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Abstract

Assessing the performance of behavior selection architectures
for autonomous robots is a complex task that depends on many
factors. This paper reports a study comparing four motivated
behavior-based architectures in different worlds with varying
degrees and types of complexity, and analyzes performance re-
sults (in terms of viability, life span, and global life quality)
relating architectural features to environmental complexity.

1 Introduction

The behavior (or action) selection problem for an au-
tonomous robot consists in making a decision as to what
behavior to execute in a particular situation in order to
satisfy its current goals in the best possible way, while
working towards guaranteeing survival in the long term.
Assessing the performance of behavior selection archi-
tectures is a complex task that depends on many factors,
Comparative studies such as [6, 10, 3] have tended to fo-
cus on the respective merits and drawbacks of hierarchi-
cal (structured) versus flat (parallel) architectures, mea-
sured in terms of single global parameters such as repro-
ductive capability (fitness). However, the gap between
hierarchical and flat architectures seems too big, and we
think that a comparison of architectures that are more
similar 10 one another can give rise to a more systematic
analysis. In addition, environmental complexity can be of
different types and does not increase in a linear way with
the number and types of elements introduced. Therefore,
finer-grained analyses of architectures and environments,
and of how these relate to each other, are needed to ob-
tain a deeper understanding of the adequacy of different
architectures for different types of tasks and contexts [5].
Taking a step in that direction, this paper reports an initial
study comparing four motivated behavior-based architec-
tures, all of them variants of the architecture proposed in
[4], performing in five different worlds with varying de-
grees and types of complexity, and analyzes performance
results relating architectural elements to environmental
complexity. The criteria used to measure and compare
performance are based on Ashby’s viability theory [1],
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also used within the animat approach by e.g. [9, 8, 2].
In this framework, a set of survival-related variables that
determine the robot’s needs or goals must be kept within

~ a viable range of values so that environmental changes

do not put the robot’s life in danger. Instead of a single
measure of performance, we take into account different
indicators in order to have a wider range of criteria for
measurement and comparison. For this initial study, we
have taken three indicators: the degree to which viability
{the stability of the internal milieu} is preserved, life span,
and the ‘life quality’ resulting from combining both. Re-
garding environmental complexity, we have considered
the effects of availability of resources, number of objects
and their influence on perception and navigation, and dy-
namism introduced by an enemy species.

2 The Valimar Environment

To test our architectures, we have created a typical behav-
ior selection environment (Valimar, Figure 1) comparable
to others used in this domain, in which our robot must se-
lect among and perform different activities in order to suz-
vive. We have used Webots 3.0 (www.cyberbotics.com),
a very realistic 3D mobile robot simulator allowing users
to create different environments with continuous space
and complex physics. For these experiments we have
used Kheperas fitted with a camera on their top to cre-
ate two species of robots—Nessas (green Kheperas) and
Enemies (red Kheperas). Nessas are more complex crea-
tures used to implement the four behavior selection archi-
tectures described in Section 3. Enemies have the same
sensors and actuators as Nessas, but they have a much
simpler architecture and behavior (their main goal is to
attack Nessas), since their only role is to introduce dy-
namism in the environment. Neither Nessas nor Enemies
can remember the location of objects, and they also lack
any planning capabilities. Valimar is surrounded by a
wall and contains cylindricatly shaped objects of differ-
ent colors: food (yellow) and water (blue) sources, nests
(purple), obstacles (gray), dull blocks (red), and our two
species of robots. Since Enemies and dull blocks have
the same color, Nessas can mistake one for another.
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Figure 1: Top view of the Valimar world used in the first
set of experiments (Valimar 1).

3 Architectures for Behavior Selection

The architectures we have studied are neither strictly flat
(parallel) nor hierarchical (structured). They consist of
two layers—motivational and behavioral—that lead to a
two-step computation of intensity. This computation is
parallel within each layer, but motivational intensity must
be computed before calculating behavioral intensity. All
the architectures have the same elements, but they vary
in the way in which these are combined (their arbitration
mechanisms).

3.1 Elements

Sensing and acting. The robots are equipped with the
following external sensors: eight proximity (infrared)
sensors, six on the front and two on the back; eight binary
collision sensors (located at the same points as proximity
sensors); a radio emitter/receiver used to transmit and de-
tect the attack of another robot (pain.), which can have
different intensities; and a color camera returning a RGB
pattern of 90 x 90 pixels. Visual input is used to detect
direction and discriminate objects. Object learning and
recognition is performed by a combination of three ART1
neural networks, each of them specialized to detect pat-
terns in one of the RGB components. In addition to ex-
ternal sensors, we have programmed internal sensors to
perceive the valoes of physiological variables.

