinality is highly likely to be 

important for more complex mathematical tasks. The performance of simple written sums 

for example rests upon the concept of cardinality; the knowledge that the 2 sets of figures 

on either side of the equals sign in a simple sum rests upon knowledge of cardinality. The 

5 principles for counting outlined by Gelman and Gallistel (1976) are fundamental for 

more complex mathematical functions, and it is therefore essential to ensure that children 

have explicit representations for these counting principles, in order to allow them to 

perform more complex mathematical tasks.         

 

Therefore, children’s representational levels not only tell us about the development of 

children’s knowledge for the concept of cardinality, but they can also provide 

information about which type of intervention children are most likely to find useful. This 

provides further validation of the RR model 

 

Summary 

 

This experiment applied the levels of the RR model to tasks based on the cardinality 

principle for counting. The use of different types of “procedural” and “conceptual” 

interventions were analysed, and it was determined that their utility in improving 

representational level was dependent on children’s initial representational level. This 

finding supports the prediction of Muldoon et al (2003) that giving children the 

opportunity to conceptualise others’ errors may help children’s developing 

representations for cardinality, though only if they have already achieved an implicit 

representational levels for this principle. This utility is not open-ended as Rittle-Johnson 

et al’s (2001) model would predict however. Therefore, the RR model was shown to be 

applicable to this principle, and predictions with regard to the efficacy of different types 

of teaching intervention in relation to initial RR level were supported. 
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Chapter 6: A Microgenetic investigation of the stability of children’s 

representations for the domain of balance  

 

Introduction 

 

The aim of the current chapter is to compare the RR model with another contemporary 

model of cognitive development; the Overlapping Waves model (Siegler, 1996). These 

models are compared by analysing stability in representational levels across time, and by 

analysing representational levels at different degrees of magnification to see if children 

are variable or stable in their representational levels across time. 

 

 

1. Are children’s representational levels stable across time? 

 

 

A striking feature of the RR model is Karmiloff-Smith’s (1992) claim that when children 

apply their existing representations to a problem in an efficient and consistent manner, 

thereby achieving a degree of mastery, then progress to a higher level of representation is 

likely to occur.  This is believed to be relevant for progression at each of the levels. An 

important first step in investigating this claim is to look at whether or not children’s 

representational levels are stable across time. Assessing the stability in representational 

levels is also an important part of the process of validating the RR model. Pine et al’s 

(2003) work has already shown that changes in representational levels usually involve 

progress to a higher level.  However, the assessments were conducted on 5 separate days 

so that only limited information was available about the stability of children’s 

representational levels. To investigate stability, a calculation will be made of the 

percentage of occasions that children showed the same representational level at different 

time points in comparison with the percentage of time that they show movement to more 

or less advanced representational levels. 
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1.1. RR and the Overlapping Waves Model: Stability or Variation? 

 

The question of whether children show stability in representational levels also has a 

wider theoretical importance because of differences between Karmiloff-Smith’s RR 

model and the Overlapping Waves Model of Siegler (1996). The Overlapping Waves 

model focuses on variability in children’s thinking, and states that most stage-based 

models underestimate the range of strategies children employ when they are considered 

to be at one particular stage.  Instead, Siegler suggests that children have a variety of 

“ways of thinking” which they apply to a task. For example, Siegler and Jenkins (1989) 

have shown that children have a number of different strategies which they use with a 

simple addition task, rather then simply having only one way of solving addition 

problems. Siegler has employed formal models such as ASCM (Siegler and Shipley, 

1995) to explain how children choose between strategies. These types of models state that 

children try to make optimal choices in their strategy use, based on the needs of the task – 

whether for example accuracy or speed are the most important factor. Siegler (1995) 

notes that children may show variability in strategy use both within and across sessions – 

children may employ different strategies for similar trials within a session, and may 

employ different strategies for the same trial at different sessions. Although the term 

‘level’ is used rather than stages in the RR model, it is similar to many stage models, 

because it is supposed that children’s thinking and performance will be similar until they 

progress to a higher level. To address issues about stability and to compare these two 

models, two types of analysis will be employed. The first analysis will involve an 

examination of the stability of representational levels on different days, and also during 

multiple attempts at the balance beam task on the same day – this analysis looks at 

stability across time. The second set of analysis will focus on stability of representational 

levels within a session.  
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1.2. Magnification and the stability of representational levels  

 

Thelen and Smith (1994) have noted that by analysing data at greater levels of 

magnification, greater amounts of variability are noted. They state “development is 

messy. As we turn up the magnification of our microscope, we see that our visions of 

linearity.. break down. What looks like a cohesive, orchestrated process from afar takes 

on the flavour of a more exploratory… function-driven process” (p. xvi). The basis for 

this statement was an investigation the emergence of motor skills in infants. Thelen and 

Smith (1994) observed that by following the individual trajectory of children, various 

different types of strategies were employed by children to traverse inclined planes (e.g. 

they could slide, crawl, go down headfirst, or bottom first). On the other hand, at low 

levels of magnification – e.g. in single session, cross-sectional studies, less variability 

was apparent.  Thelen’s work suggests that when investigating variability in behaviour it 

is important to carry out analyses at different levels of magnification.  Moreover, if 

stability is present at the most detailed level of magnification, in relation to the RR 

model, then this will provide the strongest form of evidence that stability is in fact an 

important aspect of child’s thinking.     

 

One way to test this is to break down a session into a series of smaller, comparable units 

for analysis. This approach is drawn from the “microgenetic method” (Siegler and 

Crowley, 1991) for analysing change. The microgenetic method involves in-depth 

analysis of change as it occurs. It also involves a high density of testing around a period 

of change, and a trial-by-trial analysis to infer the processes that give rise to change. This 

trial-by-trial type approach to analysis can be used to address the question of variability 

in representational levels.  To obtain these detailed data it was decided to analyse 

children’s performance in relation to subsets of 3 beams; this was the minimum number 

of beams needed to assign children to a representational level.  A less detailed level of 

magnification was obtained by looking at children’s representational level within a set 

which consisted of a sequence of three of the subsets, and these were considered to make 

up a set.  The least detailed level of magnification involved sessions, these were based on 

the coding of the two sets which were administered on the same day.  Analyses were 
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conducted to compare the stability of representational levels at these three different levels 

of magnification. 

 

2.  Stability in representational levels within a session 

 

The most direct way to investigate the stability of levels is to analyse the stability of 

behaviour at the different degrees of magnification across time as discussed in the 

previous section.  A further way to investigate this question is to determine whether 

coding at different degrees of magnification identifies the same level of representation.  

In particular, whether coding the levels at different degrees of magnification results in 

similar or different assessments of children’s cognitive functioning. This is relevant to 

Siegler’s (Siegler, 1996) assertion that children are variable both across time (e.g. using 

different strategies for the same item across sessions), and within sessions (e.g. using 

different strategies for similar items within a session).  The current approach will allow 

an opportunity to compare RR levels at different degrees of magnification in order to see 

if children’s behaviour remains codable into the same RR level at different degrees of 

magnification.    

 

3. Do children show variability in the most complex explanations they offer across 

sessions? 

 

The examination of the stability of children’s levels of representation can provide 

valuable information relevant to validating the RR model and comparing it to the 

overlapping waves model. It is worth noting that by using Representational levels as a 

measure to analyse stability, some of the variability in verbal explanations offered by 

children, particularly within sessions, may not be accounted for. This may arise because 

representational levels act as summaries, rather then capturing the variety of different 

types of verbal explanations offered per session.  For this reason, a decision was taken to 

also look in more detail at the stability in children’s cognitions, by analysing children’s 

explanations, as these are one of the important constituent behaviours of the levels (Pine 

et al., 1999).  Furthermore, children’s verbal explanations have been used by Siegler 



 175

(1987) as the basis for coding children’s strategy use on addition tasks. Thus, it might be 

expected according to the RR model that children should either maintain a certain level of 

verbal explanation, or show improvement across sessions. On the other hand, one would 

expect from the overlapping waves model that children should show a certain amount of 

“ebbing and flowing of the frequencies of alternative approaches” (Siegler, 1996, p 86).  

By looking directly at trajectory of the most complex explanations offered by individual 

children across sessions, a further comparison between the RR model and the 

Overlapping Waves model can be made. 

 

Summary 

 

In this experiment, the focus concerns whether or not children are stable in their 

representational levels across time. Three specific questions are addressed: (1) Are 

children stable in representational levels across time? (2) Do children show stability in 

their representational levels within sessions? And (3) Are children equally stable in 

maintaining the most complex explanations offered across time at different degrees of 

magnification?  
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Method 

 

Participants 

 

65 children from reception and year one classes from 2 Hertfordshire schools were 

recruited for this study. The mean age was 66.6 months (standard deviation = 7.4 months, 

age range: 4 years 6 months, to 6 years 9 months). There were 41 boys and 24 girls.  

 

Design 

 

Table 6.1 below outlines the design for this experiment. Children were tested on a 

balance beam production task at 4 different time points across a 2 week period. At each 

of these sessions children were given two sets of 9 beams to balance. Each set of beams 

was made up of three sub-sets.   The same two sets of beams were used in each of the 4 

sessions. The order of the sets and beams varied across the 4 sessions to ensure there 

were no systematic biases. The number of beams used (a total of 18 per session) also 

helped to minimise the possibility of practice effects on specific beams. 

 

Table 6.1: Experimental Design 

Number of sessions 4 

Number of beams 

per session 

2 sets of 9 beams (3 symmetrical, 6 asymmetrical for each set) 

Order of the sets of 

beams 

Partially counterbalanced, so that children were not always 

given the same set of beams first 

Order of the beams Within each set the beams were quasi-randomly arranged. 

Children never received the beams in a set in the same order 

twice. Each set of beams consisted of 3 subsets of beams, each 

consisting of 2 asymmetrical and 1 symmetrical beams 
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Materials 

 

The balance beam task used was the same as described in chapter 3. In each set of beams 

there were 6 asymmetrical (for example, see Figure 6.1) and 3 symmetrical beams (for 

example see Figure 6.2), which children were asked to try and balance on a fulcrum.  

Symmetrical beams have the same number of weights on both ends. Asymmetrical beams 

have more weights on one end of the beam then on the other. The 2 sets of beams were 

carefully chosen so that both sets contained beams with similar characteristics (e.g. 

number of weights on the beams, length of the beams), to ensure similarity from one set 

to another. Because of the variety of the beams being used, it was not possible to 

counterbalance the beams within a subset, other than to ensure each subset contained 2 

asymmetrical and 1 symmetrical beam, and vary the presentation of the subsets, so that 

children weren’t always given the subsets in the same order within a set.   

 

The balance beams were wooden and ranged in length between 25cm and 45 cm. 

Wooden and metallic blocks were placed at either end of the beams acting as weights. 

These beams could be placed on a fulcrum which consisted of a raised plane of wood, 

1cm above a wooden board, and 1 cm in width. Children were asked to try and place the 

beams across this fulcrum in such a way as to make the beam balance and stay straight. 

 

Figure 6.1: example of an asymmetrical balance beam 
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Figure 6.2: example of a symmetrical balance beam 

 

 

 

Procedure 

 

The first three sessions took place within a week, with a day between each session (the 

children were tested on a Monday, a Wednesday, and a Friday). The final session was to 

take place a week after the third session (the following Friday). A similar procedure was 

used in each session. 

 

The child was brought from the classroom, and told they were going to be playing a few 

games, and learning about how to make things balance. The child was sat at a Table, and 

introduced to the apparatus to be used (e.g. the balance beams, and the puppet, to whom 

they would be explaining why the beams did or did not balance). A different puppet was 

used at each of the 4 sessions, in order to encourage children to keep giving explanations 

to these ‘new’ characters.   

 

When they were introduced to the balance beam task the child was asked to try and make 

each beam balance on the fulcrum. For each beam they were told: “I would like you to try 

and make this beam balance and stay straight on top of this piece of wood here (the 
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fulcrum)”. The child attempted to make the beam balance and stay straight, and either 

succeeded, or stated that the beam would not balance. If the child could not balance the 

beam after 1 minute, they were prompted with the question: “Do you think you can make 

this beam balance and stay straight?”  When they managed to make the beam stay 

straight and balance, the child was asked “Can you explain to the puppet why this beam 

is balancing?” If the child did not succeed in balancing the beam, they were asked “Can 

you explain to the puppet why this beam is not balancing?” The same procedure was 

used for each of the 18 beams given to the child per session, across the 4 sessions. 

 

 

Coding schemes 

 

The 2 measures of interest were the children’s verbal explanations offered, and their 

performance. Together these were used to identify the level of representation shown by a 

child. Table 6.2 below shows the coding scheme applied to children’s verbal 

explanations. Children can offer various types of Implicit or Explicit explanations as to 

why a beam does or does not balance. A key difference between Implicit and Explicit 

weight explanations is the use of weight and weight-based terms (e.g. “weight”, “heavy”, 

“bigger”), whereas children who are coded as having given implicit weight explanations 

focus only on the number of blocks on each side of the beam, without explaining that 

more blocks on one side means that there is a larger weight on that side.   
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Table 6.2: Coding Scheme for Verbal explanations on the balance beam task: 

Coding 

Category 

Examples of explanations 

Other Explanations which do not show any signs of explicit knowledge of the variables of weight and distance, or 

which are not relevant, or audible  

Implicit Explanations which do not show any signs of explicit knowledge of the variables of weight or distance.  

Examples:  “I thought really hard” “I just tried” “it’s the same as the others” 

Implicit 

(weight) 

Explanations which enumerate the set of weights placed on the scale, or the number of blocks on the beam, 

without any use of explicit, weight-based words.  Examples: “there’s more on that side”   “there are 2” “that 

one’s got two blocks, this has got one” 

Implicit 

(distance) 

Explanations which only use vague distance-based explanations which lack any explicit mention of distance 

based terms (e.g. centre, far, or near). Examples: “I put it there” 

Same/ 

Middle 

Explanations which focus on how the two sides are the symmetrical, or how the geometric centre of the 

beam was placed on the fulcrum. Examples: “in the middle” “they’re symmetrical”  

Weight Explanations which give explicit mention of the weight of the blocks, or the weights placed on the pegs, or 

which give some mention of weight-related terms. Examples: “It’s a bit heavy” “there aren’t the same amount of 

weights” “It’s stronger” “It’s bigger” “It doesn’t have a weight at the other end” 

Distance Explanations which focus on the relative placement of the weights in relation to each other, or in relation to 

the fulcrum. Examples: “It’s closer on this side”” “It’s not in the middle” “It’s further out” 

 

 

Assigning RR levels per session 

Table 6.3 below contains the criteria used for assigning a child a representational level in 

each session. These criteria are derived from the work of Pine et al (2003). For the 

balance beam task, the important criteria include the number of symmetrical and 

asymmetrical beams successfully balanced (e.g. the beams stay balanced around the 

fulcrum after the child has finished manipulating them), the initial placement of the 

beams (e.g. whether the child placed beams at their geometric centre to start with, or 

whether they initially placed them off-centre), and the explanations offered.  
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Table 6.3: Criteria for coding the Balance Beam production task into RR levels, per 

session  

RR Level Number of beams 

balanced 

Initial Placement of beam Verbal explanations 

offered 

Implicit Successfully balances 4 of 

6 symmetrical beams, and 

at least 8 of 12 

asymmetrical beams 

No bias in initial placement across the 

beams (e.g. initially places the beams 

in the geometric centre for less then 9 

of the 18 beams) 

Less then 4 

implicit/explicit weight 

explanations offered 

Implicit 

Transition 

Successfully balances 3 of 

6 symmetrical beams at 

most, and at best 4 of 12 

asymmetrical beams 

Initially places the beams in the 

geometric centre for at least 12 of the 

18 beams 

Less then 4 Implicit 

Weight explanations 

offered 

Abstraction 

Non-

Verbal 

(E1) 

Successfully balances at 

least 4 of 6 symmetrical 

beams, and at best 4 of 12 

asymmetrical beams 

Initially places the beam in the 

geometric centre for at least 12 of the 

18 beams 

Four or more implicit 

weight explanations 

offered, less then 2 

explicit weight 

explanations  

Abstraction 

Verbal 

Successfully balance all 

symmetrical beams, and 4 

or less asymmetrical 

beams 

Initially places the beam in the 

geometric centre for at least 12 of the 

18 beams 

At least four explicit 

Weight / centre based 

explanations offered 

E1 

transition 

Successfully balances all 

symmetrical beams, and 6 

or more asymmetrical 

beams 

Initially places the beam in the centre, 

with adjustment to place heavier side 

closer to the fulcrum, for at least 6 of 

the 12 asymmetrical beams   

At least four explicit 

Weight/centre based 

explanations offered 

E3 Successfully balances all 

symmetrical beams, and 8 

or more asymmetrical 

beams 

Initially places the beam in the centre, 

with adjustment to place heavier side 

closer to the fulcrum, for at least 6 of 

the 12 asymmetrical beams   

At least four explicit 

explanations involving 

both weight and  two 

explicit explanations 

involving distance 
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Assigning RR levels per set 

 

Table 6.4 below shows the criteria for coding children in to representational levels per set 

of 9 beams. The criteria are very similar to those in Table 6.2 above, and maintain the 

same format of representational levels.  
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Table 6.4: Criteria for coding the Balance Beam production task into RR levels, per 

set 

RR Level Number of beams 

balanced 

Initial Placement of 

beam 

Verbal explanations 

offered 

Implicit Successfully balances 2 

of 3 symmetrical 

beams, and at least 4 of 

6 asymmetrical beams 

No bias in initial placement 

across the beams (e.g. initially 

places the beams in the 

geometric centre for less then 

6 of the 9 beams) 

Less then 2 implicit/explicit 

weight explanations offered 

Implicit 

Transition 

Successfully balances 2 

of 3 symmetrical beams 

at most, and at best 2 of 

6 asymmetrical beams 

Initially places the beams in 

the geometric centre for at 

least 6 of the 9 beams 

Less then 2 Implicit Weight 

explanations offered 

Abstraction 

Non-Verbal 

(E1) 

Successfully balances at 

least 2of 3 symmetrical 

beams, and at best 4 of 

6 asymmetrical beams 

Initially places the beam in 

the geometric centre for at 

least 6 of the 9 beams 

Two or more implicit 

weight explanations 

offered, less then 2 explicit 

weight explanations  

Abstraction 

Verbal 

Successfully balance all 

symmetrical beams, and 

2 or less asymmetrical 

beams 

Initially places the beam in 

the geometric centre for at 

least 6 of the 9 beams 

At least two explicit 

Weight / centre based 

explanations offered 

E1 transition Successfully balances 

all symmetrical beams, 

and 3 or more 

asymmetrical beams 

Initially places the beam in 

the centre, with adjustment to 

place heavier side closer to 

the fulcrum, for at least 3 of 

the 6 asymmetrical beams   

At least two explicit 

Weight/centre based 

explanations offered 

E3 Successfully balances 

all symmetrical beams, 

and 5 or more 

asymmetrical beams 

Initially places the beam in 

the centre, with adjustment to 

place heavier side closer to 

the fulcrum, for at least 3 of 

the 6 asymmetrical beams   

At least two explicit 

explanations involving both 

weight and  two explicit 

explanations involving 

distance 
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Assigning RR levels per subset 

 

 

The representational levels were also applied to subsets of 3 beams within each session. 

A different coding scheme was required, as with only 3 beams, transitional levels were 

not readily codable. The criteria also had to be more stringent with a smaller set of 

beams, with an “all or nothing” criteria in terms of the number of beams balanced. Table 

6.5 below shows the criteria used. An extra “no level coded” category was created to 

categorise performance that could not be coded into any of the levels set out below. 

 

Table 6.5: Criteria for coding the Balance Beam production task into RR levels, 

per set 

 Number of 

Asymmetrical 

Beams 

Balanced 

Number of 

Symmetrical 

Beams 

Balanced 

Explanations 

offered 

Initial 

placement of 

the beam 

No level 

coded 

_ _ _ _ 

Implicit 2 1 No explicit 

explanations 

offered, no implicit 

weight or distance 

explanations offered  

No pattern 

Abstraction 

Nonverbal 

0 1 No explicit 

explanations 

offered, at least one 

implicit weight 

explanation offered 

Middle 

placement for 

at least 2 

beams 

Abstraction 

Verbal 

0 1 At least 1 explicit 

weight explanation 

Middle 

placement for 

at least 2 

beams  

E3 2 1 At least 1 weight 

and distance 

explanation 

No pattern 
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Because the balance beam task has been applied to tasks before, and has been second-

coded already in this PhD (see chapter 3), it was felt that there was no need to second 

code any of the data from this experiment.   
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Results  

 

The results are divided into the following sections: 

(1) Representational stability and representational change across time 

(2) Comparing representational levels at different degrees of magnification  

(3) Stability in the most complex verbal explanations offered across time 

 

 

1. Representational stability and representational change across time 

 

This section will comprise an examination of the percentage of occasions children 

showed the same representational levels across sessions. The first set of analyses focuses 

on children’s representational levels from session to session, at the lowest degree of 

magnification. This is followed by a graphical analysis of the data from session to session 

to give a clear overview of how often child showed the same representational levels or 

showed change in representational levels from session to session. Following this, the 

focus will shift to analysis at higher degrees of magnification; representational levels 

from set to set and from subset to subset. The three degrees of magnification will then be 

compared to see how often children show stability, and movement to more or less 

advanced representational levels at these different degrees of magnification. 

