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ABSTRACT 

In order to exploit the advantages of receptor-based virtual screening, namely time/cost saving and 

specificity, it is important to rely on algorithms that predict a high number of active ligands at the top 

ranks of a small molecule database. Towards that goal consensus methods combining the results of 

several docking algorithms were developed and compared against the individual algorithms. 

Furthermore, a recently proposed rescoring method based on drug efficiency indices was evaluated. 

Among AutoDock Vina 1.0, AutoDock 4.2 and GemDock, AutoDock Vina was the best performing 

single method in predicting high affinity ligands from a database of known ligands and decoys. The 

rescoring of predicted binding energies with the water/butanol partition coeffcient did not lead to an 

improvement averaged over all receptor targets. Various consensus algorithms were investigated 

and a simple combination of AutoDock and AutoDock Vina results gave the most consistent 

performance that showed early enrichment of known ligands for all receptor targets investigated. In 

case a number of ligands is known for a specific target, every method proposed in this study should 

be evaluated.  
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1. Introduction 

Receptor-based virtual screening docks each molecule of a library into a receptor binding site of 

known or predicted 3D structure. It has been successfully used to predict high affinity protein ligands 

[1, 2].  The molecules of the library are ranked according to their predicted binding affinity for the 

receptor. Apart from saving time and costs in the discovery of ligands for a protein target, an 

additional benefit is the increased specificity of the predicted ligands, because receptor-based virtual 

screening is directed against a known binding site or even against a particular receptor conformation 

[3]. Receptor-based virtual screening can also be applied to smaller fragment-like molecules than can 

be progressed into high-affinity inhibitors [4]. For targeting protein-protein interactions critical 

binding motifs were replaced with drug-like molecules through the docking of fragment libraries . 

This enables the targeting of specific binding sites that are evolutionary conserved in pathogens such 

as the influenza virus [5] or conversely, for endogenous diseases targeting of binding sites that are 

not conserved among homologous proteins in order to avoid side effects. Critical for the success of a 

virtual screening experiment is the prediction of binding affinities for the ligand to the receptor. 

Previous studies have attempted to increase the correlation between predicted and experimental 

binding affinities. With the consensus docking method VoteDock that combines seven docking 

algorithms a Pearson correlation coefficient of 0.5 to 0.6 was observed [6]. Another approach 
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directed at the re-scoring of predicted binding energies with various ligand-derived chemical 

parameters, such as the water/butanol partition coeffcient achieved correlation coefficients of better 

than 0.9 for individual docking methods [7]. However, these studies did not consider decoy ligands, 

but only the ligands included in the receptor-ligand complex contained in the PDBbind database [8]. 

High correlation coefficients between predicted and experimental binding affinities can be 

meaningless, if they do not lead to a separation between ligand and decoy molecules as shown in 

this study. 

The present study reveals the first evaluation of the virtual screening performance of the new 

software AutoDock Vina [9], the new version of AutoDock 4.2 [10] and Gemdock [11] against  a 

selection of targets from the Database of Useful Decoys [12] (DUD). In addition, various strategies of 

combining the results of two or more docking algorithms were developed and and the utility of 

recently published ligand efficiency indices [7] was evaluated. DUD contains protein targets with 

known ligands and decoys that have similar physico-chemical properties to known ligands; thus it 

provides a challenging test case for virtual screening methods. The performance of virtual screening 

methods depends on the protein target, therefore, for this work ten targets were selected based on 

previously reported enrichment factors [12] providing a combination of challenging and easy targets. 

 

2. Results and Discussion 

The virtual screening performance was analysed with Receiver Operator Characteristic (ROC) curves, 

where the prediction rate of true ligands (true positives) was plotted against the rate of false 

positives. Examples of ROC curves for various methods are shown in figure 1 for the target RXRa. 

Important for the realisation of the cost- and time-saving features of virtual screening experiments is 

the prediction of active ligands at the highest ranks of database. In order to capture this ‘early’ 

performance the ROC Enrichment (ROCE) factors at 2% of the ligand/decoy database were calculated 

for all methods and targets. It was obtained as the prediction rate of true ligands (true positives) 

divided by the rate of false positives, where an ROCE factor of one denotes no improvement above 

random picking of molecules, while an ROCE factor above one denotes better than random 

performance. Other measures including the widely reported enrichment factors are shown in the 

supporting information.  

 

The resulting ROCE factors shown in table 1 are highly variable between methods and targets ranging 

from ROCE2% = 0 to 146. There is substantial target variation from easy targets that achieve 

reasonable performance with any method to difficult targets that achieve a low performance with 

every method. Among the individual docking methods, AutoDock Vina shows the best performance 
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with an average ROCE2% = 12.5±3.7, which is also the second best overall performance, while the best 

consensus approach is the simple joining method of AutoDock and AutoDock Vina rank lists with an 

average ROCE2% = 23±13. It should be noted the standard errors reported represent between-target 

variation, while a repeat docking with the same target yielded almost identical results. The rescoring 

of the binding energies ΔG with the water/butanol partition coefficient P according to log(-ΔG/P) as 

suggested by Garcia-Sosa et al. [7], did not lead to a significant improvement. The authors of this 

study reported an improvement of correlation coefficient between calculated and experimental 

binding energies from 0.347 for the AutoDock calculated binding energies to 0.996 after rescoring. A 

reason for the lack of improvement in the current study may be the challenging DUD decoy set, 

which was chosen according to physico-chemical similarity with the known ligands [12]. 