The robots have differential wheel steering. Navigation
(with obstacle avoidance) is controlled by a neural net-
work that improves over time through Hebbian learning.

Physiology. The robots have a synthetic physiology
of survival-related essentiat variables that must be kept
within a viable range of values so that environmental
changes do not put the robot’s life in danger. These
variables set the (internal) needs or goals of the robot.
Nessa’s essential variables are: damage, energy, glucose,

Table 1: Nessas’ motivations.

‘ Motivation Drive Incentive sﬁmnlus—l

Confusion 1 stress nast

Excitement | energy enemy

Fatigue 1 energy nest

Hunger T glucose food

Overmoisture | moisture | none

Overnutrition | glucose nong

Repair | damage nest

Self-protection | pain; enemy, paing

Thirst T moisture | water

moisture, internal pain! (pain;), and stress.

External stimuli. Ir addition to internal variables, be-
havior selection is also influenced by the presence of ex-
ternal stimuli that affect the motivational state of the robot
or the intensity and execution of behaviors, depending on
the architectures. There are six types of external stimuli
to which Nessas can react: the different (colors of the)
objects in the environment plus external pain (pain.).

Motivations. Motivations constitute urges to action
based on bodily needs related to self-sufficiency and sur-
vival. They implement a homeostatic process to maintain
an essential physiological variable within a certain range.
Nessa’s motivations are characterized by: a controlled
(essential) physiological variable, a drive to increase or
decrease the Ievel of the controlled variable, an (exter-
nal) incentive stimulus that can increase the motivation’s
intensity (only in architectures A2, A3, A4, see Sec-
tion 3.2), and a behavioral tendency of approach or avoid-
ance towards the stimulus. A feedback detector generates
an error signal—the drive—when the value of this vari-
able departs from its setpeint, and this triggers the execu-
tion of a behavior to adjust the variable in the adequate
direction. The error is a number normalized in the inter-
val [0, 1], where O indicates no error and 1 results when
the actual value of the variable overflows/underflows the
upper/lower limit, in which case the robot dies. Each mo-
tivation recejving an error signal from its feedback detec-
tor receives an intensity (activation level) proportional to
the magnitude of the error. Several motivations can be
active at the same time, with varying degrees of intensity.
Table 1 shows Nessas’ motivations.

Behaviors. Our behaviors are coarse-grained subsys-
tems implementing different competencies, as in [6, 4].
Following the usual distinction in ethology [7], Nes-
sas have consummatory (goal-achieving) and appetitive

!Pain has a double characterization as internal and external stimulus.
Internal pain receives its value from externally felt pain but has more
inertia, decreasing more slowly and lasting longer.
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Table 2: Nessas’ behaviors. Names in italics indicate

appetitive behaviors, the rest are consummatory.

Behavior | Stimulus | Effects | Motiv. (A1842)
Avoid none | energy, | glucose, avoidance motivations
| moisture, | pain, T

sireas

Altack enemy | energy, | glucose, | excitement, confu-
{1 moisture.] pain, | sion, self-protection
atreas

Drink water 1 energyp. | gluccse, thirst
T rnoigture

Eat food 1 energy. T glucose, hunger
1l meoisture

Rest none t energy, | glucose, | fatipue
Ll moisture

RunAway cnemy | energp. | glucose, self-protection
| moisture, | pain, T
atress

Search none | emergy. | glucoase, approach motivations
T stress, | moisture

Sleep nest | damage, T energy. | confusion, fatigue, re-
1 gluceae, | stress, | pair
moiature

Wander none L energp. | glucose, | OVErMOisiure, ovemu-
| moisture trition

{goal-directed) behaviors. A consummatory behavior is
executed only if it has been selected by the motivational
state of the robot and its incentive stimulus is being ob-
served. The execution of a behavior has an impact on
{increases or decreases) the level of specific physiolog-
ical variables. Behaviors can be activated and executed
with different intensities that depend on the intensities
of the motivations (and in some architectures also of the
stimuli) related to them. The intensity with which a be-
havior is executed affects motor strength (speed of the
wheels) and the modification of physiological variables
{and hence the duration of the behavior). Table 2 shows
Nessas’ behaviors?,

3.2 Arbitration mechanisms

We have designed four architectures by varying the way
in which these elements are interconnected along three
parameters (summarized in Table 3):

Link between layers. Motivations and behaviors are
connected either through fixed weights indicating the rel-
evance of the link (in architectures Al and A2) or indi-
rectly through physiological variables (in A3 and A4).
Locus of influence of external stimuli. The effect of ex-
ternal stimuli can bé computed to influence the intensity
of behaviors (A1) or of motivations (A2, A3, Ad).

