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ABSTRACT	

Singing	voice	separation	(SVS)	can	be	defined	as	the	process	of	extracting	the	

vocal	 element	 from	 a	 given	 song	 recording.	 The	 impetus	 for	 research	 in	 this	

area	 is	 mainly	 that	 of	 facilitating	 certain	 important	 applications	 of	 music	

information	 retrieval	 (MIR)	 such	 as	 lyrics	 recognition,	 singer	 identification,	

and	melody	extraction.	

To	date,	the	research	in	the	field	of	SVS	has	been	relatively	limited,	and	mainly	

focused	 on	 the	 extraction	 of	 vocals	 from	 monophonic	 sources.	 The	 general	

approach	 in	 this	 scenario	 has	 been	one	 of	 considering	 SVS	 as	 a	 blind	 source	

separation	 (BSS)	 problem.	 Given	 the	 inherent	 diversity	 of	 music,	 such	 an	

approach	is	motivated	by	the	quest	for	a	generic	solution.	However,	it	does	not	

allow	 the	 exploitation	 of	 prior	 information,	 regarding	 the	 way	 in	 which	

commercial	music	is	produced.		

To	 this	 end,	 investigations	 are	 conducted	 into	 effective	 methods	 for	

unsupervised	separation	of	singing	voice	from	stereophonic	studio	recordings.	

The	work	involves	extensive	 literature	review	of	existing	methods	that	relate	

to	 SVS,	 as	 well	 as	 commercial	 approaches.	 Following	 the	 identification	 of	

shortcomings	 of	 the	 conventional	 methods,	 two	 novel	 approaches	 are	

developed	 for	 the	 purpose	 of	 SVS.	 These	 approaches,	 termed	 SEMANICS	 and	

SEMANTICS	 draw	 their	 motivation	 from	 statistical	 as	 well	 as	 spectral	

properties	 of	 the	 target	 signal	 and	 focus	 on	 the	 separation	 of	 voice	 in	 the	

frequency	domain.	 In	addition,	a	 third	method,	named	Hybrid	SEMANTICS,	 is	

introduced	that	addresses	time‐,	as	well	as	frequency‐domain	separation.		

As	there	is	lack	of	a	concrete	standardised	music	database	that	includes	a	large	

number	of	songs,	a	dataset	is	created	using	conventional	stereophonic	mixing	

methods.	Using	this	database,	and	based	on	widely	adopted	objective	metrics,	

the	 effectiveness	 of	 the	 proposed	 methods	 has	 been	 evaluated	 through	

thorough	experimental	investigations.	 	
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1.1 Singing	voice	separation	

The	human	auditory	system	is	able	to	perform	a	significant	number	of	complex	

tasks,	 given	only	 two	 input	 streams	 (from	 the	 left	 and	 the	 right	 ears).	 These	

tasks	 include	 identifying	 the	nature	of	 a	 source	 that	 is	present	 in	 the	 stream	

(e.g.	if	a	source	is	speech,	musical	instrument,	or	noise),	its	position	and	pitch	

in	 relation	 to	 other	 sources	 and,	 in	 the	 case	 of	 a	 speech	 source,	 the	 words	

spoken.	More	formally,	humans	are	able	to	derive	a	semantic	understanding	of	

audio	 and	 they	 are	 able	 to	 perform	 these	 tasks	 with	 streams	 that	 contain	

multiple	 time‐	and	 frequency‐overlapping	sources,	 even	when	 the	 interfering	

energy	is	close	to	or	exceeds	the	energy	of	the	target	source.	The	human	ability	

to	focus	on	a	specific	source	from	within	a	mixture	is	known	as	auditory	scene	

analysis	(ASA)	[1].		

Conversely,	 machines	 are	 not	 yet	 able	 to	 fully	 separate	 multi‐

sourced/polyphonic	audio	streams	of	which	music	is	a	particularly	challenging	

example.	Although	 today’s	music	 recording	 and	production	 is	 largely	 carried	

out	using	computers,	 the	processing	of	 information	 in	 these	 recordings	often	



Introduction	

2	 Singing	voice	separation	from	stereophonic	recordings	

requires	 manual	 intervention.	 This	 is	 because,	 in	 contrast	 with	 humans,	

machines	 cannot	 yet	 provide	 the	 full	 capability	 required	 for	 recognising	 the	

genre	of	a	music	piece,	its	harmonic	structure,	the	lyrics,	or	the	identity	of	the	

singer.		

The	 main	 obstacle	 in	 this	 respect	 appears	 to	 be	 the	 lack	 of	 an	 automated	

process	to	“focus”	on	individual	sources	of	a	polyphonic	stream	[2],	in	the	way	

humans	can.	As	a	result,	 the	research	in	this	field	has	been	largely	concerned	

with	 the	 separation	 of	 individual	 sources	 in	 a	 given	music	mixture	 [3,	 4].	 A	

major	 facet	 of	 the	 effort	 in	 this	 respect	 is	 the	 extraction	 of	 human	 voice	

(singing),	 which	 is	 arguably	 the	most	 information‐rich	 content	 of	 music	 [5].	

The	specific	field	of	research	that	addresses	this	area	of	separation/extraction	

is	termed	singing	voice	separation	(SVS).		

1.2 Motivation	for	singing	voice	separation	

In	the	pre‐digital	computing	era,	musicians	and	enthusiasts	relied	on	thematic	

catalogues.	 These	 catalogues	 allowed	 positive	 identification	 of	 music	 pieces	

while	 using	 a	 minimum	 of	 space	 and	 symbols	 [6].	 They	 contained	

representative	 fragments,	 i.e.	 incipits,	 of	 scores	 that	 usually	 depicted	 the	

beginning	of	a	score,	but	sometimes	they	represented	the	principal	melody	or	

theme	 of	 a	musical	work	 [7].	 Thematic	 catalogues	were	 usually	 produced	 by	

scholars	that	concentrated	on	the	works	of	a	particular	composer.	The	Köchel‐

Verzeichnis	 (KV)	 [8]	 and	 the	 Bach‐Werke‐Verzeichnis	 (BWV)	 [9]	 are	 two	

popular	 examples	 of	 such	 catalogues	 that	 refer	 to	 the	 works	 of	 Wolfgang	

Amadeus	Mozart	and	Johann	Sebastian	Bach	respectively.		

This	 method	 of	 organising	 music	 information	 has	 become	 unsustainable	 as	

well	as	inefficient,	due	to	the	inability	of	Western	music	notation	to	accurately	

represent	 the	 contemporary	 literature	 of	music,	 the	 rapid	 change	 of	musical	

forms	 (e.g.	 frequent	 absence	 of	 thematic	 structure),	 the	 emergence	 of	
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electronically	 synthesised	 innovative	 sounds,	 and	 the	 sheer	 growth	 of	music	

track	production.	In	addition,	the	exuberance	of	music	that	is	available	online	

demonstrates	the	need	for	an	automated	and	robust	system	that	can	aid	users	

to	identify,	verify,	and	locate	music	pieces.	

The	 intuitive	 solution	 to	 the	 above	 is	 computer‐assisted	 music	 information	

retrieval	(MIR).		Although	this	idea	has	been	addressed	as	early	as	in	1966	[10],	

the	truth	remains	that	the	field	is	still	in	its	infancy	[2].	One	of	the	main	reasons	

is	 that	 important	 applications	 of	MIR	 such	 as	 song	 identification	 [11],	 singer	

identification	 [12],	 melody	 extraction,	 lyrics	 recognition	 [13],	 and	 lyrics	

alignment	 [14]	 require	 the	 vocal	 element	 alone	 and	 hence	 the	 effective	

separation	of	this	from	the	accompanying	music	[15,	16].		This	is	supported	by	

[17,	 18]	 where	 the	 authors	 have	 found	 limited	 success	 when	 they	 tried	 to	

extract	 information	 from	 a	music	 track	 without	 prior	 separation	 of	 sources.	

MIR	 can	 be	 broadly	 separated	 in	 two	 categories	 (Figure	 1.1):	 the	 symbolic,	

which	 is	 based	 on	 retrieval	 based	 on	 symbolic	 representation	 (e.g.	 music	

notation	and	musical	instrument	digital	interface,	a.k.a.	MIDI	information	[19]),	

and	retrieval	that	draws	its	information	from	the	audio	signal	of	the	piece,	i.e.	

audio	 information	retrieval	(AIR)	[20].	The	symbolic	route,	however,	exhibits	

the	 aforementioned	 shortcomings,	 while	 AIR	 is	 more	 appropriate	 to	 the	

current	 digital	 era,	where	music	 is	 frequently	 produced	without	 the	 use	 of	 a	

score.	 As	 can	 be	 seen	 in	 the	 figure,	 particularly	 for	 the	 case	 of	 AIR,	 source	

separation	can	play	a	catalytic	role	in	the	workflow	of	MIR.	

