DIVISION OF COMPUTER SCIENCE

Experience of using Coad and Yourdon
Object-Oriented Analysis and Design

Technical Report No. 148

A. Mayes & R. Barrett

November 1992

Experience of using Coad and Yourdon
Object-Oriented Analysis and Design

Audrey Mayes and Ruth Barrett

November 92

1 Introduction

This document presents an analysis of the use of the Coad and Yourdon object-
oriented methods detailed in the two editions of their book on analysis [1], [2]
and the next volume in the series concerning design [3]. The purpose is to
assess the suitability of the approach to object-oriented analysis and design and
to clarify the differences between the two editions of the book covering analysis.
The reader is assumed to be familiar with a version of the book on analysis, so

only brief notes about the method are included. The following sections describe
in detail the work carried out.

Section 2 a brief overview of the methods and the underlying philosophy.

Section 3 a comparison of the two editions of the method, summarizing the
differences between them.

Section 4 details of the case study used for assessing the method.

Section 5 the results obtained using the first edition. The original candidate
objects are named and reasons for their inclusion or exclusion from the

final design given. A class dependency chart showing the final design is
also included.

Section 6 the results obtained when using the second edition. Any differences
between the versions are noted with the effect on the end product identi-

fied.

Section 7 comments on any differences between the two versions with respect
to the reusability of the classes and the styles of program.

Section 8 comuments on the effectiveness of the method and the notation used.

2 The method

The Coad and Yourdon view of objects is that they encapsulate attributes and
exclusive services. Objects represent an abstraction of something in the problem
space, reflecting the ability of the system to store information about it and/or
interact with it. Classes describe groups of objects with the same attributes
and also describe how to create new objects of the class. The object-oriented
definition used includes the use of objects and classes, classification, inheritance
and communication with messages.

Analysis 1s said to be the study of the problem and application domain.
The emphasis of their method is heavily biased towards stored data and the
operational procedures which are part of that domain and seems to ignore the
actual application being developed. The method is intended to build on the
best concepts from information modeling and object-oriented programming but
is concerned with analysing the domain rather than systems analysis.

Initially the method, published in 1990, concerned only the analysis phase
of development. Design and implementation are said to be an expanston of
the results of object-oriented analysis. Both editions of the analysis divide the
process into five stages, all of which feed into the final documentation set. The
five stages of analysis are :

1. 1dentifying objects

2. identifying structures,
3. identifying subjects,
4. defining attributes,
5. defining services.

The second edition of the method uses the same headings for the five analysis
stages but contains some significant differences within the stages, together with
changes in terminology and notation to aid the understanding of the method.

The book covering object-oriented .design was issued about the same time
as the second edition of Object-Oriented Analysis. This uses the same notation
as version 2. Four components of the design are identified. These are

1. Problem domain component,
2. Human interaction component,
3. Task management component,

4. Data management component.

The results of the analysis feed in to the problem domain component. Noth-
ing has been learnt about the other design components during the analysis.
This is caused by the definition of object as an abstraction of something in the
problem space.

The book gives little help with developing these other components beyond
general advice obtainable in other, general design texts. The second component,
the human interaction component involves studying the people who will use the
system and what they will need the system to do. This phase appears to be part
of the analysis of the required system and to require a repeat of the analysis
using the human interaction as the problem domain. The separation into four
components divides the problem well and should allow the components to be
used in different systems. For example the classes used for the human interaction
component could be designed to be generally useful.

3 Changes in the method

The differences between the two versions are considered to be important be-
cause different results are obtained when following the analysis guidelines. The
short time span between the editions means that users might not realise the sig-
nificance of the second edition and suggests that the method may not be fully
developed.

3.1 Major changes

The changes listed here all affect the results of the analysis.

1. Operational procedures were added to the list of potential Class-&-Objects.
This allows operational steps which must be remembered to be modelled.
The attributes ‘might include the operational procedure name, required
authorisation level and a description of the steps in the procedure’.

However, this idea conflicts with other changes introduced in the second
edition. The requirement for an object to contain stored data s attributes
has been strengthened. In the first edition, it is stated that:

an Object may have required Services, but no required remem-
brance (Attributes).