 

 

1.1  Representational stability and representational change across the 4 sessions  

 

For sessions 2, 3, and 4, the coding of a child’s representational level was compared with 

that of the previous session. Each session was coded as being a more advanced 

representational level, a less advanced representational level, or the same representational 

level as the previous session.  Table 6.6 below shows that for a majority of the time, 

children show stability in representational levels from session to session. A One-Way 

ANOVA, with the number of times children showed progression to a different RR level, 

regression to a less advanced level, and the type of change (or stability) as the 
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independent variable indicated there was a significant difference in the frequencies of the 

three different types of transitions in levels between sessions (i.e. same, more advanced, 

less advanced) F [2,192] = 77.39, p < .001. Post-hoc comparisons using Tukey’s HSD 

revealed significant differences between all 3 measures. The frequency of transitions 

involving the same representational level were significantly higher than those involving a 

transition to a less advanced (p <. 001) and more advanced representational level (p < 

.001) and transitions to a less advanced representational level were significantly more 

frequent to those to a more advanced representational level (p = 0.022). 

 

Table 6.6: The  percentage of times children showed stability, progression to a more 

advanced RR level, or movement to a less advanced RR level from session to session 

 Percentage 

Percentage of time children maintained the same 

representational level from session to session 

61.3% 

Percentage of time children showed movement to a 

more advanced representational level from session to 

session 

14.3% 

Percentage of time children showed movement to a 

less advanced representational level from session to 

session 

24.4% 

 

A closer view of these data show that (Table 6.7) the  majority of advances to higher 

levels of representations  were to the next representational level in the sequence (e.g. 

Abstraction Nonverbal to Abstraction Verbal, or Abstraction Verbal to Explicit transition, 

were the 2 most common changes occurring). The majority of movements to less 

advanced levels involved Abstraction Verbal to Abstraction Nonverbal representational 

levels (22/51 transitions). 
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Table 6.7: Frequency of occurrence representational changes involving movement to 

a hierarchically adjacent RR level from session to session 

 Percentage of movement to a 

hierarchically adjacent representational 

level  

Movement to a more advanced 

representational level  

88.5% 

Movement to a less advanced 

representational level 

67.3% 

 

 

1.2. Graphical Analysis of children’s representational levels from session to session 

 

The trajectory of children’s representational levels across the four sessions are shown in 

Figs 6.3-6.5. Due to the relatively large sample it was decided to carry out separate 

analyses for the following groups of children: (1) children showing a decline in their 

representational level from the first to the last session; (2) children showing the same 

level at the first and last sessions, and  (3) children showing a more advanced 

representational level at the last session than at the first session. Analyses based on these 

groups only occur in this section. 

. 

1.2.1 Children who show movement to a less advanced representational level from 

the first to the last session.   

 

Figure 6.4 charts the trajectories of children (N=30) who showed a less advanced 

representational level at the last session than at the first session. This group are most 

likely to provide support for the notion that children show variability, rather than stability 

in their representational levels across time. In figures 6.3 through 6.5 , thicker dark lines 

indicate a high frequency of children followed a particular trajectory.  Several features of 

the graph deserve comment. 
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Figure 6.3: trajectory for children showing same representational level at first and last 

session 

Session 

1 

Session 

2 

Session 

3 

Session 

4 

I 

It 

ANV 

E1 

E1T 

E3 

N = 1 N = 2 N = 1 N = 1 

N = 6 N = 5 N = 7 N = 6 

N = 2 N = 2 N = 2 N = 2 

N = 3 N = 3 

N = 13 N = 13 

N = 1 N = 3 

N = 14 N = 11 



 190

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6.4: graphing children who showed representational progression from the first to 

the last session 
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Figure 6.5: graphing children who showed a lower RR level on the final session in 

comparison with the first session 
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The change involving the largest number of children was from Abstraction Verbal to 

Abstraction Nonverbal, from the first to the second session. Once children achieve this 

level, most of them stayed at this level for the remaining sessions. Thus, it would appear 

that the greatest variation in this group involved two levels which are closely related and 

only differ according to whether or not children explicitly mention weight in their 

explanations.  

 

It also is apparent that the majority of children who moved to implicit representational 

levels from a higher level, then maintained this representational level.  Thus, although a 

decline in the level of representation occurred, there was not a great deal of variation 

afterwards.  Other changes to lower levels, involved movement from transitional levels to 

the levels believed to precede them (e.g. implicit transition to implicit, and from explicit 

transition to abstraction verbal representational levels).   

 

 

1.2.2 Children who show the same representational level at the first and last sessions  

 

Figure 6.3 gives the trajectories of the children (n=24) who show the same 

representational levels at the first and last sessions. Of these children, 15 showed the 

same level across each session (Implicit = 1, Abstraction Nonverbal = 4, Abstraction 

Verbal = 7, Explicit transition = 1, E3 = 2). The other 9 children showed some 

inconsistency from the first to the second session, but returned to the original level by the 

third session and maintain it at the fourth session. Thus, a significant proportion of the 

sample showing stability in their representational level across the 4 sessions. 

 

1.2.3 Children who show movement to a more advanced representational level from 

the first to the final session 

 

Figure 6.5 shows the trajectories for children who had a higher representational level at 

the final session than at the first (N= 10). The majority of children showed a change from 
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Abstraction Verbal to explicit transition or E3, with one child progressing from 

Abstraction Nonverbal to abstraction verbal representational levels, and one child 

progressing from Implicit transition to Abstraction Nonverbal representational levels.   

 

 

1.3. Representational stability and representational change across sets 

 

Each session contained 2 sets, so data at this level of magnification was obtained about 8 

representational levels across the course of the experiment.  Graphical descriptions of 8 

sets were too complicated to display and inspect.  As a result, an analysis was carried out 

similar to that carried out in section 1.1 – for the second through to the eighth set, 

children’s representational levels were coded, in relation to the representational level in 

the previous set. Children could show the same representational level, a more advanced 

representational level, or a less advanced representational level. On 65% of occasions, 

children’s representational were the same as in the previous set (see Table 6.8). As with 

children’s representational levels from session to session, movements to a lower 

representational level from set to set occurred more often then advances. A One-Way 

ANOVA, with the number of times children showed the three types of movement from 

set to set  as the dependent variable(e.g. maintaining the same representational level per 

set, showing a more advanced representational then in the previous set, or showing a less 

advanced representational level then in the previous set) and the type of change as the 

independent variable showed that the frequency of stability between sets was 

significantly higher than the frequency of decreases or increases between sets F [2,192] = 

172.77, p < .001. Post-hoc comparisons using Tukey’s HSD revealed 2 sets of significant 

differences between  measures the frequency of stability was significantly higher than the 

frequency of either decreases (p < .001)or increases (p < .001), but there was no 

significant difference between the frequency of advances and decreases in level (p = 

0.156).  
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Table 6.8: Frequency of stability, advance, and decline in representational level 

from set to set 

 Percentage 

 Percentage of time children maintained the same 

representational level from set to set 

65.1% 

Percentage of time children showed an 

advancement in representational level from set to 

set 

14.5% 

Percentage of time children showed movement 

to a less advanced representational level from set 

to set 

20.4% 

 

A more detailed analysis of these movements is shown in Table 6.9. This shows that a 

majority of these movements to less advanced representational level involved movements 

to the level immediately prior in the sequence (e.g. from abstraction verbal to abstraction 

nonverbal, and from explicit transition to abstraction verbal,), rather then movement to 

levels that are at a much earlier point in the sequence of representational levels. 

 

Table 6.9: Frequency of occurrences of representational changes involving 

movement to a hierarchically adjacent representational level from set to set 

 Percentage of movement to a 

hierarchically adjacent 

representational level  

Movement to a more advanced 

representational level  

77% 

Movement to a less advanced 

representational level 

79% 
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1.4 Representational stability and representational change across subsets 

 

At this level of magnification there were 24 subsets (as there were 3 subsets in each set). 

Again, from the second subset onwards, children’s representational levels were compared 

with the representational level from the previous subset – children could show the same 

representational level, a more advanced representational level, or a less advanced 

representational level. When subsets could not be coded into representational levels, it 

was not possible to say whether there was movement to a more or less advanced 

representational state. Table 6.10 shows that 35.3% of the time, children maintained the 

same representational level from subset to subset. This percentage is lower than the rates 

for stability from session to session (Table 6.6) and from set to set (Table 6.8) –and is in 

large part due to the incidence of “noncodable” subsets, which does not happen at session 

and set levels of magnification. The second column of figures in Table 6.7 shows the 

percentages for children maintaining the same representational level, movement to more 

advanced representational level, or movement to a less advanced representational when 

the uncodable levels are not taken into account. Uncodable subsets were subsets where 

the patterns of performance and verbal explanations did not fit in with the criteria set out 

in Table 6.5. Out of 1572 codable subsets, 33.5% (527 of 1572) were uncodable. When 

an uncodable subset occurred, at least 2 points of potential change are lost – from the 

subset prior to the uncodable subset, and then from the uncodable subset to the following 

subset. Due to the unknown nature of the uncodable subset, movement from a codable 

subset to “uncodable” subset is not coded as change – indeed it is not coded as “not 

measurable”. Therefore, though uncodable subsets occurred just over a third of the time, 

this had a much higher impact in measuring changes in RR level and stability in RR level 

from subset to subset.   

 

A One-Way ANOVA, was conducted on the number of times children showed movement 

from subset to subset as the dependent variable, and the type of movement as the 

independent variable (e.g. maintaining the same representational level between subsets, 

showing a more advanced representational than in the previous subset, or showing a less 
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advanced representational level than in the previous subset, discounting occasions where 

children’s representational level was uncodable ). This showed that there was a higher 

frequency of occasions where children showed stability from session to session than 

showing an increase or decrease in representational level from session to session, F 

[2,192] = 253.63, p < .001. Post-hoc comparisons using Tukey’s HSD revealed 2 sets of 

significant differences between measures. Children showed stability on a significantly 

higher number of occasions than showing a more advanced representational level (p<. 

001) or showing a less advanced representational level (p <. 001). There was no 

significant difference between the frequency of movements to more advanced 

representational levels and less advanced representational levels from subset to subset (p 

= 0.918). 

 

 

Table 6.10: Frequency of occurrence of stability, movement to a more advanced RR 

level, and movement to a less advanced RR level from subset to subset 

 Percentage Percentage (not taking 

uncodable subsets into 

account) 

How often children 

showed representational 

stability from subset to 

subset 

35.3% 71.7% 

How often children 

showed an advancement in 

representational level from 

subset to subset 

5.6% 12.7% 

How often children 

showed movement to a 

less advanced 

representational level from 

subset to subset 

6.1% 15.6% 
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Table 6.11 below shows a break down the types of movement from representational level 

to level from subset to subset. The majority of increases and decreases in representational 

level involved movement to an adjacent representational level (e.g. movement from 

abstraction nonverbal to abstraction verbal representational level which occurred 49 

times, or movement from abstraction verbal to abstraction nonverbal, which occured 54 

times – the 2 most common forms of movement between representational levels which 

was codable here). 

 

 

Table 6.11: Frequency of occurrence of representational changes involving 

movement to a hierarchically adjacent representational level from subset to subset 

 Percentage of movement to a 

hierarchically adjacent 

representational level  

Movement to a more advanced 

representational level  

71.7% 

Movement to a less advanced 

representational level 

83.7% 

 

 

1.5. Comparing stability in representational levels at different degrees of 

magnification 

 

The next step in the analyses was to compare the different degrees of magnification in 

terms of how often children showed the same representational levels across time, how 

often they showed movement to more advanced representational levels across time, and 

how often they showed movement to less advanced representational levels across time. 

Table 6.12 below shows the relative frequencies of these 3 measures at the different 

degrees of magnification. A series of One-Way ANOVAs, using degree of magnification 

as the independent variable (e.g. session, set, and subset), and percentage frequency for 
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maintaining the representational level, movement to a more advanced representational 

level, and movements to a less advanced representational level as dependent variables 

were conducted. There was no significant difference between the different degrees of 

magnification in terms of the percentage of times children maintained the same 

representational level across time (F, [2,192] = 2.87, p = 0.6), nor in terms of how often 

children showed movement to a more advanced representational level (F, [2,192] = 

0.291, p = .748). There was a significant difference for movement to a less advanced 

representational level, F [2,192] = 7.35, p = 0.001, with a post-hoc Tukey’s HSD 

revealing a significant difference between session and subset (p = .001). Movement to 

less advanced representational levels occurs significantly less frequently at the subset 

degree of magnification then at the session degree of magnification.     

 

Table 6.12: Percentage of times children the same representational, showed 

movement to more advanced representational levels, and movement to less 

advanced representational levels at different degrees of magnification  

 Mean %age of times 

children maintained the 

same representational 

level  

Mean %age of times  

children showed a 

more advanced 

representational level 

then in the previous 

session/set/subset 

Mean %age of times  

children showed a less 

advanced 

representational level  

then in the previous 

session/set/subset 

From session to 

session 

61.3% (standard 

deviation = 29.04) 

14.3% (standard 

deviation =17.47) 

24.4% (standard 

deviation = 20.44) 

From set to set 65.1% (standard 

deviation =23.25)  

14.5% (standard 

deviation =12.5) 

20.4% (standard 

deviation =12.75) 

From subset to 

subset  

71.7% (standard 

deviation =23.54) 

12.7% (standard 

deviation = 12.91) 

 15.6%(standard 

deviation = 12.43) 
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2. Comparing representational levels at different degrees of magnification  

 

 

The next step in analysis was to investigate the relation between the different levels of 

magnification.  This involved examining the relation between the coding of 

representational levels for each session and the corresponding sets, and between each set 

and the corresponding subsets. 

 

2.1. Comparing representational levels coded per sets and per session  

 

A calculation was made of the percentage agreement between the level of representation 

identified for a session and the levels of representation identified for the two 

corresponding sets.  Figure 6.6 shows how often a child’s representational level for a set 

matched the representational session assigned to the session of which that particular set 

was a part. A very high degree of agreement between the representational levels was 

identified for the sessions and the representational levels identified for the sets within 

these session (χ² [25] = 1473, p < .001, Cramer’s V = .87 ).  

 

Figure 6.6: Percentage agreement between RR level per session and RR level per set 
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2.2 Comparing representational levels coded per set and per subset 

 

A calculation was made of the percentage agreement between the level of representation 

identified for a set and the levels of representation identified for the three corresponding 

sets.  Figure 6.7 shows how often children’s representational level for a subset were in 

agreement with the representational level for the set of which the subset was a part. There 

were lower levels of agreement between set and subset then between session and set. The 

results still indicate relatively high levels of reliability though (χ² [20] = 2276, p < .001, 

Cramer’s = .89). That is to say roughly two thirds of the representational levels in a 

subset matched those of the set from whence they came time (these data do not include 

occasions where representational level in a set was a transitional level, as there is no 

subset equivalent).  

 

Figure 6.7: Percentage agreement between RR level per set and RR level per subset 
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3. Stability in the most complex verbal explanations offered across time 

 

3.1 Stability in most complex verbal explanations offered across sessions 

 

The most complex explanations children offered in a session, set, and subset were 

analysed. The sequence laid out in Table 6.2 (see methods section – verbal explanation 

coding scheme) was used as the basis to code the most complex verbal explanations – it 

is worth noting that technically, distance will be coded as a more complex verbal 

explanation than weight explanations, as a majority of studies in the area of balance show 

that weight explanations emerge prior to distance explanations. 

 

The same method as in section 1.1 was used to analyse the changes in the most complex 

explanations between the different levels of magnification. Three possibilities were coded 

– children showing a more complex explanation than the previous session, children 

showing the same type of verbal explanation as the previous session, or children showing 

a less complex verbal explanation than the previous session. Table 6.13 shows that for a 

majority of the time, children show stability in the most complex explanation they offered 

from session to session.  The percentages produced in this analysis, do not differ greatly 

from those of representational levels from session to session (see Table 6.1). A One-Way 

ANOVA was conducted with the frequency of the types of changes (e.g. same, increase 

or decrease in most complex verbal explanations offered) as the independent variable and 

the type of change as the dependent variable. This revealed a significant difference, F 

(2,192) = 68.11, p < .001. A post-hoc analysis using Tukey’s HSD revealed significant 

differences showed significant differences between children showing the same 

explanation from session to session and children showing less complex explanations from 

session to session (p<.001), and between children showing the same explanation from 

session to session and increases in most complex explanations from session to session (p 

< .001). No significant difference is found between the mean amount of times movement 

to more complex and movement to less complex explanations from session to session 

occurs (p = 0.22).  
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Table 6.13: Frequency of occurrence of stability, advance, and decline in most 

complex explanations offered from session to session 

 Number of occurrences Percentage 

How often children showed stability 

in most complex explanation offered 

from session to session  

122 62.5% 

How often children showed an 

advancement in most complex 

explanation offered from session to 

session 

29 14.9% 

How often children showed 

movement to a less advanced verbal 

explanation from session to session 

44 22.6% 

 

 

 

3.2 Stability in most complex explanations offered across sets 

 

In order to look at stability in most complex verbal explanations offered from set to set, 

the most complex verbal explanations offered from the second set onwards were 

compared with the previous set. Again, children could be coded as showing a more 

complex explanation than the previous set, the same explanation as the previous set, or a 

less advanced verbal explanation then the previous set. Table 6.14 below shows that for a 

majority of sets, children showed stability in the most complex explanations offered from 

set to set. Though children showed more movement to less advanced verbal explanations, 

again 39 of 84 of these incidences involve movements from explicit weight explanations 

in one set to implicit weight in the following set. 
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Table 6.14: Frequency of occurrence of stability, advance, and decline in most 

complex explanations offered from set to set 

 Number of occurrences Percentage 

How often children 

showed stability in most 

complex explanation 

offered from set to set  

299 65.7% 

How often children 

showed an advancement in 

most complex explanation 

offered from set to set 

72 15.8% 

How often children 

showed movement to a 

less advanced verbal 

explanation from set to set 

84 18.5% 

 

 

3.3. Stability in most complex explanations offered across subsets 

 

In order to look at stability in the most complex verbal explanation from subset to subset, 

the most complex verbal explanations offered from the second subset onwards were 

compared with the previous subset. Again, children could coded as showing a more 

complex explanation then the previous set, the same explanation as the previous set, or a 

less advanced verbal explanation than the previous set. Table 6.15 shows similar figures 

to tables 6.13 and 6.14, and again is comparable with the data for representational levels 

as similar levels of magnification. Children showed high levels of stability in the most 

complex explanations offered from subset to subset. Movements to less complex verbal 

explanations from subset to subset were again slightly more common then movements to 

more advanced verbal explanations. Again however, 122 of the 259 of these incidences 

of movement to a less advanced verbal explanation involve movements from offering 

explicit weight explanations in one subset to implicit weight explanations in the next.  
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Table 6.15: Frequency of occurrence of stability, advance, and decline in most 

complex explanations offered from subset to subset 

 Number of occurrences Percentage 

How often children showed stability 

in most complex explanation offered 

from subset to subset  

980 65.5% 

How often children showed an 

advancement in most complex 

explanation offered from subset to 

subset 

256 17.1% 

How often children showed 

movement to a less advanced verbal 

explanation from subset to subset 

259 17.4% 

 

 

 

3.4 Comparing stability in most complex explanations offered at different degrees of 

magnification 

 

The final step in this analysis is to compare the stability in verbal explanations across the 

different levels of magnification. Because of the different scales used for the different 

degrees of magnification, for each child the data was recoded into the percentage of times 

the children stayed stable from session to session, from set to set, and from subset to 

subset (e.g. if a child stayed stable across the 4 sessions, they were coded as 100% 

stable). The same was done for increases and decreases in terms of the most complex 

verbal explanation offered per session, per set, and per subset. Table 6.16 below shows 

that children were similar in terms of percentages of stability, increase and decrease 

across these sessions. A series of One-Way ANOVAs with percentage of time children 

were stable as the dependent variable and the degree of magnification as the factor (e.g. 

session, set or subset) was not significant, F (2,191) = 0.33, p = 0.71). Similar findings 
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arise for increases in most complex verbal explanation at different degrees of 

magnification (F [2,192] = 0.25, p = 0.78), and decreases in most complex verbal 

explanation at different degrees of magnification (F, [2,192] = 1.58, p = 0.2). 