Evidently,	 tackling	 this	 “bottleneck”	 in	 MIR	 clears	 the	 pathway	 for	 content‐

based	multimedia	 search.	 Currently,	 Internet	 search	 engines	 (Google,	 Yahoo,	

Ask,	 etc.),	 that	 have	 significantly	 facilitated	 Internet	 use,	 can	 only	 use	 text‐

based	 information	 that	 their	 algorithms/spiders	 can	 crawl	 through.	 When	

targeting	 multimedia,	 such	 engines	 rely	 solely	 on	 metadata	 [21],	 which	 are	

entered	manually	and	are,	thus,	prone	to	human	error	and	subjectivity.	
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Figure	1.1:	Schematic	representation	of	the	workflow	of	MIR	
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people’s	 conversations.	This	problem	was	 initially	described	by	Helmholtz	 in	

1863	as	the	Ball‐room	problem		[22]	but	is	nowadays	rather	known	by	Cherry’s	

description	 in	 1953	 as	 the	 cocktail	 party	 problem	 (CPP)	 [23].	 This	 case	 is	

closely	related	to	the	research	field	of	blind	source	separation	(BSS)	[24],	where	

the	 term	 “blind”	 implies	 that	 only	weak	 assumptions	 can	be	made	 about	 the	

nature	of	the	sources.	

In	 the	 case	 of	 SVS,	 the	 “room	 ambience”	 [25]	 of	 the	 Cocktail	 Party	 is	

represented	 by	 an	 observed	 mixture	 of	 musical	 sources	 (i.e.	 the	 music	

accompaniment	 of	 a	 song),	 and	 the	 challenge	 is	 the	 extraction	 of	 the	 singing	

voice.	 Generally,	 the	 observed	 mixture	 can	 be	 produced	 in	 a	 physical	 or	

simulated	space	 (i.e.	 live	or	 studio	 recording),	 and	can	comprise	one,	 two,	or	

multiple	 channels	 (mono,	 stereo,	 etc.).	 There	 are	 two	 essential	 phases	 in	 the	

process	of	SVS:	 the	segregation	of	vocal	 from	non‐vocal	segments	 in	 the	time	

domain	 [26],	 and	 the	 separation	 of	 vocal	 from	music	 accompaniment	 in	 the	

frequency	domain.		

Overall,	 the	 vocal	 vs.	 non‐vocal	 segregation	 (also	 named	 singer’s	 voice	

detection	[27]),	resembles	the	common	approach	in	speaker	change	detection	

[28]:	initially,	the	signal	is	divided	into	segments,	and	compact	representations	

of	these	segments	are	obtained	(i.e.	features).	The	segments	(i.e.	the	features	of	

the	segments)	are	tested	against	each	other,	and	are	classified	into	two	classes	

(vocal	and	non‐vocal).		

In	contrast,	 frequency‐domain	approach	poses	a	 far	more	complex	challenge,	

and	there	are	many	pathways	that	have	been	explored	over	the	recent	years.	

The	usual	method	in	this	scenario	is	one	of	considering	SVS	as	a	BSS	problem	

[29,	30].	Given	the	inherent	diversity	of	music,	such	an	approach	is	motivated	

by	the	quest	for	a	generic	solution.	For	this	purpose,	the	methods	proposed	by	

the	 community	 draw	 their	 inspiration	 from	 disciplines	 across	 a	 plethora	 of	

fields,	 such	 as	 neuroscience	 [31],	 cognitive	 psychology	 [32],	 and	

psychoacoustics	[33].	
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However,	 the	 common	 denominator	 in	 all	 of	 these	 endeavours	 is	 that	

researchers	 try	 to	 simplify	 the	 challenge	 by	 assuming	 some	 sort	 of	 prior	

knowledge	 about	 the	 nature	 of	 the	 observed	 mixtures.	 In	 other	 words,	 the	

initial	step	is	to	make	the	case	less	“blind”.	As	expected,	different	assumptions	

dictate	different	approaches.	Nevertheless,	 it	 should	be	noted	 that	one	of	 the	

contributing	 factors	 to	 the	 complexity	 of	 this	 challenge	 is	 that	 these	

assumptions	 can	 only	 be	 minor	 due	 to	 the	 heterogeneity	 of	 music.	

Notwithstanding	 the	 above,	 common	 hypotheses	 that	 have	 been	 made	

throughout	the	literature	derive	from	the	production	process	of	recordings	in	

commercial	music.	

1.4 Challenges	

Intuitively,	 the	 solution	 to	 the	 challenge	 of	 SVS	 is	 to	 imitate	 the	 cognitive	

functions	 of	 the	 brain.	 Indeed,	 this	 seems	 to	 be	 one	 of	 the	 most	 intriguing	

barriers	in	the	path	to	a	generic	solution,	as	there	is	little	understanding	of	how	

exactly	the	human	brain	perceives	and	processes	audio	signals	in	general,	and	

in	particular	music.	

The	 vocal	 vs.	 non‐vocal	 discrimination	 in	 the	 time	 domain	 (mentioned	 in	

Section	 1.3)	 	 has	 been	 the	 subject	 of	 extensive	 research	 and	 is	 producing	

promising	 results	 [26,	 27].	 On	 the	 other	 hand,	 the	 separation	 in	 frequency	

domain	has	not	been	found	as	effective.	This	 is	because	 it	does	not	entail	 the	

use	 of	 such	 effective	 analysis	 means	 as	 those	 deployed	 in	 the	 time‐domain	

methods	 (feature	 extraction	 –	 modelling	 –	 classification).	 	 As	 mentioned	

before,	the	diversity	in	music	songs	is	vast:	the	singer	can	be	any	human	being	

and	the	number	and	type	of	instruments	can	vary	from	a	symphonic	orchestra,	

to	 just	 a	 single	 synthesised	 sound	accompaniment.	Assumptions	 cannot	even	

be	made	for	a	set	of	possible	music	instruments.	On	the	contrary,	originality	of	

sound	 is	 a	 highly	 sought‐after	 concept,	 which	 encourages	 the	 producers	

/composers	 to	 try	 “inventing”	 new	 sounds—synthesised	 or	 not	 [34].	 Thus,	 a	
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generic	“music	accompaniment”	model	cannot	be	created.	Even	the	distinction	

between	music,	noise,	and	silence	has	nowadays	become	a	blurry	one	[35‐37].	

In	 addition,	 the	 separation	 in	 the	 frequency	 domain	 poses	 a	 particularly	

complex	 challenge,	 as	 the	 singing	 voice	 and	 the	music	 not	 only	 overlap,	 but	

they	are	also	strongly	correlated.	This	 is	because,	more	often	than	not,	music	

accompanies	 the	 singing	 voice	 harmonically.	 As	 a	 result,	 the	 two	 exhibit	

simultaneous	presence	in	the	same	fundamental	frequencies	and	partials.	

A	less	theoretical	and	more	practical	issue	of	this	research	field	is	the	lack	of	a	

concrete	standardised	music	database	 that	 includes	a	 large	number	of	 songs,	

so	that	researchers	can	have	a	common	reference	point	for	benchmarking	the	

efficacy	of	their	respective	systems.	This	is	a	significant	challenge	for	this	area,	

as	there	is	no	reliable	basis	for	pinpointing	the	state‐of‐the‐art	technology	for	

SVS.	 The	 main	 hindrance	 in	 creating	 such	 a	 database	 is	 the	 copyright	

legislation	 that	 exists	 in	 most	 countries	 and	 the	 considerable	 financial	

resources	 that	 would	 be	 needed	 to	 obtain	 clearance	 for	 a	 large	 and	

comprehensive	database.		

In	recent	years	there	have	been	a	few	attempts	to	create	such	a	database.	The	

studies	 in	 [38,	 39]	 involved	 the	 hiring	 of	 musicians	 in	 order	 to	 produce	 a	

specifically	 research‐orientated	 music	 information	 retrieval	 (MIR)	 database	

(i.e.	the	RWC	Database).	Although	this	database	tackles	the	copyright	problem,	

the	number	of	music	 tracks	 is	very	 small	 (200	 in	 total,	with	only	20	of	 them	

songs).	 In	 [40],	 the	 authors	 describe	 the	 construction	 of	 a	 dataset	 with	

recordings	 that	 are	 available	 in	 the	 public	 domain.	 This	 database	 comprises	

1886	 songs	 but	 only	 of	 10‐second	 duration	 segments	 and	 in	 mp3	 quality.	

Another	effort	was	made	in	2004,	when	the	international	symposium	for	music	

information	 retrieval	 (ISMIR)	 distributed	 a	 dataset	 for	 a	 melody	 pitch	

extraction	contest	[41].	This	dataset	contains	20	excerpts	of	music,	10	of	which	

are	songs.	This	dataset	has	been	used	only	by	a	small	number	of	researchers	

[42],	mainly	because	of	 the	 limited	number	of	diverse	 songs.	 In	addition,	 the	

problem	for	using	any	of	these	databases	for	evaluation	of	an	SVS	system	is	the	
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lack	of	the	clean1	tracks	of	voice	and	music	accompaniment	that	would	serve	as	

ground	 truth	 [43].	 As	 a	 result,	 none	 of	 these	 databases	 is	 widely	 used	 and	

accepted	 as	 a	 reference	 point	 and	 researchers	 tend	 to	 resort	 to	 the	 use	 of	

customised	databases	(e.g.	[44,	45]).	

