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Synthesis of Leap-Frog Multiple-Loop
Feedback OTA-C Filters

Yichuang Sun, Senior Member, IEEE

Abstract—Operational transconductance amplifier and ca-
pacitor filters based on the leap-frog (LF) structure are studied
from the viewpoint of multiple-loop feedback (MLF) and coeffi-
cient matching. The LF configuration is obtained from an MLF
model, which has the minimum number of components and only
grounded capacitors. Explicit and iterative design formulas are
derived for the synthesis of arbitrary filter characteristics. All-pole
filters are realized using the basic LF structure, and filters with
arbitrary transmission zeros are synthesized by adding the input
distributor or output summer.

Index Terms—Active filters, analog circuits, continuous-time
filters, operational transconductance amplifier and capacitor
(OTA-C) filters.

I. INTRODUCTION

THE leap-frog (LF) structure is one of the most popular
choices in active-RC filter design [1], [2] due to its lower

sensitivity than the cascade method. LF operational transcon-
ductance amplifier and capacitor (OTA-C) filters have been de-
rived by simulating passive RLC ladder prototypes [2]–[5] and
using a systematic multiple-loop feedback (MLF) approach [2],
[6], [7]. The difference between the LF OTA-C filter structures
based on the two approaches is that circuit component values are
obtained from simulated RLCs in the former and determined by
coefficient matching equations in the latter. Active filter design
based on the RLC ladder simulation approach needs knowledge
of passive RLC filters and treatment of input and output termi-
nated impedances, while the MLF approach does not have these
problems. More important is that the LF MLF approach can re-
alize any transmission zeros, whilst the LF simulation method
can only realize imaginary zeros. One of the most important ap-
plications of OTA-C filters is the linear phase filtering in com-
puter hard-disk-drive systems. In this application, real zeros are
normally required, which may only be realized by the MLF ap-
proach when using the LF structure. In communication receivers
and video systems, equalizers with certain transmission zeros
are often required for stringent phase requirements, for which
the LF simulation approach may not be suitable.

Compared with other MLF configurations, such as the
follow-the-leader feedback (FLF) and inverse-follow-the-
leader-feedback (IFLF) structures that have similar sensitivity,
the LF MLF configuration has the minimum sensitivity [1], [2].
Unlike the FLF and similar to IFLF, it does not have a multiple
feedback input summation node, which may simplify the IC
implementation in practice because the summing node usually
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has high-frequency parasitic effects. When the OTA parasitics
are considered, in particular, the input capacitance in the dif-
ferential applications, the FLF and IFLF configurations may
suffer more serious performance degradation because of long
feedback paths from the th node to the input node. Because
each path is capacitive coupling, the effects on circuit poles and
zeros appear at high frequencies. Obviously, the extent of those
effects can be considered as proportional to the ratio of parasitic
capacitance to circuit integrating capacitance. The LF structure
is also advantageous over the cascade configuration [1], [2].
Recent investigations have demonstrated that LF MLF OTA-C
filters offer better passband magnitude sensitivity, maximum
input voltage, and magnitude frequency response considering
OTA nonideality effects over IFLF and cascade OTA-C filters
[8]. In particular, the noise performance of the LF filters has
been shown to be much better than that of the IFLF filters.
Furthermore, promising results from recent research of use of
the LF MLF OTA-C filters for read channel applications show
that the LF MLF design method could be an attractive alter-
native to other methods [9]. However, the synthesis of the LF
MLF structure is not as simple as the FLF and IFLF structures.
While simple explicit formulas exist for the FLF [10], [11] and
IFLF [12], [13] configurations that can be easily used [14], an
iterative process is required for LF synthesis. As well as general
iterative equations, straightforward formulas for the most often
used orders of filters should be derived for ready use.

The synthesis of LF OTA-C filters for realizations of both
transmission poles and zeros can be conducted using the general
MLF approach [2], [6], [7]. This synthesis method, however, is
based on matrix manipulation and requires knowledge of the
general MLF theory. In this paper, we present an alternative
iterative approach for synthesis of LF MLF OTA-C filters based
on coefficient matching.

