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Abstract  The consequences of two techniques for symmetrically diluting the
weights of the standard Hopfield architecture associative memory model, trained
using a non-Hebbian learning rule, are examined.  This paper reports
experimental investigations into the effect of dilution on factors such as: pattern
stability and attractor performance.  It is concluded that these networks maintain
a reasonable level of performance at fairly high dilution rates.
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Introduction

The associative memories examined here are based on the standard Hopfield
architecture [10].  It has been known for some time [1] that networks with superior
performance to that of the original model can be built.  Performance may be
improved by using an alternative learning rule: either one that finds an
approximation to the projection weight matrix, or one that implements perceptron-
style learning.  (See [6,7,14] for a comparison of performance of different
models).

Weight dilution is a technique for reducing the degree of connectivity within a
network.  Connections are removed after training has taken place (post-training
dilution).  For one-shot Hebbian learning, as employed in the ‘standard’ Hopfield
model, it is known [13] that capacity drops linearly with the fraction of
connections removed.  It has even been suggested that an associative memory may
be trained by starting with a fully connected network with random fixed weights
and systematically removing a fraction of the connections [12].
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Models Examined

In each experiment we train a network of N units with a set bipolar (+1/-1)
training vectors, {x

p
}.  The resulting weight matrix is denoted by W .  During

recall the net input, or local field, h, of a unit and its next state, S’, are calculated as
follows:

† 

hi = wijS j
j≠ i
Â
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¢ S i =

1 if hi > q i

-1 if hi < q i

Si if hi = q i
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where wij is the weight on the connection from unit j to unit i, Sj is the current state
of unit j, and qi is the threshold on unit i (zero in all of our experiments).

Unit states are updated asynchronously in random order.  This and a symmetric
weight matrix guarantee simple point attractors in the network’s state space, each
of which is a stable state of the network.

A training vector, x, will be a stable state of the network if the aligned local
fields, hixi are non-negative for all i (assuming all qi are zero).  Each training
vector that is a stable state is known as a fundamental memory of the trained
network.  The capacity of a network is the maximum number of fundamental
memories it can store.  The loading, a, on a network is calculated by dividing the
number of vectors in the training set by the number of units in the network, N.

Learning Rules

Two learning rules have been employed in this work.  The first, described by Blatt
& Vergini [3], approximates the projection matrix generated using the pseudo-
inverse rule (see [8] for details).  The second is Gardner’s perceptron-like
symmetric local learning rule [6,9].

Blatt & Vergini’s Rule  (BV)

Blatt & Vergini’s [3] rule is an iterative method for approximating the projection
weight matrix.  The algorithm is guaranteed to find an appropriate weight matrix
within a finite number of presentations of each pattern if such a matrix exists.
The minimum number of presentations of the training set to perform, P , is
calculated as being the smallest integer conforming to:

† 

P ≥ logk
N

(1-T )2
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Ë 
Á 

ˆ 
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where k and T are real valued constants such that 1!<!k!≤!4 and 0!≤!T!<!1.  k is
referred to as the memory coefficient of the network; the larger it is, the fewer
steps are required to train the network.  In this work, k=4 and T=0.5 for all
networks trained by this rule.
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The algorithm is as follows:
BEGINNING WITH A ZERO WEIGHT MATRIX
FOR EACH PATTERN IN TURN

APPLY THE PATTERN ONTO THE NETWORK
FOR m := 1 TO P

FOR EACH PROCESSING ELEMENT IN TURN

UPDATE INCOMING WEIGHTS ...  

† 

Dwij =
km-1

N

Ê 

Ë 
Á 

ˆ 

¯ 
˜ x i

p - hi( ) x j
p - h j( )

REMOVE ALL SELF-CONNECTIONS

Note: patterns are added incrementally.

Symmetric Local Learning (SLL)

Gardner [9] pointed out that an iterative perceptron-like training rule could be
made to produce symmetric weights by simply updating both wij and wji when
either changes.  Gardner also showed that such algorithms would find a symmetric
weight matrix, if one existed, for a particular training set.  The SLL algorithm is:

BEGIN WITH A ZERO WEIGHT MATRIX
REPEAT UNTIL ALL LOCAL FIELDS ARE CORRECT

SET THE STATE OF NETWORK TO ONE OF THE  xP

FOR EACH UNIT, i, IN TURN
IF  hi

pxi
p  IS LESS THAN T THEN

   UPDATE WEIGHTS ON CONNECTIONS INTO AND OUT OF UNIT i :

      Dwij = Dw ji =
xi

px j
p

N
OTHERWISE DO NOTHING

This is a symmetric version of perceptron learning, with a fixed margin, T, and
learning rate 1/N.  We call T the learning threshold for the network.  Since a set of
patterns is stable when the aligned local fields of those patterns are all non-
negative, we could set T to zero.  However, based on previous results [6], we
choose T=10 in order to achieve a better attractor performance for the networks.

Training Sets

Throughout this work we employ training sets made up of pseudo-random training
vectors.  An uncorrelated training set is one in which the patterns are completely
random.  Correlation can be increased by varying the probability that a given bit in
a training pattern is +1 (or –1).  We refer to the probability of any bit being +1 in
each training vector as the bias, b, on the training set, so "i,p • prob (xi

p =!+1) = b.
Thus, a bias of 0.5 corresponds to an uncorrelated training set and a bias of 1
corresponds to a completely correlated one (as does a bias of 0).
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Weight Dilution

We present two approaches to weight dilution.  In the first, pairs of units are
chosen at random and, if the units are connected, both connections between them
are removed, until the correct proportion of connections has been removed from
the network.  By removing both connections between units we ensure that the
weight matrix remains symmetrical.