Whereas the second version states:

Attributes describe values (state) kept within an Object.

and

Concetvably an Object could have required Services, bul no re-
quired remembrance...... The only time the authors observed Class-
&-0bject symbols with only Services inside, the analyst had been
trying to use OOA notation with DFD style thinking;

The conflict between the definition of an object and the definition of an
operational procedure when represented by an object, causes confusion
and indicates that the method is not fully developed.

2. An extra stage was added to the identification of subjects. This part of

the analysis is only required for large systems, but the examples given
show changes as a result.

. The emphasis on the use of inheritance and aggregation has been changed.
The first edition suggests that inheritance can be used to express common-
ality whereas the second places more emphasis on the i1s-A relationship.
The idea of using aggregation to model the has-A relationship between
classes is also introduced.

. The advice on the positioning of attributes in a Gen-Spec structure has
changed. The first version states:

If an Attribute applies to a majority of specialisations, put it in
the generalisation, then override it for the specialisations that
do not need it.

The second edition states:

... put an Atiribute ail the uppermost point in the Struclure in
which il remains applicable to each of its specialisations.

This obviously leads to different analysis results in the case studies and
can cause confusion.

5. The view on multipleinheritance has also changed. The first edition states:

the net effect (of multiple inheritance) is a cumbersome model
that in practice obscures the actual problem space structure.

The second edition states:

the lattice structure (showing multiple inheritance) could become
unwieldy with more and more spectalisations. This has not come
up in practice.

This change in view leads to different results in the example case studies.

6.

The definition of instance connections has changed. In the first version
the definition was

a mapping from one instance to another.
The second definition states:

An nstance connectton ts a model of problem domain map-

ping(s) that one object needs with other objects, in order to fulfill
its responsibilities.

The revised definition seems to mean almost the same as the definition of
a message connection identified as part of the service layer.

A message connection models the processing dependency of an
object, indicating the need for services in order to fulfill ils re-
sponsibility.

The differences appear to be that a message connection has explicit direc-
tion whereas an instance connection has information about the multiplici-
ty. It might be better to combine the two notations to reduce the number
of lines on the diagram.

The method for defining services shows many changes. The object life
histories are no longer considered. The first stage is to identify the object
states which cause a change in behaviour. The only other consideration
is the identification of the required services, that is the occur, calculate
and monitor services. This is the same as in the first edition. The case
studies in the two editions of the book show differences in the services

required. As a result of all the previous changes it is difficult to ascertain
the reasons for this.

Terminology and notation changes

. It can be seen above that the first stage of analysis is the identification >f

objects. This caused confusion when, at the design and implementation
stages, the objects became classes. The second version identifies Class-&-
Objects instead of objects. A class is defined as:

a descriplion of one or more Objects with a uniform set of At-
tributes and Services, including a description of how to creale
new Objects of the Class.

This concept helps ease the transition from analysis to design but does
not affect the results of the analysis.

2. Another change concerns the naming of structures. The Classification
Structures of the first version are now called Generalisation-Specialisation
or Gen-Spec structures and assembly structures are called Whole-part
structures. This has no effect on the method.

3. As part of the definition of attributes in the first version, each attribute
is categorised as descriptive, definition, always derivable or occasionally
derivable. This information was not used further and the phase has been
dropped from the second version.

4. Some of the notation used in the diagrams has been simplified in the
second version as can be seen by comparing the notation in Figs 1 and
3. The instance connections and Whole-part connections are labelled with
numbers instead of bars and crows feet. The parts of a whole part structure
are also shown as joined separately to the whole. This makes the diagrams
both easier to draw and easier to understand.

4 The Case Study

The system is required to store all the information required to allow a gardener
to plan the growth of crops. There is a requirement to plan the maturation of
crops, for example to avoid crops maturing when the gardener is on holiday or
when there is a strong likelihood of attack by pests. The variation in planting
time and growth period of a crop depending on the region of the country needs
to be catered for. The gardener also wishes to be able to divide the garden into
plots to allow for crop rotation to be carried out. Reports should be produced to
give relevant information about the productivity of the vegetable garden. The
gardener also requires to be able to add or change the information concerning
Crops.

5 Experience using version 1

5.1 The Analysis

The five stages were not followed sequentially. It was found necessary to de-
fine the attributes before the structures could be identified. There was a large
amount of iteration needed to produce the final model shown in Fig 1.