There	 are	 suggestions	 in	 the	 MIR/MDL	 (music	 digital	 library)	 evaluation	

project	regarding	the	creation	of	a	database	for	MIR	[46],	similar	to	TREC	(text	

retrieval	 conference)	 that	 is	 used	 for	 speech	 recognition	 [47].	 However,	 the	

project	seems	to	have	limited	activity	since	2003	[48].	

1.5 Aims	and	scope	of	the	project	

The	aim	of	this	research	is	to	develop	an	effective	unsupervised	algorithm	for	

isolating2	 the	 singing	 voice	 from	 a	 given	 stereophonic	 mixture	 of	 music	

accompaniment	 and	 singing	 voice	 (i.e.	 a	 song).	 The	 scope	 of	 the	 project	 is	

limited	to	stereophonic	(i.e.	2	observations/channels)	studio	recordings	where	

the	singing	part	is	performed	by	a	solo	human	voice.	This	is	believed	to	be	the	

most	common	approach	to	song	production	over	the	last	fifty	years.	However,	

the	 scope	 is	not	 limited	 to	a	 specific	 genre	or	number/type	of	accompanying	

instruments.		

Given	 the	 above	 aim,	 the	 work	 involves	 a	 systematic	 literature	 survey	 into	

blind	source	separation	in	order	to	establish	the	state‐of‐the‐art	methods	that	

can	be	useful	 for	SVS.	This	 is	envisaged	to	provide	in‐depth	knowledge	of	the	

advantages	and	disadvantages	of	the	various	methods	and	a	clearer	aspect	of	

previous	work	in	the	field.	

As	discussed	previously,	the	separation	in	frequency	domain	is	deemed	as	the	

																																																								

1 The term clean refers to a sound signal that contains neither artefacts nor noise. In the case of SVS, 
this is the clean vocal that is termed a capella. 
2 As mentioned here, the aim of this work is the singing voice extraction. However, since most 
literature refers to this challenge as singing voice separation (SVS), the latter term is preferred in this 
thesis. 
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most	challenging	part	of	 the	field.	Therefore,	a	main	aspect	of	 this	study	is	to	

develop	 methods	 for	 the	 extraction	 of	 the	 singing	 part	 from	 its	 concurrent	

music	 accompaniment.	 This	 is	 in	 addition	 to	 investigating	 methods	 for	

addressing	 the	 time‐domain	 segregation	 issue.	 The	 ultimate	 purpose	 in	 this	

regard	is	the	successful	classification	of	music‐only	segments	and	singing	voice	

segments	 (time	 domain)	 from	 any	 given	 song	 from	 the	 literature	 of	 popular	

music.	

For	 evaluation	 purposes	 and	 experimental	 investigations,	 the	 work	 includes	

the	 development	 of	 a	 suitable	 database	 for	 SVS	 with	 a	 variety	 of	 samples,	

ranging	 from	 simple/ideal	 cases	 to	 real‐world	 scenarios.	 This	 facet	 of	 the	

project	 will	 also	 include	 the	 review	 and	 selection	 of	 meaningful	 evaluation	

systems,	so	that	the	quality	of	separation	can	be	measured	objectively.	

1.6 Organisation	of	the	thesis	

The	 seven	 subsequent	 chapters	 that	 complete	 this	 thesis	 are	 organised	 as	

follows:		

Chapter	2:	Literature	review	

This	chapter	investigates	the	anatomy	of	the	singing	voice,	its	role	in	music	and	

the	differences	that	exist	between	speech	and	singing.	The	existing	commercial	

approaches	 that	 exist	 in	 SVS	 are	 discussed.	 The	 chapter	 also	 gives	 a	 general	

overview	 of	 the	 fields	 of	 auditory	 scene	 analysis	 (ASA)	 and	 computational	

auditory	scene	analysis	(CASA).	

Chapter	3:	Blind	source	separation	and	independent	component	analysis	

In	 this	 chapter,	 two	 approaches	 that	 attempt	 source	 separation	 based	 on	

statistical	properties	of	the	signal	are	described.	These	belong	to	the	family	of	

blind	 source	 separation	 (BSS)	 algorithms	 and	 are	 the	 principal	 component	

analysis	 (PCA)	 and	 the	 independent	 component	 analysis	 (ICA).	 This	 chapter	

also	 focuses	 on	 the	 differences	 of	 the	 aforementioned	 methods	 that	 are	

frequently	vague	in	the	literature.	
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Chapter	4:		Applied	source	extraction	from	polyphonic	mixtures	

The	process	of	stereophonic	music	production	is	described	here	together	with	

an	 approach	 that	 is	 important	 in	 the	 context	 of	 this	 thesis.	 This	 approach,	

named	azimuth	discrimination	 and	 re‐synthesis	 (ADRess),	 has	 the	 advantage	

that	 exploits	 properties	 of	 the	 signal	 that	 are	 specific	 to	 stereophonic	

production.	

Chapter	5:		Singing	extraction	through	modified	ADRess	and	non‐vocal	

independent	component	subtraction	

This	chapter	proposes	a	novel	approach	for	the	purpose	of	stereophonic	SVS,	

which	 combines	 properties	 of	 the	ADRess	method	with	 ICA.	 In	 addition,	 this	

chapter	includes	a	thorough	description	of	the	dataset	of	songs	that	is	used	for	

the	purpose	of	evaluation	in	the	current	study.	The	chapter	concludes	with	the	

experimental	 investigation	 and	 a	 comparative	 evaluation	 of	 SEMANICS	 and	

ADRess.	

Chapter	6:		Singing	extraction	through	multiband	amplitude	enhanced	

thresholding	and	independent	component	subtraction	

Here,	an	extension	of	SEMANICS	is	introduced	and	investigated.	The	main	facet	

of	 this	 approach	 is	 the	 exclusion	 of	 ADRess	 from	 the	 method	 introduced	 in	

Chapter	 4.	 The	 merits	 of	 SEMANTICS	 over	 its	 predecessor	 are	 presented	

through	a	comparative	analysis.	

Chapter	7:	Hybrid	SEMANTICS	

This	 chapter	 proposes	 an	 alternative	 integrated	 approach	 to	 SVS.	 It	 involves	

combining	novel	time‐domain	segregation	procedures	with	a	modified	version	

of	 the	 frequency‐domain	 voice	 isolation	 techniques	 used	 in	 SEMANICS	 and	

SEMANTICS.	 The	 performance	 of	 the	 complete	 system	 (with	 each	 of	 the	

considered	music	pruning	methods)	is	analysed	based	on	a	set	of	experimental	

investigations.	

Chapter	8:	Summary,	conclusions,	and	future	work	

The	final	chapter	provides	a	summary	of	the	work,	and	suggests	a	plethora	of	

ways	in	which	the	project	can	advance.	
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In	 this	 chapter,	 the	 focus	 is	 on	human	voice	with	particular	 emphasis	on	 the	

singing	 voice.	 The	 anatomy	 of	 this	 special	 case	 of	 instrument	 is	 presented	

together	with	the	critical	role	that	it	has	in	music.		In	addition,	the	differences	

of	singing	and	speaking	are	detailed,	and	the	existing	commercial	approaches	

that	attempt	to	separate	voice	from	music	are	discussed.	The	chapter	also	gives	

an	overview	of	the	field	of	auditory	scene	analysis	(ASA)	and	its	computational	

counterpart,	which	is	aptly	named	computational	ASA	(i.e.	CASA).			

2.1 The	singing	voice	

The	human	voice,	while	 capable	 of	 generating	 an	 incredibly	diverse	 range	of	

sounds,	 can	 be	 simply	 described	 in	 mechanical	 terms:	 It	 is	 a	 machine	 that	

consists	of	a	power	supply	(lungs),	an	oscillator	(vocal	folds),	and	a	resonator	
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(larynx,	pharynx,	and	mouth)	[49].	The	capabilities	of	the	human	voice,	which	

include	 the	production	of	 tones	 as	well	 as	noise,	 are	 very	 similar	 to	 those	of	

musical	 instruments	and	 indeed	the	human	voice	has	been	referred	to	as	 the	

first	musical	instrument	[50,	51].	

Formally,	 the	 sounds	 that	 are	 within	 the	 aptitude	 of	 the	 human	 voice	

production	 are	 classified	 into	 three	 broad	 categories:	 the	 voiced	 sounds,	 the	

unvoiced	sounds,	and	the	mixed	sounds.	However,	in	the	context	of	music,	the	

voiced	 sounds	 are	 the	 most	 important	 in	 this	 study,	 and	 that	 is	 where	 the	

weight	of	this	section	lies.	

