<u>Abstract</u>

Although there is a renewed interest in the therapeutic potential of cannabinoids, pharmacological and physiological characterisation of these promising compounds is currently not well documented in the respiratory system. The aim of this study is to increase our understanding of possible roles of cannabinoids in the airways.

Apart from CB₁ and CB₂ receptor-mediated actions, cannabinoid compounds can also target TRPV₁ receptors, ion channels or the orphan GPR55. In isolated guinea-pig bronchi, WIN55212-2 probably exerted its inhibitory effect on sensory nerves through CB₂-like receptors. VIR did not act prejunctionally but its excitatory action was mediated through TRPV₁ receptors. Δ^9 -THC activated sensory nerves presumably involving CB₁ receptors. It was speculated that GPR55 might be activated by VIR and antagonized by CBD. CBD revealed multiple mechanisms of actions: it antagonized effects mediated by TRPV₁ and NK₂ receptors, modulated mast cell function and showed anti-allergic activity in an in vitro model of bronchial asthma.

In a human bronchial epithelial cell line the functional expression of CB_1 receptors could not be confirmed. Cannabinoids examined in this study were ineffective to induce signal transduction which would be linked to ion channel activity or to intracellular Ca^{2+} changes. Only VIR might trigger a CB_1 receptor-independent signalling pathway in these cells.

In conclusion, the findings presented in this thesis reflect the diversity of cannabinoid pharmacology in the airways. They show for the first time that CBD has the ability to reduce antigen-induced bronchoconstriction, indicating relevance in bronchial asthma.

Acknowledgements

Firstly, I would like to thank my Heavenly Father who gave me the ability to fulfill one of the biggest dreams of my life, to do a PhD in the U.K.

I would like to thank my supervisory team of Dr. Areles Molleman and Prof. Mike Parsons for endless support and motivation during the whole study. Their guidance will be always deeply appreciated and their attitude honoured by nice memories. Thank you for trusting me.

Thank you also to Prof. Anwar Baydoun and Dr. Cliff Whelan who equally contributed to this thesis. Their help will be never forgotten.

Huge thanks go to my collaborators, Dr. Malcolm Begg and Dr. Efi Gkoumassi. Their expertise and good will enabled project improvements. I extend my sincere thanks to Dr. Robin Hiley and Dr. Sandy Kaup.

I would like to express my warmest thanks to my cherished colleagues and friends, Asia, Raj, Peter, Ed, Alex and Marzieh. Thank you also to all the technical, research and administrative staff.

Finally, I would like to dedicate this work to my beloved parents and my sister. Thank you for loving me and giving me so much.

Publications

Abstracts

Dudášová, A., Parsons, ME. and Molleman, A. (2006). The effect of cannabinoids on sensory nerve function of guinea-pig bronchi. *British Pharmacological Society*, 75th Anniversary Meeting, Oxford, U.K.

Dudášová, A., Parsons, ME. and Molleman, A. (2007). The effect of cannabidiol on mast cell function in isolated guinea-pig bronchi. *International Association for Cannabis as Medicine*, 4th Conference on Cannabinoids in Medicine, Cologne, Germany.

Dudášová, A., Parsons, ME. and Molleman, A. (2007). Effects of FAAH inhibition and cannabidiol in guinea-pig bronchi. *British Pharmacological Society*, 5th James Black Conference, Cutting Edge Concepts in Lung Pharmacology, Perthshire, U.K.

Dudášová, A., Baydoun, A., Parsons, ME. and Molleman, A. (2007). Cannabinoid receptors and human bronchial epithelial cells. 5th Annual Life Sciences Research Day, University of Hertfordshire, U.K.

Contents

Abstract	i
Acknowledgements	ii
Publications	iii
Contents	iv
Abbreviation	viii
<u>1.0 INTRODUCTION</u>	<u>1</u>
1.1 Cannabis	2
1.2 The endocannabinoid system	5
 1.2.1 Cannabinoid receptors 1.2.2 GPR55 1.2.3 Cannabinoid receptor ligands 1.2.4 Endocannabinoids 1.2.5 Endocannabinoid metabolism 1.2.6 Pharmacology of GPR55 	6 10 11 16 20 26
1.3 Cannabis and asthma	29
1.4 Airway smooth muscle and airway innervation	31
1.5 Asthma	36
1.6 Sensory nerves	42
 1.6.1 eNANC responses 1.6.2 Tachykinins 1.6.3 Neurogenic inflammation 1.6.4 Inhibition of sensory neuropeptide release 1.6.5 Activation of sensory neuropeptide release and vanilloid receptors 1.6.6 Cannabinoids and the airways 	43 44 47 49 51 56
1.7 Mast cell	60
1.7.1 Mast cell mediators1.7.2 Mast cell-airway smooth muscle interaction1.7.3 Mast cells and anti-inflammatory medication1.7.4 Mast cells and cannabinoids	62 65 67 71