The second approach involves using an heuristic to select the connections to be
removed, in an attempt to ensure that the most efficacious connections are retained
[2,4,5].  In this case, the connection pair with the weight of least magnitude is
identified, and both connections in the pair are removed from the network.  This is
repeated until the required number of connections have been eliminated.

Analysing Performance

Two aspects of network performance were measured: pattern stability and
attractor performance.  A series of experiments were carried out on networks of
size N=100 using training sets of bias 0.5 and 0.9 and at a fixed loading of a=0.50.
Networks were trained using either the BV rule, or the SLL rule.  The connections
in the networks were then diluted according to the methods described above.

Pattern Stability

The proportion of fundamental memories that are stable after dilution provides an
indicator of the robustness of a model.  Networks were trained to below maximum
capacity, so all training patterns were fundamental memories prior to dilution.
Figs 1 and 2 show the proportion of stable training patterns at various dilutions.

Attractor Performance

For an associative memory to be effective, the training patterns should be both
stable states of the network and attractors in its state space.

We use R, the normalized mean radius of the basins of attraction [11], as a
measure of attractor performance.  It is defined as:

† 

R =
1- m0
1- m1

where m0 is the minimum overlap an initial state must have with a fundamental
memory for the network to converge on that fundamental memory, and m1 is the
largest overlap of the initial state with the rest of the fundamental memories.  The
angled braces denote an average over sets of training patterns.  Details of the
algorithm used can be found in [11].
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Results

Figs 1 and 2 below show the effect of varying the degree of weight dilution within
the network on the proportion of trained patterns that are stable, whilst figs 3 and 4
show the effect of varying the degree of weight dilution on attractor performance
(N=100, a=0.50 throughout).

In each figure, the left hand graph shows performance of networks trained with
uncorrelated patterns (b=0.5), whilst the right hand graph shows performance of
networks trained with correlated patterns (b=0.9).  The upper line on each of the
eight graphs represents the results obtained using informed dilution.

Pattern Stability

Figure 1.  Pattern stability in networks trained with the BV rule.
Left-hand graph: bias=0.5.  Right-hand graph: bias = 0.9.

Figure 2.  Pattern stability in networks trained with the SLL rule.
Left-hand graph: bias=0.5.  Right-hand graph: bias = 0.9.
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Attractor performance

Figure 3.  Attractor performance in networks trained with the BV rule.
Left-hand graph: bias=0.5.  Right-hand graph: bias = 0.9.

Figure 4.  Attractor performance in networks trained with the SLL rule.
Left-hand graph: bias=0.5.  Right-hand graph: bias = 0.9.

Discussion

Observations on Pattern Stability

We make four key observations here:

1) Informed dilution gives a significant improvement in pattern stability over
simple random dilution.  This takes the form of an increase in the level of
dilution at which the networks retain memory of all the trained patterns.

2) It is possible to remove around 50-60% of the networks’ connections without a
serious decline in the stability of the trained patterns.

3) The bias in the training set makes very little difference to the pattern stability.
4) The learning rule used appears to make little difference to the effect of dilution

on pattern stability.
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Observations on Attractor Performance

The pattern here is similar to that for pattern stability.  Specifically:

1) Informed dilution performs significantly better than simple random dilution.
2) It is possible to remove up to approximately 40% of the networks’ connectivity

without serious damage to the attractor performance of the network.
3) The bias in the training set makes little difference to the attractor performance.
4) The learning rule used appears to make little difference to the effect of dilution

on attractor performance.

Conclusions

This paper reports two important results:
1) Informed dilution is markedly better than random dilution.
2) Informed dilution demonstrates that a large number of connections are

redundant in networks of this type and at these loadings.
As the loading of these networks is a=0.5 they are below their maximum

storage capacity; it may be of interest to repeat these experiments at higher
loadings where the networks may be under greater stress.

Failure, when it occurs, proceeds with great rapidity.  There is a sharp decrease
in both proportion of stable patterns and attractor performance once the networks
begin to lose their stability and ability to act as attractors.  In this respect, our
results differ from those of Sompolinksy, whose work on randomly diluting the
traditional Hopfield network [13] showed a linear decline in pattern stability.

The system of informed dilution we have presented is very simple; no re-
training of the network is required.  It is possible that in biological systems
complex strategies may be similarly unnecessary.  Chechik et al [5] have noted
that during brain maturation there is a reduction in connectivity that is expensive
to maintain from an energy perspective.  It is interesting that we have also found
redundancy in connectivity, albeit in a much simpler system.

Informed dilution, as implemented in this work, is functionally equivalent to
the system of annealed dilution proposed by Bouten et al. [4] in which the dilution
is performed as part of the learning process.  Our results concur with their
prediction that 60% dilution is the approximate limit beyond which network
capacity is compromised.

The work presented here concentrates on the dilution of fully connected
networks, whereas our current work focuses on networks that have been created as
sparsely-connected tabula rasa.  Training these networks has presented new
challenges and performance characteristics.  We expect to be able to present these
new findings in the near future.
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