The	voiced	sounds	are	produced	by	 the	process	of	phonation,	which	 finds	 its	

most	 common	 interpretation	 on	 the	 basis	 of	 the	 myoelastic	 aerodynamic	

principle	 [52,	 53]:	 	 the	power	 supply	 (lungs)	 is	 controlled	by	 the	diaphragm,	

resulting	 in	 expansion	 and	 contraction.	 This	 air	 reservoir	 has	 the	 ability	 to	

maintain	pressure	above	atmospheric	levels.	The	release	of	stored	air	pressure	

in	 the	 lungs,	 chopped	by	 the	vocal	 folds	 (which	act	 as	 the	oscillator),	 creates	

the	sound	[54].	In	practice,	the	folds	are	adducted	(i.e.	constricted)	in	response	

to	nerve	impulses	transmitted	from	the	brain	to	the	muscles	of	the	larynx	and	

in	turn	this	provides	the	necessary	condition	for	vibration	[55].	

The	last	stage	in	this	procedure	is	the	movement	of	the	air	from	the	lungs	and	

restricted	 area	 of	 the	 trachea	 and	 subglottic	 space	 through	 the	 glottis	 to	 a	

bigger	space	which	causes	a	sudden	pressure	drop.	This	loss	of	pressure	takes	

place	 exactly	 at	 the	 level	 of	 the	 vocal	 folds	 which	 are	 consequently	 drawn	

together,	according	to	a	theory	that	is	known	in	fluid	dynamics	as	the	Bernoulli	

principle	 [56]. The	outcome	 is	 a	 complex	 tone,	which	 is	 the	 initial	 source	 for	

voiced	 sounds	 in	 singing,	 as	 well	 as	 in	 speech.	 For	 this	 reason,	 it	 has	 been	

named	 the	 voice	 source	 [49].	 At	 that	 point,	 this	 sound	 is	 analogous	 to	 the	

buzzing	 sound	 of	 a	 trumpet	 player	 when	 their	 lips	 are	 separated	 from	 the	

trumpet	[57].	

In	order	to	produce	the	familiar	vocal	articulations,	the	voice	source	enters	the	
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vocal	tract	(the	resonator).	The	extensive	polymorphism	of	the	vocal	tract	(i.e.	

the	 laryngeal	 cavity,	 the	 pharynx,	 the	 oral	 cavity,	 and	 the	 nasal	 cavity)	 [58],	

which	 is	 unique	 to	 human	 beings,	 renders	 the	 human	 voice	 one	 of	 the	most	

versatile	sound	production	machines	among	the	global	 fauna.	This	 is	because	

of	 the	 dependence	 on	 the	 form	 of	 an	 enclosed	 space	 and	 the	 acoustic	

properties	 that	are	attributed	 to	 this	 space	 [55].	An	 illustration	of	 this	 three‐

part	mechanism	is	provided	in	Figure	2.1.	

	

Figure	2.1:	Illustration	of	the	voice	production	mechanism	[49]	
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While	vocal	folds	are	the	primary	factor	for	one’s	voice	quality	(i.e.	timbre),	the	

ability	to	form	distinctive	sounds	(in	singing	as	well	as	in	speech)	is	accredited	

to	 the	 vocal	 tract.	 Therefore,	 it	 is	 important	 to	 examine	 how	 this	 unique	

instrument	works.		

The	 vocal	 tract	measures	 ca.	 16.9	 cm	 in	males	 and	 14.1	 cm	 in	 females	 [59].	

Much	 like	all	 reed	 instruments,	 it	 is	a	 tube	open	at	one	end	 (the	mouth)	and	

closed	at	the	other	(the	vocal	folds).	Assuming	a	simplified	model	of	a	perfect	

half‐open	acoustic	tube,	the	first	four	partials	are	illustrated	in	Figure	2.2.	The	

velocity	of	sound	(i.e.	v)	is	343.2	m/s	at	20	°C.	

	

Figure	2.2:	The	first	four	partials	of	a	half‐open	tube	

The	right	end	of	the	tube	that	can	be	seen	in	the	figure	is	the	closed	end,	where	

all	the	partials	are	of	zero	amplitude	as	the	air	has	nil	volumetric	flow	rate.	The	

partials	will	reach	maximum	amplitude	at	the	opposite	end	of	the	tube,	which	

is	 open.	 As	 this	 is	 a	 half‐open	 tube,	 the	 partials	 comprise	 only	 the	 odd	

harmonics	 (odd‐quarters	 law).	 In	 reality,	 however,	 the	 vocal	 tract	 is	 much	

more	complex	and	impure.	

As	its	physical	characteristics	can	be	changed,	the	vocal	tract	can	be	seen	as	a	

dynamic	 acoustic	 triple3‐component	 filter,	 which	 results	 in	 resonances	 at	

specific	frequencies.	This	is	how	the	vowels	that	exist	in	languages	throughout	

the	 world	 attain	 their	 distinctive	 acoustic	 signature.	 These	 resonances	 are	

																																																								

3 The three parameters are the positions and forms of the tongue, jaw, and lips. 
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generally	 known	 as	 formants.	 An	 example	 of	 the	 power	 spectrum	 when	 a	

soprano	 sings	 the	 vocal	 ‘ah’	 can	 be	 seen	 in	 Figure	 2.3	 where	 the	 y‐axis	

represents	the	ratio	of	the	power	spectrum	with	the	mouth	open	vs.	that	with	

the	mouth	closed.	

	

Figure	2.3:	Vowel	'Ah'[ɑː]	sung	at	A4	(i.e.	440	Hz)	[60]	

In	this	figure,	it	is	observed	that	the	fundamental	frequency	f0	is	usually	lower	

than	 the	 first	 resonance	 R1.	 The	 harmonics	 of	 f0	 that	 exist	 close	 to	 the	

resonances	Ri	produce	associated	peaks	(i.e.	 formants).	 In	Western	 languages	

vowels	are	mainly	characterised	by	the	positions	of	R1	and	R2	[60].	

In	contrast,	for	unvoiced	sounds	(i.e.	most	consonants)	the	vocal	folds	remain	

in	an	open	position	while	the	increased	air	supply	by	the	 lungs	 is	constricted	

by	 the	 tongue,	 the	 soft	 palate,	 the	 teeth,	 the	 lips,	 or	 a	 combination	 thereof.	

Therefore,	the	unvoiced	sounds	are	a	product	of	air	turbulence.	Finally,	 there	

are	also	the	mixed	sounds	(e.g.	[v]	and	[z])	where	a	combination	of	turbulence	

and	phonation	is	required	[61].	

To	 summarise,	 the	 process	 of	 singing	 can	 be	 seen	 as	 a	 source‐filter	 process	

where	the	excitation	source	and	the	filter	are	independent	(or	at	least	assumed	

independent)	 of	 each	 other	 [62].	 The	 source	 is	 produced	 by	 the	 release	 of	

pressurised	air	 from	the	 lungs	 that	vibrates	 the	vocal	 folds	 in	a	periodic	way	
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(phonation).	The	vocal	tract	acts	as	the	filter	and	simplistically	can	be	modelled	

as	 a	 half	 open	 tube.	 The	 vocal	 tract	 is	 also	 responsible	 for	 the	 characteristic	

resonances,	otherwise	known	as	formants	of	the	voiced	sounds.	The	unvoiced	

and	mixed	 sounds	 require	 a	different	approach	where	 the	vocal	 folds	do	not	

vibrate	and	the	sound	is	produced	through	constriction	of	the	air	(turbulence).	

2.2 The	role	of	voice	in	music	

In	the	field	of	human	science,	the	suggestion	that	the	first	utterance	of	a	human	

was	sung	is	quite	common.	Contrary	to	the	belief	that	“…in	the	beginning	there	

was	the	Word…”	[63],	it	is	thought	that	the	first	humans	tried	to	mimic	natural	

sounds	such	as	the	singing	of	birds	[64].	Although	this	might	seem	an	idea	hard	

to	 fathom,	 one	 should	 consider	 that—at	 the	dawn	of	 humanity—information	

communicated	through	the	human	voice	was	primarily	conveyed	by	means	of	

pitch	 alteration	 [65]4.	 The	 idea	 of	 language	 did	 not	 exist,	 and	 therefore	 the	

different	sounds	that	the	early	human	could	produce	(and	perceive)	exhibited	

severe	 qualitative	 and	 quantitative	 limitations.	 This	 is	 because	 the	 muscles	

involved	in	speech	were	underdeveloped	due	to	lack	of	training,	and	also	due	

to	the	evolution‐driven	descent	of	the	larynx	that	had	not	yet	taken	place	[66].	

As	a	 result,	 “men	sang	out	 their	 feelings	 long	before	 they	were	able	 to	 speak	

their	thoughts”	[67].		

