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ON ALGEBRAS WITH MANY SYMMETRIC OPERATIONS

CATARINA CARVALHO AND ANDREI KROKHIN

Abstract. We show that, for each finite algebra A, either it has symmetric

term operations of all arities or else some finite algebra in the variety generated
by A has two automorphisms without a common fixed point. We also show

this two-automorphism condition cannot be replaced by a single fixed-point-

free automorphism.

1. Introduction

The study of algebras with particular types of term operations has always been a
subject of interest in the field of Universal Algebra [10, 15], and it has boomed since
its connections with the complexity of Constraint Satisfaction Problems (CSPs)
was discovered (see, e.g. [7, 9]). Many complexity classification results for the CSP
are based on algebraic dichotomies (of independent interest) of the form: either
an algebra A has term operations satisfying certain “nice” identities or else some
finite algebra in the variety generated by A has some “bad” compatible relational
structure, often of a simple form (see [2, 4, 7, 9, 18]). Such structures are the
forbidden structures for these “nice” term operations. We give several examples of
such algebraic dichotomies in Section 3.

In this paper, we identify the forbidden structures for having symmetric opera-
tions (of all arities) as term operations. A symmetric operation is an operation that
is invariant under any permutation of arguments. Such operations have recently
been used in the algebraic approach to the CSP [16], they characterise the CSPs
solvable by a natural algorithm based on linear programming. One intended use
of our forbidden structures is in proofs of computational hardness results, such as
non-existence of certain robust algorithms [12, 16], for CSPs that cannot be solved
by linear programming.

2. Definitions

The definitions given in this section are standard. A vocabulary τ is a finite set
of relation symbols R1, . . . , Rk or arities r1, . . . , rk ≥ 1. A τ -structure B consists of
a finite set B, called the universe of B, and a relation RB ⊆ Br for every relation
symbol R ∈ τ where r is the arity of R.

A homomorphism from a τ -structure A to a τ -structure B is a mapping h :
A → B such that for every r-ary R ∈ τ and every (a1, . . . , ar) ∈ RA, we have
(h(a1), . . . , h(ar)) ∈ RB. We write A→ B if there is a homomorphism from A to
B.

The constraint satisfaction (or homomorphism) problem for a structure B is
whether a given structure A admits a homomorphism to B. This problem is denoted
by CSP(B), and can be identified with the class of all structures A such that
A→ B.
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Let f be an n-ary operation on B, and R a relation of B. We say that f is
a polymorphism of R if, for any tuples, ā1, . . . , ān ∈ R, the tuple obtained by
applying f componentwise to ā1, . . . , ān also belongs to R. In this case, R is said
to be invariant under f , or compatible with f . Furthermore, f is a polymorphism
of B if it is a polymorphism of each relation in B. It is easy to check that the n-ary
polymorphisms of B are precisely the homomorphisms from the n-th direct power
Bn to B. We denote by Pol(B) the set of all polymorphisms of B.

A finite algebra is a pair A = (A,F ) where A is a finite set and F is a family
of operations of finite arity on A. The term operations of A are the operations
obtained from F and the projections by superposition. A variety is a class of (in-
dexed) algebras closed under taking homomorphic images, subalgebras, and direct
products. The variety generated by A, var(A), consists of all homomorphic images
of subalgebras of direct powers of A. As usual, HS(A) denotes the class of all
homomorphic images of subalgebras of A. From each relational structure B, one
can obtain an algebra AB = (B,Pol(B)), by taking as operations on the universe
B the polymorphism of all relations in B. A structure B′ with universe A is said
to be compatible with an algebra A = (A,F ) if every operation in F is a polymor-
phism of B′ (equivalently, each relation in B′ is the universe of a subalgebra of the
corresponding power of A).

The notion of a polymorphism plays the key role in the algebraic approach to
the CSP. The polymorphisms of a structure are known to determine the complexity
of CSP(B) as well as definability of (the complement of) CSP(B) in various logics
(see [6, 18]).

We now define several types of operations that will be used in this paper.