 

Table 6.16: Frequency of occurrences of stability, advance and decline in most 

complex explanation offered at different degrees of magnification  

 Mean %age of times 

children maintained the 

same level of verbal 

explanation 

Mean %age of times  

children showed a 

more complex verbal 

explanation then in the 

previous 

session/set/subset 

Mean %age of times  

children showed a less 

complex verbal 

explanation then in the 

previous 

session/set/subset 

From session to 

session 

62.2% (standard 

deviation = 31.78) 

15.23% (standard 

deviation = 18.5) 

21.42% (standard 

deviation = 20.5) 

From set to set 65.63% (standard 

deviation = 24.4)  

15.58% (standard 

deviation = 13.9) 

18.11% (standard 

deviation = 12.2) 

From subset to 

subset  

65.18% (standard 

deviation = 20.13) 

16.97 (standard 

deviation = 10.8) 

16.94 (standard 

deviation = 9.7) 
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Discussion 

 

The main aim of this experiment was to compare the RR and Overlapping Waves models. 

An important difference between the 2 models is that Karmiloff-Smith believes that 

within a level, children are generally stable in their thinking, whereas Siegler believes 

that children are varied in their strategies. To address this issue, children were tested 

across 4 sessions on a balance beam task over a period of 2 weeks. They were asked to 

try and balance symmetrical and asymmetrical beams along a fulcrum, and explain to a 

puppet why the beam did or did not balance.  

 

The different degrees of magnification played a key role in the analyses. Thelen and 

Smith (1994) have stated that by looking at low levels of magnification – e.g. by using a 

summary variable such as a representational level to summarise a whole session, 

variability in children’s development may not be detected.  Consequently, in the current 

study, analyses were conducted at three different levels of magnification.  At the lowest 

degree of magnification were the 4 sessions, each of which involved the presentation of 

18 beams to the children. The sessions were subdivided into 2 sets and these provided a 

higher degree of magnification, with the highest degree of magnification being provided 

by the subsets of 3 beams within each set.   

 

Using these data 3 inter-related questions could be addressed. First, were children stable 

in their representational levels across time? The second question concerned the different 

degrees of magnification; were children equally stable at these different degrees of 

magnification, or were children more variable when studied at higher degrees of 

magnification? The third question concerned whether or not there was consistency 

between different the levels identified at different degrees of magnification.   

 

Because the analysis of children’s representational levels may favour the RR model it 

also was decided to analyse children’s explanations.  This had the advantage of capturing 

aspects of the children’s strategies which are often used in microgenetic studies to 

provide information abut the different types of strategies used during and across sessions 
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(Adolph, 1999, Coyle and Bjorklund, 1997, Siegler and Svetina, 2002). Therefore, the 

same analyses were also conducted on measures of the most complex explanations 

offered by the children.   

 

 

Stability in representational levels across time 

 

The first data to be discussed are shown in figures 6.3-6.5. These figures depict the 

trajectory of children’s representational levels across all 4 sessions. For clarity of 

presentation  and analysis, children were divided into 3 groups – children who showed 

the same representational level at the first and last sessions, children who showed a less 

advanced representational at the first session than the last session, and children who 

showed a more advanced representational level at the last session than at the first session. 

The children who showed the same representational level (Figure 6.4) at the first and last 

sessions showed clear evidence of stability and this provides support for Karmiloff-

Smith’s claims. Indeed 15 of the 24 children in this group (Figure 6.4) showed stability in 

maintaining the same representational level across all 4 sessions. The other 2 groups 

(figures 6.3 and 6.5) showed changes in representational levels from the first to last 

sessions, however, these generally involved a change of only one representational level, 

and this was usually followed by a period of stability, rather than there being a generally 

variable developmental trajectory. The clearest example of this phenomenon involved 

children who moved from abstraction verbal to abstraction nonverbal representational 

levels (Figure 6.3) – these were the majority of the children who showed a movement to a 

less advanced representational level. Following movement to Abstraction Nonverbal 

representational levels, children then remain at this level for the following sessions, rather 

then showing further movement in representational levels. The implication from these 

data about sessions is that children are generally stable in their representational levels, 

rather then being more variable in their thinking, as Siegler asserts. These data also help 

to further validate the findings of Pine and Messer (2003) about the RR model. Pine and 

Messer (2003) showed that children move through the RR levels in the sequence laid out 

in Table 6.3; the present findings indicate that not only do children follow the sequence 
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of levels suggested by Messer & Pine, but also that they maintain these representational 

levels for a period of time. The occurrence of decline from Abstraction Verbal to 

Abstraction Nonverbal was more pronounced then in Pine and Messer’s (2003) findings. 

This is in large part due to the inclusion of the “implicit weight” verbal explanation 

category. The fact that a number of children stopped giving explicit weight explanations, 

and instead gave implicit explanations, which focused on the number of blocks on either 

end of the beam, instead of their physical properties may play a role in the decline in 

performance defined in the u-shaped curve. That is to say, the children may revert to 

implicit type explanations as part of the “temporary disregard for features of the 

environment” described by Karmiloff-Smith (1992, p 19) in relation to how 

representational change is thought to occur. 

    

 

Stability in representational levels at different degrees of magnification 

 

The stability of children’s representational levels were analysed at different degrees of 

magnification, to see if children were more variable in their representational levels at 

higher degrees of magnification, as Thelen and Smith (1994) have suggested. At the 

lowest level of magnification, that of the 4 sessions, children showed a high degree of 

stability from session to session, with children being significantly more likely to maintain 

the same representational level than to show change to a different representational level, 

as discussed above. When stability was analysed at the level of sets, a very similar pattern 

of behaviour was identified, with a high degree of stability in representational levels 

being present. Children were significantly more likely to remain at the same 

representational level from set to set than show movement to a more or to a less advanced 

representational level.   

 

At the subset level there was a slightly different coding scheme for representational levels 

and children were not found to be as stable as at higher degrees of magnification. This 

may partly be because of the occurrence of “uncodable subsets”.  Where these uncodable 

subsets are not included in the calculations (Table 6.10), it is clear that children were 
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equally stable in maintaining their representational levels across time, even at the highest 

degree of magnification. This provides clear evidence contrary to the position of Thelen 

and Smith (1994), that children can in fact be equally stable in their thinking when 

analysed at very high degrees of magnification. 

 

With regards to the overlapping waves model, one defence that could be made against the 

current data is that it aggregates data, rather than trying to look at individual variability. 

This argument would suggest that a great deal of variability has been glossed over or 

overlooked. However, the microgenetic method employed did in fact aim to look in very 

fine grained detail at individual’s performance. While there was still a need to summarise 

data from a group of children, the data that was being analysed basically followed the 

type of data that the overlapping waves model would want to look at – children’s 

performance on tasks at a degree of magnification very close to trial-by-trial analysis, 

which displayed a much greater regularity in thinking in terms of continuity in RR levels 

(and therefore in performance and verbal explanations offered) at this degree of 

magnification.  

  

Consistency in representational levels within sessions 

 

Having looked at stability in representational levels across time, the next step was to look 

at consistency in representational levels within a session, to determine whether the same 

level of representation was identified at different degrees of magnification. Addressing 

this issue was especially important when levels of representation were coded in subsets as 

the percentage of occasions where children showed stability in representational level 

from subset to subset was lower then at the other degrees of magnification. 

 

Figures 6.6 and 6.7 indicate a high percentage of consistency in terms of children’s 

representational levels at different degrees of magnification. Children were consistent 

within sessions (Figure 6.6) – when children were coded as showing Abstraction 

Nonverbal Representational levels within a session, the sets within this session were 

highly likely to also be coded as being at the Abstraction Nonverbal representational 
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levels. Given the similar amounts of stability in representational level from session to 

session and from set to set, this is not surprising. There also was a high level of 

agreement between the representational levels identified in a subset and the 

representational level for the set from which the subsets came (Figure 6.7). The 

representational levels in a subset were significantly more likely to match the 

representational level for the corresponding set than show a different representational 

level. This finding is contrary to the position of Thelen and Smith (1994), that at greater 

degrees of magnification, greater variability will be apparent. This further validates the 

use of representational levels, which do not seems to be artifacts based on the degree of 

magnification used in analysis. Another important conclusion to be drawn from this it 

that the R-R model is not incompatible with modern methodological approaches such as 

the microgenetic approach, whose analytical focus is at a high degree of magnification in 

order to track developmental changes.  

 

 

Variability in verbal explanations offered – implications for the Overlapping Waves 

Model  

         

 Children were stable in their representational levels across time. Tables 6.3-6.5, show 

that children were also stable in the most complex verbal explanations they offered from 

session to session, from set to set, and from subset to subset. Indeed, Table 6.16 indicates 

that children were equally stable in terms of the most complex explanation they offered 

across time at all degrees of magnification – providing further support for the stability in 

children’s performance. Using the highest degree of magnification offered, which 

approaches trial-by-trial type analysis, children were stable in the most complex 

explanations offered across time. The conclusion to be drawn here is that children’s 

thinking for the balance beam task, as measured by looking at the most complex 

explanation they provide with regard to the balance beam task is not as generally variable 

as the Overlapping Waves model would predict. The RR model does not imply that 

children have only one way of thinking about a task at any given time. Nevertheless, once 

children do achieve a certain level of knowledge (e.g. a more advanced representational 
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level, or a more complex form of verbal explanations), they will show stability in 

maintaining this level of knowledge across time, rather than showing variability 

involving using a variety of different types of explanations to explain why a beam would 

or would not balance.  

 

The RR levels focus both on the type of verbal explanation children offer and on their 

ability to perform a related task – in this case balancing beams. It is important to note that 

stability in representational levels across time not only means stability in terms of the 

most complex verbal explanation shown, but also stability in terms of the number of 

symmetrical and asymmetrical beams balanced across time. The overlapping waves 

model can sometimes overlook this level of analysis – for example children may use 

multiple strategies in addition (Siegler and Shrager, 1989) and multiplication (Siegler and 

Jenkins, 1989) tasks – yet the analysis rarely covers children’s accuracy in these tasks – it 

is likely that variability in strategy use is not matched by variability in accuracy on these 

addition and multiplication tasks.  Therefore, children are not necessarily characterisable 

as being variable across all measures one can derive from a task; it is important to state 

that children are not totally variable in their thinking. This is not to say that children did 

not show any variability at all in their representational levels– which helps to introduce a 

key question for the next chapter. Children may not be characterisable as being varied in 

their thinking in general, but does variability play a role in representational change, and if 

so, what role? The implication here is that the overlapping waves model may best be 

thought of as a model which can help to us understand how change occurs, rather then 

how children behave during periods when change is not occurring. It is worth noting here 

that development does not follow a continuously progressive curve (as the U-shaped 

curve clearly shows, Strauss, 1982).  

 

It is also important to note that Siegler (1996) has criticised his balance scale task, which 

obviously shares the same domain characteristics as the balance beam task used here, as 

not being compatible with the approach of the overlapping waves model. This allows for 

the possibility of dismissing the current findings as critiques of the overlapping waves 

approach. Siegler and Chen (1998) have however used the balance scale task within a 
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microgenetic overlapping waves based study. Therefore, the possibility of dismissing the 

findings of this study with regard to the overlapping waves model due to the balance 

beam task being unsuited for use with the overlapping waves model are limited. 

Furthermore, as stated at the outset, an important aspect of a general model for cognitive 

development is that it should be applicable to a variety of tasks within a domain. The lack 

of applicability of the overlapping waves model in this case provides evidence that it may 

not best be thought of as forming the basis for a general model of cognitive development. 

While it is the case that children do provide different explanations for why the beams did 

or did not balance, it was not the case that this variability leads to children showing 

significant variability either in terms of their representational levels, or in terms of the 

most complex verbal explanations offered, across time.      

 

Summary  

 

Children’s representational levels on a balance beam task were stable across time, at 3 

different degrees of magnification. An analysis of children’s most complex explanation 

offered for the balance beam task produced similar findings. Both these sets of findings 

support the position of the RR model that children are generally stable in their thinking 

across time, rather then being variable, as Siegler (1996) suggests in his overlapping 

waves model. These findings also show that children do not always show greater levels 

of variability when analysed at higher degrees of magnification. It is likely therefore that 

variability in representational levels is restricted to periods of representational change. 

Representational change and the possible role of variability in relation to this will be 

covered in the next chapter.    
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Chapter 7: A microgenetic investigation of representational change on 

the balance task 

 

 

Introduction  

 

The previous chapter addressed issues with regard to stability in the RR model. In this 

chapter, the focus switches to the process of representational change. Two questions are 

addressed; first is representational change driven by increasing verbal access to 

knowledge? Second, what role does stability play in the process of representational 

change? 

 

1. Is representational change driven by increasing verbal access to knowledge? 

 

The focus of this chapter is on whether or not the RR model can explain changes that 

occur on the balance beam task across time. Within the model, representational 

redescription underpins the change from one level to another, but Karmiloff-Smith (1992) 

fails to elucidate on where the immediate impetus for representational redescription 

comes from. The main criticism arising from the RR model as noted in the literature 

review was that it was underdescribed (Campbell, 1994, Freeman, 1994, Scholnick 

1994). The levels of the RR model for the balance beam task are based on children’s 

ability to balance symmetrical and asymmetrical beams, and by their ability to provide 

verbal explanations for each trial. It is therefore plausible that micro-changes in 

performance or verbal explanations may provide the first signs that representational 

change is imminent.  

 

Some theorists argue that performance drives cognitive change. Piaget states that 

cognitive change occurs using a process of “accommodation”, “assimilation”, and 

“equilibration” –  knowledge is constructed and reconstructed based on interaction with 

the environment, and cognitive changes occur as a reaction to the environment. Our 

knowledge of balance for instance would change as we perform a task Though 
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“equilibration” may involve some internal abstraction process, Bryant (2001) notes that 

there isn’t any testable model of equilibration. Within the RR model, cognitive change is 

not always driven by changes in performance. Karmiloff-Smith sets out the possibility of 

representational redescription, which involves the redescription of knowledge, which was 

initially encoded in a procedural format, being redescribed into verbally accessible 

formats.  This process is thought to occur through an “internally driven phase during 

which the child no longer focuses on the external data” (Karmiloff-Smith, 1992, p. 19). 

Therefore, the process of abstraction is given a key or potentially driving role in cognitive 

change, rather then being what may be thought of as a secondary role (e.g. equilibration 

is not a primary process, but more of a reaction to the processes of assimilation and 

accommodation). Broadly speaking, if this is the case, then one prediction that can be 

made is that changes in children’s verbal explanations would precede changes in 

performance on the balance beam task. It is possible that representational change results 

from the redescription of knowledge into a consciously accessible format. However, if 

the Piagetian approach is correct, then changes in performance on the balance beam task 

would precede the introduction of new and more complex verbal explanations.  

 

 In order to test these 2 possibilities, a microgenetic approach is necessary. This allows 

the opportunity to capture children’s performance on the balance beam task immediately 

prior to, and following, first use of new and more explicit verbal explanations. Four types 

of verbal explanation will be focused on to investigate whether change in the type of 

explanation precedes changes in performance on the balance beam tasks. These 4 types of 

verbal explanation are set out in Table 7.1, alongside the levels of performance on the 

balance beam task which the levels of the RR model would predict to accompany the 

specific level of verbal knowledge. 

 

It is important to emphasise that a U-shaped curve is expected to occur in performance on 

the balance beam task in terms of the number of asymmetrical beams balanced. Children 

who give implicit explanations are thought to show a high level of performance in terms 

of asymmetrical beams balanced. As weight-based explanations arise, the number of 

asymmetrical beams balanced drops. As children begin to give distance based, and 
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weight and distance based verbal explanations however, an increase in the number of 

asymmetrical beams is predicted. 

 

Table 7.1: Predicted Relations between Verbal explanations and performance on the 

balance beam task 

Most Complex level of explanation 

offered 

Predicted level of performance in terms of 

Asymmetrical beams balanced  

Implicit Weight Fails to balance a majority of asymmetrical 

beams  

Weight Fails to balance a majority of asymmetrical 

beams 

Distance Begins to show higher levels of 

performance in balancing asymmetrical 

beams 

Weight and distance Balances a majority of asymmetrical beams 

 

 

 

1.1 First use of Implicit Weight and explicit weight verbal explanations   

 

According to the predictions derived from the RR model, the introduction of new and 

more complex explanations should precede changes in performance. Therefore, there 

should be a downturn in performance on the balance scale task following the first use of 

implicit weight explanations. The easiest way to test this is by comparing performance in 

terms of number of asymmetrical beams balanced in the subset before first use of implicit 

weight explanations, and the subset following first use of implicit weight explanations. 

The RR model would predict a lower level of performance in the subset following first 

use of implicit weight explanations compared to the subset prior to first use. The 

Piagetian approach however would predict no significant differences between these 2 

subsets, as changes in performance are thought to precede changes in cognition.   
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The same type of predictions can apply for explicit weight explanations – the first use of 

explicit weight explanations would be predicted to lead to a downturn in performance in 

the subset following first use of explicit weight explanations in comparison with the 

subset prior to first use. However, there is also the possibility that children should already 

be at the abstraction nonverbal level prior to this, and therefore would already show low 

levels performance – if this is the case, decreases in performance may not be detectable. 

The prediction arising from the Piagetian view overlaps with this possibility – e.g. it also 

predicts no significant difference between the subsets prior to, and following first use of 

explicit weight explanations. It is simply important to note at this stage that there is more 

then one reason why the results for this particular prediction may not reach significance. 

 

 

1.2. First use of distance and weight and distance explanations 

 

In the case of more advanced verbal explanations (those that focus on the role of 

distance), the first use of these explanations may reflect the child’s more advanced 

representation and lead to upturns in performance. Once children begin to use distance 

explanations, an upturn in performance should occur (on the presumption that the first 

use of explicit distance explanations should not precede first explicit use of weight-based 

explanations. As children begin to notice that weight is not the only factor in determining 

how to balance an asymmetrical beam, their ability to balance asymmetrical beams 

should improve. This should form a part of an upturn on the u-shaped curve. Children 

should be able to balance more beams, but may not achieve ceiling levels of performance 

until they use weight and distance explanations. The same would apply to the 

introduction of weight and distance verbal explanations. In this case, the prediction 

derived from the RR model is that higher levels of performance on the balance beam task 

in the subsets should follow first use of weight & distance explanations, in comparison to 

the subset prior to first use of these explanations.  Piaget on the other hand would predict 

no significant differences to arise, as changes in performance would precede changes in 

cognitions.  
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2. What role does stability play in representational change? 

 

In this section the focus is on the impetus for change, at the level of representations. The 

RR model takes a different stance to change than most modern models of cognitive 

development. Karmiloff-Smith (1992) clearly states that “it is representations that have 

achieved a stable state that are redescribed” (p. 25). Stability forms the basis for 

movement “between phases” – e.g. movement from Implicit to Abstraction Nonverbal 

representational levels requires stable representational levels prior to this change 

occuring. However, there is room for some variability “within phases” – e.g. a child may 

show some variability in their representational levels between first showing signs of 

achieving abstraction nonverbal prior to maintaining this representational level on a 

stable basis. This stability is important as it plays a role in the process of redescription 

described above – e.g. it is this period of stability within a phase which allows the 

opportunity for knowledge to be redescribed into more consciously accessible formats, 

bringing about change across phases.  

 

Two predictions arise from this theory. First, children should show stability in 

representational level in the sets prior to showing representational change. Second, if 

variability does occur, it is most likely to occur “within phases” – e.g. a period of 

variability in representational levels following first showing a new and more advanced 

representational, prior to maintaining the more advanced representational level on a 

stable basis across sets. 

 

In contrast, Dynamic System theory (Thelen & Smith (1994) states that instability is a 

prerequisite for cognitive change, a position that also accords with Piaget’s. As 

Karmiloff-Smith (1992) notes “For Piaget, a system in a state of stability could not 

spontaneously improve upon itself. Rather, the Piagetian process of equilibration takes 

place when the system is in a state of disequilibrium” (p.25). For Piaget, change was 

brought about by a conflict between children’s performance on a task and their 

knowledge of the concept underpinning that task – as has already been described, it is the 

sudden inability to perform a task that is said to lead to cognitive change. Microgenetic 
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studies have also shown that variability may play a role prior to change Chen and Siegler 

(2000 ) states that within the overlapping waves model children may initially show 

variability in their thinking, before becoming more consistent in their strategy use once 

they are able to adaptively apply the right strategy to the right task. 