This	 kind	 of	 “singing”,	 however,	 should	 not	 be	 confused	 or	 likened	with	 the	

concept	of	modern	singing	in	a	studio	or	a	concert	hall.	The	character	of	these	

primal	 utterances	 was	 purely	 exclamatory	 and	 stripped	 from	 intellect	 and	

sense.	 Little	 did	 the	 first	 human	 understand,	 that	 he	 was	 laying	 down	 the	

bricks	 for	 the	 foundation	 of	 the	 sole	 universal	 language	 (i.e.	music).	 It	 is	 not	

known	 at	 which	 point	 the	 humans	 actually	 realised	 that	 this	 process	 could	

																																																								

4 In modern humans, this way of communication is common by infants and their quasi-siren cries 
that, depending on the pitch span, express pain, irritability, tiredness, or even joy. 
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transcend	 semiotics,	 as	 well	 as	 convey	 ideas	 and—most	 importantly—past	

events;	 however,	 the	 realisation	 of	 this	 notion	 marked	 a	 milestone	 in	 the	

foundation	 of	 language,	 and	 preceded	 any	 embryos	 of	 further	 musical	

manifestations	[68].		

Since	 these	 early	 days,	 the	 process	 of	 singing	 has	 developed—as	 far	 as	 is	

known—globally	 in	 each	 and	 every	 culture,	 suggesting	 that	 its	 inception	 is	

inherently	linked	to	human	nature,	as	well	as	nurture.	In	parallel,	and	as	music	

polyphony	 evolved,	 people	 started	 to	 accompany	 the	 singing	 voice	 with	

various	types	of	musical	instruments.	Therefore,	music	became	a	catalyst	of	the	

effect	 and	 impact	 of	 the	 singing	 voice,	 which	 rightly	 starred	 as	 the	 leading	

musical	instrument	[69].	

In	more	recent	times,	the	word	‘song’	commonly	refers	to	a	more	conventional	

and	 concise	 concept:	 	 it	 denotes	 the	 singing	 of	 lyrics	 that	 is	 (usually)	

accompanied	 by	 music	 and	 lasts	 for	 a	 short	 period	 of	 time	 (typically	 a	 few	

minutes).	 In	 particular,	when	members	 of	 the	 general	 public	 refer	 to	 a	 song,	

they	usually	mean	an	actual	recording	of	the	song.	Indeed,	the	popularity	of	this	

manifestation	of	art	finds	its	ally	in	the	recording	technology,	which	has	played	

a	 defining	 role	 in	 the	 distribution	 and	 the	 appraisal	 of	 the	 singing	 voice	

discipline	over	the	recent	decades.	In	fact,	the	distribution	of	music	has	found	

its	zenith	with	the	development	of	digital	recording	technology	and	the	World	

Wide	Web;	without	a	doubt,	there	is	now	a	greater	amount	of	music	(including	

popular	 songs)	 being	 distributed	 than	 before	 due	 to	 informal	 channels	 and	

ease	 of	 access	 to	 musical	 recordings.It	 is	 not	 surprising	 that	 singing	 has	

maintained	or	even	gained	popularity	throughout	the	centuries,	while	forming	

an	 integral	 part	 of	 music	 culture.	 Even	 from	 a	 technical	 point	 of	 view,	 the	

human	 ear	has	 the	 ability	 to	 perceive	 and	 analyse	 the	 frequency	 span	of	 the	

human	voice	much	more	efficiently	than	the	rest	of	the	audible	spectrum	[70].	

The	 perceived	 loudness	 is	 also	 elevated	 (Figure	 2.4)	 at	 the	 frequency	 range	

that	 carries	 the	main	 body	 of	 voice,	 known	 in	 communications	 as	 the	 voice	

frequency	or	voice	band,	i.e.	(0.3	to	3.4)	kHz	[71].	
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Figure	2.4:	Equal	loudness	contour	for	40	phons	[72]	

As	 a	 result,	 it	 is	 expected	 that—in	 ordinary	 circumstances—a	 listener	 will	

mainly	focus	on	the	vocal	part	of	a	music	track	that	contains	voice	(i.e.	a	song5).	

Adding	 to	 the	 latter,	 the	 vocal	 instrument	 has	 the	 ability	 to	 carry	 and	

communicate	 a	 language	 and,	 in	 that	 sense,	 it	 is	 superior	 to	 the	 other	

instruments,	as	they	are	restricted	to	pitch	and	timbre	variation.	 	Indeed,	it	is	

because	 of	 this	 reason	 that	 the	 singing	 style,	 the	 voice	 timbre	 [73],	 and	 the	

lyrics	 of	 a	 sung	 part	 not	 only	 give	 essential	 information	 about	 the	 piece	 of	

music,	but	also	define	it.		

To	demonstrate	 this,	 one	 should	 consider	 that	 just	 the	vocal	 component	of	 a	

song	 is	 enough	 for	 a	 listener	 to	 recognise	 the	 title,	 singer,	 lyrics,	 and—

arguably—genre	 of	 a	 song.	 Furthermore,	 in	 various	 musical	 cultures	 and	 in	

particular	within	 popular	music,	 the	 singing	 voice	 usually	 carries	 one	 of	 the	

most	significant	features	of	a	song:	the	melody	[74‐76]. 

																																																								

5 Hereon, the term song will be used to describe any music track that contains a vocal part, even if it 
is not sung, for the sake of brevity. 
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2.3 	Existing	commercial	approaches	related	to	SVS	

Due	 to	 the	 aforementioned	 integral	 role	 that	 voice	 has	 within	 songs,	

researchers	and	companies	have	endeavoured	to	eliminate,	isolate,	or	enhance	

the	vocal	element	of	a	song.		A	common	use	for	elimination	is	the	karaoke	[77]6	

that	was	invented	in	the	1970s	[78]:	a	form	of	entertainment,	where	amateur	

singers	perform	over	a	pre‐recorded	accompaniment.	This	accompaniment	is,	

on	most	occasions,	the	original	published	song,	processed	with	a	simple	vocal	

elimination	 technique.	This	 technique,	more	often	 than	not,	 involves	 filtering	

as	 well	 as	 inverting	 one	 channel	 of	 the	 stereo	 track	 before	 summing	 both	

channels	 [79].	 This	 processing	 cancels	 out	 the	 voice,	 which	 is	 typically	

recorded	in	mono	and	panned	centrally	 in	the	final	stereo	mix.	However,	this	

technique	 is	 quite	 superficial	 and	 ineffective,	 as	 it	 also	 cancels	 out	 some	

important	 instruments	 that	 are	 panned	 centrally	 (e.g.	 bass,	 kick	 drum)	 and	

leaves	artefacts		[80,	81].	

Sometimes,	music	producers	are	keen	to	create	a	new	version	–	arrangement	

of	 a	 pre‐existing	 song	 by	 taking	 the	 isolated	 voice	 track	 and	 producing	 new	

music	 to	 accompany	 it.	 There	 are	 two	ways	 to	 approach	 this:	 the	 producers	

have	 either	 the	 means	 to	 access	 the	 multi‐track	 session	 of	 the	 song	 (the	

individual	 tracks	 that	 the	 song	 is	 comprised	 of),	 or	 they	 apply	 band‐pass	

filtering.	The	latter	approach	ensures	that	all	music‐only	frequency	bands	are	

attenuated.	 Finally,	 the	 producers	 make	 sure	 that	 the	 newly	

composed/produced	material	masks7	the	traces	of	music	that	have	eluded	the	

former	process	[82].	

	

																																																								

6 Karaoke is a portmanteau of the Japanese words kara and ōkesutora, meaning an “empty 
orchestra”. 
7 “Masking” in Acoustics is the psychoacoustic phenomenon where the human perception of a sound 
is affected by another sound. Usually, these sounds have considerable amount of energy in similar 
frequency range. 
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A	more	sophisticated	approach	to	voice	isolation	is	the	feature	Center	Channel	

Extractor	in	Adobe	Audition	[83].	While	it	produces	superior	results	compared	

to	 the	 aforementioned	method	 of	 karaoke,	 still	 fails	 to	 separate	 instruments	

that	co‐exist	in	the	central	space	of	the	stereo	field.	In	addition,	the	user	has	to	

set	 the	 frequency	 range	 that	 wants	 to	 be	 isolated	 and	 the	 size	 of	 the	 FFT	

window.	

A	 different	 category	 to	 the	 aforementioned	 voice	 isolation	 is	 voice	

enhancement.	 This	 includes	 the	 effort	 of	 sound	 engineers	 to	make	 the	 vocal	

part	 of	 a	 song	 “stand	 out”,	 i.e.	 be	more	 clear	 and	 intelligible	 by	 the	 listener.	

Usually,	though,	engineers	do	have	possession	of	the	individual	tracks	so	they	

can	 conveniently	 boost	 specific	 frequencies	 of,	 or	 apply	 dynamic	 range	

compression	to	the	vocal	track	so	that	it	is	more	“present”	in	the	final	mixture.	

The	 relevance	 of	 this	 category	 to	 the	 present	 study	 will	 be	 shown	 later	 in	

Chapter	5.	