• An n-ary operation f is called idempotent if it satisfies the identity f(x, . . . , x) =
x.
• An n-ary operation f is called cyclic if it satisfies the identity

f(x1, x2, . . . , xn) = f(x2, x3, . . . , xn, x1);

• An n-ary operation f is called symmetric if it satisfies the identity

f(a1, a2, . . . , an) = f(aπ(1), aπ(2), . . . , aπ(n))

for all permutations π of {1, . . . , n};
• An n-ary operation f is called totally symmetric if f(x1, . . . , xn) = f(y1, . . . , yn)

whenever {x1, . . . , xn} = {y1, . . . , yn}. If, in addition, f is idempotent then
we say that it is a TSI operation.
• An n-ary (n ≥ 3) operation is called a weak near-unanimity (WNU) oper-

ation if it is idempotent and it satisfies the identities

f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = . . . = f(x, x, . . . , x, y).

• A Mal’tsev operation is a ternary operation f satisfying

f(x, x, y) = f(y, x, x) = y.

More of the universal-algebraic background can be found in [10, 15].

3. Some algebraic dichotomies

We will now describe some known algebraic dichotomy results and indicate where
they are used in the study of CSPs. It is known [7] that it is enough to classify only
problems CSP(B) such that the corresponding algebra AB is idempotent, i.e. all of
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its operations are idempotent. This explains why most of the dichotomies concern
only idempotent algebras.

(i) For a finite idempotent algebra A, either A has a cyclic operation of some
arity (equivalently, var(A) satisfies a non-trivial Mal’tsev condition), or else
the ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is compatible with some (2-
element) algebra in HS(A) [2].

It is known that, for a structure B, if the (idempotent) algebra AB sat-
isfies the latter condition then CSP(B) is NP-complete [7]. The Algebraic
Dichotomy Conjecture states that if AB satisfies the former condition then
CSP(B) is tractable [2, 7].

(ii) For a finite idempotent algebra A, either A has WNU operations of almost
all arities (equivalently, var(A) is congruence meet-semidistributive), or else
there exists an algebra B in HS(A) and an Abelian group structure on the
base set of B such that the relation {(x, y, z) : x + y = z} is compatible
with B [18, 19].

It is known that the former condition, for the algebra AB, implies that
CSP(B) is definable in the logic programming language Datalog [4] (and
also admits a robust algorithm [3]), while the latter condition, which intu-
itively says that CSP(B) can encode systems of linear equations, implies
the absence of these nice properties [13, 12].

(iii) For a finite idempotent algebra A, either A has ternary term operations
from Theorem 9.11 of [15] (equivalently, var(A) is congruence join-semidistributive),
or else there exists an algebra B in HS(A) such that at least one of the rela-
tions {(x, y, z) : x+ y = z} (as above) and {0, 1}3 \ {(1, 1, 0)} is compatible
with B [18].

The former condition, for the algebra AB, is conjectured to imply that
CSP(B) is definable in linear Datalog [18] (which roughly means that
CSP(B) can be reduced to the Digraph Reachability problem) and be-
longs to the complexity class NL, while the latter condition, which intu-
itively says that CSP(B) can encode systems of linear equations or Horn
3-Sat, implies non-definability in linear Datalog and non-membership in
NL (modulo complexity-theoretic assumptions) [18].

(iv) For a finite idempotent algebra A, either A has a Mal’tsev operation as
a term operation (equivalently, var(A) is congruence permutable), or else
some binary reflexive and non-symmetric relation is compatible with a finite
algebra V(A) [14].

The latter condition was used in [5] to prove hardness of the counting
version of CSP(B), and in [8] to prove hardness of a version of CSP(B)
with an additional global constraint.

4. Forbidden structures for many symmetric operations

Since the presence of many symmetric operations plays a role in the study of
CSPs, it is natural to try to find (simple enough) forbidden structures for this
algebraic condition.

For a permutation π on A, let π◦ denote the graph of π, i.e. π◦ = {(a, π(a)) | a ∈
A}. In the next two sections we will deal with graphs of permutations compatible
with algebras. Note that π◦ is compatible with an algebra A if and only if π is an
automorphism of A.
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The following is a slightly weakened Proposition 2.1 of [1].

Proposition 1. Let A be a finite algebra.

• Either A has cyclic term operations of all arities,
• or else there is a finite algebra B in var(A) with a fixed-point-free automor-

phism.