These approaches state the importance of variability prior to children advancing to more 

advanced forms of thinking. 

 

This reveals an outstanding question regarding the role of variability in representational 

change. According to microgenetic studies and dynamic systems theory, variability may 

be crucial to bringing about representational change. The RR model on the other hand 

only mentions the role of stability in representational levels prior to change. One aim of 

the current study is to empirically compare the predictions arising from these two views 

within a microgenetic context where change is under close scrutiny. 

 

 

2.1. What role do transitional representational levels play? 

 

Pine et al (2003) have added “transitional” levels to the RR model. These transitional 

levels imply a period of instability prior to representational change occuring. It is 

important to note that these “transitional levels” are discussed by Pine et al (2003) in the 

context of research on children’s gestures (see Alibali and Goldin-Meadow, 2003). In this 

context, transitional levels are seen as periods where “related forms of knowledge can co-

exist but may be isolated from one another” (Pine et al, 2003, p 300) – gesture-speech 

mismatches for example provide an example of this (Perry et al, 1992). These transitional 

levels may capture children who are beginning to show signs of knowledge of more 

complex knowledge via gesture for example, but are not yet able to verbalise this 

knowledge. If this is the case, then the prediction of stability preceding representational 

change can still apply, but rather than immediately preceding representational change, it 

simply occurs at some point prior to representational change. Therefore, 2 questions are 

asked with regard to stability: (1) does it occur immediately prior to representational 

change, and (2) does it occur at any stage prior to representational change? 
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A further 2 questions are asked with regard to the transitional levels, based on a 

comparison between the view of transitional levels set out above, and Karmiloff-Smith’s 

(1992) views on when variability may occur in relation to representational change – (1) 

how often do transitional levels precede representational change, and (2) how often do 

they follow representational change? This will allow a distinction between the position 

put forth by Pine et al (2003) that these transitional levels may capture children who are 

beginning to gain access to knowledge, but are not yet able to verbalise it, and the 

position set forth by Karmiloff-Smith (1992), that variability in representational levels is 

more likely to occur “within phases” (e.g. following representational change). 

 

 

Summary 

 

In this chapter representational change is being investigated. Two issues are addressed – 

whether representational change is driven by the introduction of new and more complex 

verbal explanations or by changes in performance on the balance task, and the role of 

stability in representational levels in the process of representational change. It is 

important to note that these are 2 very complimentary research questions – according to 

the RR model, representational change occurs through a process of redescription of 

knowledge into a more consciously accessible format. For this process to occur however, 

a period of stability is thought to be necessary. These 2 issues are fundamentally 

intertwined. 
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Method 

 

See previous chapter for a full description of the method used in this experiment. 
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Results 

 

The results are split into 2 sections: (1) Performance on the balance beam task in the 

subsets before, and following first use of new and more complex verbal explanations. (2) 

Stability in representational levels in the sets immediately prior to, and following 

representational change. 

 

1. Performance on the balance beam task in the subsets before, and after first use of 

more complex verbal explanations  

 

In the introduction, predictions were derived from the RR model, which stated that 

changes in ability to balance asymmetrical beams would not precede the first use of more 

complex verbal explanations. These predictions will be tested for each of the 4 following 

types of verbal explanations: Implicit weight, Explicit Weight, Distance, Weight and 

Distance. 

 

1.1. First use of implicit weight explanations 

 

Table 7.2 shows mean levels of performance in the subsets prior to, during, and following 

first use of implicit weight explanations. There is a decrease in the mean number of 

asymmetrical beams balanced across the 2 subsets, though a One-Way ANOVA, with 

subset (e.g. whether the subset was prior to, or following first use of implicit weight 

explanations) as the factor, and mean number of asymmetrical beams balanced in the 

subsets as the dependent variable, was not significant, F (1,85) = 1.16, p = 0.28. There is 

more data for the subset after first use of implicit weight explanations, due to the number 

of children whose first use of implicit weight explanations occurred in the very first 

subset of the experiment, with the same being the case for all the subsequent ANOVAs. 

A crosstable did not provide a clearer or significant finding. Although failing to reach 

significance, a downturn in performance follows in the subset after first use of implicit 

weight explanations, in comparison with the subset prior to first use of implicit weight 

explanations. 
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Table 7.2: Mean number of asymmetrical beams balanced in subset prior to, and 

following first use of implicit weight explanations 

Subset Mean Number of Asymmetrical Beams Balanced 

(standard deviation in brackets) 

Number of 

Subjects 

Subset prior to first use of 

implicit weight explanations 

0.78 (0.79) 23 

Subset following first use of 

implicit weight explanations 

0.58 (0.77) 64 

 

 

1.2. First use of explicit weight explanations 

 

Similar findings emerge for first use of explicit weight explanations, (see Table 7.3 

below). A one way ANOVA using subset as factor, and performance in terms of mean 

number of asymmetrical beams balanced per subset as the dependent variable showed a 

significant finding, F (1,82) = 2.47, p = 0.048. This indicates a significant mean downturn 

in performance on the subset following first use of explicit explanations, in comparison 

with the subset prior to first use.  

 

Table 7.3: Mean number of asymmetrical beams balanced in the subset prior to, 

and following first use of explicit weight explanations  

Subset Mean Number of Asymmetrical 

Beams Balanced (standard deviations 

in brackets) 

Number of 

Subjects 

Subset prior to first use of explicit 

weight explanations 

0.92 (0.84) 26 

Subset following first use of 

explicit weight explanations 

0.55 (0.75) 58 
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1.3 First use of distance explanations  

 

The third prediction states that children’s performance should begin to increase with the 

introduction of distance based explanations. Table 7.4 below shows an increase in the 

mean number of asymmetrical beams balanced from the subset prior to the subset of 

following first use of distance explanations. A One-Way ANOVA, with subset as factor, 

and performance in terms of asymmetrical beams balanced per subset as the dependent 

variable, fails to reach significance, F (1,44) = 0.652, p = .36.  Again, though not 

statistically significant, there is an increase in performance in the subset following first 

use of distance explanations in comparison with the subset prior to first use. 

  

Table 7.4: Mean number of asymmetrical beams balanced in the subset prior to and 

following first use of distance explanations  

Session Mean Number of Asymmetrical 

Beams Balanced (standard deviation 

in brackets) 

Number of 

Subjects 

Subset prior to first use of  

distance explanations 

0.68 (0.82) 19 

Subset following first use of 

explicit weight explanations 

0.93 (0.92) 27 

 

 

1.4. First use of Weight and Distance explanations 

 

Table 7.5 below shows the changes in performance in the subsets prior to, during, and 

following first use of weight and distance explanations. Again, clear increases in the 

mean number of asymmetrical beams balanced per subset are seen, though a one-way 

ANOVA conducted with subset as the factor and performance as the dependent variable, 

is not statistically significant, F (1,31) = 0.46, p = 0.5. Again, though not significant, the 

clear indication is that changes in performance are not apparent in the subset immediately 

prior to the first use of weight and distance explanations. 
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Table 7.5: Mean number of asymmetrical beams balanced in the subset prior to and 

following first use of weight and distance explanations 

Subset Mean Number of Asymmetrical Beams 

Balanced (standard deviations in brackets) 

Number of 

Subjects 

Subset prior to first use of 

weight and  distance 

explanations 

1.00 (0.96) 14 

Subset following first use of 

explicit weight and distance 

explanations 

1.22 (0.88) 18 

 

 

 

2. Stability in representational levels prior to and following representational change 

 

This section looks at representational change, and how often children show stability in 

representational levels prior to, and following representational change. Representational 

change is looked at from set (of 9 beams) to set – giving 8 measures of representational 

level across the experiment. This gives the maximum level of magnification without the 

loss of transitional representational levels, whose incidence will also be analysed. Change 

is coded as having occurred when a child shows a more complex level in one set then in 

the previous set. Do children maintain stability in representational in the sets immediately 

prior to representational change, indicating that this is an important precursor for change? 

The other possibility, arising from the work of Pine et al (2003) is that children may show 

transitional levels as part of a gradual representational change. In this case children must 

still show some representational stability across sets, at some stage prior to 

representational change. The same question applies to the period following change – do 

children immediately show stability in representational levels following this change, or is 

there a period of time between first use of a more advanced representational level and 

stable use of this more advanced representational level? 
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 The final part of this section focuses on the role of transitional levels, and whether or not 

they always indicate transitions occurring prior to children first achieving a more 

advanced representational level. 

 

2.1. Stability in representational levels prior to representational change 

 

Table 7.6 below shows how often children changed to each of the representational levels. 

Implicit representational levels were omitted as children cannot move from a lower 

representational level to implicit levels, due to the fact that pre-implicit representational 

levels were not codable for this task. The implicit transitional level was also omitted, as 

change to this level occurred infrequently. The key data on stability in representational 

levels is laid out in Table 5 below. Stability in representational levels is regularly seen 

prior to all forms of representational change laid out below, with the exception of 

changes to abstraction nonverbal representational levels. This may be due to the fact that 

children who achieved implicit representational levels did not show much further 

progress during the course of this experiment, so it is impossible to look in depth at this 

particular type of change. For changes to abstraction verbal, explicit transition, and E3, 

children frequently show consistency in maintaining a lower representational level prior 

to representational change – this consistency is not always present immediately prior to 

change however. In all cases however, stability at some stage prior to representational 

change occurs more frequently then stability in representational level in the 2 sets 

immediately prior to change.  
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Table 7.6: Number of times representational change occurs, and how often children 

are stable in maintaining representational levels prior to this change 

 Abstraction 

Nonverbal 

Abstraction 

Verbal 

Explicit 

Transition 

E3 

Number of times children 

showed representational 

change 

15 22 14 11 

Percentage of times children  

showed stability in 

representational level in the 2 

sets immediately prior to 

representational change 

7% 42% 62% 27% 

Percentage of times children  

showed stability in 

representational levels for 2 

or more sets prior to change  

15% 56% 100% 60% 

Mean number of sets where 

children showed the same 

representational level prior to 

change 

3 sets 2.78 sets 3.4 sets 2.5 sets 

 

 

The mean number of sets children maintained a lower representational level consistently 

prior to representational level is laid out in Table 7.6. For changes to all the 

representational levels above, the mean number of sets is over 2, lending credence to the 

notion that a period of sustained consistency is an important prerequisite for 

representational change. This seems especially to be the case for change to explicit 

transitional levels. 
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2.2. Stability in maintaining the new representational level across sets following 

change 

 

The next question to be asked is how often children show stability in maintaining new 

representational levels, once they achieve them. Table 7.7 shows that children are 

especially stable in maintaining Abstraction Nonverbal representational levels, once they 

achieve them. They show stability in representational level in the set following this 

change, and seem to maintain this level thereafter (as seen in the second and third rows of 

Table 7.7). The same cannot be said for the other representational levels, where stability 

in maintaining the new level does not occur a majority of time following the initial 

change or discovery of a new and more advanced representational level. Change to the 

abstraction verbal RR level does not often lead to children immediately maintaining this 

representational level in the following set(s) [only 16% of the 22 cases of children 

showing representational change to Abstraction verbal]. For both abstraction verbal and 

explicit transition RR levels, stability is not likely to occur in the set immediately 

following change, if at all. Stability following change is slightly more common once 

children achieve E3 representational levels, though again not as high as for the children 

who achieve abstraction nonverbal level. Overall, stability in representational levels 

following change seems less likely to occur in the set immediately following change. 

Indeed a large percentage of the children who showed change do not proceed to show 

stability thereafter for the course of this experiment. 
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Table 7.7: Number of times representational change occurs from set to set, and how 

often children are consistent in their representational levels following this change 

 Abstraction 

Nonverbal 

Abstraction 

Verbal 

Explicit 

Transition 

E3 

Number of times children showed 

representational change 

15 22 14 11 

Percentage of times children  showed 

stability in representational level in the 

sets following representational change 

71% 10% 8% 40% 

Percentage of times children showed 

stability in maintaining the new 

representational levels following 

representational change  

71% 16% 12% 60% 

Mean number of sets where children 

showed the same representational 

level following change 

3.7 sets 2.6 sets 3 sets 3.3 

sets 

  

 

2.3 The role of transitional levels 

 

The final question to be asked is what role transitional levels play – do they capture 

children who are in transition from one representational level to another, or do they 

capture children showing variability in representational level following first use of the 

more advanced representational level? In contrast to the previous sections, as will be 

seen, this section will deal with “regressions” to less advanced representational levels, as 

well as movement to more advanced representational levels.    

 

2.3.1. The role of the implicit transitional representational levels 

 

Table 7.8 below shows that children most often moved from abstraction non-verbal to 

implicit transition, rather then from implicit to implicit transition. This transitional level 
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may indicate that children have not yet managed to successfully consolidate the 

abstraction nonverbal representational level, more so than children in transition from 

implicit to abstraction nonverbal representational levels.   

 

Table 7.8: the RR level children show in sets prior to showing implicit transition RR 

levels 

Representational Level Number of times children show a level in 

the set prior to showing Implicit 

Transitional levels 

Implicit 3 

Abstraction Nonverbal 8 

Abstraction Verbal 1 

Explicit Transition 1 

 

Table 7.9 below shows what representational levels children moved on to in the sets 

following displaying implicit transitional levels. It appears that “regression” to implicit 

representational levels occurred as frequently as progression to Abstraction Nonverbal 

representational levels. This again indicates that children who are showing these 

transitional levels are not necessarily part of an immediate progression towards a higher 

representational level. 

 

Table 7.9: the RR level children show in the set following implicit transition RR 

levels 

Representational Level Number of times children show a level in 

the set prior to showing Implicit 

Transitional levels 

Implicit 6 

Abstraction Nonverbal 7 

Abstraction Verbal 3 

Explicit Transition 1 
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2.3.2. Explicit transitional levels 

 

Table 7.10 provides some evidence that unlike Implicit Transition, explicit transitional 

levels show children progressing from abstraction verbal levels, more so then 

“regressing” from a fully explicit E3 representational level in the previous set.  

 

Table 7.10: the RR level children show in the set prior to showing explicit transition 

RR levels 

Representational Level Number of times children show a level in 

the set prior to showing explicit 

Transitional levels 

Implicit Transition  1 

Abstraction Nonverbal 3 

Abstraction Verbal 10 

E3 3 

  

On the other hand, Table 7.11 shows that children very rarely progress from this stage on 

to E3 representational levels, but rather “regress” back to showing Abstraction Verbal or 

Abstraction Nonverbal  representational levels. Again this provides evidence that these 

transitional levels may not be characterisable as periods of development in which 

children are about to show further representational progression, in the short-term.  
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Table 7.11: the RR level children show in the set following explicit transition RR 

levels 

Representational Level Number of times children show a level in 

the set prior to showing explicit 

Transitional levels 

Implicit 5 

Implicit Transition 1 

Abstraction Nonverbal 8 

Abstraction Verbal 10 

E3 1 
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Discussion 

 

This chapter focuses on how cognitive change occurs within the RR model. Two 

particular aspects, based on the description provided by Karmiloff-Smith (1992) are 

analysed.  The RR model states that cognitive change can occur through increasing 

access to verbal knowledge. Representational change involves a process of 

representational redescription which involves knowledge which is initially encoded in a 

procedural format (in order to perform a specific task) being redescribed into different 

formats, becoming increasingly consciously accessible, and eventually verbalisable. This 

process is contrasted with Piagetian notions of assimilation and accommodation, which 

involve the introduction of new knowledge based purely on task performance conflicting 

with the child’s current cognitions 

 

 The second aspect of importance is that representational stability is thought to precede 

representational change. This stability contrasts with Piaget’s theories of change, which 

focus on the role of conflict in bringing about change – Karmiloff-Smith (1992) contrasts 

cognitive change following success with Piaget’s cognitive change following failure on a 

task. 

 

These 2 aspects are inter-linked: stability in representational levels across time is thought 

to provide the basis for redescription. The evidence for these 2 aspects of the RR model 

analysed in this experiment will now be discussed. 

 

1. Is representational change driven by increasing access to verbal knowledge? 

 

This experiment took a microgenetic approach to investigate cognitive change at a very 

high level of magnification. Children’s ability to balance asymmetrical beams in the 

subsets immediately prior to, and following first use of new and more advanced 

explanations were analysed, to check whether changes in verbal explanations offered 

precedes changes in performance on the balance beam task. Four predictions were used to 

test this, based on 4 different types of verbal explanations: implicit weight, explicit 
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weight, distance, and weight and distance. For the first 2, a downturn in performance was 

expected to follow first use of the more advanced verbal explanation. For the second 2 

types of verbal explanations, an upturn in performance was expected to follow first use of 

these more advanced verbal expectations. This is in line with the U-shaped curve in 

performance in relation to verbal explanations which the RR model predicts. The balance 

beam task was chosen as a prime example of a task in which a U-shaped curve in 

performance in relation to the emergence of explicit verbal knowledge is expected to 

arise (Pine and Messer, 2003). This U-shaped curve allows for the possibility of 

significant results arising in terms of sharp changes in performance following the 

introduction of new and more complex verbal explanations. Tables 7.2-7.5 indicate that 

the patterns predicted by the RR model (e.g. changes in performance coming after first 

use of more complex explanations) did arise. The patterns are clear enough, though One-

Way ANOVAs revealed significant results for only one of the verbal explanation types – 

explicit weight explanations. There are several reasons why the results for 3 of the 4 

types of verbal explanations failed to achieve significance. First, not all children achieved 

the more advanced distance and weight & distance explanations. A smaller sample for 

these types of verbal explanation may have lead to an inability to achieve significant 

results. The second problem arises from the fact that comparisons were being made 

between performance on 2 asymmetrical beams in the subset prior to first use of more 

advanced explanations and performance on 2 asymmetrical beams in the subset following 

first use of more advanced explanations. The small number of trials being used to 

compare may make it more difficult for a significant difference to arise – indeed this is 

one of the difficulties in using microgenetic methods (see Cheshire et al, 2007). Though 

significant differences in performance do not always arise on subsets prior to and 

following first use of more advanced verbal explanations, they nonetheless follow the 

patterns predicted by the RR model. This provides a strong indication that changes in 

verbal explanations precede changes in performance – e.g. changes in representational 

level (which are based on children’s performance on the balance beam task in relation to 

the most complex verbal explanations offered) can be driven by changes in verbal 

explanations. Though of course external experience is still needed first in order for this 

change to occur, it is important that the change in verbal explanations precedes the 



 234

change in performance, as it provides evidence that it is not always simply the case that 

changes in verbal explanations follow changes in performance; there is a human capacity 

to use an internal process to come up with more complex, or more verbally accessible 

formats of knowledge. The process of “redescription” as described by Karmiloff-Smith is 

one way to account for how this change in representational levels occurs. The 

microgenetic method has proved beneficial in this respect, as it captures trends in 

performance in the trials immediately prior to, and following first use of more complex 

explanations, emphasising the utility of the microgenetic methods as a means of 

exploring how cognitive change occurs, in comparison with cross-sectional testing 

methods. 

 

2. The Role of stability in representational change 

 

Another important aspect of change within the RR model (Karmiloff-Smith, 1992) is that 

it is thought to be preceded by stability in representational levels. This original position 

was contrasted with the Piagetian view that instability must precede cognitive change. A 

third view arising from the work of Pine et al (2003) states that there may be a 

transitional period prior to representational change, which may indicate that children are 

beginning to use more advanced representations, which are not yet verbally accessible. If 

this is the case, then stability may still play an important role, but will not arise 

immediately prior to representational change. Children’s representational levels per set 

were analysed to see if children showed stability in representational levels in the 2 sets 

immediately prior to representational change, or, if change is indeed more gradual, 

whether they show stability in representational levels at some point prior to 

representational change. Table 7.6 shows that children were frequently stable in 

maintaining representational levels prior to change. Stability occurred more often at some 

point prior to change rather than in the 2 sets immediately prior to change. Nonetheless, 

the data suggest that children do regularly show stability prior to representational change. 

This is as stated at odds with the Piagetian model, and is perhaps the biggest departure 

from the model. The importance of the period of stability is for the process of abstraction 

to occur. And it is important to note that this process is not merely a “process of 
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equilibration” following a period of disequilibrium, but rather an independent, internally-

driven process of redescribing information into a more verbally accessible format. The 

one exception to this finding of stability preceding cognitive change is for the abstraction 

nonverbal representational level, which may well be due to the fact that very few of the 

children who showed implicit representations throughout this experiment showed further 

progression beyond this representational level. These findings generally compliment the 

findings of the previous chapter: the previous chapter showed that children are generally 

characterisable as being stable in representational levels. This finding shows that this 

stability often was found to precede representational change. This supports the possibility 

of representational change occurring based on a period of stability in representational 

level, which is not part of the piagetian model.  

