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ABSTRACT 

 

 

Various schemes have been proposed for generating a set of non-subjective weights when 

aggregating multiple criteria for the purposes of ranking or selecting alternatives. The 

maximin approach chooses the weights which maximise the lowest score (assuming there 

is an upper bound to scores). This is equivalent to finding the weights which minimize 

the maximum deviation, or range, between the worst and best scores (minimax). At first 

glance this seems to be an equitable way of apportioning weight, and the Rawlsian theory 

of justice has been cited in its support.  

 

We draw a distinction between using the maximin rule for the purpose of assessing 

performance, and using it for allocating resources amongst the alternatives. We 

demonstrate that it has a number of drawbacks which make it inappropriate for the 

assessment of performance. Specifically, it is tantamount to allowing the worst 

performers to decide the worth of the criteria so as to maximise their overall score. 

Furthermore, when making a selection from a list of alternatives, the final choice is 

highly sensitive to the removal or inclusion of alternatives whose performance is so poor 

that they are clearly irrelevant to the choice at hand.  
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Introduction 

 

One of the most influential works in the area of moral and political philosophy in the last 

50 years has been John Rawls‟s A Theory of Justice (1971). Rawls rejects the utilitarian 

idea of „the greatest good for the greatest number‟. This is a concept which the decision 

science community would recognize as being fraught with difficulties. These include the 

fact that „the good‟ is likely to be a multi-factor concept, and that we are also dealing 

with multiple stakeholders holding different views. It is important to note that even if 

there were agreement on how to measure and then aggregate the overall good of the 

population, it does not follow that maximizing it would provide any form of social justice 

unless of course such justice was built into the definition of „the good‟. Rawls viewed 

"justice as fairness" and felt that the worst off should not be made even worse. In 

particular, if public resources are to be distributed unequally, then the worst off should 

benefit the most. Rawls referred to this as the „difference principle‟. 

 

Rawls has been cited in support of using the maximin rule for weighting criteria by 

Pettypool and Karathanos (2004). They proposed the rule for the purpose of appraising 

the work of employees under a number of criteria. Butler and Williams (2002) use the 

maximin rule in sharing out the fixed costs associated with shared facilities. In support of 

it they cite work based on experiment and survey: 

 

„A variety of fairness criteria are discussed in the seminal paper 

of Yaari and Bar-Hillel (1984). They conducted a series of 

experiments to see which of nine possible criteria were 

considered most fair by a sample of people questioned. In relation 

to needs, an allocation based on minimizing the maximum 

inequality was overwhelmingly considered the most fair.‟ 

 

The allocation of resources is another area where this rule has been proposed. Ogryczak  

and Sliwinski (2002) assert that the maximin rule is consistent with Rawlsian theory of 

justice but point out that “allocating the resources to optimize the worst performances 

may cause a large worsening of the overall (mean) performances”.  One example of a 

practical application of the maximin objective was to allocate highway patrol officers to 

districts so as to ensure that all districts experience a reduction in speeding; the aim was 

to maximize the minimum reduction in the number of speeding offences (Rardin, 1998, 

p.158). In the field of job scheduling numerous objectives are employed, one of these is 

to minimize the maximum lateness (Rardin, 1998, p.605). It is also used to minimize 

maximum congestion or bottlenecks. Du (1996) surveys the field of minimax 

applications.   

 

One field where the minimax concept is widely used is in location problems (Farahani, 

2010). When choosing locations for emergency facilities (police, ambulance, fire-
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fighting) or other public offices or services, this method selects locations so as to 

minimize the maximum travel time or distance to any person who is being served. The 

method has been criticized (e.g. Ogryczak, 1997) because if there is a single recipient (or 

a small cluster) that is located far from the vast majority, then a location may be selected 

which is far from all recipients. There is thus seen to be a disproportionate effect on the 

decision by a tiny minority of the recipients. We shall see that a similar difficulty arises 

when applying the minimax concept to multicriteria weighting. 
 