Point of decision. The main selection decision can be
made at the level of motivations, as in A3, where a single
motivation is in charge of selecting the behavior that best
satisfies it. It can also be made at the level of behaviors,
asin Al, A2, and A4, where behaviors receive activation
from all the motivations that they contribute to satisfy,

The table shows the motivations related to particular behaviors in
architectures Al and A2 only, where the connection between these two
elements is fixed through weights, as explained below.

and behavior selection is postponed until behavioral in-
tensity has been computed. In this case, all the behaviors
are considered for the final selection, and the robot can
satisfy several goals simultaneously.

Table 3: Characterization of the four architectures.

l Arch. | Links Stimuli computed i Decision point I
Al fixed weights | on behaviors behaviory
A2 fixed weights | con motivations behaviors
A3 physiotogy on motivations motivations
Ad physiclogy on motivations behaviors

The behavior selection loops are as follows.
Behavior selection loop in Al. At every cycle:

1. The intensity of each motivation’s drive is calculated as propor-
tional to the error of its controlled variable (€4 ;).

2. The intensity of each behavior is calculated as b; = 3 (mys X
wij) + 3 (sx X vik), where b;, m; are the intensities of behav-
ior ¢ and motivation j, respectively, wg; is the weight between
behavior 4 and motivation §, 3y, is the intensity of stimulus k, and
vy is the weight between behavior ¢ and simulus k.

3. The behavior with highest intensity is selected to be executed.

Behavior selection loop in A2. At every cycle:

1. Calculate the intensity of each motivation j:

(a) Compute the intensity of the motivation’s drive as propor-
tional to the error of its controlled variable (e, ;).

(b} Compute the effect of the presence of external stimuli on
the intensity of the motivation j: a; = 3. (sx X tk)s
where 8; is the intensity of stimulus k, and uj; is the
weight between 7 and k.

(¢} m; = eyj + a; is the final intensity of ;.

2. The intensity of each behavior is computed as b; = 3_(mj x
w;), where b;, m; are the intensities of behavior ¢ and motiva-
tion j, respectively, and w;; is the weight between ¢ and j.

3. The behavior with highest intensity is selected to be executed.

Behavior selection loop in A3. At every cycle:

1. The winner motivation jyinner 15 calculated.
(a) For each metivation j:
i, Compute the intensity of the drive as proportional to
the error of its controlled variable (€,,5).
ii. Compute the effect of the presence of external stim-
uli on the intensity of the motivation: a; = 3~ (8 x
144 ), where 3 is the intensity of stimulus &, and
U is the weight between j and k.
iii, m; = ey; + @y is the final intensity of j.
(b) The motivation with highest intensity is selected.

2. The intensity of each behavior linked (through the physiclogy)
with the winner motivaticn is computed as by = ™, e X
Jivswhere by, my,.  are the intensities of behavior ¢ and the
winner motivation, respectively, and f;.. is the effect that the exe-
cution of behavior i has on v, which is the physiological variable
controlled by juwinner-

3. The behavior with highest intensity is selected to be executed.
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Behavior selection logp in A4. At every cycle:

1. Calculate the intensity of each motivation j:

(a) Compute the intensity of the motivation’s drive as propor-
tional to the error of its controlled variable (ey;).

{b) Compute the effect of the presence of external stimuli on
the intensity of the motivation j: a; = }_(8k % ujk)
where sy, is the intensity of stimulus k, and uj; is the
weight between 7 and k.

(€) my = eyy + ay is the final intensity of 7.

2. The intensity of each behavior is computed as b; = Y (m; X
Jiv), where by, my; are the intensities of behavior ¢ and moti-
vation j, respectively, and fj, is the effect that the execution of
behavior 1 has on v, the physiological variable controlled by j.

3. The behavior with highest intensity is selected to be executed.

4 Experiments

The purpose of our experiments was to investigate the ad-
equacy of each architectures to deal with different levels
and types of environmental complexity. We have used
three indicators to measure and compare performance:

Viability: The average level of satisfaction of all
the essential variables, measured at each step as
Ustep = 1 — (Err/maer, ), where Evrr is the total sum
of errors of the robot’s physiological variables normal-
ized between [0, 1] with maz,,, the worst error possi-
ble in each step. E'rr corresponds to the sum of the in-
tensities of the motivations’ drives (Err = 3 _(ey;)), and
MaTerr is the number of compatible metivations>, since
the worst motivational state corresponds to the situation
in which all compatible motivations have their highest
intensity (1.0). Average viability for a run is given by
V= ztl"" *(Vstep)/tiige, Where #y;5. is the number of
simulation steps that the robot lived.