1.8 Airway epithelium	75
1.8.1 Asthma and the airway epithelium	76
1.8.2 Cannabinoids and the airway epithelium	77
1.8.3 Physiology and pharmacology of 16HBE14o- cells	80
1.8.4 Ca^{2+} signalling in 16HBE cells and other non-excitable cell types	86
1.9 Aim and objectives	89
1.9.1 Aim	89
1.9.2 Objectives	89
2.0 MATERIALS AND METHODS	<u>90</u>
2.1 The isolated tissue experiments	91
2.1.1 Guinea-pig bronchial preparation	92
2.1.2 Apparatus setup and maintenance	92
2.1.3 Experimental designs	94
2.1.4 Analysis of data from isolated tissue experiments	97 92
2.1.5 Drugs used in the study	98
2.2 Cell cultures	101
2.2.1 Human bronchial epithelial 16HBE cells	101
2.2.2 Chinese hamster ovary cells	103
2.3 Patch clamp technique	104
2.3.1 Procedure	106
2.3.2 Experimental protocol	107
2.3.3 Analysis of data from electrophysiological experiments	107
2.3.4 Drugs used in the study	108
2.4 Polymerase chain reaction	109
2.4.1 Isolation of total RNA and determination of the RNA concentration	111
2.4.2 RNA gel electrophoresis	114
2.4.3 cDNA synthesis	115
2.4.4 PCR	116
2.4.5 DNA gel electrophoresis	120
2.5 Western blotting	121
2.5.1 Protein extraction from 16HBE cells and CHO-hCB ₁ /CB ₂ cells	121
2.5.2 Determination of the protein concentration levels	122
2.5.3 SDS-PAGE electrophoresis	124
2.5.4 Immunoblotting of the protein	126
2.5.5 Detection of chemiluminiscence and film development	128

2.6 FLIPR	129
2.6.1 Analysis of data from FLIPR experiments 2.6.2 Drugs used in the study	130 131
3.0 RESULTS	<u>132</u>
3.1 Could the cannabinoid system be involved in neurogenic inflammation?	133
3.1.1 Pharmacological characterization of eNANC responses3.1.2 The effect of synthetic cannabinoids on eNANC responses3.1.3 The effect of AEA and PEA on eNANC responses3.1.4 The effect of VIR on eNANC responses	133 135 138 140
3.2 The effect of VIR on isolated guinea-pig bronchi	141
3.2.1 VIR-induced bronchoconstriction3.2.2 Pharmacological analysis of VIR-induced bronchoconstriction	141 144
3.3 Is GPR55 present and activated in isolated guinea-pig bronchi?	151
3.4 Is FAAH constitutively active in isolated guinea-pig bronchi?	155
3.5 Might CBD and URB597 act through the same mechanism in AEA-induced bronchoconstriction of isolated guinea-pig bronchi?	159
3.6 Is there an interaction between CBD and NK ₂ receptors on isolated guinea-pig bronchial smooth muscle?	161
3.6.1 NKA-induced bronchoconstriction	161
3.6.2 Pharmacological examination of NKA-induced bronchoconstriction in the presence of CBD	163
3.7 Is there an indirect effect of Δ^9 -THC on sensory nerves of isolated guinea-pig bronchi?	178
3.8 Might cannabinoids be beneficial in the treatment of allergic asthma?	186
3.8.1 The study of the action of CBD in allergic asthma3.8.2 The study of the action of CBD in non-allergic conditions	186 192
3.9 Identification of ion channel activity in response to cannabinoids in 16HBE cells	198
3.9.1 Identification of voltage-gated ion channels3.9.2 The effect of ATP on 16HBE cells3.9.3 The effect of cannabinoids on 16HBE cells	198 200 202

3.10 Identification of CB ₁ /CB ₂ receptor mRNAs in 16HBE cells and transfected CHO cells	208
3.11 Identification of CB ₁ /CB ₂ receptor proteins in 16HBE cells and transfected CHO cells	211
3.12 Identification of [Ca ²⁺] _i elevation in 16HBE cells	215
4.0 DISCUSSION	<u>217</u>
4.1 Isolated guinea-pig bronchial preparation	219
4.1.1 Could the cannabinoid system be involved in neurogenic	• 1 0
inflammation?	219
4.1.2 The effect of AEA and VIR on isolated guinea-pig bronchi4.1.3 Is FAAH constitutively active in isolated guinea-pig bronchi?4.1.4 Are VIR and its vehicle absolute ethanol metabolized in	227 230
isolated guinea-pig bronchi?	234
4.1.5 Is GPR55 present and activated in isolated guinea-pig bronchi?4.1.6 Might CBD and URB597 act through the same mechanism in	237
AEA-induced bronchoconstriction of isolated guinea-pig bronchi? 4.1.7 Is there an interaction between CBD and NK ₂ receptors on isolated	241
guinea-pig bronchial smooth muscle? 4.1.8 Is there an indirect effect of Δ^9 -THC on sensory nerves of isolated	243
guinea-pig bronchi?	249
4.1.9 Might cannabinoids be beneficial in the treatment of allergic asthma?	254
4.2 Human bronchial epithelial cells 16HBE	271
4.2.1 Identification of ion channel activity in response to cannabinoids in	
16HBE cells	271
4.2.2 Identification of CB_1/CB_2 receptors in 16HBE cells	275
4.2.3 Identification of $[Ca^{2+}]_i$ elevation in 16HBE cells	277
4.3 Conclusion	281
4.4 Further work	283
5.0 REFERENCES	289