The following list contains all the candidate objects identified by looking for
structure, other systems, devices, events remembered, roles played, locations
and organisational units. The fate of these objects during development is noted.

Crop This was retained as an object through to the final design. It underwent
some changes and finished as part of an inheritance hierarchy with plant
as the base class. This is shown in Fig 1.

Pest This was retained as an object.
Plan This became part of the inheritance hierarchy derived from plant.

Growing crop This also became part of the inheritance hierarchy derived from
plant.

Report This was discarded as an object because it did not meet the criterion
of needing remembrance as it is generated from other data.

Garden This was retained as an object. It became an assembly structure with
growing areas as its component parts.

Growing area This was retained as an object.
Calendar This was retained as an object.

Input and output The decisions about this were deferred to the design stage
because they involve hardware devices that may be changed.

Gardener This was discarded because no information needed to be stored
about the gardener.

Region This was retained as an object.

Seed sown, Crop transplanted and Crop harvested These three objects
concerned events remembered and were discarded because they duplicated
the information held elsewhere.

Fig 1 Result of Object-Oriented analysislst version

{ Plant \

name
variety

_

growing crop

)

number of rows
date sown
growing arcu
date harvested
yield
comieants

number of rows
date to sow
growing arca

crop pest
lypc adme
sowing season N /] plants atacked
standing time 4 N active season
distance between royrs control methods

5

[garden TN

name

_/

A Y

(region)

(<calendar

day
week
month
year

length

width | . time differenc

crop rotation rule

growing area

name
width
length
location

—

region b

add dates

\suhu—ac(dates J

—

Key
object name)
attributes
services
———— instance
connection
(' 1 classification
structure
assembly
structure
—-’ message
connection

(o2

The inheritance hierarchy was discovered when the attributes of the objects
were defined. ‘Crop’, ‘growing crop’ and ‘plan’ objects were found to require
some of the same information. The common attributes were separated out
into a new class, ‘Plant’, from which the others were formed by inheritance.
This follows the advice given which is to use inheritance o expliciily express
commonality of Atliributes and Services’ but leads to the use of inheritance
without an is-A relationship. A plan is definitely not a plant. There is no
suggestion from Coad & Yourdon in the first edition that this use of inheritance
should be suspect.

Also included under the heading of defining attributes is the identification
of instance connections. These are defined as ‘a mapping from one instance to
another’. This was assumed to mean the relationships between objects. The
lines were drawn as if the model was an entity relationship diagram. For exam-
ple, the relationship between crops and pests is a many to many relationship.
The attributes were also categorised as descriptive, definition, always derivable
or occassionally derivable. For example, the attribute ‘type’ in the object class
is a definition attribute because the value can be applied to more than one in-
stance of the object. The other attributes are all descriptive. There were no
derivable attributes as they were discarded in compliance with the statement
that ‘derived results muddy the picture’. However, the information gained by
categorising the attributes was never used.

The final stage is to define the services. The instructions state that all
objects require ‘occur’ services, that is to add, change, delete and select. Some
require calculate services and/or monitor services. In the case study it was
decided that only the ‘calendar’ had to provide calculate services for use by
other objects. There were no monitor services required. The object life histories
are also defined to help identify services. The decision was made that most of
the objects have simple life histories relying only on the standard occur services.
The only object required to provide services is the calendar object. The final
strategy in defining services is to look at the state-event-responses required by
the system. This stage involves looking at the different actions that are required
when the system is in different states. It was decided that the system did not
have any states which required a difterent response.

Message connections are then added. These are mappings from one instance
to another to show where a message is sent, for example from plan to calendar.
The instance connections are said to require a message connection between the
objects. In the case of pests and crops, it was decided that a message connection
was not needed because the two objects do not need to communicate. It is
also necessary to add message connections to ask an object to carry out some
processing, for example, the calendar object would have messages sent to it to
ask it to perform calculations on dates.

The results of the analysis are shown in Fig 1. The diagram combines the
results of the five stages of analysis, showing the classification structures and
assembly structures identified as well as the instance and message connections

between all the objects. The diagram resembles an entity relationship diagram
combined with a data dictionary and some processing requirements. The use of
inheritance is another addition. This diagram ties in exactly with their view of
the object-oriented approach.