Life span: The time that the robot survived (remained vi-
able) during each run in simulation steps normalized with
the total simulation time, S;”e = tlife/tsimuis where
tyise 18 the number of simulation steps that the robot lived
and #,4;m. 1s the total simulation time measured in num-
ber of simulation steps.

Life quality: Qyire =V x Siige.

4.1 Method

We have explored the effects of three sources of envi-
ronmental complexity: (a) number of objects, (b) avail-
ability of resources, and (¢) dynamism—in this case the
presence of Enemies that ¢can attack and kill Nessas, and
also hamper foraging activities. To vary these sources
of complexity, we created five Valimar settings (Table 4)
with different elements sparsely distributed across the
world. Valimar 1 (V1, see Figure 1) should allow Nessas
to have a “comfortable” life—a fair amount of resources
and nests should permit them to satisfy their needs, while

*Two motivations are compatible if they do not control the same
variable in opposite directions.

some obstacles hinder navigation and perception of re-
sources; it only has complexity of types (a) and (b), since
Enemies are absent, although Nessas mistake dull blocks
for Enemies (they have the same color), and therefore
they can use them as “resources” to satisfy their aggres-
sion needs. V2 and V3 progressively decremented (a)
and (b), and we added (c} in V4 (one Enemy) and V5
(two Enemies).

Table 4: Elements of the five Valimar worlds.

[ Elements vijvz|va[va]ws
Food sources 4 2 1 2 2
Water sources 4 2 1 2 2
Nests 2 1 1 1 1
Obstactes 2 2 1] 2 2
Dull blocks 2 1 1 0 0
Enemies ] ) 0 1 2
Nessas 1 1 1 1 1

We tested the four architectures in 10 sets of runs for
each Valimar world, each set being comprised of a run
for each architeciure. This made a total of 200 runs*
(about 40 hours simulation time), each run lasting 10,000
steps of 64 ms of simulated time. Physiological variables
were randomly initialized (to values within their viability
range) for each set of runs.

4.2 Results

Figure 2 shows the average performance of the four ar-
chitectures in the five Valimar worlds in terms of viability
(left), life span (center), and global quality of life (right).

Results for Al, A2 and A4 were very similar in the first
three (static) worlds, where A3 obtained the worst results
in terms of viability, as its winner-takes-all policy deals
worse with extreme situations in which at least one vari-
able is near its limit. In terms of life span, survival was
very good in the static worlds. The introduction of Ene-
mies in V4 and V5 leads to significant changes with re-
spect to the three indicators. Viability and life span be-
come considerably worse for all the architectures, due to
the negative impact of Enemies’ attacks on the physiol-
ogy of Nessas. In these dynamic worlds, A3 outperforms
the other architectures because its winner-takes-all policy
makes it more reactive to external changes, dealing better
with situations of self-protection (see below), while the
opposite is the case for A4.

Let us now discuss some phenomena commonly studied

in animal decision making (see e.g. [7]) that we have ob-
served in our simulations, and that allow us te understand

4 Although more runs would yield more reliable results, analysis of
the standard deviation of each set revealed high uniformity in the static
worlds, but more randormness in the worlds with enemies,
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Figure 2: Average performance of the four architectures in the five Valimar worlds.

better the differences among the architectures and how
they deal with different properties of the environment.
Table 5 ranks our architectures regarding some of these
phenomena that [6] proposes as desirable features of ar-
chitectures to achieve flexible behavior selection.

Table 5: Ranking of architectures (I is best, 4 poorest).

ll’henomeuon ]_AIIAZIMIJM_!
Openness (reactivity) 3 2 1 4
Stability - 2| 2| 4|1
Opportunism 3 1 3 2
Displacement behaviors - - - 1
Varying attention 3 2 1 4
Efficiency maximization | 3 2 4 1

Stability of a sequence of behaviors occurs when behav-
ioral intensities are (nearly) similar for all the sequence.
A non-stable sequence results in sudden changes’ in the
robot’s velocity and modification of its variables. A3,
being more reactive as it uses a single motivation to
drive behavior selection, was the least stable architecture,
while A4, with its “maximum profit” approach was the
most stable.

