Staged training of Neocognitron by evolutionary algorithms
Pan, Z., Sabisch, T., Adams, R.G. and Bolouri, H.
(1999)
Staged training of Neocognitron by evolutionary algorithms.
Institute of Electrical and Electronics Engineers (IEEE).
The Neocognitron, inspired by the mammalian visual system, is a complex neural network with numerous parameters and weights which should be trained in order to utilise it for pattern recognition. However, it is not easy to optimise these parameters and weights by gradient decent algorithms. In this paper, we present a staged training approach using evolutionary algorithms. The experiments demonstrate that evolutionary algorithms can successfully train the Neocognitron to perform image recognition on real world problems.
Item Type | Other |
---|---|
Divisions |
?? sbu_scs ?? ?? rc_csir ?? |
Date Deposited | 18 Nov 2024 11:31 |
Last Modified | 18 Nov 2024 11:31 |
-
picture_as_pdf - 901702.pdf
Share this file
Downloads