Since any symmetric operation is cyclic, the latter condition in Proposition 1 is
sufficient to forbid the existence of symmetric term operations of all arities. Could
it also be necessary, at least for algebras of the form AB? We will show that it is
not, but a small variation of it is such a condition.

Theorem 2. Let A be a finite algebra.

• Either A has symmetric term operations of all arities,
• or else there is a finite algebra B in var(A) that has two automorphisms

without a common fixed point. Furthermore, one of the automorphisms can
be chosen to have order two.

Proof. It is easy to see that if f is an n-ary symmetric term operation of A, and
hence of every algebra in var(A), then, for any algebra B in var(A) with universe
{b1, . . . , bn}, the element f(b1, . . . , bn) is a fixed point of every automorphism of B.

Assume now that A does not have a symmetric operation of arity n. Let F be the
free n-generated algebra in the variety var(A), with free generators x1, x2, . . . , xn.
Let A1 and A2 be the subalgebras of F×F generated by the tuples

A1 = 〈 (x1, x2), (x2, x1), (x3, x3), . . . , (xn, xn) 〉

A2 = 〈 (x1, x2), (x2, x3), (x3, x4), . . . , (xn−1, xn), (xn, x1) 〉.
Since x1, . . . , xn are the free generators of F, the universes of A1 and A2 can be
thought of as graphs of permutations on the universe of F (and hence correspond
to automorphisms of F). The automorphism corresponding to A1 has order two. If
these permutations share a fixed point then there exist n-ary operations f1 and f2
and an element a in F such that

f1((x1, x2), (x2, x1), (x3, x3), . . . , (xn, xn)) =
f2((x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1)) = (a, a).

This implies that f1 = f2 and, moreover, f1(x1, x2, x3, . . . , xn) = f1(x2, x1, x3, x4, . . . , xn) =
f1(x2, x3, . . . , xn, x1), and so f1 is symmetric. Hence we have an n-ary symmetric
operation in A, a contradiction.

The classes of algebras appearing in Proposition 1 and Theorem 2 are different,
as our next result shows. Hence, graphs of fixed-point-free permutations do not
form a complete set of forbidden structures for the existence of symmetric term
operations of all arities.

Let K = (K;R,S) be the structure with domain

K = {0, 1, 2, . . . , 9, 10, 01, 02, 03, 04, 12, 13, 14, 23, 24, 34},
and binary relations R and S that are graphs of the following permutations r and
s, respectively,

r = (0 1 2)(5 6 7)(8 9 10)(12 02 01)(04 14 24)(13 23 03),

s = (1 4)(2 3)(5 6)(7 8)(34 12)(02 03)(01 04)(24 13).
4



It will be often convenient to think of K as of two graphs as depicted in Figure 1, one
directed, R (represented by the filled lines), and one undirected, S (represented by
the dotted lines), on the same set of vertices K. Then fixed points of permutations
correspond to loops in the graphs. To simplify notation, for elements of the form
xy we assume the convention that xy = yx.
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Figure 1. Relational structure K

Theorem 3. The structure K has cyclic polymorphisms of all arities, but no sym-
metric polymorphism of arity 5.

Proof. For a contradiction, suppose that f is a 5-ary symmetric operation
that preserves both R and S. Since f is symmetric we know that f(0, 1, 2, 3, 4) =
f(1, 2, 0, 3, 4) = f(0, 4, 3, 2, 1). We have that (0, 1), (1, 2), (2, 0), (3, 3), (4, 4) ∈ R
and (0, 0), (1, 4), (2, 3), (3, 2), (4, 1) ∈ S. It follows that f(0, 1, 2, 3, 4) is a common
loop in R and S, which does not exist, a contradiction. The proof that K has cyclic
polymorphisms of all arities occupies the next section.

The above example is tight in the sense that the existence of cyclic operations
of all arities imply the existence of symmetric operations of arities up to 4.

Lemma 4. If an algebra A has cyclic term operations of arities 2 and 3 then it
also has symmetric term operations of arities up to 4.