5.2 The Design

The process of object-oriented design is said, by Coad and Yourdon, to be ¢ a
progressive expansion of the model’. This was not the case. The model from the
analysis stage gave little hint of the major functions required by the system. The
only way found to identify the functional requirements was to draw high level
data flow diagrams. The objects identified during analysis became classes at
this stage. New classes were added to provide the high level functions identified
by the data flow diagrams. These classes are called ‘record’, ‘amenddata’ and
‘plan’. They have no stored data and therefore no state. The information
required to carry out these functions was provided by the ‘occur’ services of the
objects.

The system structure is shown in Fig 2. It can be seen that it closely re-
sembles a functional breakdown of the problem. Most of the classes identified
during analysis are simple abstract data types (ADT’s) providing the only s-
tandard occur services to access the attributes. The exception is the calendar
class which provides extra services. Most of the messages are passed down in a
hierarchy from the higher level objects to the ADT’s at the bottom. The mes-
sage connections between the lower level objects reflect the fact that instances
of objects are nested.

6 Experience using version 2

6.1 The Analysis

The main difference between the two versions at the initial stage is the advice
to include operational procedures in the list of potential Class-&-Objects. This
suggests that ‘report > might be a Class-&-Object this time. Despite the con-
fusion noted in section 3, it was decided that ‘report’ is a valid object. This
decision allowed more of the requirements to be captured. The same arguments
apply to the production of a plan and the carrying out of updates to the crop
and garden data. This gave three Class-&-Objects - ‘report’, ‘plan’ and ‘update’

10

which were not present in the first attempt at the analysis.

Fig 2 System design 1st version

oot]
amenddata m

The inclusion of these Class-&-Objects had most effect on the process of
identifying services. This was because the production of plans and reports
require services to be provided. The changes at this stage lead to changes in
the attribute layer and structure layer.

The suggested strategy for defining services is initially to identify object
states. An object state is defined as an attribute value which reflects a change
in object behaviour. The ‘growing area’ has states. It can be full or not-full and
has a valid crop associated with it. The gardener should be allowed to enter
information which these states suggest are invalid. For example crops can be

planted closer together than recommended which would mean that the area was
not full. Crops can also be planted in the wrong place. The processing of these
conditions was allocated to the ‘plan’ class.

An attempt was made to analyse the garden case study without requiring a
change in state to cause a change in behaviour. The result was a model with
tight coupling between two pairs of classes, planned with planned section and
growing with growing section, as can be seen in Fig 3. Each member of the
pairs of Class-&-Objects contains a variable of the other member as one of its
attributes. This is required to make a link between where a crop is grown and the
crop itself. Tight coupling of this type can lead to problems when considering
updates to the data in the system. From this case study it seems unwise to
neglect the requirement for a change in state to cause a change in behaviour.

A further attempt was made to produce a model without the tight coupling.
The crop object was simplified to provide the standard “occur” services only.
The garden and growing areas remained whole-part structures. The definition
of a section was changed to include an attribute crop. Again the section was
used as the base class for two subclasses, namely growing section and planned
section. These added the required details.

There are several possible ways to model the information required by ‘planned
section’ and ‘growing section’. The extra information could be represented by
abstracting it into a separate Class-&-Objects or by adding each piece of in-
formation as an attribute. The abstractions represented by the extra Class-&-
Objects were not realistic in the domain so the simpler model was chosen. [ig
4 shows the results of this analysis.

6.2 The design

The chosen implementation languages were Eiffel or C++. The results of fol-
lowing Coad and Yourdon’s suggested design strategy 3] are:

1. The Problem Domain component. This builds directly on the OOA re-
sults with any necessary changes to accommodate any limitations of the
language, such as inheritance not being available. There are no language
problems of that type when using Eiffel or C+4+.

2. The Human Interaction component. A simple menu driven interface was
chosen. The code for this is to be located in the root class for the system.

3. The Task Management component. The system has no concurrency so a
task management component is not required.

4. Data Management component. Eiffel’s environment class will be used to
store any necessary objects. The C++ storage facilities are yet to be
explored.