Another	 aspect	 of	 voice	 enhancement	 is	 pitch	 correction.	 The	 best	 known	

commercial	 systems	 for	 this	 purpose	 are	 the	 software	 packages	 Antares	

Autotune	 and	Celemony	Melodyne	 [84,	85].	Traditionally,	both	 these	 industry‐

standard	 commercial	 applications	 worked	 with	 monophonic	 audio	 streams	

and	drew	their	algorithms	from	the	extensive	research	of	monophonic	melody	

transcription	 [86].	 Though	 far	 from	 perfect,	 these	 packages	 give	 satisfactory	

and	 reliable	 results	 when	 the	 target	 stream	 is	 monophonic,	 i.e.	 comprises	

pitches	that	do	not	co‐exist	in	the	same	temporal	space.	

Recently,	 however,	 the	 company	 Celemony	 developed	 a	 feature	 of	 their	

application	Melodyne	 termed	 direct	note	 access	 (DNA)	which	 can	 operate	 on	

specific	 monophonic	 lines	 of	 a	 polyphonic	 stream,	 but	 it	 does	 not	 allow	 the	

isolation	of	 the	vocal	part	 from	polyphonic	audio	[87].	The	algorithm	used	 in	

the	 aforementioned	 feature	 is	 not	 available	 to	 the	 public	 as	 the	 patent	 is	

pending	[88].	Similarly,	AudioScanner	[89,	90]	is	based	on	a	technique	that	the	

authors	 term	 “human‐assisted	 time‐frequency	 masking”	 and	 targets	 a	 sole	
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audio	component	(i.e.	one	instrument)	from	a	polyphonic	recording	in	order	to	

manipulate	it	 independently	of	the	rest.	For	example,	in	a	duet	with	cello	and	

voice,	 this	 application	 aims	 to	 apply	 a	 low‐pass	 filter	 to	 the	 voice	 without	

disturbing	 the	 frequency	 spectrum	 of	 the	 cello	 [68].	 In	 a	 similar	 manner	 to	

DNA,	AudioScanner	does	not	extract	an	individual	line	of	a	polyphonic	stream,	

but	rather	focuses	on	processing	it	without	affecting	the	rest	of	the	polyphonic	

material.	

Although	not	directly	related	to	the	aforementioned	categories,	Shazam	[91]	is	

noteworthy;	 not	 only	 because	 it	 is	 arguably	 the	 most	 used	 commercial	

application	in	the	field	of	music	information	retrieval	(MIR),	but	also	due	to	the	

robustness	of	its	algorithm.	In	particular,	Shazam	is	able	to	retrieve	the	identity	

of	a	song	(or	music	track	in	general),	given	an	excerpt	that	is	captured	through	

a	 microphone	 of	 a	 mobile	 phone	 device.	 The	 application	 functions	 by	

extracting	a	constellation	of	points	from	the	spectrogram	of	the	tested	material	

and	 matching	 it	 to	 a	 member	 of	 a	 precompiled	 database.	 	 This	 process	 is	

termed	 combinatorial	 hashing	 by	 its	 creators. The	 significant	 feature	 is	 its	

outstanding	 robustness	 against	 severely	 degraded	 and	 contaminated	 testing	

material	[92].		

Finally,	 the	 (commercial)	 software	 that	 is	 closest	 to	 the	 aim	 of	 the	 present	

study	 appeared	 towards	 the	 end	 of	 2011,	 and	was	 released	 under	 the	 name	

Hit'n'Mix	[93].	This	application	claims	to	be	capable	of	unsupervised	isolation	

and	classification	of	musical	 instruments	(e.g.	guitar,	voice,	bass,	drums,	etc.).	

In	practice,	however,	the	algorithm	results	in	a	ca.	50%	mismatch	with	regards	

to	 instrument	 classification	 while	 the	 degradation	 and	 contamination	 of	 the	

isolated	 parts	 that	 result	 from	 this	 process	 renders	 them	not	 fit	 for	 purpose	

outside	the	context	of	the	original	song	[94].	

As	 seen	 in	 this	 section,	 the	 growing	 interest	 of	 the	 industry	 towards	

isolation/separation	 of	music	 sources	 is	manifested	 through	 the	 commercial	

eagerness	of	companies	to	release	software	as	soon	as	possible—and	therefore	
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gain	a	market	share—even	by	compromising	the	reliability	and	robustness	of	

the	various	software	packages.	Also,	with	the	exception	of	Hit	n’	Mix,	the	rest	of	

the	 aforementioned	 processes	 that	 relate	 to	 SVS	 can	 only	 operate	with	 user	

supervision,	which	is	deemed	ineffective	towards	a	generic	solution.	

At	first,	this	lack	of	robustness	seems	rather	odd,	as	the	field	of	content‐based	

information	 extraction	 from	 speech,	 e.g.	 speech	 recognition	 [95,	 96]	 is	 well	

developed	 and	 mature.	 In	 order	 to	 understand	 the	 gap	 between	 these	 two	

fields,	 the	 differences	 between	 speech	 and	 singing	 are	 described	 in	 the	 next	

section.	

2.4 Singing	as	opposed	to	speaking	

One	might	 think	 that	 singing	 and	 speaking	 audio	 signals	 are	 very	 similar	 as	

they	are	both	produced	by	the	human	vocal	tract.	However,	the	reality	is	quite	

different:	 an	 opera	 singer	 is	 able	 to	 cut	 through	 the	 sonic	 force	 of	 a	 full	

orchestra	 while	 singing,	 whereas	 speech	 can	 never	 achieve	 the	 same	 result.	

This	begs	the	question,	what	is	so	different?		

Studies	 by	 Sundberg	 [97]	 indicated	 that	 the	 quality	 of	 voice	 is	 somehow	

“darker”	 in	 singing,	 which	 can	 be	 likened	 to	 speaking	 and	 yawning	

concurrently. During	singing,	 the	 larynx	moves	 towards	a	 lower	position	and	

the	 lowest	parts	 of	 the	 pharynx	 and	of	 the	 laryngeal	 ventricle	 are	 expanded.	

This	physiological	change	has	been	given	the	name	covering	[98].	The	formant	

between	(2	to	3)	kHz	of	this	singing	technique	has	been	described	by	Sundberg	

as	the	singing	formant.	

It	 is	because	of	 this	 formant	 that	a	 tenor,	 for	example,	 can	be	heard	over	 the	

orchestra	 by	 an	 opera	 audience	 (Figure	 2.5).	 Singers	 employ	 covering	much	

more	in	operatic,	rather	than	popular	singing.	However,	in	almost	all	kinds	of	

singing,	there	are	three	fundamental	differences	when	compared	with	speech.	
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Figure	2.5:	Difference	between	speech,	orchestral	music,	and	singing	voice	[49]	

One	of	the	most	important	differences	to	consider	is	the	acoustic	variation	and	

the	ratio	of	vowels	to	consonants	[99,	100].	In	particular,	the	actual	time	that	is	

spent	 on	 each	 of	 these	 two	 categories.	 While	 the	 time	 expended	 on	 vowels	

comprises	60%	in	a	typical	English	speech	utterance	[101],	it	approaches	90%	

in	 a	 common	 sung	 phrase	 of	 the	 same	 language	 [102].	 The	 latter	 is	 easily	

explained,	 as	 vowels	 are	 inherently	 more	 powerful	 and	 they	 also	 have	 the	

ability	 to	 carry	 the	 melody	 within	 a	 song.	 Therefore,	 singers	 are	 taught	 to	

sustain	 vowels	 over	 consonants	 in	 order	 to	 be	 audible	 and	 promote	 the	

melodic	 structure.	 This	 phenomenon	 can	 be	 clearly	 observed	 in	 the	 singing	

style	known	as	bel	canto8	[103,	104].	

The	 second	 difference	 is	 that	 the	 dynamic	 range	 in	 singing	 is	 broader	 and	

reaches	 the	 physiological	 limits	 of	 the	 human	 voice	 organ,	 contrary	 to	 the—

typically—narrow	 dynamic	 range	 of	 speech	 [105].	 Speech	 needs	 to	 be	

produced	 at	 a	 comfortable	 level	 that	 makes	 the	 words	 intelligible	 to	 the	

																																																								

8 Bel canto (“beautiful singing”) broadly refers to the style of singing that was developed primarily 
in Italy during the 17th-19th century in order to account for the increasing density, (and therefore 
loudness) of the accompanying orchestra. 
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listener	 while	 an	 additional	 dynamic	 range	 is	 reserved	 for	 conveying	 (or	

implying)	 emotions.	 In	 addition,	 from	 an	 interpersonal	 sociological	 aspect	 of	

many	 modern	 societies,	 surpassing	 a	 certain	 dynamic	 threshold	 is	 not	 only	

rare,	but	also	considered	rude.	On	 the	other	hand,	 singing	as	an	art	does	not	

carry	these	social	limitations	and	conventions.	As	a	result,	spontaneous	speech	

usually	produces	signals	up	to	84	dB	SPL,	while	a	trained	singer	can	reach	an	

astounding	sound	pressure	level	of	114	dB	[106,	107].	