Proof. Let s2, c3 be cyclic operations of arities 2 and 3 respectively. Clearly s2 is
symmetric, and it is easy to check that the operation

s3(x, y, z) = s2(c3(x, y, z), c3(y, x, z))

is a 3-ary symmetric operation.
Now, the 4-ary operation t(x, y, z, w) = s2(s2(x, y), s2(z, w)) satisfies the follow-

ing identities

t(x, y, z, w) = t(y, x, z, w) = t(x, y, w, z) = t(y, x, w, z)
= t(z, w, x, y) = t(z, w, y, x) = t(w, z, x, y) = t(w, z, y, x).

5



It then follows that the operation

s4(x, y, z, w) = s3(t(x, y, z, w), t(x,w, y, z), t(x, z, y, w))

is symmetric.

Remark 5. The condition of having totally symmetric operations of all arities has
also played a role in the study of the CSP. Such operations characterise the so-called
CSPs of width 1, i.e. CSPs solvable by the arc-consistency algorithm [11, 13]. It
was claimed in [16] that this condition is equivalent to the one of having many
symmetric operations, but a flaw was discovered in the proof (as acknowledged on
R. O’Donnell’s webpage), and a counter-example to the claim was recently found
by G. Kun [17]: a very simple structure that has symmetric polymorphisms of all
arities, but no ternary totally symmetric polymorphism.

5. Proof of Theorem 3

We make use of two results that have been proved for algebras, that can naturally
be applied to relational structures.

Proposition 6. [1, Proposition 2.2] For a finite algebra A the following hold:

(1) If A has an n-ary cyclic term then it has a k-ary cyclic term for all k > 1
divisor of n.

(2) If A has an n-ary and an m-ary cyclic term, then it also has an mn-ary
cyclic term.

Proposition 7. [2, Theorem 4.1] Let A be a finite algebra. The following are
equivalent

• A has a cyclic term;
• A has a cyclic term of arity p, for every prime p > |A|.

It follows from Propositions 6 and 7 that it is enough to show that K has cyclic
polymorphisms of arity p for all prime p < 21. We will define partial cyclic oper-
ations of prime arities on K, and then show by induction that K is preserved by
cyclic operations of arities up to 21.

Consider the following partition of K: C1 = {0, . . . , 4}, C2 = {5, . . . 10}, and
C3 = {01, . . . , 34}; blocks C1 and C3 are depicted in Fig. 2 and Fig. 3, respectively.
In these figures the filled lines represent the arcs of R and the dotted lines the
(undirected) edges of S.

We start by defining partial cyclic operations cp(x1, . . . , xp) for all prime p < 21
and x1, . . . , xp all belonging to the same block. These operations do not necessarily
preserve the blocks but preserve R and S. Then, using these operations, we show,
by induction on n, that R and S are preserved by cyclic operations of arity n, for all
n = 2, . . . , 21. Recall that, for elements of the form xy, we assume the convention
that xy = yx.

(1) Definition of cp(x1, . . . , xp) with x1, . . . , xp all distinct and belonging to the
same block:
We assume that x1, . . . , xp are all distinct, so when they belong to C1 or C2

we just need to define cp for p ≤ 5, and when they belong to C3 we define
cp for p ≤ 7.

6



The operation c2 acts symmetrically on all blocks. For distinct x, y ∈ C1

we let c2(x, y) = xy; for distinct x, y ∈ C3 we define

c2(x, y) =

{
a if x = ab, y = ac for some a ∈ C1

e if x = ab, y = cd, and C1 = {a, b, c, d, e};
and for distinct x, y ∈ C2 we define it as shown in Fig. 2: c2(5, 6) = c(7, 8) =
c2(9, 10) = 0, c2(5, 7) = c2(6, 10) = c2(8, 9) = 2 and so on.

(5,8)

0

1

2 3

4

(5,6)

(7,8)

(9,10)

(5,7)

(6,10)

(8,9)

(6,8)

(5,10)

(7,9)

(8,10)

(5,9)

(6,7)

(7,10)

(6,9)

Figure 2. Operation c2 maps C2 to C1

Operation c3 also acts symmetrically on all blocks. For distinct x, y, z ∈
C1 we define c3(x, y, z) = c2(u, v) where {u, v} = C1\{x, y, z}; when x, y, z ∈
C3 are all distinct, we let

c3(x, y, z) =


de if x = ab, y = bc, z = ac,

ae if x = ab, y = ac, z = ad,

a if x = ab, y = ac, z = de,

e if x = ab, y = bc, z = ad;

and in C2 we define c3 as shown in Fig. 3: c3(5, 6, 7) = c3(8, 9, 10) = 34,
and so on.