 

Applications of the maximin principle for weight estimation  
 

In multi-criteria analysis the objects being compared are referred to as „alternatives‟, 

whilst in the field of efficiency analysis they tend to be called DMUs (decision making 

units). The maximin concept has been used in the assessment of performance by a 

number of authors. For example, Karsak and Ahiska (2005) and Karsak (2004) consider 

the problem of attaching a common set of weights to the various outputs (i.e. criteria of 

the type „more is better‟) when there is a single input. To create an efficiency score each 

output is weighted and then divided by the input. In DEA (data envelopment analysis) 

each alternative (or Decision Making Unit) being compared has its own weights. These 

are chosen so as to optimize the score for that alternative. Because this method attaches 

different weights for each alternative, this leads to the generation of an efficient frontier 

which is made up of piecewise linear segments. In DEA all the alternatives on the frontier 

are given the same score of 100%. When there are many dimensions the frontier will 

have many such observations and it is sometimes felt that there is a lack of 

discrimination. In an effort to increase the discrimination between such units and identify 

a preferred alternative, the above authors sought a way of generating a common set of 

weights to be used across all alternatives. These non-negative weights are chosen so as to 

maximize the minimum score (maximin), subject to the condition that all scores do not 

exceed 100%. In criterion space a set of common weights corresponds to a line or plane.  

 

Figure 1 shows an example involving two criteria. According to DEA, points A, B and C 

are ranked first with the maximum score, and ABC delineates the DEA frontier. In DEA 

alternative P has a score given by the ratio OP/OP', where P' is the point where the ray 

OP intersects the frontier. Because P' lies between A and B, the corresponding weights 

are determined by the slope of the line AB. Point T however would be assessed relative 

to the line segment BC, which corresponds to a different set of criteria weights. Of the 

points shown in Figure 1, P would have the lowest score. If we now depart from the 

piecewise frontier in favour of a single set of common weights based on the maximin 

rule, we shall have a single extended line frontier. We shall have to choose weights which 

maximize P‟s score, and so the frontier will be AB (extended). Notice that the particular 

line segment and hence weights, are chosen by reference to the worst performing 

alternative. This in itself is strange because the frontier is supposed to represent best 

practice, and yet its location is crucially influenced by an alternative displaying worst 

practice. 
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FIGURE 1   

Having a common set of weights (with an upper limit to the overall score) means 

that a line such as AB or BC acts as the frontier. The slope of such a line determines 

the weights attached to the criteria. 

 

Now consider what happens when alternative P is removed from further consideration 

(possibly on the grounds that it is clearly not a suitable contender in some selection 

problem). Q now has the lowest score. This makes facet BC (extended) to act as the new 

linear frontier. Unit A was previously ranked first equal (maximum score), but now it 

slides down the rankings below all of B, C, T, S and Q! Karsak and Ahiska (2005) used 

the maximin method in a selection problem: to choose a particular piece of equipment 

from a number of competing alternatives. Expressed in these terms the removal of a point 

such as P corresponds to removing an irrelevant alternative – one that would never be 

selected because of its poor performance. Yet its removal causes huge changes in the 

rankings. This violates the axiom of decision theory known as Sen‟s property alpha (Sen, 

1969), also known as the Chernoff condition (Chernoff, 1954), which states that the 

removal or addition of an irrelevant alternative should not affect the decision. The 

selection decision should be independent of irrelevant alternatives. The removal of such 

unwanted points could for example arise in an initial screening stage, where alternatives 

which do not measure up to certain minimum standards are removed from further 

consideration. They could also be removed from simple dominance arguments. A 

memorable illustration of the principle is an anecdote attributed to the philosopher Sidney 

Morgenbesser: 

 

After finishing dinner, Sidney Morgenbesser decides to order 

dessert. The waitress tells him he has two choices: apple pie and 

blueberry pie. Sidney orders the apple pie. After a few minutes 
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the waitress returns and says that they also have cherry pie, at 

which point Morgenbesser says "In that case I'll have the 

blueberry pie." 

 

A variation on the above which deals with multiple inputs as well as multiple outputs is 

due to Chiang and Tzeng (2000). They employ a fuzzy programming approach where the 

membership function “refers to the level of achievement of the efficiency ratio for the 

decision making unit”. This replaces the piecewise linear frontier of DEA by a single 

linear frontier with fewer units located upon it and thus fewer 100% efficiency ratings.  

 

Stewart (1996) considers a form of DEA which is based on the difference between a 

weighted sum of inputs and a weighted sum of outputs, rather than a ratio of these 

aggregates. He demonstrates an important equivalence between these two forms, and 

points out that this provides useful linkage with multi-criteria decision analysis where 

such value functions are commonly used as measures of worth. Then in an effort to get 

away from the extreme sets of weights which can arise in DEA, the minimax deviation 

from the frontier is considered as the objective. Compared to other ways of obtaining 

common weights, Stewart argues that “the min-max form of objective tends to find value 

functions on which a number of efficient DMUs will have the same value, and thus tends 

to characterize the efficient frontier better”. However, he wisely observes that whatever 

bounds are placed on the weights “will take on an importance out of proportion to the 

rather „fuzzy‟ nature of their assessment”. Consequently he recommends the application 

of sensitivity analysis to the weights. 