 

Karmiloff-Smith (1992) stated that children showed stability in representational levels 

before changes between phases (e.g. from Implicit to Abstraction Nonverbal 

Representational levels). She did not however rule out the possibility of variability 

occurring “within phases” – this means a period of variability occurring between the first 

time children show a more advanced representational level, and when they begin to 

maintain this representational level on a more stable basis. To investigate this, stability in 

representational levels was analysed following representational change. Table 7.7 shows 

that children do not always show stability in maintaining the representational level 

immediately after representational change. Indeed for all representational levels included, 

with the exception of abstraction nonverbal representational levels, stability is more 

common at some point following representational change rather than in the set 

immediately following representational change. This finding supports the notion stated 

by Karmiloff-Smith (1992) that variability is present “within phases” – e.g. a period of 

variability following first showing a more advanced representational level, prior to stable 

use of this representational levels. 
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2.1 The role of transitional levels 

 

These findings raise doubts about the role of transitional levels introduced by Pine et al 

(2003). It has been established that at some point prior to representational change, 

children display representational stability. Transitional levels (Pine et al, 2004) were 

thought to capture the gradual development of more advanced representational levels. 

The implicit transitional representational level for example was thought to capture “a 

transitional level between implicit representations and the first abstraction of a centre 

theory” (Pine et al, 2003, p 298) At these “transitional” points, children may be accessing 

multiple representations, in particular accessing knowledge which is not yet verbally 

accessible; they may for example show gesture speech mismatches (Pine et al, 2004, 

Goldin-Meadow 2001). Do the transitional levels arise prior to representational change as 

Pine et al (2003) suggest, or do they capture children showing variability following 

Karmiloff-Smith’s suggestion that this may be when variability arises? 

 

With regard to the Implicit Transitional representational level, Table 7.8 shows that 

children most often showed Abstraction Nonverbal representational levels in the set 

immediately prior to showing Implicit transitional levels. This indicates that rather than 

playing a role in the gradual change to a “centre-based” theory of balance, this 

transitional level often captures a “regression”, or variability in representational levels 

following initial use of Abstraction Nonverbal representational levels. Interestingly, 

Table 7.9 also shows that in the set following use of implicit transitional levels, children 

showed Implicit representational levels almost as frequently as showing Abstraction 

nonverbal representational levels. Therefore, children seem to regress from abstraction 

non-verbal to implicit transition, and from implicit transition to implicit representational 

levels. It seems clear that the implicit transitional levels often captured children showing 

variability following change to abstraction nonverbal representational levels. It is equally 

the case however, as was described in the previous chapter, that a majority of children 

who displayed implicit representations for the concept of balance in this experiment 

maintained it throughout the course of the experiment, rather then showing further 

advancement. Therefore, the implicit transitional level may indeed still capture a part of a 
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gradual process of change prior to first displaying abstraction nonverbal representational 

levels, but it also captures children showing “regression” following change to abstraction 

nonverbal representational levels. 

 

A different story emerges for the explicit transitional level. Table 7.10 shows that explicit 

transitional levels are most commonly preceded by abstraction verbal representational 

levels. This fits in with the account of Pine et al (2003), suggesting that the transitional 

level captures a gradual shift towards fully explicit E3 representational levels. Table 7.11 

however shows that children do not commonly move on from explicit transition to E3 

representational levels, but rather “regress” to abstraction verbal representational level. 

Two conclusions are drawn from this – first, the change from abstraction verbal to E3 

does not occur quickly, especially on a spontaneous basis (e.g. simply by getting children 

to repeatedly perform one task, without any interventions or instruction).  Therefore, it is 

quite possible that explicit transitional levels do capture a gradual movement towards E3 

representational levels. This may indeed be due to multiple representations being 

accessed. However, in the absence of children showing explicit verbal explanations 

referring to both weight and distance, children seem to regress to Abstraction Verbal 

representational levels.  For the second conclusion, it is important to note that children 

coded at explicit transitional tend to maintain a focus on weight in the verbal explanations 

they offer, but balance too many asymmetrical beams in order to be classified as 

Abstraction Verbal. The fact that children often regress from explicit transitional to 

abstraction verbal shows that it is not likely that this “increase” in performance (e.g. 

children coded as explicit transition balance more asymmetrical beams than children 

coded as abstraction verbal representational levels) provides the basis for representational 

change to E3 – rather it would seem that the introduction of weight and distance 

explanations brings about movement to E3 representational levels. 

 

The findings for Implicit and Explicit Transitional levels provide evidence both for the 

positions adopted by Pine et al (2003) and by Karmiloff-Smith (1992). Though change is 

often preceded by stability, immediately prior to change some variability can occur, 

which may be partially accounted for by children showing “transitional levels”. These 
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transitional levels may also arise following change – which may also be explained in 

terms of multiple representations being accessed, prior to children beginning to show 

stable use of the more advanced representational level. 

 

Conclusions on Representational change 

 

This chapter attempted to provide empirical support for the process of representational 

change described by Karmiloff-Smith (1992). By looking at children’s performance on 

the balance beam task in the subset prior to, and following first use of more advanced 

verbal explanations, there were clear signs that children showed changes in performance 

following the introduction of new and more complex verbal explanations. Furthermore, 

children typically showed stability in representational levels prior to (though not 

necessarily always immediately prior to) representational change. These 2 findings 

together support the possibility that representational change occurs via a process of 

redescription, for which a period of stability in representational levels is required. This 

provides an alternative to the piagetian approach that cognitive change occurs as a result 

of cognitive conflict, and following failure on a task. It is interesting to note that the RR 

model does challenge the traditional notion of how change occurs. This is quite surprising 

given that Bryant (2001) states that Piaget’s mechanisms for change, and the concept of 

equilibration in particular are not testable. Yet, modern models such as Dynamic Systems 

theory (Thelen and Smith, 1994) and to a lesser extent the Overlapping Waves model 

(Siegler, 1996) do not challenge the classical Piagetian mechanisms for change.  

The addition of transitional levels to the model by Pine and Messer (2003) means that 

variability in relation to cognitive change can be accounted for – both through transitional 

levels arising prior to change, and a period of variability immediately following change. 

This experiment highlights the importance of the RR model as it offers a different view 

and a potentially different set of mechanisms through which cognitive change may occur. 
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Chapter 8: General Discussion and Conclusions 

 

This discussion will begin by briefly recapping the key points from the literature review, 

and the main research questions addressed. Following this, the results of the experiments 

will be discussed and their implications for general theories of development will be 

highlighted. 

 

Key Points and Research Questions arising from the Literature Review 

 

The literature review began by discussing the importance of general models in 

psychology to provide a clear understanding of the human mind, and raised the 

possibility that the RR model (Karmiloff-Smith, 1992) could be used as a general model 

for cognitive development to complement and extend the Piagetian model of cognitive 

development. Three key features of the RR model were identified. First, the RR model 

operates on a domain-specific basis, rather then the universal stages envisaged by Piaget. 

The second key feature was the focus on development as a process of gaining increasing 

access to verbal knowledge, along an implicit-explicit continuum, rather than focusing on 

the development of “formal logical thinking”. The third key feature is that development is 

seen to occur as a result of stability and task success, rather than failure in a task bringing 

about cognitive change. 

 

 

 



 240

Following a review of experimental research, and a comparison with other contemporary 

cognitive developmental models, 4 sets of issues (some of which overlap) were raised 

about the RR model as a general model for cognitive development. These 4 sets of issues 

relate to the 3 features of the RR model.  

 

First, there is a need to look at the generalisability of knowledge. This is important as the 

RR model states that explicit knowledge should be generalisable, and some evidence has 

been found in support of this statement (Pine et al, 2003). A number of other studies have 

provided conflicting evidence of what type of knowledge children can generalise, and at 

what RR level children can start to generalise (Tolmie et al, 2005, Barlow et al, 2003, 

Hollis and Low, 2005). There is also evidence arising from a number of microgenetic 

studies stating that children are poor at generalising knowledge from one task to another 

(Adolph, 1997, Alibali, 1999, Siegler, 2002, Bowerman, 1982). In light of this, there was 

a need to define what type of knowledge children can generalise and apply to different 

types of task, and to what extent this adds to our knowledge of the RR model. 

 

A second concern for the RR model was that the levels of the RR model had been applied 

to relatively few domains described by Karmiloff-Smith, 1992 (though see Pine et al, 

1999, Critten et al, 2007, Tolmie et al 2005, Hollis and Low, 2005). There was therefore 

a need to show that the levels of the model apply to the domains described by Karmiloff-

Smith (1992), and to multiple tasks within a domain (Shultz, 1994). Given the drive to 

show the RR model as a domain general model for development, there was also a need to 

show that this model can contribute positively to our understanding of that domain. To 
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that end, the levels of the RR model were applied to concepts pertaining to numeracy, 

with the research attempting to address important issues for this domain (e.g. do children 

have innate concepts of number, and how should numeracy be taught to children). 

 

The third set of issues deals with the importance of gaining increasing access to verbal 

knowledge within the RR model, as a major part of development. There is a need to show 

that the pattern of development of explicit verbal knowledge following task mastery 

established in the balance beam task by Pine et al (1999) applies in different domains, 

and has clear theoretical and practical implications for children’s development.  

The final issue to consider was the process of cognitive change. The aim was to test the   

predictions arising from the RR model that stability played an important role prior to 

change, and that change could be driven by increasing access to verbal knowledge. 

   

 

Having summarised the aims laid out in the literature review and the specific research 

questions addressed in the thesis, a brief description of the experiments conducted will be 

given. 
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Summary of research  

 

1. The generalisation of knowledge across balance tasks 

 

The first 2 experimental chapters address the question of whether or not children could 

generalise knowledge across tasks, and whether, following this, the RR levels could be 

used as a domain-specific, rather than a task-specific description of a child’s knowledge. 

The first step in doing this was to attempt to apply the levels of the RR model to a task 

other than the balance beam task which has been used by Pine and her colleagues (e.g. 

Pine et al, 1999), as well as by Karmiloff-Smith (e.g. Karmiloff-Smith and Inhelder, 

1974). A number of balance scale tasks which have been used in other studies (see 

Messer et al, 2007, Surber and Gzesh, 1984, Kliman, 1987, Oshima and Okada, 1996) 

were assessed in terms of their compatibility with the levels of the RR model. Of the 3 

balance scale tasks used, the levels of the RR model were applicable only to an 

unconstrained balance scale task. However, the same types of verbal explanations were 

being used across all three tasks, giving some indication that verbal knowledge may be 

thought of as generalised or at least domain-general knowledge. The task to which the 

RR model was applied used a different apparatus (e.g. scale) and methodology (e.g. an 

unconstrained task where children were given free access to the scale and the weights), 

showing that the levels of the RR model were not limited by only being applicable to 

Pine et al’s (1999) balance beam task for the domain of balance.  The next step in the 

research was to compare children’s representational levels across balance beam and 

balance scale tasks. In a study involving 87 participants, using a simple implicit-explicit 
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dichotomy (e.g. whether children showed implicit or explicit representations), a majority 

were found to show the same type of representations on both the balance scale and 

balance beam tasks. In spite of the differences in apparatus and tasks, children provided 

the same types of explanations on both tasks. The implication drawn from this is that 

once children achieve an explicit level of representation, they can access verbal 

knowledge across tasks within a domain. Therefore, it seems that verbal knowledge is 

generalisable across tasks within a domain, leading to the possibility that it is this type of 

knowledge, which is achieved earlier within the model than Karmiloff-Smith (1992) 

originally indicated which allows for the increasing flexibility in thinking which is one of 

the key features of the RR model. A chi square analysis also revealed a significant 

association between the RR levels on the 2 tasks. However the relation between the 

actual RR levels on both tasks was not as strong as when using a simple Implicit-Explicit 

distinction, indicating that in spite of having access to the same level of verbal 

knowledge, children did not show the same levels of representation on the 2 balance 

tasks.  

 

2. Exploring children’s representations for the principles for counting 

 

The second set of experiments in this thesis focused on applying the levels of the RR 

model to children’s performance on numeracy tasks. This follows on from Sophian’s 

(1998) call for a model of development of numerical knowledge which looks beyond 

children’s ability to perform numerical tasks. The principles laid out by Gelman et al 

(1976) formed the basis for this research on numeracy. The first experiment focused on 



 244

the one-to-one principle for counting. The question addressed was whether or not the 

principles as laid out by Gelman et al (1976) were innately specified, to the extent that 

children could demonstrate knowledge of these principles prior to being able to count 

accurately themselves. The question is an important one, and has provoked much debate 

(Gelman et al, 1982, 1984, 1986, Briars and Siegler, 1984).  By using 2 separate tasks to 

measure performance (a simple counting task) and verbal knowledge (an error detection 

task), children were assigned to representational levels. The youngest group of children 

study (nursery school children) were shown to have pre-implicit representations of the 

one to one counting principle (i.e. could not apply the one-to-one principle accurately in 

their own counting, and could not detect or explain errors in others’ counting). This 

indicates that if children have some innate knowledge of the principles, they are more 

primitive than implicit representations. By year one, a majority of children had explicit 

representations for the one-to-one counting principle.  

 

The second study on counting focused on the cardinality principle, and what forms of 

teaching might best help children develop explicit representations of this principle. The 

efficacy of two different types of teaching interventions were predicted to vary in relation 

to initial RR level. The findings indicated that a “procedural” intervention  was most 

useful for children who have yet to achieve explicit verbal knowledge, and the 

“conceptual” intervention (derived from the work of Muldoon et al, 2003) was most 

effective for children who were on the verge of achieving explicit verbal knowledge, or 

still in the early stages of using explicit verbal explanations (e.g. abstraction verbal 

representational levels.). This is a tentative finding at present however, as there was not a 
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great number of children who were initially at this level within the conceptual condition. 

However, the findings provide some indication that the RR levels give a  good indication 

of what sort of teaching method is best suited for the development of explicit 

representations of the cardinality principle. 

 

3. A Microgenetic Analysis of children’s representations on the balance beam task 

 

The final experiment focused again on the domain of balance, and investigated cognitive 

change within the RR model. Two specific aspects were focused on: 

First, were children generally stable in maintaining RR levels across time, and more 

specifically, were they stable in maintaining representational levels prior to 

representational change occurring. The second aspect being analysed was the role of 

increasing access to verbal knowledge in relation to changes in performance on the 

balance task. With regard to the first issue, in light of the focus of the overlapping waves 

model (Siegler, 1996) on variability in thinking, there was a need to establish whether or 

not children were in fact stable in maintaining their representational levels across time, to 

see if the variability Siegler speaks about in relation to strategy use also occurs when 

looking at children’s RR levels across time. The experiment focused on children’s 

representations across 4 sessions, measuring representational levels at difference degrees 

of magnification. Most Children were found to show stability in their representational 

levels both across time, and were equally stable in maintaining representational levels 

across time at the different degrees of magnification. This is not to say that children only 

tended to offer only one type of explanation  – indeed children routinely offered different 
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types of explanations, but this did not give rise to any significant changes in performance, 

or cause children to routinely be classified to different representational levels, even at the 

highest degree of magnification. From this it is concluded that children’s development  

on this task is progressive rather than overlapping as shown in the overlapping waves 

model. 

 

With regard to representational change, children were found to show stability in 

representational level prior to representational change. This stability was more often 

found at some point prior to change, rather than in the 2 sets immediately prior to 

representational change occurring. Therefore, variability must still play some role in the 

process of cognitive change. It was also demonstrated that changes in performance 

followed first use of new and more complex verbal explanations, rather than new and 

more complex verbal explanations following changes in performance on the balance 

beam task. Increasing verbal access to knowledge appears to play a key role in 

representational change, rather then changes in performance driving changes in verbal 

explanations offered. This allows for a view of Representational Redescription occurring 

through a process whereby representational stability brings about increasing verbal access 

to knowledge as a means of cognitive change occurring. This has very important 

implications for a comparison between the RR and Overlapping Waves model, as the 

relationship between verbal explanations and performance on a task is not considered 

within the Overlapping waves model. 
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The utility and validity of the RR model as a general model for cognitive 

development 

 

Having described the experiments in this PhD, their contributions to 3 key aspects of the 

RR model will be discussed in greater depth, along with a focus on the tasks used to 

measure RR levels within this thesis. These will provide a clearer picture of whether or 

not there is a basis for using the RR model as a general model for cognitive development. 

To recap, these key aspects are: (1) The RR model describes development on a domain 

specific basis. (2) The importance of increasing access to verbal knowledge for cognitive 

development. (3) The role of stability and success in cognitive change  

 

1. The RR model as a model for domain specific cognitive development 

 

A number of issues arise from the fact that the RR model is a model which describes the 

process of development occurring within domains. First, there was a need to continue to 

show the domains in which the model could be applied. Second, there was a need to 

examine and explain phenomena such as generalisation and access to knowledge across 

tasks within a domain. There was a need to show that the RR model had clear utility for 

the domains in which it was applied, and the different types of tasks used to apply the RR 

model in these domains will be discussed.  
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1.1. Applying the levels of the RR model in new domains 

 

If the RR is to be judged as a general model of cognitive development, it must be shown 

to be applicable across a wide variety of domains. Karmiloff-Smith (1992) described a 

number of domains in which the general principles of the RR model may be seen to 

apply. Similarly, a number of studies in the domains of pedestrian skills (Tolmie et al, 

2005) drawing (Hollis and Low, 2005, Barlow et al, 2003) and mathematics (Chetland et 

al, 2007) have invoked the RR model to explain findings. Prior to this thesis however, the 

levels of the RR model had only been applied experimentally to the domain of balance 

(Pine et al, 1999), and more recently to the domain of literacy (Critten et al, 2007). The 

application of the levels of the model to different tasks within the domain of balance, and 

to the domain of numeracy goes some distance in demonstrating that the RR model as 

described by Karmiloff-Smith can be actively applied in the domains she described in 

Beyond Modularity (1992). That is to say, it provides support for the interpretations used 

by Karmiloff-Smith (1992) in Beyond Modularity, which are used to demonstrate the 

basic tenets of the RR model, but which had not been tested on an a priori basis in the 

research she describes (e.g. the 1974 work on the balance beam task which is 

reinterpreted by Karmiloff-Smith to demonstrate the levels of the RR model). The 

experimental application of the levels across different tasks and different domains serves 

to counter previous criticism of the model as being underdescribed by showing in detail 

how the levels of the model apply to the domains both of balance and numeracy. This 

begins to indicate that the RR model can be applied to a number of domains in the same 

way for example that Piaget described the stages of his model occurring across a variety 
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of domains (e.g. conception of number, [Piaget, 1952], space [Piaget and Inhelder, 1956], 

moral judgement [Piaget, 1932], physical causality [Piaget, 1960], quantity [Piaget and 

Inhelder, 1974]). It is clear however that a variety of domains need to be investigated 

using the RR model to show that it exhaustively applicable to all domains.  

 

1.2. Application of the RR model to the domain of numeracy 

 

The utility of a cognitive developmental model is dependent on it having practical uses 

for key educational domains, such as literacy and numeracy. Muldoon (2003) notes that 

“early years education would benefit from a curriculum that focuses on the conceptual 

underpinnings of mathematics” (p 697). The work on the cardinality principle suggests 

that while there is a need to look at the concepts which underlie mathematical functions 

(for example the principles described by Gelman and Gallistel, 1976), there is an equally 

strong need to give the children the opportunity to perform simple mathematical tasks in 

order to achieve behavioural mastery which forms the basis for implicit representations 

within the RR model. There is a need to look both at children’s ability to perform a task, 

and children’s understanding of the mathematical concepts underlying these tasks. 

Therefore, the RR model would advocate an approach to education which would begin by 

giving the children an opportunity to perform simple tasks, before focusing on giving 

children the opportunity to verbalise the concepts underlying simple mathematical tasks 

such as counting. This provides a theoretical underpinning for the type of “curriculum” 

mentioned by Muldoon et al (2003) for early maths. It also offers a clear contrast to the 

open-ended model of development put forward by Rittle-Johnson et al (2001), by stating 
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that the effect of different types of intervention will depend on children’s representational 

level. This adds to the body of work of Pine et al (1999, 2001) which looked at different 

types of interventions for children’s representations of balance and demonstrates that the 

same findings within that domain may well also hold true for children’s early 

development of representations for mathematical principles – that at an early stage in 

development for these counting principles, children should be taught strategies to help 

them achieve mastery, before the focus on teaching switches to the conceptual basis of 

the counting principles. 