12

/ Report \

muke report

==

crop

Fig3 Intedm result of Object-oriented analysis 2nd version

¥

Plan

i pest i

name

plants attacked
active season
control methods

aame
variety

Ltype

sowing season
standing time
distance between rows

calendur

T between actual
and expected dates
total yicld
maturity date
sowing date
number of rows

growing =

date sown
growing section
date harvested
yield

actual growth period

day
week
month
year

add dates
subtract dates

date to sow
planned
section

Update

garden

name
length
width

sel crap type
number of growing arcas
validity of gro-ares

validity of croptype)

; region \

crop rotation rules [N

region aumber
time difference

—

i.m

growing area

name
width L1
length

focation

rgom left

size of section

1.m

section
length
width

=

crop-lype

S e

Glanned section *

planned

growing section *

next crop-type

growing

~

-/

* shows classes involved in tight coupling

13

Fig 4 Final results of analysis version 2

e
¢~ Report "\

make report

garden

; region \

region number
time difference

name
length
width

crop rotation rules

.

—

Update

do update

validity
validity

Lo

set crop type
number of growing arcas

of gro-area
of croptype
g
1.m
N\

crop-type

GEXT crop-lype

pest

name

plants attacked
active season
control methods

./

Plan

growing area H
calendar name -
width
day leagth :
week agt \ p
th locition
mon size of section
year room left
sowing dal
add dates sowing date
number of rows
1,m 1
N
section /
length L
width
crop
date
maturity date -

planned section

date =date to sow

APNAN

{ crop \

name

variety

type

sowing scason
standing time
distance between rows

—

make plan

o

4

growing section

date harvested

yield
comments

date = date sown

14

diff between actual
L and expected dates

———— - messages

The final design of this version of the system is shown in Fig 5. This is, 1
believe, an object-oriented style having the processing distributed throughout
the system not concentrated in a main module. It has the same number of classes
as the first version but the processing is distributed between the classes. This
results in the classes being more complex and messages being passed between
more classes to provide the same functionality. The diagrams reflect this, giving
the impression of a more complex system. Many of the functions required to
produce reports and plans are provided by other objects. The report and plan
classes are, therefore, simpler in comparison to those with similar names in the
original design. :

In the first design the calculations were performed by the objects requiring
the answers, not the ones which had most or all of the required information.
The ‘intelligence’ of the system is more evenly spread throughout the system in
the final design. The diagram is very difficult to understand because there are
so many messages being passed. The introduction of subject layers simplified
the diagram but lost some the information concerning the messages being sent
so was abandoned. ‘

Fig S Sys’em design final version

root |
region
garden
< update
growing area crop type :
report
A
A I pest
section
4
4
cro
calendar p <% T
plan
planned
growing section

section

P —— | S messages

15

|
|
|

7 Reusability

The reanalysis and design of the system following the advice in the second
edition removed the class hierarchy derived from plant. This was one of the
simple classes identified as being reusable in another unrelated system, a pollen
count guide. The inclusion of many services in the classes also makes them more
application specific and therefore less reusable.

Reusability could be increased by factoring out any attributes and services
which are not application specific into separate classes and then forming the
application specific classes from them by inheritance. Alternatively, an instance
of the general class could be declared in the application specific class. For
example, a general class Garden could be produced as follows

Class Garden

Attributes Services

name occur services only
width

length

an application specific VegGarden class could be formed from this by

1. using inheritance

Class VegGarden inherit Garden

Attributes Services
Region validity of growing areas
GrowingArea number of growing areas

set crop type in growing area
validity of croptype for growing area
calculate total yield.

2. declaring an instance
Class VegGarden

Attributes Services

Garden

Region validity of growing areas
GrowingArea number of growing areas

set crop type in growing area
validity of croptype for growing area
calculate total yield.

16

In this example the first method would probably be better. There are two rea-
sons for this. The first is that a VegGarden is-A Garden. This is the relationship
that inheritance is designed to give. The second reason is that the use of inher-
itance allows the features of the ‘garden’ to be accessed directly. For example,
when validating the size of a growing area, the garden length could be accessed
simply as ‘length’. In the alternative method, where a variable of type Garden
is declared, the length must be accessed as <garden name>.length.