 

Another attempt at linking multi-criteria decision analysis and DEA is due to Li and 

Reeves (1999). They take that view that efficiency evaluation should be extended beyond 

a single measure. But unlike the profiling approach of Tofallis (1997) in which different 

aspects of performance are evaluated separately, they choose to include all variables in a 

single data envelopment analysis which is then complemented by two additional 

measures: one of these is the maximin approach and the other takes as its objective the 

maximization of the sum of the efficiency scores. This is then viewed as a multi-objective 

programming problem with three objective functions. An element of sensitivity analysis 

is thus afforded. Climaco et al (2008) apply the TRIMAP interactive software to this 

problem; they interpret the two additional objectives as representing equity and general 

benevolence. 

 

Troutt, Zhang and Pettypool (1993) use the maximin rule as a way of further ranking 

those alternatives which have all been given the same 100% efficiency score from a data 

envelopment analysis. This differs from the above approaches in that only efficient 

alternatives are considered at this second stage. Hence the worst performers cannot 

influence the resulting weights and so is a definite improvement. The alternatives which 

will now influence the position of the linear frontier will be those that are at the ends of 

the frontier. In a two dimensional setting these will be points A and C in Figure 1, but in 

higher dimensions they will be the points on the perimeter of the observed frontier. Such 

points have very high scores in one criterion but are weak in the others, and are 

sometimes referred to as „mavericks‟. They contrast with good all-rounders. One might 
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also include in this second stage those alternatives which are Pareto-optimal even though 

they do not appear on the convex hull, for example point D in Figure 2. Such points are 

also „good all-rounders‟ but find themselves behind the frontier. 

 

Troutt (1997, and references therein) has written a number of papers applying the 

maximin approach to DEA with both multiple inputs and multiple outputs. He calls the 

resulting scores the MER – the maximin efficiency ratios. He makes the following 

observation: 

 
When the MER model was first discussed (without subsequent benefit of 

theoretical justification), some critics argued that “optimal” multipliers should 

not be based on least efficient units. While that criticism has intuitive merit, it 

may be noted that a reverse perspective is actually more fruitful. Namely, the 

minimum efficiency, as well as the average (or any other summary statistic) 

depends on the weights. Such weights or multipliers may, or may not, in general, 

maximize the likelihood of the resulting aggregate measure. Thus, from the 

maximum likelihood perspective the procedure appears intuitive. However, this 

apparent “contradiction of intuitions” continues to be interesting and not yet fully 

resolved. 

 

Troutt and Zhang (1993) also note that “a possible objection is that the resulting weights 

may be overly influenced by the worst performers”. They try to address this by saying 

“choices of weights which increase the minimum ratio frequently increase the average 

ratio as well, and conversely. Hence the maximin aggregation principle appears similar in 

expected performance to maximization of the average, which clearly depends on the 

performance data of the whole set of [DMUs]”. This is not a persuasive argument 

because in the maximization of the average each point has equal influence, whereas in the 

maximin case this is far from being true. They also try to address the issue by first noting 

that using maximin leads to all scores being squeezed into the narrowest range – which is 

true. It is then argued that the range is a measure of dispersion, as is the variance, so one 

would expect similar results to minimizing the variance of the scores. Once again, the 

conclusion does not follow because the calculation of variance is based on all 

observations whereas the range is not. Moreover, the range statistic is not merely 

sensitive to outliers, it is entirely determined by them. 

 

To help us understand why we would not expect similar scoring performance let us draw 

some parallels with methods of fitting models to data. Consider the deviations from the 

100% score as being residuals, and consider that we are fitting a linear model which is 

constrained not to have any data points lying above it. It now becomes clear that the 

maximin approach corresponds to fitting using the Chebyshev or L∞ norm, and the 

minimization of the average residual corresponds to the L1 norm. It is well established 

that these fitting approaches produce very different models and so we cannot expect to 

obtain similar performance as claimed above. Specifically, the L1 norm is less sensitive to 

outliers than least squares regression, whereas the Chebyshev norm is more sensitive to 

outliers than least squares. 
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Can the maximin approach produce a single winning alternative? 