  

1.3 Generalisation and access to knowledge 

 

It is predicted by Karmiloff-Smith (1992) that as representations become more verbally 

accessible, they should become more generalisable, for use in other tasks in the same 

domain (Karmiloff-Smith, 1992). The second study in this thesis demonstrated that when 

children had access to explicit verbal knowledge in one balance task, they could provide 

the same explicit verbal knowledge in another balance task. Children were not always 

found to show the success on the 2 balance tasks in spite of them having access to the 

same knowledge for both tasks. Their performance on the balance tasks were in all 

likelihood effected by the characteristics of the task (Messer et al, in print), though their 

access to the underlying verbal knowledge was not. 

 

This has clear implications for the generalisation of knowledge. The RR model 

recognises the possibility of flexibility in children’s thinking, and a key aspect of 
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representational change within Karmiloff-Smith’s model is that it allows “inter-

representational flexibility and creative problem solving capacities” (Karmiloff-Smith, 

1992, p 20).  Pine et al (2003) looked at the “flexibility” of their representations, by 

seeing if children at all representational levels could predict whether they were likely to 

be able to balance the beam presented them. This gave some indication that children have 

some form of conscious access to their knowledge, which they apply in a slightly 

different form of task (e.g. being able to predict whether they can balance the beam, as 

apart from their actual ability to balance it along a fulcrum).  A majority of microgenetic 

studies which looked at generalisation (e.g. Adolph, 1997, Alibali, 1999, Siegler, 2002, 

Bowerman, 1982, Chen and Klahr, 1999) focus on the use of strategies, rather than on 

their actual knowledge and how it becomes available across a domain. It is not surprising 

therefore that children were not found to generalise in these microgenetic studies. Tolmie 

et al’s (2005) study looks at generalisability in relation to pedestrian skills. This study 

focused on adult guidance and peer discussion in helping children which led to 

“appropriation of E3 level representations from adult dialogue” (Tolmie et al, 2005, p 

181). The emphasis is on verbal knowledge, which is stated as emerging at the E3 

representational level. 

 

The findings of this thesis help to clarify how generalisation of knowledge may occur: 

once children do have explicit verbal knowledge, it is seen that they can access this 

knowledge for other tasks within a domain. This provides a clear explanation for the 

phenomena of generalisation of knowledge. It also helps to explain why the findings from 

microgenetic studies which focus on procedural-type strategies (i.e. Siegler, 2002), fail to 
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show generalisation of strategy use across tasks. The development of verbal knowledge 

within the RR model provides the basis for the flexibility; it is the redescription of 

knowledge from an initially procedural basis, into generalisable verbal format. Indeed, 

this redescription may be thought of as a deductive process, whereby children’s 

continued stable performance on a task brings them to deduce a general “theory” or piece 

of knowledge which is couched in a verbal format. The format of the knowledge is very 

important, given the origins of the RR model as a reaction to Fodor’s (1982) work on 

modularity. While some types of knowledge may retain “modular” type properties and be 

informationally encapsulated (e.g. not available to other processes), verbal knowledge 

does not seem to have these properties. Verbal knowledge is therefore a cornerstone for 

cognitive development. Therefore, the RR model can be seen to provide a clear 

description and explanation for this particular phenomena, which is not described by 

other contemporary models of cognitive development such as the overlapping waves 

model (Siegler, 1996). 

   

The overlapping waves model (Siegler, 1996), describes in great detail the development 

of strategies which can be used to successfully perform a task.  A number of microgenetic 

studies have been very good in detailing the various variables which play a factor in the 

development and use of these strategies (see Siegler, 2006 for a comprehensive review), 

and a similarly intricate set of variables may be described which determine behaviour 

within the dynamic systems model. This model does not however attempt to describe the 

nature of the representation which underpinned this success. There is no sense within 

these models of the child clearly achieving a greater level of understanding, or certainly 
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no desire to clearly signpost these changes when they occur. Following criticisms of 

Piaget’s stage theory, they shy away from stating that there are clear and definable 

stages/levels indicating children achieving a new or more complex understanding of a 

domain. Siegler (2006) claims that the overlapping waves model can “integrate 

qualitative and quantitative aspects of learning within a single framework”, yet there is 

no framework within the Overlapping waves model to indicate when children do show 

“qualitative advances”. Chen and Siegler (2000) describe 5 processes through which 

strategy use develops from initial varied use through to more systematic and adaptive 

choice of strategies. These components however are descriptive in nature rather than 

explanatory, and provide no clear explanation of how this development occurs, or indeed 

a clear description of the framework within which the child thinks and develops – to put 

it strongly, the overlapping waves model is not a model in the strong sense.  

 

One of the key points of the RR model is that it maintains a descriptive level-based 

approach, whilst of course moving away from the process towards the development of 

“formal logical” reasoning favoured by Piaget. The RR model provides a sound basis for 

discussing the phenomena of generalisation; and a potential general model for cognitive 

development should be able to provide an explanation for general phenomena such as the 

generalisation of knowledge, which must be a key phenomena, as what children learn in 

schools is supposed to be applicable to a variety of task, rather than only being applicable 

for the specific task in which they learnt a specific piece of knowledge.     
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1.4. The tasks used in each domain 

 

A final point for this section relates to the methodologies used in this thesis. In the first 

set of experiments, an attempt was made to show that the levels of the RR model were 

applicable to more than 1 type of balance task. Having established that the levels were 

not limited to the balance beam task (Pine, 1999) within this domain, there was a more 

general need to see what types of task the levels of the model could and could not be 

applied to. The importance of applying the levels is that if they are not applicable within 

a domain, the process of redescription within the RR model is not likely to be applicable 

either. The two tasks to which the RR levels were applied in the domain of balance both 

levels of performance comparable to the U-shaped curve described by Strauss (1982). For 

both tasks, verbal knowledge and performance measures were elicited in one task. In the 

experiments on the counting task, a different approach was taken, with children’s 

performance and verbal knowledge being measured using separate tasks.  

 

The dip in performance for children at the abstraction level commonly seen on the 

balance beam task (Pine et al,1999), was less prominent for the 2 experiments on the 

counting principles (chapters 4 and 5). This indicates that the levels of the model were 

not only applicable to tasks where an appreciable u-shaped curve was apparent (as was 

the case in the work of Pine, 199, and Critten, 2007 on the RR model). The use of 

separate and straightforward tasks in the experiments on the one-to-one and counting 

principles demonstrates a movement towards using the RR levels as denoting knowledge 

for a principle, rather than simple ability to apply it on one specific task. 
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The use of ecologically valid, everyday type tasks fits in with the approach of the RR 

model which tries to give a clear and comprehensive view of children’s knowledge for a 

domain. It is important in this respect to attempt to use multiple methods to assess 

children’s knowledge within a domain (see Messer et al, in press). As well as ensuring 

the validity of the levels of the model as applying to multiple tasks within a domain, it is 

also important to note that certain tasks may better tap the concept underlying a domain – 

for example, with regard to the domain of balance, children seemed much more likely to 

give explicit explanations on the balance beam task, where implicit weight type 

explanations which seemed mainly procedural in nature were most prominent. There is a 

need to be aware that in spite of the claims for a model which states that the 

representational levels should broadly apply to any tasks within a domain, there may be 

some small difference in actual representational level from task to task, though as chapter 

3 showed, children were highly likely to be at the same end of the implicit-explicit 

representational continuum on both balance tasks. 

 

2. The importance of access to verbal knowledge 

 

The second unique feature of the RR model is its focus on the role of access to verbal 

knowledge for cognitive development. Karmiloff-Smith (1992) specifically states that the 

process of redescription “is a process by which implicit information in the mind becomes 

explicit knowledge to the mind” (Karmiloff-Smith, 1992, p. 18). This differs from the 

position of Piaget, who according to Nelson (1999, p 189) “viewed language as a 
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component of the representational function, but not as an important contributor to 

cognition per se”. 

 

The microgenetic study conducted within this thesis provided evidence that increasing 

access to verbal knowledge (as measured by first use of new and more complex verbal 

explanations) may indeed play a key role in changing performance on a task, rather than 

the traditional Piagetian view of cognitive change being driven by processes of 

“accommodation, assimilation and equilibration”, which come about primarily due to 

changing levels in performance on a particular task.  On the balance beam task, children 

were shown to be changing in their performance in balancing asymmetrical beams 

following first use of new and more complex verbal explanations, rather than changes in 

verbal explanations being brought about by changes in performance on the balance beam 

task. 

 

The view of Karmiloff-Smith’s model is closer to that of Nelson (1999), in focusing on 

increasing access to knowledge being a key factor in cognitive development, though as 

Nelson notes the RR model focuses on internal analysis bringing about change, and fails 

to address external factors, and in particular the effect of contact with others’ language 

use. This factor has been addressed by both Pine et al (2000) and Tolmie et al (2005), 

who have provided a number of clear indications of the exogenous processes which may 

play a role in how cognitive change occurs. The microgenetic study (chapter 6) did 

provide evidence that children could show what may be interpreted as endogenous 
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change, in line with the endogenous process of redescription outlined by Karmiloff-Smith 

(1992). 

  

2.1 The importance of access to verbal knowledge in the domain of numeracy 

 

The importance of verbal access to knowledge was also seen in relation to children’s 

knowledge of the counting principles proposed by Gelman and Gallistel (1976). The 

levels of the RR model were applied to the one-to-one and cardinality principles, in 

cross-sectional studies, providing some evidence that children do develop explicit verbal 

knowledge for these principles during early primary school years. This provides a stark 

contrast with Piaget’s (1952) depiction of children’s knowledge of counting. Piaget stated 

that children do not have a formal logical knowledge of number until they successfully 

perform a number conservation task. The study on the cardinality principle in this thesis 

showed that children could show explicit verbal knowledge of the cardinality principle 

(which is the key principle for the conservation task) at a younger age then this however. 

They may not be able to apply it to all tasks, or may be misled by other cues such as row 

length (see Donaldson 1976 for a critique of Piaget’s experiments), but this does not 

mean that they have no knowledge of the concept of cardinality. 

 

An important aspect of the RR model in relation to this is the Implicit – Explicit 

continuum of knowledge along which children are thought to develop, which needs to be 

measures to provide a clearer indicator of children’s knowledge for a particular domain, 

given the varying performance children may show on different types of tasks within that 



 258

domain. Children begin with procedural knowledge which enables them to perform tasks, 

which is deemed as implicit, as they cannot describe the principle underlying this 

procedure. At the end of development, they have access to verbal knowledge. There is a 

qualitative change in children’s knowledge. This continuum has clearly been displayed 

on 2 balance tasks within this thesis, as well as with tasks relating to the one-to-one and 

cardinality principles for counting. The endpoint in these tasks involved children not only 

being able to perform the tasks successfully, but also being able to explain the concept 

underlying the task.  

 

The qualitative shift from successful performance without explicit knowledge to 

successful performance with explicit knowledge is downplayed in Rittle-Johnson et al’s 

(2001) studies on number. Rittle-Johnson et al (2001) used an open – ended iterative 

model to describe the complementary development of “conceptual” and “procedural” 

knowledge in relation to decimal fractions.  Rittle-Johnson et al (2001) take a similar 

approach to the RR model in how they define their key terms conceptual (similar to 

explicit verbal knowledge within the RR model) and procedural knowledge (similar to 

behavioural mastery within the RR model). In spite of this, Rittle-Johnson et al (2001) 

use “novel tasks” rather than children’s access to verbal knowledge to measure 

“conceptual knowledge”. This means that they could make predictions about relative 

improvement in both “conceptual” and “procedural” knowledge, and use ANOVAs to 

easily test these predictions. The use of interval-type data for conceptual knowledge is 

likely to be misleading, as the key change that occurs in relation to “conceptual” 

knowledge is in fact qualitative rather than quantitative within their own definition of the 
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term conceptual knowledge. That is to say, children’s shift in verbal knowledge, though 

more gradual than a simple implicit-explicit shift is qualitative in nature, and there is a 

need for a model which takes this fully into account, something which the RR model, but 

not Rittle-Johnson et al’s (2001) iterative model achieves. Indeed, the data in chapter 5 

did not support the predictions of Rittle-Johnson with regard to mutual improvements in 

conceptual and procedural knowledge, when verbal explanations were used to measure 

conceptual knowledge. Rather, they highlight the need to focus on children’s ability to 

verbalise the basic principles which are thought by Gelman and Gallistel (1976) to 

provide a basis for being able to count. 

 

The main reason that the RR model was applied to the principles for counting outlined by 

Gelman and Gallistel (1976) was that counting provided a basis for the understanding of 

number, and the RR model provided an approach which looked beyond children’s ability 

to perform tasks, as Sophian (1999) called for. The RR model is particularly relevant for 

numeracy given the recent focus on the importance of conceptual understanding needing 

to be a key part of mathematical curricula (Aubrey and Godfrey, 2003), and the 

increasing focus on ways to improve children’s conceptual knowledge of maths (Rittle-

Johnson et al, 2001, Muldoon et al, 2003). This type of knowledge is overlooked to a 

certain extent within the Overlapping Waves model (Siegler, 1996) – where it has for 

example been applied to mathematical knowledge (e.g. addition tasks), it has not 

provided a model to describe and explain the continued development of conceptual 

knowledge, but simply children’s use of strategies for certain types of addition tasks. 
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2.2 The RR model and the overlapping waves model  

 

This is perhaps where the RR model and the Overlapping Waves model can be 

reconciled.  The Overlapping Waves model focuses on strategy use – e.g. procedures, and 

does not concern itself with the notion of children showing conscious access to their 

thinking. Therefore, as is the case with the development of implicit representations for 

cardinality, the overlapping waves model can help to depict how differing strategies to 

perform a task develop. It does not tell us how children develop explicit verbal 

knowledge of the cardinality principle, which this thesis has shown may be the element 

which allows for generalization of knowledge. This is where the RR model can play a 

role, as it shows that representational change can occur, and it does not necessarily have 

to be driven by changes in performance on a task. 

 

3. Cognitive Change 

 

Karmiloff-Smith’s (1992) model emphasises that children must display stability prior to 

change, rather than instability or cognitive conflict as proposed by other models (e.g. the 

Overlapping waves model, and the Dynamic systems model). The RR model also focuses 

on the role of children’s changing access to verbal knowledge, and its primary role in 

bringing about cognitive change. 
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3.1. The role of stability prior to change: 

 

Siegler (1996) has promoted the notion that children are inherently variable in their 

thinking. This is a stark contrast to the Piagetian model, which states that children have 

one way of thinking at any one time, across all domains. The possibility exists that the 

overlapping waves model, in repudiating the Piagetian stance, goes too far the other way. 

That is to say, variability in strategy use may well be a feature of children’s behaviour, 

but this may mask underlying similarity in children’s level of knowledge for a domain 

across time. For example, a child may use a variety of different strategies to solve an 

addition task (Siegler and Jenkins, 1989), but this variability in strategy use does not 

provide any extra insight into the status of children’s knowledge about addition. 

 

 Certainly, variability in performance must be taken into account. This variability clearly 

signifies that the classical staircase-type models of development (Siegler, 1996, Case, 

1992) are not accurate. The period of change is thought to be sudden and absolute in the 

case of staircase models – which give rise to the use of the staircase metaphor. The 

evidence from the microgenetic study showed that variability was present in 

representational levels prior to change. There were also notable periods of stability in 

representational levels at some period prior to representational change occurring. The 

incidence of stability prior to change occurring provides a basis for supposing that these 

periods of stability may play an important role in cognitive change. Indeed, some support 

for a similar approach has been found in other microgenetic studies involving similar 

cyclical patterns of stability, followed by a period of variability, followed by a return to 
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stability thereafter once a more advanced approach has been adopted (Siegler and 

Svetina, 2002, Siegler and Chen, 1998, Van der Maas and Molenaar, 1992, Hosenfeld et 

al, 1997).  The RR model provides a theoretical grounding for this cyclical pattern, and 

emphasises the role of the periods of stability in playing a part in the cognitive change, 

which were demonstrated in the microgenetic study (chapter 6). 

 

The RR model maintains some semblance of the staircase model, insofar as it maintains a 

series of separate and distinguishable levels, indicating a clear progression in terms of 

children’s access to knowledge. There is a clear educational need to maintain a 

perspective which emphasises these changes in thinking, even if these changes in access 

to knowledge are not always apparent in strategy use on tasks. The current British 

primary school curriculum is separated into a series of “key stages”, denoting a particular 

pathway in the development of knowledge for key curriculum topics (e.g. literacy, 

numeracy, science, etc.). On a practical level, developmental models should be aiming to 

provide a guide for how each of the targets in each key stage should be achieved, or 

providing a basis for what should be achieved in each of these key stages. Given that the 

curriculum maintains a stage-based approach, it is pragmatic to use a stage-based model 

such as the RR model. 

 

The microgenetic method (Siegler and Crowley, 1991) has been particularly important in 

revealing variability in children’s thinking, both in general, and in relation to change. The 

microgenetic study included in this thesis, though finding that children were generally 

stable in maintaining the same representational level across time, found that periods of 
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variability in representational levels immediately preceded, and in many cases, 

immediately followed representational change. What does this tell us about potential 

mechanisms for representational change? First, it is apparent that there is support for the 

overlapping waves model and dynamic systems’ model, insofar as they state that 

variability must precede cognitive change. This has been recognised by Pine et al (2003), 

who introduced transitional levels into the RR model. Pine et al’s (2004) work with 

gesture has been particularly enlightening, as it looks at the emergence of knowledge in 

gesture prior to speech, highlighting the notion that representational change is likely to be 

a much more gradual, piecemeal process, than classical stage models imply. The 

microgenetic experiment in this thesis provided evidence of “transitional periods” both 

preceding, and following achievement of a more advanced representational level, 

indicating that variability can both immediately precede, and follow cognitive change. 

Indeed, the notion of a staircase model may be somewhat misleading, as data are never 

likely to perfectly match a staircase, but merely be approximate so that a “staircase” 

metaphor may be useful – in the same way, one would not necessarily expect to find a 

perfect “U-shaped” curve in terms of relation to performance and verbal knowledge, 

merely that the metaphor best captures the idea being put across. It is important to 

highlight that a microgenetic method which looks in great depth at change at very high 

degrees of magnification may miss out on prolonged periods of stability, as they focus 

solely on “periods of change”, or in some cases provide case studies of only a few 

individuals which again solely cover a period of change. This skips over the possibility of 

stability playing an important consolidatory role in cognitive development. This is not 

dismissing the microgenetic method as an approach, but merely stating that looking in 
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close detail at periods surrounding change (which will not always occur as swiftly as the 

time periods of days/weeks in which microgenetic studies typically) does not provide a 

full picture of children’s cognitive development, which does not simply encompass 

periods of change. The microgenetic study included in this thesis (chapters 6 and 7) 

provides clear evidence that the importance of periods of stability prior to change 

occurring should not be dismissed.      

 

3.2. The role of increasing access to verbal knowledge in cognitive change 

 

The RR model focuses on cognitive change being driven by increasing access to 

knowledge, rather than children’s knowledge changing as a result of “accommodation” or 

“assimilation” based on children’s performance on the task. The difficulties in testing 

how change occurs within Piaget’s model has been well chronicled (Bryant, 2001). A 

similar criticism levelled against the RR model was that it was underdescribed, 

particularly in relation to the mechanisms of change (Campbell, 1994, Freeman, 1994, 

Scholnick, 1994).  The microgenetic experiment in this thesis provided evidence that 

changes in performance on the balance beam task followed first use of more complex 

verbal explanations, rather then changes in performance leading to first use of more 

important verbal explanations. This acts as an indication that representational change may 

be an endogenously driven process (e.g. change occurring purely as a process of internal 

redescription of knowledge into verbally accessible formats).  

 



 265

Within the RR model, at certain points children may not be open to exogenous input. For 

the balance beam task, Pine et al (1998) have noted that children who had centre-theories 

for the balance task [equivalent to abstraction nonverbal or abstraction verbal 

representational levels] did not benefit from group collaboration and discussion of the 

concept of balance. The cardinality experiment reported in this thesis provided similar 

evidence that the effect of teaching interventions were highly likely to depend on 

children’s initial representational levels. The intervention in this experiment, that gave 

children an opportunity to conceptualise the cardinality principle by explaining another 

person’s error on a counting task, was helpful for children who had already achieved 

implicit representations. Relatively few children had “abstraction nonverbal” or 

abstraction verbal representational levels on this task, so it was difficult to assess the 

utility of this type of intervention for children with these levels. It is worth noting 

however that a U-shaped curve may not necessarily always arise, and that children’s first 

conception within a domain will not always be as inaccurate as is the case within the 

domain of balance. The emergence of a “centre theory” in the domain of balance does not 

have an equivalent with regard to cardinality – abstraction nonverbal and abstraction 

verbal representational levels were codable, indicating that children may pass through 

these levels. The relatively small number of children coded to these levels in the 

experiment give a strong indication that there is not a prominent or long period during 

which they use an explicit but inaccurate representation for the cardinality principle. 