The operation c5 is cyclic in C1 and symmetric on the remaining blocks.
When x, y, z, u, v ∈ C2 are all distinct, we let c5(x, y, z, u, v) = w where
C2 = {x, y, z, u, v, w}; and for distinct x, y, z, u, v ∈ C3 we define

c5(x, y, z, u, v) =


a if x = ab, y = ac, z = ad, u = ae, v = ce

a if x = ab, y = cd, z = eb, u = bd, v = ad

e if x = ab, y = cd, z = cb, u = bd, v = ad

e if x = ab, y = cd, z = cb, u = bd, v = ae

c5(a, b, c, d, e) if x = ab, y = bc, z = cd, u = de, v = ae

where C1 = {a, b, c, d, e}; in C1 we define

c5(0, 1, 2, 4, 3) = 5, c5(0, 4, 3, 1, 2) = 6, c5(0, 1, 4, 3, 2) = 7,
c5(0, 4, 1, 2, 3) = 8, c5(0, 2, 4, 1, 3) = 9, c5(0, 1, 3, 2, 4) = 10,

and to extend c5 to the rest of C1, we think of the tuple (x, y, z, u, v) as the
permutation (xyzuv). It is then easy to see that (xyzuv) is an ith power,
with i = 0, 1, . . . , 4, of exactly one of six permutations corresponding to
the tuples for which c5(x, y, z, u, v) was defined above. We then define
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Figure 3. Operation c3 maps C2 to C3

c5(x, y, z, u, v) to be the same as c5 applied to the corresponding tuple, e.g.
(02314) = (01243)2 and so c5(0, 2, 3, 1, 4) = 5.

Finally, for distinct x1, . . . , x7 ∈ C3 we define c7(x1, . . . , x7) = c3(a, b, c),
where {a, b, c} = C3\{x1, . . . , x7}.

We now extend these operations to elements x1, . . . , xp belonging to the
same component but not necessarily distinct.

(2) Definition of cp(x1, . . . , xp) with x1, . . . , xp not all distinct and belonging to
the same block:
For convenience, we define c1(x) = x for all x ∈ V .

Claim 1. If |{x1, . . . , xp}| ≥ 5 then there exists k = 1, . . . , p such that at
most 4 elements of {x1, . . . , xp} that appear exactly k times in x1, . . . , xp.

Proof. For all i = 1, . . . , p, let Ni be the (possibly empty) set of ele-
ments that appear exactly i times in x1, . . . , xp. Note that |N1| < p, since
x1, . . . , xp are not all distinct, and |Np| 6= 1 because |{x1, . . . , xp}| ≥ 5. We
have p =

∑p
i=1 i|Ni|, which implies that there are at least two i’s for which

Ni is non-empty, for p is prime. Let j1 and j2 be the smallest and largest i,
respectively, for which Ni is non-empty. We show that at least one of Nj1 ,
Nj2 has at most 4 elements. Suppose, for a contradiction, that |Nj1 | ≥ 5
and |Nj2 | ≥ 5. Then the xi’s must all come from C3. The set Nj1 ∪ Nj2
contains 10 different elements, i.e. all elements of C3. It follows all the
other sets Ni are empty, and p = 5j1 + 5j2, a contradiction.

We then define cp(x1, . . . , xp) = cj(y1, . . . , yj), where j ≤ 4, and either
{x1, . . . , xp} = {y1, . . . , yj} or, when |{x1, . . . , xp}| ≥ 5, y1, . . . , yj are the
(at most 4) elements repeated exactly k times mentioned in Claim 1 (and
k is the smallest such value).

Now, cj(y1, . . . , yj) is defined to be symmetric in (1) for j ≤ 3. Also by
(1) and using (the proof of) Lemma 4 we know that there exists a symmetric
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operation s4 defined on elements x1, . . . , x4 all distinct and belonging to the
same block. It follows that cp acts on x1, . . . , xp as a symmetric operation.

We now show that these partial operations preserve the relations R and S.