8 Discussion and Conclusions

8.1 Applicability of the method

The method detailed in the first edition suggests that objects must contain
stored information but not derived data. Careful adherence to this principle
led to some of the requirements being missed because the need for the derived
data was lost and the eventual design to be a top level functional design. The
missing requirements included the need to produce plans and reports along with
the Information they should contain. There is a sentence in the book on analysis,

However, the system does need to monitor the user, responding to
requesls and providing timely information.

At the time this did not appear to mean the production of plans and reports.
A different interpretation would have given a user object with services plan,
report and update but no required remembrance and therefore its inclusion as
an object would be questioned.

The second edition introduced the concept of operational procedures be-
ing potential Class-&-Objects. Required remembraice in a Class-&-Object was
made compulsory. In order to comply with this, operational procedures were al-
located the procedure name and the description of the steps for their attributes.
This conflicts with the idea that attributes ‘describe values (state) within an
object’. The inclusion of these procedures as objects did lead to the require-
ments being defined more completely. As an aside, this also appears to conflict
with Meyer’s guidelines [3]. He warns against designing classes which are really
functions and whose role can only be described as ‘This class does ...". He states
that:

‘a class should not do something but offer a number of services on
objects of a certain type’

This leaves some confusion about what to include as a Class-&-Object. The
inclusion of required output as a Class-& Object would have resulted in the
requirements being more fully ascertained. It i1s also necessary to define what
should be contained in a report. A report by its nature will contain mostly, if

17

not exclusively, derived data and data which forms part of the state of another
object. In some systems it is necessary to produce different types of report, for
example in the garden planning case study, one report could contain a list of
varieties grown in a year and another contain all the information about total
yields and problems as well. It is impossible to identify the requirement for
this information if derived data is excluded from the analysis. Thus, the data
required in the report should be specified as part of the analysis. Any decision
about whether to store the information in the report class and update this each
time a change is required, or to calculate the result as and when required, is a
decision which should be left until the implementation stage. The insistence that
derived data should not be stored makes the method similar to the production
of entity relationship diagrams.

Another problem with the Coad and Yourdon approach is that the meaning
of instance connection is not clear. Their meaning appears to be confused
with that of message connections. Communication with messages is one of the
features used by Coad and Yourdon to define object-oriented systems, so this
confusion should not be allowed to exist.

The garden case study was not well modelled by this analysis and design
method. The sample case studies were simulations which have a more clearly
defined boundary and require less user input. Some of the objects in a simulation
also have states, for example a sensor can have one of three states, off, standby
or monitor. This was not the case with the objects in the garden case study. The
garden case study allowed the user to choose which crops to grow. The method
might have been more successful had the type of crops and the required number
of rows of each crop been specified in the requirements instead of allowing a
variable number of rows and crops to be defined by the user. The amount of
user interaction required would have been reduced. It would then have been
possible to set up a running system for the generation of plans froni the analysis
results.

8.2 Notation

Most of the notation used in the second version is clear and simple. The excep-
tion 1s the notation used to depict inheritance or Gen-Spec structures. All the
Class-&-Objects produced by one layer of inheritance from the same generalised
class are placed on the same level. They are joined to the generalised class via
a single line. This might be taken to imply a relationship between Class-&-
Objects on the same level in the hierarchy. They are in fact related to the
higher Class-&-Object but not to each other. It might be clearer to adopt the
notation used by Meyer [4]. This shows a separate link from each specialisation
to the general class.

fu—
[os]

8.3 Final comments

There are substantial differences between the guidelines in the first and second
editions which must be borne in mind when following the method.
Finally, I agree with the statement in the Acknowledgements that

‘The second edition s far better ...".

I would recommend using the second edition and not the first. However,
I feel that there are still some inconsistencies and confusing statements which
need careful thought in order to be successful when following the guidelines. The
following sentence, included in both editions of the book on analysis, should be
carefully adhered to.

Use this book as a starting pownt for applying OOA - tailoring and

expanding the method to suit your specific organisalion or project
needs.

The interpretation of the quotation is left to the reader.

References

[1] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Inc,
Englewood Cliffs, New Jersey, 1990.

[2] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Inc,
Englewood Cliffs, New Jersey, second edition, 1991.

[3] P. Coad and E. Yourdon. Object-Oriented Design. Prentice Hall, Inc, En-
glewood Cliffs, New Jersey, 1991.

19