Nevertheless, in both domains relating to numeracy, and the domain of balance covered 

here, the importance of developing explicit conceptual knowledge is clear. Within the RR 

model, the joint focus on conceptual knowledge and performance, and in particular the 
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key role played by explicit verbal knowledge playing  in bringing about a cognitive 

change which has not been explored within other models of cognitive development. The 

overlapping waves model in particular fails to address this, and does not provide a clear 

description of how change can occur. Siegler (1996) describes the overlapping waves 

model, and describes 5 factors which relate to change (Path, rate, breadth, source, and 

variability), but gives no clear indication of how these fit with the basic phenomena of the 

overlapping waves model to provide a comprehensive model of how change can occur. 

The factors mentioned by Siegler in relation to change are no doubt important, and fit 

well for example with the Dynamic Systems approach, in describing multiple factors 

contributing to how cognitive change occurs, but there is no clear link between these 

factors and the fundamental phenomena described by the overlapping waves model, e.g. 

variability in strategy use. One problem with the overlapping waves model is the lack of 

depth in the description of the unit of change – the overlapping waves model has been 

mainly used to look at strategy change (Siegler, 2006 ), whereas the RR model has fairly 

well-specified units; e.g. Representational levels which are coded on the basis of task 

performance and access to verbal knowledge. Given this clear definition of the unit of 

analysis, and arising from this, a clearer structure of how the child is thought to be 

thinking (e.g. children having knowledge encoded in task-specific procedural formats 

which eventually becomes redescribed into a verbally accessible format). 

 

The RR model also contributes to the discussion on how best to think of the phenomena 

of cognitive change. Carey (1991) discusses knowledge acquisition processes using a 

distinction between “enrichment” and “conceptual change”. Where does the RR model fit 
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within this distinction? The process of redescription may be thought of as a process of 

“enrichment”, as it involves the redescription of data already in the mind to another 

format. The qualitative shift in the nature of the knowledge however may be interpretable 

as involving “conceptual change”.  The microgenetic study showed changes in 

performance following first use of more complex verbal explanations. This sounds more 

in line with what Carey terms “change” rather then “enrichment”.  One finding from the 

studies on numeracy indicated that if children did have some innate basis for the counting 

principles laid out by Gelman and Gallistel (1876), it was more primitive than an implicit 

representation. Therefore, it is quite likely that “change” is required in order for children 

to achieve implicit representational levels.  

 

It is also worth noting that the process of “redescription” is not necessarily sufficient to 

describe all the changes occurring in children’s thinking. For example, the development 

of E3 representational levels from abstraction verbal on the balance beam task requires 

the introduction of explicit knowledge about the role of distance in relation to balance. 

This requires an adjustment away from a simple “centre theory” (which states that all 

objects balance at their centre). Some form of “assimilation” may in this case be needed 

to reconcile their original weight-based representation with the idea that the distance of a 

weight from the fulcrum also plays a role in whether or not an object will balance. This is 

demonstrated by the fact that only a small proportion of children showed spontaneous 

movement from abstraction verbal to E3 within the microgenetic experiment (see chapter 

7). Karmiloff-Smith (1992) says that children at this level may not pay heed to external 

data which contradicts their own representations. Yet there was little evidence in the 
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microgenetic study that they will spontaneously show improvement (or at least not within 

the 2 week period that the microgenetic experiment spanned). This begs the question of 

how children may overcome misconceptions, if at all. Some, but not all children may 

overcome misconceptions, or ever achieve more complex conceptions for a domain. 

Within the domain of numeracy for example, it could be hypothesised that children’s 

difficulties with fractions arises from its incompatibility with their own conception of 

number (Gallistel and Gelman, 1991, for example make a similar claim that their model 

is supported by the fact that children have difficulties with fractions). The same may be 

the case for algebra, when “imaginary” and abstract numbers become more prominent, 

and the current thesis promotes the possibility of the RR model being used in this way to 

help children develop representations for these more complex forms of number.   

 

 

Summary and Conclusions 

 

This thesis has focused on addressing issues for the RR model in order to provide 

additional evidence that it can be employed as a general model for cognitive 

development. Three specific aspects of the RR model were discussed – the RR model as a 

domain specific model, the importance of access to verbal knowledge, and cognitive 

change as described by the RR model. This thesis contributed to our knowledge of each 

of these aspects within the RR model. With regard to the first point of the RR model as a 

domain specific model, the levels of the model were applied to different tasks within the 

domain of balance, and to two of Gelman and Gallistel’s counting principles within the 



 269

domain of numeracy. The issue of generalisation was also covered, with the importance 

of verbal knowledge being the key to generalisation being focused on. Moving on to the 

second key feature of the RR model, the importance of access to verbal knowledge was 

covered, showing that it is verbal knowledge which becomes accessible to other tasks 

within a domain, and provided evidence that increasing access to verbal knowledge can 

play a key role in cognitive change. Finally, with regard to cognitive change, the 

microgenetic study provided a response to the criticisms of the RR model with regard to 

the mechanisms of change being underdescribed were to some extent answered by 

providing evidence for the proposed method of redescription of the RR model (e.g. a 

period of stability which allows for increasing access to verbal knowledge). Together, the 

findings of this thesis show that the RR model can add significantly to our understanding 

of cognitive developmental processes.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 270

 

References 

 

Adolph, K. E. (1997). Learning in the development of infant locomotion. 
Monographs of the Society for Research in Child Development, 62(3). 

 
Alibali, M. W. (1999). How children change their minds: Strategy change can be 

gradual or abrupt. Developmental Psychology, 35, 127-145. 
 
Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to 

count: More than keeping track. Cognitive Development, 14(1), 37-56. 
 
Alibali, S. G.-M. a. M. W. (1994). do you have to be right to redescribe? 

Behavioral and Brain Sciences, 17(4), 718-719. 
 
Amsel, E., Goodman, G., Savoie, D., & Clark, M. (1996). The development of 

reasoning about causal and noncausal influences on levers. Child 
Development, 67(4), 1624-1646. 

 
Anderson, N. H., & Wilkening, F. (1990). Adaptive thinking in intuitive physics. In 

N. H. Anderson (Ed.), Contributions to information integration theory, Vol. 
1: Cognition; Vol. 2: Social; Vol. 3: Developmental (pp. 1-42). Hillsdale, 
NJ, England: Lawrence Erlbaum Associates, Inc. 

 
Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in 

neonates. Child Development, 54(3), 695-701. 
 
Aubrey, C. G., Ray. (2003). The Development of Children's earlynumeracy 

through key stage 1. British Educational Research Journal, 29(6), 821-
840. 

 
Barlow, C. M., Jolley, R. P., White, D. G., & Galbraith, D. (2003). Rigidity in 

children's drawings and its relation with representational change. Journal 
of Experimental Child Psychology, 86(2), 124-152. 

 
Baroody, A. J., Ginsburg, H. P., & Waxman, B. (1983). Children's use of 

mathematical structure. Journal for Research in Mathematics Education, 
14(3), 156-168. 

 
Bermejo, V. (1996). Cardinality development and counting. Developmental 

Psychology, 32(2). 
 
Bermejo, V., Morales, S., & deOsuna, J. G. (2004). Supporting children's 

development of cardinality understanding. Learning and Instruction, 14(4), 
381-398. 



 271

 
 
Bowerman, M. (1981). The child's expression of meaning: Expanding 

relationships among lexicon, syntax, and morphology. Annals of the New 
York Academy of Sciences, 379(172-189). 

 
Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers' counting 

knowledge. Developmental Psychology, 20(4), 607-618. 
 
Bryant, P. (2001). Learning in Geneva: the contribution of Barbel Inhelder and 

her colleagues. In  A. Typhon & J. Voneche (Eds.), Working with Piaget: 
Essays in honour of Barbel Inhelder. Hove, UK; Psychology Press   

 
Campbell, R. L. (1994). what's getting redescribed? Behavioural and Brain 

Sciences, 17(4), 710-711. 
 
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press. 
 
Carey, S. (1988). Conceptual differences between children and adults. Mind and 

Language, 3, 167-181. 
 
Carey, S. (1991). The epigenesis of mind - Essays on biology and cognition. 

Hillsdale New Jersey: Lawrence Erlbaum Associates. 
 
Case, R. (1992). The mind's staircase: Exploring the conceptual underpinnings of 

children's thought and knowledge. New York: Academic Press. 
 
Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and 

transfer of the Control of Variables Strategy. Child Development, 70(5), 
1098-1120. 

 
Chetland, E., & Fluck, M. (2007). Children's performance on the 'give x' task: A 

microgenetic analysis of 'counting' and 'grabbing' behavior. Infant and 
Child Development, 16(1), 35-51. 

 
Chi, M. T. H., de Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-

explanations improves understanding. Cognitive Science, 18(3), 439-477. 
 
Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants' 

discrimination of small visual sets. Psychological Science, 10(5), 408-411. 
 
Copley, J. V. (1999). Mathematics in the early years: National Council of 

Teachers. 
 
Coyle, T. R., & Bjorklund, D. F. (1996). The development of strategic memory: A 

modified microgenetic assessment of utilization deficiencies. Cognitive 



 272

Development, 11(2), 295-314. 
 
Critten, S., Pine, K.J, Messer, D.J. (2007). A longitudinal study of the process of 

explicitation in children's reading and spelling representations. Paper 
presented at the Society for the scientific study of reading, Prague. 

 
 
Critten, S., Pine, K., & Steffler, D. (2007). Spelling Development in Young 

Children: A Case of Representational Redescription? Journal of 
Educational Psychology, 99(1), 207-220. 

 
Dartnall, T. (1994). Redescribing Redescription. Behavioral and Brain Sciences, 

17(4), 712-713. 
 
Dehaene, S. (1997). The Number Sense. London: Penguin. 
 
Dixon, J. A., & Bangert, A. S. (2005). From regularities to concepts: The 

development of children's understanding of a mathematical relation. 
Cognitive Development, 20(1), 65-86. 

 
Donaldson, M. (1978). Children's Minds. London: Fontana. 
 
Donlan, C. (1998). The development of mathematical skills: Psychology Press 

Ltd. 
 
Ferretti, R. P., Butterfield, E. C., Cah, A., & Kerkman, D. (1985). The 

classification of children's knowledge: Development on the balance-scale 
and inclined-plane tasks. Journal of Experimental Child Psychology, 
39(131-160). 

 
Flavell, J. H. (1963). The developmental psychology of Jean Piaget. New York: 

Van Nostrand. 
 
Fluck, M., Linnell, M., & Holgate, M. (2005). Does counting count for 3- to 4-year-

olds? Parental assumptions about preschool children's understanding of 
counting and cardinality. Social Development, 14(3), 496-513. 

 
Fodor, J. (1986). The modularity of mind. In Z. W. Pylyshyn & W. Demopoulos 

(Eds.), Meaning and cognitive structure: Issues in the computational 
theory of mind (pp. 3-18). Westport, CT: Ablex Publishing. 

 
Foster-Cohen, S. H. (1994). Arguments against linguistic "modularization". 

Behavioral and Brain Sciences, 17(4), 716-717. 
 
Freeman, N. H. (1994). Redescription of intentionality. Behavioral and Brain 

Sciences, 17(4), 717-718. 



 273

 
Frege, G. (1893). Grundgesetze der Arithmetik, Band I. 
 
Frye, D., Braisby, N., Lowe, J., Maroudas, C., & et al. (1989). Young children's 

understanding of counting and cardinality. Child Development, 60(5), 
1158-1171. 

 
Fuson, K. C. (1988). Children's counting and concepts of number. 
 
Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and 

conservation of numerical equivalence. Child Development, 54(1), 91-97. 
 
Gallistel, C. R., Brown, A. L., Carey, S., Gelman, R., & Keil, F. C. (1991). 

Lessons from animal learning for the study of cognitive development. In S. 
Carey & R. Gelman (Eds.), The epigenesis of mind: Essays on biology 
and cognition (pp. 3-36). Hillsdale, NJ, England: Lawrence Erlbaum 
Associates, Inc. 

 
Gallistel, C. R., & Gelman, R. (1991). Subitizing: The preverbal counting process. 

In W. Kessen & A. Ortony (Eds.), Memories, thoughts, and emotions: 
Essays in honor of George Mandler (pp. 65-81). Hillsdale, NJ, England: 
Lawrence Erlbaum Associates, Inc. 

 
Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. 

Oxford, England: Harvard U Press. 
 
Gelman, R., & Meck, E. (1983). Preschoolers' counting: Principles before skill. 

Cognition, 13(3), 343-359. 
 
Gelman, R., & Meck, E. (1986). The notion of principle: The case of counting. In 

J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of 
mathematics (pp. 29-57). Hillsdale, NJ, England: Lawrence Erlbaum 
Associates, Inc. 

 
Gelman, R., Meck, E., & Merkin, S. (1986). Young children's numerical 

competence. Cognitive Development, 1(1), 1-29. 
 
Ginsburg, H. (1975). Young children's informal knowledge of mathematics. 

Journal of Children's Mathematical Behavior, 1(3), 63-156. 
 
Goldin Meadow, S. (2002). From thought to hand: Structured and unstructured 

communication outside of conventional language. In E. Amsel & J. P. 
Byrnes (Eds.), Language, literacy, and cognitive development: The 
development and consequences of symbolic communication (pp. 121-
150). Mahwah, NJ: Lawrence Erlbaum Associates Publishers. 

 



 274

Goldin-Meadow, M. W. A. S. (1993). Gesture-speech mismatch and mechanisms 
of learning: What the hands reveal about a child's state of mind. Cognitive 
Psychology, 25, 468-523. 

 
Goswami, U. (2002). Blackwell handbook of Cognitive Development: Blackwell 

Publishing. 
 
Greco, P. (1962). Quantite et quotite: Nouvelle recherches sur la corrspondance 

terme a terme et la conversation des ensembles. In P. Greco, & Morf, A. 
(Ed.), Structures mi,eroqies elementaires: etudes d'epistemologie 
genetique (Vol. 13, pp. 35-52). Paris: Presses Universitaires de France. 

 
Grupe, L. (1998). A microgenetic study of strategy discovery in young children's 

addition problem solving: A thesis.Unpublished manuscript. 
 
Grush, R. (1994). Beyond connectionist versus classical AI: A control theoretic 

perspective on development and cognitive science. Behavioral and Brain 
Sciences, 17(4), 720. 

 
Halford, G. S. (2002). Information-processing models of cognitive development. 

In U. Goswami (Ed.), Blackwell handbook of childhood cognitive 
development (pp. 555-574). Malden, MA: Blackwell Publishing. 

 
Halford, G. S., Andrews, G., Dalton, C., Boag, C., & Zielinski, T. (2002). Young 

children's performance on the balance scale: The influence of relational 
complexity. Journal of Experimental Child Psychology, 81(4), 417-445. 

 
Hampson, P. J. (1994). Representational redescripiton, memory, and 

connectionism. Behavioral and Brain Sciences, 17(4), 720. 
 
Hollis, S., & Low, J. (2005). Karmiloff-Smith's RRM distinction between 

adjunctions and redescriptions: It's about time (and children's drawings). 
British Journal of Developmental Psychology, 23(4), 623-644. 

 
Hosenfeld, B., van der Maas, H. L. J., & van den Boom, D. C. (1997). Indicators 

of discontinuous change in the development of analogical reasoning. 
Journal of Experimental Child Psychology, 64(3), 367-395. 

 
Inhelder, B., Piaget, J., Parsons, A., & Milgram, S. (1958). The growth of logical 

thinking: From childhood to adolescence. 
 
Inhelder, B. P., J. (1958). the growth of lofical thinking from childhood to 

adolescence: an essay on the construction of formal operational 
structures. New York: Basic Books. 

 
Jansen, B. R. J., & van der Maas, H. L. J. (2002). The development of children's 



 275

rule use on the balance scale task. Journal of Experimental Child 
Psychology, 81(4), 383-416. 

 
Karmiloff Smith, A. (1983). A note on the concept of "metaprocedural processes" 

in linguistic and non-linguistic cognitive development. Archives de 
psychologie, 51(196), 35-40. 

 
Karmiloff Smith, A. (1992). Beyond modularity: A developmental perspective on 

cognitive science. Cambridge, MA: The MIT Press. 
 
Karmiloff Smith, A., & Inhelder, B. (1974). If you want to get ahead, get a theory. 

Cognition, 3(3), 195-212. 
 
 
Kliman, M. (1987). Children's learning about the balance scale. Instructional 

Science, 15(4), 307-340. 
 
Kuhn, D. (1994). the power of explicit knowing. Behavioral and Brain Sciences, 

17(4), 722-723. 
 
Kuhn, D., Amsel, E., O'Loughlin, M., Schauble, L., Leadbeater, B., & Yotive, W. 

(1988). The development of scientific thinking skills. Academic Press Inc. 
New York 

 
Kuhn, D., Schauble, L., & Garcia Mila, M. (1992). Cross-domain development of 

scientific reasoning. Cognition and Instruction, 9 (4), 285-327 
 
Kuhn, D. P., E. (1982). the development of problem-solving strategies. In H. 

Reese (Ed.), Advances in child development and behaviour (Vol. 17, pp. 
1-44). New York: Academic Press. 

 
McLaughlin, G. H. (1963). Psycho-logic: A possible alternative to Piaget's 

formulation. British Journal of Educational Psychology, 33, 61-67. 
 
Muldoon, K. & Freeman N. (2003). Putting counting to work: preschoolers' 

understanding of cardinal extension. International Journal of Educational 
research, 39, 695-718. 

 
Muldoon, K., Lewis, C, & Towse, J (2005). Because it’s there! Why some children 

count, rather than infer numerical relationships. Cognitive Development, 
20 (3), 472-491  

 
Metz, K. E. (1998). Emergent understanding and attribution of randomness: 

Comparative analysis of the reasoning of primary grade children and 
undergraduates. Cognition and Instruction, 16(3), 285-365. 

 



 276

 
Nelson, K. (1996). Language in cognitive development: Emergence of the 

mediated mind: Cambridge University Press. 
 
Normandeau, S., Larivee, S., Roulin, J. L., & Longeot, F. (1989). The balance-

scale dilemma: Either the subject or the experimenter muddles through. 
Journal of Genetic Psychology, 150(3), 237-250. 

 
Olson, D. R. (1994). Where redescriptions come from. Behavioral and Brain 

Sciences, 17(4), 724. 
 
Oshima, J., & Okada, T. (1996). Process of children's knowledge acquisition in a 

balance scale task. Hiroshima Forum for Psychology, 17, 1-12. 
 
Pascual-Leone, J. A. (1970). A mathematical model for the transition rule in 

Piaget's developmental stages. Acta Psychologica, 32, 301-345. 
 
Pauen, S., & Wilkening, F. (1997). Children's analogical reasoning about natural 

phenomena. Journal of Experimental Child Psychology, 67(1), 90-113. 
 
Perry, M., & Elder, A. D. (1997). Knowledge in transition: Adults' developing 

understanding of a principle of physical causality. Cognitive Development, 
12(1), 131-157. 

 
Philips, S., & Tolmie, A. (2007). Children's performance on and understanding of 

the Balance Scale problem: The effects of parental support. Infant and 
Child Development, 16(1), 95-117. 

 
Piaget, J. (1932). The moral judgement of the child. New York: Free Press. 
 
Piaget, J. (1952). The child's conception of number. London: Routledge and 

Kegan Paul. 
 
Piaget, J., Inhelder, B. (1956). The child's conception of space. New York: 

Norton. 
 
Piaget, J. (1960). The child's conception of physical causality. Paterson, NJ: 

Littlefield, Adams. 
 
Piaget, J., Inhelder, B. (1974). The child's construction of quantities. London: 

Routledge and Kegan Paul. 
 
Pine, K., & Messer, D. (1999). What children do and what children know: Looking 

beyond success using Karmiloff-Smith's RR framework. New Ideas in 
Psychology, 17(1), 17-30. 

 



 277

Pine, K., & Messer, D. (2003). The development of representations as children 
learn about balancing. British Journal of Developmental Psychology, 
21(2), 285-301. 

 
Pine, K., Messer, D., & St John, K. (2001). Children's misconceptions in primary 

science: A survey of teachers' views. Research in Science and 
Technological Education, 19(1), 79-96. 