Most notably, the simple method of joining of AutoDock and AutoDock Vina rank lists illustrated in 

figure 2 achieved above random performance for all targets. This is important in situations, where no 

existing ligand for a target is known. In the situation, when a number of ligands is known for a 

protein target all methods should be tested as table 1 shows that even methods with a low average 

performance can perform well on a particular target, e.g. for the target FGFr1 the rescoring with the 

water/octanol partition coefficient yielded the best performance of ROCE2% = 8.0. 

It is interesting, to note the relationship between the ranking of ligands from various docking 

methods as shown in figure 3 for the example of the target RXRa. If two docking methods were 

prefect predictors of binding affinity, all rankings between the two methods should fall on a straight 

line in figure 2. In reality there is almost no correlation between the ranks obtained by two different 

docking algorithms, even if they were developed in the same research group such as AutoDock and 

AutoDock Vina (figure 3a). There is a weak correlation for the highest ranked predictions up to rank 

120 as highlighted in figure 3. While this lack of correlation shows that docking methods are far from 

perfect, it also provides the opportunity to combine predictions from different methods it was 

exploited in the current study. 

For the two most difficult targets, AchE and FGFr1, further approaches were investigated such as 

increasing the calculation time of individual methods by a factor of three or combining two or more 

rank lists by calculating a consensus rank (method 4). The results in table 2 showed that the increase 

of docking calculation time by a factor of three lead to a minimal or no improvement apart from 

GemDock. However, the GemDock performance did not improve to any level higher than shown in 

table 1. The consensus scoring methods did not show any improvements compared to the methods 

discussed previously. 

The following recommendations can be derived from the results reported in this work. If active 

ligands for a target are known, the performance of predicting new ligands can be improved by 

choosing between different docking methods or a combination thereof. If no active ligands are 
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known, the performance of ligand prediction can be improved through a consensus method based on 

a simple combination of AutoDock and AutoDock Vina rank lists. The software for employing the 

consensus methods is available from the author upon request. 

 

3. Conclusion 

In summary, this communication reports about the development of new consensus methods for 

virtual screening, which are evaluated against three individual molecular docking algorithms. Among 

the individual docking algorithms AutoDock Vina achieved the best performance in the early 

enrichment of known ligands followed by GemDock and AutoDock 4.2. A simple joining of AutoDock 

4.2 and AutoDock Vina rankings gave the best early enrichment performance that lead to enrichment 

above random in every case, while individual methods failed for some targets investigated. These 

results are important for the early stages of drug discovery as well as academic research, where 

costly and time-consuming laboratory experiments can be replaced with in silico methods. 

  

4. Computational methods 

AutoDock 4.2 [10, 13] was used with the Lamarckian Genetic algorithm. Default parameters as shown 

in the supporting information were used except that the frequency of performing a local search was 

set to 0.15 (for all settings see supporting information). AutoDock Vina[9] version 1.02 was employed 

with default parameters and GemDock[11] parameters were adjusted to a population size of 300, 80 

generations and 5 solutions resulting in a similar docking time/CPU than AutoDock. Various strategies 

of improving the recall of known ligands in the top 2% of the ranked ligand databases were employed 

such as 1) the rescoring of the ranked list with the computed water/octanol partition coefficient [14] 

P according to the equation new_score = log10 (-score/P) as suggested by Garcia-Sosa et al. [7]; 2) the 

combination of two or three ranked ligand lists by choosing the ligands that are common among the 

top n ligands of each list, whereby n is counted in steps of five to the maximum number of ligands 

(CommonTop); 3) a simple joining of ranked ligand list by choosing the top n (n = 1, 2, 3, …) ligand 

from each list , if it was not chosen previously; 4) a consensus scoring method, where for each ligand 

a weighted average rank was computed from two or more rank lists. The weight was decreased 

linearly from 1.0 to 0.0 based on the position of the ligand in the rank list. The processing of rank lists 

was performed with PERL scripts developed in-house, that are available from the author on request. 

The virtual screening performance was evaluated as suggest by Nicholls [15] with Receiver Operator 

Characteristics Enrichment (ROCE) by dividing the fraction of true positives by the fraction of false 

positives at 2% of the ligand/decoy molecules. An ROCE2% value of 1.0 is expected for random picking 

of ligands.  According to Nicholls [15], the ROCE provides a more robust measure of performance 
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than the commonly reported enrichment factor, since the enrichment factor depends on the number 

of actives contained in a database. Enrichment factors for comparison with other studies and ROCE1% 

are shown in the supporting information. Instant Jchem (ChemAxon, http://www.chemaxon.com) 

was used for structure database management. 
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Figures 

 

Figure 1. Receiver Operator Characteristics (ROC) curves for virtual screening against the target RXRa. 