Claim 2. Let x1, . . . , xp ∈ K be elements from the same partition block. If
(x1, y1), . . . , (xp, yp) ∈ R (respectively ∈ S) then (cp(x1, . . . , xp), cp(y1, . . . , yp)) ∈ R
(respectively ∈ S).

Proof. First note that y1, . . . , yp also belong to the same block. If x1, . . . , xp
are all distinct, then cp(x1, . . . , xp) was defined in (1), and it is not hard to check
directly that these partial operations preserve R and S. Note that whenever we
have a pattern in the repetition of elements in x1, . . . , xp, this pattern is the same
in y1, . . . , yp. For example if x1 = x2 and x3, . . . , xp are all distinct then y1 = y2
and y3, . . . , yp are all distinct. This immediately implies that the partial operations
defined in (2) preserve R and S, as a consequence of the partial operations defined
in (1) also preserving them.

We now extend the operations define above to elements not belonging to the
same block, at the same time as, by induction on n, defining cyclic operations, c′n,
of arity n for all n < 21, that preserve the relations in K. For n = 2 we define an
idempotent cyclic operation c′2 as follows

c′2(x, y) =

 x if x ∈ Ci, y ∈ Cj , i < j
y if x ∈ Ci, y ∈ Cj , i > j

c2(x, y) if x, y ∈ Ci,

with i, j = 1, 2, 3 and c2 as defined in (1) and (2). It is easy to check that c′2
preserves both R and S.

Now, assume that R and S are preserved by cyclic operations, c′n for all n < k.
If k is not prime, then k = mq and we know, as in [1], that c′k can be obtained by
composing c′m and c′q as follows

c′k(x1, . . . , xk) = c′m(c′q(x1, . . . , xq), . . . , c
′
q(xk−q+1, . . . , xk)).

By the inductive hypothesis, c′q and c′m preserve R and S, so c′k also preserves these
relations. If k is prime we define

c′k(x1, . . . , xk) =


ck(x1, . . . , xk) if x1, . . . , xk ∈ Ci, (i = 1, 2, 3),
c′m(x1, . . . , xm) if {x1, . . . , xm} = C1 ∩ {x1, . . . , xk} 6= ∅,
c′m(x1, . . . , xm) if {x1, . . . , xm} = C2 ∩ {x1, . . . , xk} and

C1 ∩ {x1, . . . , xk} = ∅

that is: if all elements x1, . . . , xk belong to the same block then we already know
from (1) and (2) that there is a cyclic (partial) operation, ck, defined on them that
R and S; if not all elements belong to the same block then we choose the elements
in x1, . . . , xk that belong to C1 (or C2 if no element belongs to C1) and apply to
them the corresponding operation of smaller arity, which we know exists by the
inductive hypothesis. Since the blocks are disjoint and have no arcs connecting
them, c′k clearly preserves both R and S. Theorem 3 is proved.

9



6. Conclusion

We have described the forbidden structures for the existence of symmetric term
operations in a finite algebra. We have also shown that the classes of finite algebras
having cyclic operations of all arities and symmetric operations of all arities are not
the same. In fact, the algebra AK that separates these classes can easily be shown
to generate an arithmetical variety.

It is an interesting open question whether Theorem 2 can be strengthened by
requiring the algebra B in var(A) (that has two automorphisms without a common
fixed point) to belong to HS(A). This strengthening could help in the study of
complexity (more specifically, robust algorithms) for constraint satisfaction prob-
lems [12]. Even obtaining an upper bound on the number n such that B can be
found in HS(An) would be interesting, since such a bound would imply decidabil-
ity of the existence of symmetric term operations in a finite algebra (and hence
decidability of the problem of recognising CSPs solvable by linear programming),
which is currently an open question.
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[19] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric operations, Algebra

Universalis 59 (2008), no. 3-4, 463-489.

University of Hertfordshire, Hatfield, AL10 9AB, UK

E-mail address: c.carvalho2@herts.ac.uk

Durham University, Durham, DH1 3LE, UK

E-mail address: andrei.krokhin@durham.ac.uk

11


	UHRA full text deposit cover AAM version TEMPLATE.pdf
	1406.pdf
	1. Introduction
	2. Definitions
	3. Some algebraic dichotomies
	4. Forbidden structures for many symmetric operations
	5. Proof of Theorem ??
	6. Conclusion
	References