Opportunism management varied considerably in the
four architectures as a consequence of the way in which
the influence of external stimuli is taken into account. Ar-
chitectures Al and A3 are less opportunistic than A2 and
A4, since the influence of external stimuli is computed
only once to calculate the intensity of the winner behav-
ior. Taking the example of the sleep behavior, the influ-
ence of its incentive stimulus (the nest) is computed in
Al only at the level of the sleep behavior, and in A3 only
at the level of the motivation that selects sleep to satisfy
its drive—either fatigue, confusion or repair. However,

SRecall that the intensity of the winner behavior has an impact on
motor strength and on how physiological variables are modified (and
therefore on the duration of the behavior).

in A2 and A4 the influence of the presence of the nest,
computed at the motivational level, can be taken into ac-
count several times—as many as active motivations the
sleep behavior can help satisfy, i.e. a combination of fa-
tigue, sleep and repair. Although opportunism is in gen-
eral a desirable feature that provides flexibility, too much
opportunism can present disadvantages in environments
with few resources located far from each other,

Displacement behaviors were only cbserved in Ad%, as
its “maximum profit” policy, together with the fact that
links between motivations and behaviors can be positive
(excitatory) or negative (inhibitory), can lead to mutual
inhibition of two motivations with high intensity. These
features are also responsible for the considerably lower
activation levels that behaviors receive in A4, compared
to the other architectures, making it less reactive,

Situations of self-protection are more difficult to deal
with when Nessas are executing a consummatory behav-
ior next to a resource, as they are more exposed to Ene-
mies, which can attack them on the back, where they are
not detected, and block them against resources, as shown
in Figure 3. This roughly corresponds to what [6] denotes
as varying attention—the fact that animals pay lower at-
tention to danger when they are in an extreme motiva-
tional state, e.g. very hungry. A4 is more often trapped
in these situations than the other architectures due to its
lower reactivity and to the fact that its lower intensity lev-
els make Nessas spend more time next to resources. A3,
being more reactive (like a simple emotional system), is
the best in these situations.

Maximizing efficiency of behavioral choice is an impor-
tant desiderata for behavior selection mechanisms. Ex-
ecuting a behavior that satisfies several motivations si-
multaneously is usually more efficient (in terms of via-
bility) than a behavior that only satisfies one goal. In this
respect, an interesting difference was observed in situa-

SDisplacement behaviors would also have been possible in Al and
A2 if we had not considered only positive weights between motivations
and behaviers, but are not possible in A3, where only one motivation
drives behavior selection.
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Figure 3: Nessas (lighter Kheperas) attacked and
blocked by Enemies next to a nest.

tions of fatigue between A3 and the other three architec-
tures. While Al, A2 and A4 tend to resolve these sit-
uvations with the sleep behavior—which is more costly
because it can only be executed on a nest, but it allows
to satisfy the fatigue, confusion, and repair motivations
simultaneously—A3 usually deals with them by execut-
ing the rest behavior~—which can be executed anywhere
but only contributes to correct fatigue. The explanation
lies in the fact that, for sleep to be executed in A3, the
confusion motivation has to win the competition against
farigue, and this does not happen frequently as confu-
sion is produced by excess of stress, which increases very
slowly. In addition, if fatigue wins, the rest and sleep be-
haviors will have the same intensity, and since rest does
not need the presence of a stimulus to be executed, it is al-
ways executed first. This difference is important because
the execution of sleep in Al, A2 and A4 improves the
robot’s viability considerably more than the execution of
rest in A3, and this can partly explain the poorer perfor-
mance of A3, in particular in static environments.

5 Conclusion and Future Work

In this paper, we have presented an initial study of the per-
formance of different motivated behavior selection archi-
tectures in environments with varying degrees and types
of complexity. Instead of a single measure of perfor-
mance, we have used different indicators, drawn from vi-
ability theory, in order to have a wider range of criteria for
measurement and comparison. We have analyzed perfor-
mance results in terms of how architectural elements re-
late to various souzces of environmental complexity. Our
results show that small variations in the way in which the
same architectural components are combined can greatly
influence the way in which behavior selection is per-
formed, and therefore the adaptivity of the robot to differ-
ent environmental conditions. This supports our idea that
a finer-grained analysis and comparison of architectures
and environments favors a more through understanding of
the adequacy of different architectures for different types
of tasks and contexts.

To continue this study we envisage several directions for
future work. First, we would like to complement our vi-
ability and life quality indicators with a measure of the

internal equilibrium achieved in terms of the standard de-
viation of the motivations’ error. This would provide an-
other indicator of quality of performance that cannot be
simply integrated with the previous ones, as it is not easy
to compare which is best, measuring internal stability in
terms of a good global viability level or in terms of how
uniformly the different motivations are satisfied. Second,
we want to vary the complexity of the world in terms of
dynamism to take into account not only the presence of
enemies but also extinction and mobility of resources. Fi-
nally, we plan to add basic emotions to our behavior se-
Iection architectures, following [4], and compare the per-
formance of the different architectures with and without
emotions in static and dynamic worlds.
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