A) ROC curves obtained with standard methods AutoDock, AutoDock Vina and GemDock, B) ROC 

curves obtained after recalculating the binding affinities with the XlogP3 calculated butanol/water 

partition, C) ROC curves obtained from a combination of standard methods using the CommonTop 

algorithm, D) ROC curves obtained from a combination of standard methods with the joining 

algorithm. 
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Figure 2: Flowchart of the consensus method based on a simple joining of rank lists from individual 

methods. 
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Figure 3: Correlation between the ranking of molecules in the DUD dataset for the target RXRa. The 

rank obtained with one docking algorithm was plotted agains the rank obtained with another 

algorithm. The area surrounded by a dashed line highlights some correlation observed at the highest 

ranking ligands. A) AutoDock Vina ranks plotted against AutoDock ranks, B) GemDock ranks plotted 

against AutoDock ranks and C) GemDock ranks plotted against AutoDock Vina ranks. 
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Tables 

 
Table 1: Receiver Operator Curve enrichment (ROCE) at 2% of ligands for various targets and 
methods. 

Method Target 
AchE CDK2 COMT FGFr1 HIVRT InhA PPARg PR RXRa VEGFr2 Mean StdErrd 

AD4 1.5 17.1 0.0 2.2 2.6 16.0 0.6 13.1 31.2 7.2 9.2 2.1 
Vina 1.5 13.3 10.4 0.0 8.8 16.0 35.8 2.0 31.2 6.2 12.5 3.7 
GemD 1.5 7.1 17.9 4.0 7.4 2.5 9.3 6.9 31.2 7.2 9.5 2.7 
AD4-Pa 1.5 5.6 0.0 8.0 3.9 2.5 8.5 0.0 31.2 4.5 6.6 2.7 
Vina-P 1.5 5.6 0.0 1.3 5.6 2.5 5.9 0.0 31.2 4.5 5.8 2.8 
GemD-P 2.5 5.6 0.0 2.7 3.9 2.5 8.5 2.0 31.2 4.5 6.3 2.7 
CT-AVb 2.5 13.3 0.0 0.9 2.6 20.9 2.6 2.0 54.9 5.4 10.5 5.1 
CT-AGb 0.0 10.0 0.0 3.1 5.6 20.9 2.6 4.3 31.8 4.5 8.3 3.1 
CT-VGb 0.5 11.3 17.9 1.3 5.6 19.9 15.9 2.0 24.2 6.2 10.5 2.6 
CT-AVGb 0.0 8.2 0.0 1.8 2.6 19.9 3.4 0.0 31.8 6.2 7.4 3.1 
J-AVc 1.5 14.7 10.4 1.7 7.4 19.9 17.1 6.9 146.3 7.2 23.3 13.1 
J-AG 2.5 10.0 4.4 4.7 7.4 21.7 8.3 9.8 18.2 7.2 9.4 1.8 
J-VG 2.0 11.3 10.4 2.7 10.9 16.8 24.7 4.3 24.2 7.2 11.5 2.5 
J-AVG 2.5 8.2 10.4 4.0 8.8 19.9 15.9 6.9 31.8 9.2 11.8 2.6 
a Binding energy scores of the ranked list were recalculated with the computed water/octanol 
partition coefficient, as new_score = log10 (-score/P). 
b The ligands, which were common to AutoDock and AutoDock Vina in the top n positions were 
chosen (with n = 1, 2, 3, …), AG: AutoDock/GemDock, VG: Vina/GemDock, AVG: 
AutoDock/Vina/GemDock 
c Joined rank lists 
d The standard error was calculated as the sample standard deviation divided by the square root of 
the number of targets, i.e. ten. 
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Table 2: Receiver Operator Curve enrichment (ROCE) at 2% for the two most difficult targets 
employing additional methods. 

Method Target 
AchE FGFr1 

AD4 1.5 2.2 
Vina 1.5 0.0 
GemD 1.5 4.0 
AD4 x3a 1.5 2.7 
Vina x3b 0.95 0.4 
GemD x3a 2.0 6.5 
Cons-AVc 2.5 1.0 
Cons-AG 1.0 2.5 
Cons-VG 0.5 0 
Cons-AVG 0.0 1.0 
a The number of calculations was increased by a factor of 3. 
b  In AutoDock Vina the exhaustiveness parameter was increased from 8 to 24.  
c Consensus method that calculates an average rank from two or more ranked lists and applies a 
weighting factor from 1.0 to 0.0 based on the position of a molecule in the individual ranked list, i.e. 
molecules at the top are contributing more to the average rank. 
 

 