Abbreviation

AC	Adenylate cyclase
ACh	Acetylcholine
AEA	Anandamide
2-AG	2-arachidonylglycerol
AMT	AEA membrane transporter
ANS	Autonomic nervous system
APC	Antigen presenting cell
ASM	Airway smooth muscle
BAL	Bronchoalveolar lavage
bFGF	Basic fibroblast growth factor
BSA	Bovine serum albumin
$[Ca^{2+}]_i$	Intracellular calcium concentration
CB ₁	Cannabinoid receptor 1
CB ₂	Cannabinoid receptor 2
CCE	Capacitative Ca ²⁺ entry
CCh	Carbachol
cDNA	Complementary DNA
CFTR	Cystic fibrosis transmembrane conductance regulator
CGRP	Calcitonin gene related peptide
COPD	Chronic obstructive pulmonary disease
COX	Cycloxygenase
CPS	Capsaicin
CysLTs	Cysteinyl leukotrienes
DEPC water	Diethylpyrocarbonate water

DMSO	Dimethyl sulfoxide
dNTPs	Deoxynucleotide triphosphates
EAR	Early asthmatic response
EB	Eosinophilic bronchitis
EDTA	Ethylenediaminetetraacetic acid
EFS	Electrical-field stimulation
EGRF	Epidermal growth factor receptor
EMTU	Epithelial mesenchymal trophic unit
eNANC	Excitatory non-adrenergic non-cholinergic
ETI	5,8,11-Eicosatriynoic acid
ETYA	5,8,11,14-Eicosatetraynoic acid
FAAH	Fatty acid amide hydrolase
FBS	Fetal bovine serum
FceRI	High-affinity IgE Fc receptor
FEV ₁	Forced expiratory volume in one second
FLIPR	Fluorescence imaging plate reader
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GIRK	Inwardly rectifying potassium channel
GPBP	Guinea-pig bronchial preparation
GPCR	G-protein coupled receptor
GPCRs	G-protein coupled receptors
16HBE	Human bronchial epithelial cell line
16HBE14o-	Human bronchial epithelial cell line
5-HT	Serotonin
IFN-γ	Interferon-y

IgE	Immunoglobulin E
IL-2	Interleukin 2
IL-4	Interleukin 4
IL-5	Interleukin 5
IL-9	Interleukin 9
IL-13	Interleukin 13
IP ₃	Inositol 1,4,5-trisphosphate
K ⁺ _{Ca}	Calcium-activated potassium channel
LAR	Late asthmatic response
5-LO	5-Lipoxygenase
LTB_4	Leukotriene B ₄
LTs	Leukotrienes
МАРК	Mitogen-activated protein kinase
Maxi-K ⁺ channels	Large conductance Ca^{2+} -activated K ⁺ channels
MIP-1a	Macrophage inflammatory protein-1alfa
NA	
1171	Noradrenaline
NANC	Noradrenaline Non-adrenergic non-cholinergic
NANC	Non-adrenergic non-cholinergic
NANC NEP	Non-adrenergic non-cholinergic Neutral endopeptidase
NANC NEP NGF	Non-adrenergic non-cholinergic Neutral endopeptidase Nerve growth factor
NANC NEP NGF NKA	Non-adrenergic non-cholinergic Neutral endopeptidase Nerve growth factor Neurokinin A
NANC NEP NGF NKA NKB	Non-adrenergic non-cholinergic Neutral endopeptidase Nerve growth factor Neurokinin A Neurokinin B
NANC NEP NGF NKA NKB NO	Non-adrenergic non-cholinergic Neutral endopeptidase Nerve growth factor Neurokinin A Neurokinin B Nitric oxide

PBS	Phosphate buffered saline
PEA	Palmitoylethanolamide
PGs	Prostaglandins
PGE ₂	Prostaglandin E ₂
РКА	Protein kinase A
PLC	Phospholipase C
PMSF	Phenylmethylsulphonyl fluoride
Pt	Platinum
PTX	Pertussis toxin
RAR	Rapidly-adapting receptor
RBL-2H3	Rat basophilic leukemia cells
SAR	Slowly-adapting receptor
SCF	Stem cell factor
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SEM	Standard error of the mean
SP	Substance P
SYK	Spleen tyrosine kinase
TEMED	N,N,N',N'-Tetramethylethylenediamine
TGF-β	Tissue growth factor-β
Δ^9 -THC	(-)- Δ^9 -Tetrahydrocannabinol
Th2 lymphocytes	T helper 2 lymphocytes
TJs	Tight junctions
TNF-α	Tumor-necrosis factor-a
Tris	Trishydroxymethylaminomethane
TrkA	Tyrosine kinase receptor

\mathbf{TRPV}_1	Transient receptor potential vanilloid-1
TTX	Tetrodotoxin
VIP	Vasoactive intestinal peptide
VIR	Virodhamine