Lastly,	the	fundamental	frequency	(f0)	of	sung	material	has	a	range	from	80	Hz	

to	1400	Hz	and	exhibits	rapid	alterations,	whereas	in	speech	the	typical	range	

is	up	to	500	Hz	and	presents	lesser	temporal	variation	[108].	

For	 the	 above	 reasons,	 speech	 separation	 systems	 [109,	 110]	 are	 quite	

incompetent	when	 applied	 to	 singing	 voice	material.	 In	 addition	 to	 that,	 the	

“interference”	that	usually	exists	in	speech	analysis	is	uncorrelated	noise,	while	

in	 a	 song	 it	 is	 usually	 harmonically	 correlated	 music	 accompaniment,	

presenting,	thus,	a	further	challenge	to	any	automated	system.	

2.5 Auditory	scene	analysis	(ASA)	

Over	the	past	years,	there	has	been	much	investigation	in	the	area	that	can	be	

broadly	described	as	auditory	scene	analysis	(ASA)	[33,	111].		Briefly,	ASA	is	a	

proposed	 model	 of	 the	 psychophysical	 procedure,	 during	 which	 the	 human	

auditory	system	receives	as	an	input	a	combination	of	audio	that	is	produced	

within	a	physical	environment,	and	with	the	aid	of	cognitive9	 functions	[112]	

classifies	it	into	acoustic	objects	that	are	perceptually	meaningful.	

Certainly,	 the	 most	 in‐depth	 analysis	 in	 this	 area	 has	 been	 carried	 out	 by	

Bregman	 [1],	 where	 he	 asked	 the	 fundamental	 question	 of	 how	 do	 humans	

																																																								

9 Although in the context of ASA, the human auditory/aural system refers not only to the sensory 
system but also to the cognitive functions that comprise it, classical psychophysics does not 
recognise the cognitive validity of the acoustical objects that are modelled in ASA. 
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classify	 the	 complex—in	 time	 and	 frequency	 domains—mixtures	 into	

autonomous	 acoustical	 objects.	 In	 general,	 the	 study	 of	 ASA	 could	 be	

considered	as	a	two‐fold	scheme:	the	problem	of	 integration,	and	the	process	

of	segregation.	

The	problem	of	integration	in	auditory	perception	is	identified	on	the	basis	of	

two	models	that	describe	two	principal	problems:	simultaneous	integration	(or	

perceptual	fusion),	and	sequential	integration.	A	paradigm	of	perceptual	fusion	

takes	place	when	humans	 are	 faced	with	 the	 task	of	 identifying	 the	 separate	

streams	 of	 a	 singer	 and	 an	 instrument	 performing	 at	 the	 same	 time	 in	 a	

mixture.	 On	 the	 other	 hand,	 sequential	 integration	 could	 be	 likened	 to	 the	

challenge	of	cognitively	pinpointing	the	temporal	boundaries	of	words	within	a	

time‐continuous	stream	of	speech	[113].	

The	process	of	segregation	describes	the	function	of	ASA	on	the	decomposition	

of	sounds	as	a	model	deriving	from	the	human	brain.	Two	main	classifications	

are	regarded	for	this	task,	namely	schema‐based	or	memory‐based	segregation	

and	 primitive	 segregation.	 Primitive	 segregation	 is	 an	 innate,	 automatic,	 and	

obligatory	 [114]	 process,	 during	 which	 streams	 are	 parsed	 according	 to	 the	

similarities	 of	 local	 acoustical	 cues,	 such	 as	 frequency,	 timing,	 or	 amplitude	

[115].	By	contrast,	 the	memory‐based	segregation	derives	 from	the	cognitive	

function	 of	 recognising	 prior	 knowledge	 schemata,	 i.e.	 the	 understanding	 of	

segregation	that	the	listener	has,	based	on	past	experience	[116].	

Segregation,	according	to	ASA,	is	governed	by	rules	that	dictate	the	art	and	the	

reason	 of	 the	 cognitive	 formation	 of	 acoustic	 objects	 out	 of	 longer	 acoustic	

streams.	 These	 principles,	 clearly	 inspired	 from	 Gestalt	 	 psychology10	 [117,	

118],	 could	 be	 better	 described	 as	 “bonds”	 that	 are	 developed	 between	 the	

stimuli	which	are	perceived	and	processed	not	only	by	 the	aural,	but	also	by	

																																																								

10 “Gestalten” means shape in German. The philosophy of the Gestalt psychology is that “the whole 
is more than the sum of its parts”. Gestalt psychology plays a major role in psychoacoustics. 
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the	 rest	 of	 the	 senses11.	 Generally,	 they	 apply	 to	 audible	 sounds	 (i.e.	 speech,	

music,	 and	 noise).	 Taking	 into	 consideration	 that	 interpretations	 in	 the	

literature	 exhibit	 slight	 variations,	 a	 concise	 summary	 is	 given	 below	 [1,	 32,	

119,	120]:		

Proximity:	 Tones	 that	 relate	 to	 each	 other	 in	 terms	 of	 pitch	 or	 temporal	

proximity,	exhibit	a	 larger	probability	of	being	grouped	 together	 in	 the	same	

acoustic	object.		

Continuity:	 A	 group	 of	 frequencies	 demonstrate	 a	 tendency	 to	 be	 grouped	

together,	 as	 long	 as	 they	 form	 a	 continuous	 trajectory	 or	 a	 discontinued	 but	

smooth	trajectory.	This	principle	is	closely	related	to	proximity.	

Closure:	The	human	auditory	system	has	 the	ability	 to	apply	certain	 forms	of	

anti‐masking:	 it	 is	 likely	 to	perceive	a	 sound	as	continuous	 (and	 therefore	as	

one	acoustical	object),	even	if	it	is	interrupted	by	a	broadband	noise,	provided	

that	this	sound	is	continued	after	the	interruption.	

Common	Fate:	Attributes	that	are	subject	to	similar	alterations	will	probably	be	

grouped	 together:	 frequency	 components	 which	 originate	 from	 the	 same	

location	in	space	(i.e.	 the	same	auditory	scene	position)	share	the	same	‘fate’,	

and	correspond	to	the	same	object.	The	same	applies	to	components	which	are	

modulated	at	a	similar	rate	or	have	simultaneous	onsets	and	offsets	(e.g.	vocal	

performance	idioms	such	as	vibrato,	formant	change	or	pitch	bending).	

Similarity:	According	to	this	principle,	grouping	also	depends	on	“vertical”	(i.e.	

spectral)	 similarities	 of	 a	 stream,	such	 as	 timbre.	This	principle	 also	 exhibits	

the	property	of	being	time	independent.	

In	 the	 next	 section,	 the	 efforts	 to	 computationally	 model	 and	 recreate	 the	

psychophysical	task	of	ASA	are	described.	

																																																								

11 The research that was carried out by Bregman focuses also on generalising the perception model 
across the various different aspects of the human sensory system. 
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2.6 Computational	auditory	scene	analysis	(CASA)	

In	 general,	 CASA	 is	 the	 study	 of	 auditory	 scene	 analysis	 by	 computational	

means	[121].	This	definition	is	fairly	vague,	as	it	is	entirely	functional,	does	not	

make	 reference	 to	 underlying	 mechanisms,	 and—thus—lacks	

boundaries/limits.	 Without	 specifying	 any	 restrictions,	 the	 area	 of	 this	 field	

would	 span	 from	 modelling	 the	 sequence	 of	 action	 potentials	 produced	 by	

neurons	of	the	cochlea	[122],	to	the	inference	of	metrical	time‐signature	from	

music	 pieces	 [123].	 Furthermore,	 without	 constraining	 this	 definition,	 the	

problem	of,	for	example,	source	separation	would	have	been	circumvented	by	

assigning	an	exclusive	and	isolated	microphone	for	each	source	in	an	acoustic	

scene.	

2.6.1. Scope	of	CASA	

A	definition	that	is	more	descriptive,	and	closer	to	what	the	signal	processing	

community	understands	by	the	term	CASA	is	“the	field	of	computational	study	

that	 aims	 to	 achieve	 human	 performance	 in	 ASA	 by	 using	 one	 or	 two	

microphone	 recordings	 of	 the	 acoustic	 scene”	 [32].	 This	 also	 provides	 an	

intuitive	 classification	 of	 CASA	 between	 monaural	 and	 binaural	 methods.	 In	

addition,	 there	seems	 to	be	a	conventional	 interpretation	of	 the	 field	and	 the	

role	 of	 CASA	 that	was	 gradually	 crystallised	 by	many	 researchers	 [123‐127]	

that	 have	 worked	 in	 this	 area	 over	 the	 past	 20	 years.	 	 According	 to	 this	

convention,	CASA	has	two	primary	goals:	

1. The	 development	 of	 a	 computational	method,	 which	 is	 autonomously	

able	 to	 track	 and	 isolate	 a	 target	 sound	 source	 in	 a	 cocktail	 party	

scenario.	