 
Pine, K. J., Lufkin, N., & Messer, D. (2004). More gestures than answers: 

Children learning about balance. Developmental Psychology, 40(6), 1059-
1067. 

 
Pine, K. J., & Messer, D. J. (1998). Group collaboration effects and the 

explicitness of children's knowledge. Cognitive Development, 13(1), 109-
126. 

 
Pine, K. J., & Messer, D. J. (2000). The effect of explaining another's actions on 

children's implicit theories of balance. Cognition and Instruction, 18(1), 35-
52. 

 
Pine, K. J., Messer, D. J., & Godfrey, K. (1999). The teachability of children with 

naive theories: An exploration of the effects of two teaching methods. 
British Journal of Educational Psychology, 69(2), 201-211. 

 
Rittle Johnson, B., & Siegler, R. S. (1998). The relation between conceptual and 

procedural knowledge in learning mathematics: A review. In C. Donlan 
(Ed.), The development of mathematical skills (pp. 75-110). Hove, 
England: Psychology Press/Taylor & Francis (UK). 

 
Rittle Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An iterative process. 
Journal of Educational Psychology, 93(2), 346-362. 

 
Rutkowska, J. C. (1994). Situating representational redescrition in infants' 

pragmatic knowledge. Behavioral and Brain Sciences, 17(4), 726-727. 
 
Schauble, L. (1990). Belief revision in children: The role of prior knowledge and 

strategies for generating evidence. Journal of Experimental Child 
Psychology, 49(1), 31-57. 

 
Scholnick, E. K. (1994). Redescribing development. Behavioral and Brain 

Sciences, 17(4), 727-728. 
 
Shultz, T. R. (1994). The challenge of representational redescription. Behavioral 

and Brain Sciences, 17(4), 728-729. 
 



 278

 
Siegler R.S & Chen, Z. (1998). Developmental differences in rule learning:  A 

microgenetic analysis. Cognitive Psychology, 36, 273-310. 
 
Siegler R.S & Crowley, K. (1991). The microgenetic method: A direct means of 

studying cognitive development. American Psychologist, 46, 606-620. 
 
Siegler R.S & Svetina, M. (2002). A Microgenetic/cross-sectional study of matrix 

completion. Child Development, 73, 793-809. 
 
Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive 

Psychology, 8(4), 481-520. 
 
Siegler, R. S. (1982). The rule-assessment approach and education. 

Contemporary Educational Psychology, 7(3), 272-288. 
 
Siegler, R. S. (1987). Strategy choices in subtraction. In J. A. Sloboda (Ed.), 

(1987). Cognitive processes in mathematics. Keele cognition seminars, 
Vol. 1 (pp. 81-106). New York, NY: Clarendon Press/Oxford University 
Press. 

 
Siegler, R. S. (1995). How does change occur: A microgenetic study of number 

conservation. Cognitive Psychology, 28(3), 225-273. 
 
Siegler, R. S. (1996). Emerging minds: The process of change in children's 

thinking: London, Oxford University Press. (1996). viii, 278 pp. 
 
Siegler, R. S. (2006). Microgenetic Analyses of Learning. In D. Kuhn, R. S. 

Siegler, W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: 
Vol 2, Cognition, perception, and language (6th ed.) (pp. 464-510). 
Hoboken, NJ: John Wiley & Sons Inc. 

 
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies: 

Lawrence Erlbaum Associates. 
 
Siegler, R. S., & Richards, D. D. (1979). Development of time, speed, and 

distance concepts. Developmental Psychology, 15(3), 288-298. 
 
Siegler, R. S., & Shipley, C. (1995). Variation, selection, and cognitive change. In 

T. J. Simon & G. S. Halford (Eds.), Developing cognitive competence: 
New approaches to process modeling (pp. 31-76). Hillsdale, NJ, England: 
Lawrence Erlbaum Associates, Inc. 

 
Siegler, R. S., & Vago, S. (1978). The development of a proportionality concept: 

Judging relative fullness. Journal of Experimental Child Psychology, 25(3), 
371-395. 



 279

 
Smith, C., Carey, S., Wiser, M. (1985). on differentiation: a case study of the 

development of size, weight, and density. Cognition, 21, 177-237. 
 
Smith, L. (1994). Model knowledge and transmodularity. Behavioral and Brain 

Sciences, 17(4), 729-730. 
 
Sophian, C. (1997). Beyond competence: The significance of performance for 

conceptual development. Cognitive Development, 12(3), 281-303. 
 
Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. 

Science, 210. 1033-1035 
 
Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human 

infants. Cognition, 36(2), 97-127. 
 
Strauss, S. (1982). U-shaped behavioural growth. New York: Academic Press. 
 
Surber, C. F., & Gzesh, S. M. (1984). Reversible operations in the balance scale 

task. Journal of Experimental Child Psychology, 38(2), 254-274. 
 
Thelen, E., & Corbetta, D. (2002). Microdevelopment and dynamic systems: 

Applications to infant motor development. In N. Granott & J. Parziale 
(Eds.), Microdevelopment: Transition processes in development and 
learning (pp. 59-79). New York, NY: Cambridge University Press. 

 
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the 

development of cognition and action: MIT Press. 
 
Tolmie, A., Thomson, J. A., Foot, H. C., Whelan, K., Morrison, S., & McLaren, B. 

(2005). The effects of adult guidance and peer discussion on the 
development of children's representations: Evidence from the training of 
pedestrian skills. British Journal of Psychology, 96(2), 181-204. 

 
Van der Maas, H. L., & Molenaar, P. C. (1992). Stagewise cognitive 

development: An application of catastrophe theory. Psychological Review, 
99(3), 395-417. 

 
Van Loosbroek, E., & Smitsman, A. W. (1990). Visual perception of numerosity in 

infancy. Developmental Psychology, 26(6), 911-922. 
 
Wellman, -. H.-M. (2002). Understanding the psychological world: Developing a 

theory. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive 
development (Vol. Blackwell Publishing, pp. 167-187). Malden, MA. 

 
Wellman, H. M. (2002). Understanding the psychological world: Developing a 



 280

theory of mind. In U. Goswami (Ed.), Blackwell handbook of childhood 
cognitive development (pp. 167-187). Malden, MA: Blackwell Publishing. 

 
Wilkening, F., & Anderson, N. H. (1982). Comparison of two rule-assessment 

methodologies for studying cognitive development and knowledge 
structure. Psychological Bulletin, 92(1), 215-237. 

 
Wynn, P. B. a. K. (1994). the real problem with constructivism. Behavioral and 

Brain Sciences, 17(4), 707-708. 
 
Zelazo, P. D. (1994). from the decline of development to the ascent of 

consciousness. Behavioral and Brain Sciences, 17(4), 731-732. 
 
Zelazo, P. D. (2004). The development of conscious control in childhood. Trends 

in Cognitive Sciences, 8(1), 12-17. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 281

Appendices 
 

 

 

Appendix A: 

 

.1. Instruction sheets used for the balance scale tasks in chapter 2 

.2. Instruction sheets used for the balance scale and beam tasks in chapter 3 

.3. Instruction sheets and examples of the materials used for the experiment on the one-

to-one counting principle in chapter 4 

.4. Instruction sheets used for the cardinality experiment in chapter 5 

.5. Intervention sheets used in the cardinality task in chapter 5 

.6. Instruction sheets used for the microgenetic experiment in chapters 6 and 7 
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Appendix I 

 .1.1
st
 Balance experiment: 

 

3.1 Instruction sheets for the 3 types of balance scale task:  

 

 

 

(1) Balance scale production task: 

Production and commentary 

 

The child is shown the balance scale, and told: 

“This will be my side of the scale, and that will be your side. I will put a few rings on my 

side, and give you a few weights. I want you to try and make the scale balance and stay 

straight. Do you understand? 

 

(2) 2 types of balance scale task here: 

 

Type 1: the experimenter places weights on 1 side of the scale and asks the child on 

which peg they would put a specific number of weights in order to make the scale 

balance. 

 

Type 2: The experimenter places weights on 1 side of the scale, and asks the child how 

many weights they should place on a specific peg in order to make the scale balance 
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3. Balance scale free production task: 

 

The child is shown the balance apparatus: the scale and the weights, which they are told 

can be put on the pegs either side of the middle. The child is told that they are allowed 

play with the scale, looking at how you put on the weights so that the beam balances and 

stays straight. They are told they can put on as many of the weights as they want, 

wherever they want, in order to find out the different ways that you can make the scale 

balance and stay straight. 

 

The puppet is then introduced. The child is told that the puppet does not know anything 

about balancing things, so they would like the child to explain what they are doing to this 

puppet. 

 

When the child has said he has finished, or stops coming up with novel balancing 

configurations, they are again asked to explain to the puppet how the scales work. The 

puppet asks two questions: 

 

(1) What if you put more weights on one side of the scale? 

 

(2) What if the weights are put on different pegs on either side? 

 

Once the child has answered these questions, the child is told that the game is finished, 

and they are thanked.   
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Appendix I 

  

.2 Balance Scale and Balance Beam Tasks experiment 

 Balance scale experiment sheet 

 

Half the children were given the balance beam task first, and half the children were given 

the balance scale task first in this experiment. 

 

Balance scale task sheet: 

 

The child is shown the balance apparatus: the scale and the weights, which they are told 

can be put on the pegs either side of the middle. The child is told that they are allowed 

play with the scale, looking at how you put on the weights so that the beam balances and 

stays straight. They are told they can put on as many of the weights as they want, 

wherever they want, in order to find out the different ways that you can make the scale 

balance and stay straight. 

 

The puppet is then introduced. The child is told that the puppet does not know anything 

about balancing things, so they would like the child to explain what they are doing to this 

puppet. 

 

When the child has said he has finished, or stops coming up with novel balancing 

configurations, they are again asked to explain to the puppet how the scales work. The 

puppet asks two questions: 

 

(1) What if you put more weights on one side of the scale? 

 

(2) What if the weights are put on different pegs on either side? 

 

Once the child has answered these questions, the child is told that the game is finished, 

and they are thanked.   
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2.2 Instruction sheet for the Balance Beam Production Task: 

The child is shown the array of beams and the fulcrum. The child is told that they are 

going to be given the beams, and that the object of the game is to try and make the beams 

balance on the fulcrum – the small wooden bit. They are shown the puppet, who they are 

told is trying to learn about balance. The child is asked to explain to this puppet for each 

beam why the beam does or does not balance. 

 

 Colour Length  Width  Weight ratio  Initial Place 

 

Symmetrical: 

 

5. Wood 30cm  2 1/2cm  0:0  Left/Centre/Right 

 

8. Red             30cm  2 cm   1:1  Left/Centre/Right 

 

2. Green 40cm  2 ½ cm   1:1   Left/Centre/Right 

 

 

Asymmetrical: 

 

7. Pink  40cm  3cm   3:1  Left/Centre/Right 

 

1. Red   43cm  1 ½ cm   2:1  Left/Centre/Right 

 

4. Mauve 30cm  2 cm   3: 1 ½   Left/Centre/Right 

 

6. Blue  25cm  2 cm   3:2  Left/Centre/Right 

 

3. Yellow 20 cm  2 cm   1:0  Left/Centre/Right 

 

9. White 30cm  1 ½  cm  3:2  Left/Centre/Right 
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Appendix I 

 

.3. Instruction sheets and examples of the materials used for the experiment on the one-

to-one counting principle in chapter 4.  

 

 

Instruction Sheet: 

 

Half the children start with the counting task; the other half begin with the error detection 

task. 

 

Children are asked to sit down at a desk in front of the camera. The camera is switched 

off. The child is shown a variety of the materials to be used – the counting objects, sheets, 

and the puppets. The child will be told they are going to count the objects, and watch the 

puppets trying to count the objects – the puppets are learning to count. They are told that 

the whole session will be recorded, for the puppets to watch again later. 

 

Counting Task: 

 

 

An array of objects is placed in front of the child. Children are asked simply to count the 

objects. If the child does not count all the objects, they are asked “can you count them all 

please?” 

 

Counting Task Order: 

 

4 blocks 

 

6 dominoes 

 

4 balls (2D) 

 

6 dogs (2D) 

 

8 soldiers 

 

10 round counters 

 

8 carrots (2D) 

 

10 corn cobs (2D) 

 

12 crayons 

 

12 circular buttons (2D) 
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Error Detection Task: 

 

Children are told that the 2 puppets are learning to count, and might well make mistakes. 

They are told to watch the puppets count, and then tell them which are right. Children are 

told that the puppets don’t always agree on how to count. For example, show the puppets 

arguing over the colour of the circular counters – one thinks it’s pink, the other says it’s 

purple: which is right?   

 

After this, they’ll be told to watch the puppet carefully as they count, to see if they are 

counting properly. After each puppet counts, the child are asked if the puppet counted 

correctly – if so / if not, why? When both puppets have counted an array, it is clarified if 

the child thought both were right or wrong – Why did they think they were right / wrong? 

 

Mistakes: 

 

4 blocks (3D) 

* puppet 1 makes gesture error (skip over object in gesture: 3) 

 

6 dominoes (3D) 

* puppet 2 makes speech error (number tagging an object twice: 4) 

 

4 cats (2D) 

* puppet 1 makes speech error (skipping over an object: 2) 

 

6 citrus fruits (2D)  

*puppet 2 makes gesture error (pointing twice to an object: 5) 

 

8 soldiers (3D) 

* puppet 1 makes speech error (number tagging an object twice: 6) 

 

10 circular counters (3D) 

*puppet 2 gesture error (skip over an object in gesture: 7) 

 

8 wildcats (2D) 

* puppet 1 makes speech and gesture errors (skip over a count object, 3, count twice, 6) 

 

10 squares (2D) 

* puppet 2 makes speech and gesture errors (gesture twice at an object, 4,  skip an object 

in gesture, 8) 

 

12 crayons (3D) 

* puppet 1 makes gesture error (pointing twice to an object: 10) 

 

12 broccoli (2D) 

* puppet 2 makes speech error (skipping over an object in count: 8) 
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.3.2 2D materials 
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Appendix I 

.4. Cardinality experiment Pre – and Post-test task Sheets: 

 

The 2 puppets are set side by side, and a set of toys are placed in front of one of the 

puppets. Children are asked to make sure that the puppets both have the same amount of 

toys by giving the second puppet toys to play with. The child is asked how they knew that 

the 2 puppets now have the same number of toys to play with. 

 

Pretest Matching Task 

  

 Type   Organisation 

 

2 pink counters  lines 

 

4 dominoes  bunch 

 

6 crayons  bunch 

 

8 green counters  lines 

 

10 bottle tops  bunch 

 

12 crayons  lines 
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Experimental Sheets 

 

Both puppets are set side by side, and a set of objects are placed in front of both of them. 

Children are asked to check and see if the 2 puppets have the same number of objects. 

They are asked to justify their answer – why do you think that the puppets do / don’t have 

the same number of objects.   

 

Pretest Comparison Task 

 

 Type   Organisation   Match/Mismatch  

   

3 crayons  bunch    Same 

 

5 bottle tops  lines    1 more 

 

7 pink counters  bunch    1 more 

 

9 green counters  lines    2 more 

 

11 dominoes  bunch    2 more 

  

13 bottle tops  lines    Same 
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Experimental Sheet 

 

The 2 puppets are set side by side, and a set of toys are placed in front of one of the 

puppets. Children are asked to make sure that the puppets both have the same amount of 

toys by giving the second puppet toys to play with. The child is asked how they knew that 

the 2 puppets now have the same number of toys to play with. 

 

Post Test Matching Task 

 

 Type   Organisation  

 

3 pink counters  bunch 

 

5 crayons  lines 

 

7 bottle tops  bunch 

 

9 green counters  lines 

 

11 dominoes  bunch 

  

13 bottle tops  lines 
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Experimental Sheets 

 

Both puppets are set side by side, and a set of objects are placed in front of both of them. 

Children are asked to check and see if the 2 puppets have the same number of objects. 

They are asked to justify their answer – why do you think that the puppets do / don’t have 

the same number of objects.   

 

 

Post Test Comparison 

 

 Type   Organisation   Match/Mismatch  

 

 

2 crayons  line    1 more  

 

4 green counters  bunch    same 

 

6 bottle tops  bunch    2 more 

 

8 dominoes  line    2 more 

 

10 pink counters  bunch    1 more 

 

12 crayons  line    same 
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Appendix I 

.5. Cardinality experiment Intervention sheets 

 

Children are asked to watch one puppet performing a matching task, to see how well the 

puppets can count. The child is to watch the puppet counting, to copy their actions, and 

then say whether the puppet has performed the task accurately. They are asked to justify 

their answer, whether the puppet was right or wrong – what did the puppet do wrong / 

why was it wrong? 

 

The puppet makes a mistake by miscounting (e.g. skipping an object(s) in count on the 

first run through) 

 

Conceptual Intervention 

 

 Organisation  Match/Mismatch 

 

3 line   Match 

 

5 bunch   1 more 

 

7 bunch   2 more 

 

9 line   1 More 

 

11 bunch   match 

 

13 line   2 more 
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Experimental Sheet 

 

Children watch a puppet using a count to compare strategy on a matching task, and were 

then asked to copy the type of performance of the puppet to ensure that it was correct. 

 

Procedural Intervention 

  

 Organisation   

 

3 line   

 

5 bunch  

 

7 bunch   

 

9 line  

 

11 bunch  

 

13 line 
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Experimental Sheet 

 

Control Group 

 

Children are asked to complete a series of simple pen-and-paper mazes. 
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Appendix I 

 

.6. Instruction sheets for the microgenetic experiment in  chapters 6 and 7 

 

 

2 sets of 9 beams were used. Children were presented both sets in each session across 4 

sessions. The order of the beams and of the sets was randomised (so that half the sessions 

they were given set 1 first, and in the other half they were given set 2 first), to minimise 

repetition. For each set, there were 4 different sets of order; beams were sorted in such a 

way that one for every triad of beams (e.g. first 3, second 3, last 3), there was one 

symmetrical beam. This allowed for coding R-R level per subset of 3 beams. Also, for 

each set of beams, children were never given them in the exact same order twice. 
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5.1 Instruction sheets for the Balance Beam Production Task: SET 1 

 

The child is shown the array of beams and the fulcrum. The child is told that they are 

going to be given the beams, and that the object of the game is to try and make the beams 

balance on the fulcrum – the small wooden bit. They are shown the puppet, who they are 

told is trying to learn about balance. The child is asked to explain to this puppet for each 

beam why the beam does or does not balance. 

 

 Colour Length  Width  Weight ratio  Initial Place 

 

 

Symmetrical: 

 

2. Wood 30cm  2 ½ cm   0:0  Left/Centre/Right 

 

8. Red  30cm  2cm   1:1  Left/Centre/Right 

 

5. Green 40cm  2 ½ cm   1:1   Left/Centre/Right 

 

 

Asymmetrical: 

 

 

1. Pink  40cm  3cm   3:1  Left/Centre/Right 

 

9. Red  43cm  1 ½ cm   2:1  Left/Centre/Right 

 

6. Mauve 30cm  2cm   3: 1 ½   Left/Centre/Right 

 

4. Blue  25cm  2cm   3:2  Left/Centre/Right 

 

7. Yellow 20 ½ cm 2cm   1:0  Left/Centre/Right 

 

3. White 30cm  1 ½cm   3:2  Left/Centre/Right 
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Balance Beam Production Task:  SET 2 

 

The child is shown the array of beams and the fulcrum. The child is told that they are 

going to be given the beams, and that the object of the game is to try and make the beams 

balance on the fulcrum – the small wooden bit. They are shown the puppet, who they are 

told is trying to learn about balance. The child is asked to explain to this puppet for each 

beam why the beam does or does not balance. 

 

 Colour Length  Width  Weight ratio  Initial Place 

 

 

Symmetrical: 

 

 

1. Navy 30cm  2 cm   0:0  Left/Centre/Right 

 

8. Green 30cm  1 ½ cm   1:1  Left/Centre/Right 

 

4. Orange 40cm  2 cm   1:1   Left/Centre/Right 

 

 

Asymmetrical: 

 

 

6. Blue  30cm  2cm   2:0  Left/Centre/Right 

 

2. Green 43cm  1 ½ cm   4:1  Left/Centre/Right 

 

7. Purple 45cm  1 ½ cm   3: 1   Left/Centre/Right 

 

3. Wood 30cm  1 ½ cm   2:1  Left/Centre/Right 

 

9. Wood 30 cm  1 ½ cm   3:2  Left/Centre/Right 

 

5. Wood 30cm  2 cm   1:0  Left/Centre/Right 

 

 

 