 

Pettypool and Karathanos (2004) propose the maximin approach for reward systems 

where there are multiple measures of reward and contribution involved. They provide a 

numerical example which includes three reward measures (outputs) and two contribution 

measures (inputs). Despite the fact that there are only seven alternatives, maximin still 

does not produce a single winner. Looking at Figure 1 would seem to indicate that in the 

case of two outputs there will normally be three alternatives which will appear at the 

extremes of the score range. This is because the frontier line needs to come in as close as 

possible to the data points in order to keep the score range narrow. In this case P gets the 

lowest score, with A and B getting the highest score. As the number of criteria is 

increased, the higher dimensionality of the problem means that the frontier will have 

more dimensions and so more observations will lie upon it. Hence, although having a 

single set of common criteria weights will reduce the number scoring 100%, we cannot 

rely on the maximin approach to produce a single winner. 

 

 

 

Criteria can be completely ignored 

 

Consider the set of alternatives displayed in Figure 2. In this case R will have the lowest 

score as it has the worst performance on both criteria. Its score will be maximised by 

referring to the horizontal dashed line as a frontier. R is not fully enveloped by a pair of 

frontier units in the way that P was in Figure 1, and this causes difficulties. We shall now 

show that using the extension of this horizontal line as a frontier to assess all other 

alternatives leads to criterion 1 being completely ignored in the assessment i.e. a zero 

weight will be applied. The demonstration involves the similar right-angled triangles 

R'YA O, and RYR O. The angle subtended at the origin is the same for both triangles, and 

the cosine of this angle equates to OYR/OR = OYA/OR'. Therefore OR/OR' = OYR/OYA. 

But OR/OR' is precisely the score for R and OYR/OYA is the ratio of values on criterion 

2. Thus the values on criterion 1 play no part in the assessment of R. The same argument 

applies to the assessment of the other alternatives.  
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Figure 2   

When we attempt to project alternative R onto the frontier we find that its ‘target’ 

(R') does not lie between observed efficient units – i.e. it is not naturally enveloped. 

This leads to a horizontal frontier and a zero weight for criterion 1. 

 

 

 

Conclusion 

 

At first sight using the maximin rule to choose a set of common weights might seem an 

attractive approach to an analyst. One reason is that it is not subjective, but more 

importantly, it reduces the likelihood of being confronted by those who fare badly from 

the resulting rankings - this is because the method focuses on raising their score. Thus the 

analyst may be able to avoid having to argue with low scorers about the weights chosen. 

 

However, this paper has shown that a number of serious drawbacks arise when using this 

rule in assessing performance. Any choice of weights corresponds to deciding how much 

each criterion is worth in terms of utility or value. It is clear that the maximin rule is 

allowing these utility values to be determined by the worst performers. This is as sensible 
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as allowing the worst performing student to decide how much weight to attach to each of 

the various assessments taken by the class.  

 

Next consider the problem of selecting from a set of alternatives. To ease the decision a 

common way to reduce the number of alternatives is to use screening or filtering. This is 

simply the removal of those alternatives which are clearly inadequate because they do not 

meet certain minimal standards. This step is carried out to enable the decision maker to 

focus attention on the serious contenders and should not affect the final decision. 

However, when used in conjunction with the maximin rule such a process will remove 

the worst performers and so lead to a different set of weights and a different ranking of 

the remaining alternatives. Decisions based on the maximin rule are highly sensitive to 

the inclusion or exclusion of alternatives whose performance is so poor as to be 

completely irrelevant to the selection decision. 

 

We also showed that when the worst performing alternative is not naturally enveloped by 

units on the frontier (a common occurrence with real data), then certain criteria will be 

given zero weight and so be completely ignored in the analysis. Given that the criteria 

will have been carefully selected as being appropriate at the start, it is strange that they 

are now effectively being dismissed. 

 

Whilst, the maximin approach has been used in the allocation of resources in order to 

reduce inequality, its use to assess such a situation of need is a different matter entirely. 

The stage of evaluation to determine who is most in need or most deserving is separate 

from the stage of assigning resources or rewards. Rawls‟ difference principle may or may 

not be of use in the allocation stage but it is definitely not appropriate in the assessment 

stage. To persist in using it for both would be to minimise the perceived need of the worst 

off and thereby reduce the resources allocated to them. 
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