II. ALL-POLE LF FEEDBACK OTA-C FILTERS

A. Formulation of Circuit Transfer Function

The general all-pole LF OTA-C filter configuration [2], [6] is
depicted in Fig. 1. It has the minimum number of components
and uses only grounded capacitors. With time constant

, we can write the equations of the circuit as

(1)

where is the complex frequency, is the output voltage of
the th integrator, and can be imagined as a voltage source
inserted between the output of the th inte-
grator and the noninverting terminal of the th OTA. Note that

and can be viewed
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Fig. 1. General all-pole LF configuration.

equivalently as the input voltage (to the noninverting terminal)
of the th OTA. Introducing is mainly for the convenience
of defining functions below and facilitating derivations in
Section III. For noise analysis, are input-referral noise
sources and functions are the intermediate functions [2], [8].

Defining the transfer function from the filter input to the
output of integrator as

(2)

it can be shown from (1) that

(3)

(4)

Note that (3) and (4) show that and can be
obtained in an iterative way.

Defining the transfer function from the input of integrator
to the filter output as

(5)

from (1) we can obtain

(6)

(7)

Again, note that and in (6) and (7) can be deter-
mined iteratively.

It can be shown that the and functions have the following
relation:

(8)

For any order, using the iterative formulas in (3), we can ob-
tain all associated numerator polynomials of the functions.
For order and , it can be shown that

(9)

(10)

(11)

(12)

Also, using the iterative formulas in (6), we can obtain corre-
sponding for order and , given as

(13)

(14)

(15)

n

(16)

Note that the formulated numerator polynomials of the re-
spective and functions are useful for filter sensitivity, max-
imum input voltage, and noise analysis [8].
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If is taken as the overall input and as the overall
output, the overall transfer function can be obtained using
either the or functions, given by

(17)

Using (4) and (7) and corresponding and functions, one can
obtain the denominator polynomial of respective overall
transfer functions as

(18)

(19)

(20)

(21)

B. Formulas for Determination of Parameter Values

To realize the general unity gain all-pole transfer function

(22)

the explicit expressions for determining parameter values can be
obtained from the coefficient matching equations based on the
comparison between the coefficients of and those in (22).
The following are the derived design formulas:

(23)

(24)

(25)

Fig. 2. Universal LF structure with input distribution OTA network.

(26)

III. LF MLF OTA-C FILTERS WITH TRANSMISSION ZEROS

A. Functions and Formulas for Input Distributor Type

By adding the input distribution OTA network to the all-pole
LF structure in Fig. 1 to produce zeros, the desired general
transfer function in (27) can be realized:

(27)

The resultant general structure is shown in Fig. 2.
Denoting and ,

the circuit equations can be written from Fig. 2 as

(28)

where, equivalent to (1), we have .
The set of equations in (28) can be rearranged with

and as

(29)

From the last equation in (29), we can solve for to
obtain

(30)
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The expression of the overall transfer function is obtained
from the last relation in (28) as

(31)

By substituting (30) into (31), we obtain the transfer function as

(32)

where can be obtained from (6) iteratively and those for
– have been given in Section II-A.

Using (6) and (32), we can derive the numerators of
the transfer functions and the corresponding design formulas
to determine the distribution parameters when realizing the
general function in (27) for – as

(33)

(34)

(35)

(36)

(37)

(38)

Fig. 3. Universal LF structure with output summation OTA network.

(39)

(40)

Note that the denominators of the corresponding transfer
functions have already been derived in Section II-A and the
design formulas for the pole parameters of the respective
orders have also been given in (23)–(26).

B. Functions and Formulas for Output Summer Type

Similarly, by adding the output summation OTA network to
the all-pole LF structure in Fig. 1 the general transfer function in
(27) can be realized and the resulting circuit structure is shown
in Fig. 3.

Defining , the circuit equations for the
integrator OTAs can be written from Fig. 3 as

(41)

which corresponds to (1) with .
Note that (41) shows that, by a complete feedforward sub-

stitution, we can obtain . Then, beginning from ,
we can compute consec-
utively.

Finally, by weighted summation and denoting ,
we can attain the overall transfer function of the circuit as

(42)

Note that can be obtained iteratively as shown in (3)
and given in Section II-A for – .

Using (3) and (42), we can formulate the numerators of
the transfer functions and the corresponding design formulas of
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summation parameters when realizing the general function
in (27) for – , given as

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

IV. CONCLUSION

The synthesis of low-sensitivity LF MLF OTA-C filters based
on coefficient matching has been presented. The filter structures
are canonical, and every node has a grounded capacitor. All-pole
filters are realized using the basic LF structure, and filters with
arbitrary transmission zeros are synthesized using either input
distribution or output summation OTA networks. The explicit
and iterative design formulas derived (up to ) are simple
and useful for quick design of LF-based all-pole and arbitrary
transmission zero filters without the need for reformulation.
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