2. The	 implementation	 of	 an	 adaptive	 listening	 system,	which	 is	 able	 to	

automatically	 compute	and	group	 strands,	which	are	 the	equivalent	of	

acoustic	objects	as	described	in	ASA	[1].		
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The	applications	of	the	latter	endeavour	extend	to	the	aid	of	hearing‐impaired	

individuals	 whose	 auditory	 system	 might	 be	 missing	 this	 capability	 [33].	

Furthermore,	 the	 overall	 field	 of	 CASA	 has	 become	 associated	 with	

perceptually	motivated	approaches	to	sound	separation	that	are	distinct	from	

other	 methods	 [32].	 However,	 the	 human	 perceptual	 functions	 are	 not	

necessarily	slavishly	modelled	or	followed.	

It	should	be	noted	that	most	CASA	systems	in	the	literature	apply	to	the	speech	

segregation	or	separation	field.	The	systems	that	are	widely	used	as	reference	

points	are	based	on	common	fate,	continuity,	and	training	for	the	case	of	mono	

CASA	 [123,	 128‐130].	 On	 the	 other	 hand,	 in	 binaural	 CASA,	 the	 systems	 use	

mostly	sound	localization	[131‐134].		

In	the	remainder	of	this	section,	the	main	features	and	tools	of	these	and	other	

similar	CASA	systems	are	briefly	described.	As	there	is	a	plethora	of	methods	

and	variations	in	the	said	field,	a	unified	description	is	attempted.	

2.6.2. Data‐driven	and	prediction‐driven	systems	

Depending	on	the	way	in	which	the	above	processes	are	used	in	a	higher‐level	

algorithm,	 two	“schools	of	 thought”	dominate	the	CASA	field:	data‐driven	and	

prediction‐driven	 algorithms.	 In	 data‐driven	 algorithms	 [135]	 cues	 are	

extracted	 from	 the	 spectrum	 of	 a	 sound,	 and	 representations	 of	 these	 cues	

form	an	abstraction	of	the	original	source	(Figure	2.6).	The	information	flow	is	

exclusively	unidirectional,	from	concrete	to	abstract	[123].	
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Figure	2.6:	Workflow	of	a	typical	data‐driven	CASA	system	[124]	

The	 first	 stage	 involves	 subjecting	 the	 acoustical	 mixture	 to	 a	 process	 that	

could	 be	 better	 described	 as	 a	 peripheral	 analysis.	 This	 is	 usually	 a	 time‐

frequency	 representation,	 such	as	 the	 cochleagram	(see	Section	2.6.3)	 that	 is	

based	 on	 an	 approximate	 model	 of	 the	 human	 cochlea.	 Subsequently,	

features/cues	are	detected	and	extracted.	The	type	of	features	is	varied	across	

the	 literature,	 but	 examples	 of	 such	 features	 include	 onsets/offsets	 [136],	 as	

well	as	amplitude	and	frequency	modulation,	corresponding	to	the	description	

of	 ‘common	 fate’	 in	ASA.	 	Afterwards,	 the	 cues/features	 are	 represented	 in	 a	

form	that	is	between	high	and	low	level,	i.e.	representations	termed	‘mid‐level’	

[137].	Again,	several	of	these	representations	are	proposed,	such	as	sinusoidal	

tracks	 [138],	 and	 synchrony	 strands	 [135].	 The	 most	 typical	 mid‐level	

representation,	 however,	 is	 the	 correlogram	 (Section	 2.6.4).	 From	 these	

representations	 the	 target	 source	 is	 selected,	 forming	a	 time‐frequency	mask	

(described	in	2.6.5),	leading	to	a	re‐synthesis	of	the	source	(Section	2.6.6).	

According	to	[125],	the	main	problem	with	the	data‐driven	approach	is	that	it	

treats	all	sounds	in	the	same	way,	regardless	of	their	context.	Concerns	are	also	

raised	 about	 the	 system’s	 inability	 to	 detect	 masked	 sources.	 	 In	 order	 to	

engage	 these	 problems,	 the	 study	 in	 [123]	 proposed	 the	 prediction‐driven	

approach,	 where	 the	 features	 extracted	 from	 the	 sound	 are	 compared	 with	

internal	models	of	 the	components.	 In	other	words,	 this	 algorithm	 takes	 into	

consideration	predictions	for	the	continuity	of	the	components	and	that	is	how	
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it	resolves	the	masking	problem.	The	modelling	process	considers	the	cases	of	

noise,	 transient	 clicks,	 and	 a	 correlogram	 representation	 of	 periodic	 energy	

called	 the	weft	 [137].	 It	 must	 be	 noted,	 however,	 that	 there	 are	 significant	

similarities	between	the	two	approaches	(data‐driven	and	prediction‐driven).	

In	the	next	sections,	the	stages	that	are	frequently	common	between	these	two	

categories	of	CASA	systems	are	detailed.	

2.6.3. Cochleagram	

The	 cochleagram	 is	 the	 initial	 processing	 stage	 of	most	 CASA	 systems	 [139‐

141].	 It	 is	 a	 time‐frequency	 representation	 of	 sound	 that	models	 the	 known	

properties	 of	 human	 frequency	 selectivity	 [32].	 The	mechanics	 of	 the	 basilar	

membrane	are	commonly	modelled	by	using	a	filter‐bank	which	is	the	basis	of	

the	gammatone	filter	as	described	in	[142].	

The	process	starts	by	applying	a	pre‐emphasis	filter	on	the	signal	x,	such	as	to	

model	the	outer	and	middle	ear,	that	act	as	a	high‐pass	filter.	An	approximation	

to	this	function	is	as	follows	[143,	144]:	

ሻݐሺݕ ൌ ሻݐሺݔ െ Aݔሺݐ െ Δݐሻ. (2.1)

Here,	A	is	the	pre‐emphasis	factor	and	Δt	 is	the	sampling	interval	(e.g.	22.675	

μs	 for	 44.1	 kHz).	 The	 pre‐emphasis	 factor	 is	 slightly	 varied	 across	 CASA	

approaches	and	mostly	set	empirically	[143].	Pre‐emphasis	is	followed	by	the	

computation	of	the	impulse	response	gf(t)	of	the	gammatone	filters:	

݃ሺݐሻ ൌ ିଵ݁ିଶ௧ሺሻݐ cosሺ2π݂ݐ  φሻݑሺݐሻ. (2.2)

In	the	equation	above,	N	is	the	order	of	the	filter,	f	is	the	central	frequency	of	

the	 filter,	 φ	 is	 the	 phase,	 u(t)	 is	 the	 step	 function,	 and	 b(f)	 determines	 the	

bandwidth	using	the	expression:	
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ܾሺ݂ሻ ൌ 1.02ERBሺ݂ሻ. (2.3)

The	distribution	of	bandwidth	is	usually	set	in	accordance	with	the	equivalent	

rectangular	bandwidth	 (ERB).	ERB	 represents	 an	 ideal	 rectangular	 filter	 that	

exhibits	equal	peak	gain	across	the	whole	frequency	spectrum	[145]:	

ERBሺ݂ሻ ൌ 6.23݁ି݂ଶ  93.39݁ିଷ݂  28.52. (2.4)

Finally,	the	energy	measure	is	used	to	create	short‐time	energy	spectra	[144]:	

݁ሺ௧ሻ ൌ
Δݐ
ܹ

 ห݃ሺݐ െ ݇Δݐሻห
ଶ
݁ି௧

ௐ/௧

ୀ

, (2.5)

where	ef(t)	is	the	energy	measure	output	of	the	gammatone	filter	gf(t)	centred	

at	frequency	 f	at	time	t,	while	W	 is	the	window	length	over	which	the	energy	

measure	is	computed,	and	α	represents	the	decay	of	the	exponential	window.	A	

comparison	 between	 a	 cochleagram	 that	 is	 generated	 following	 the	 process	

described	here	and	a	log‐frequency	spectrogram	is	given	in	Figure	2.7.	At	such	

coarse	 temporal	 scale,	 they	both	 look	 similar;	 however,	 it	 is	 evident	 that	 the	

cochleagram	represents	onsets	in	a	much	clearer	fashion.	

	

Figure	2.7:	Log‐frequency	spectrogram	(left)	and	cochleagram	(right)	of	the	female	speech	
utterance	“Is	that	typical?”.	The	vertical	axis	of	the	spectrogram	is	limited	to	show	the	same	

frequency	range	as	the	cochleagram,	for	the	purpose	of	direct	comparison.	
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2.6.4. Correlogram	and	cross‐correlogram	

A	 form	 of	 representation	 that	 is	 used	 frequently	 in	 CASA,	 but	 also	 in	 other	

fields	 such	 as	 speech	 recognition,	 and	 geology	 [146,	 147]	 is	 the	 correlogram	

[148].	For	the	case	of	CASA,	this	is	again	a	perceptually	motivated	short‐term	

representation	of	sound,	based	on	pitch	perception	[149,	150],	and	it	produces	

symmetric	 structures	 that	 are	 used	 in	 order	 to	 estimate	 groups	 of	 spectral	

components	 (i.e.	 components	 that	 probably	 belong	 to	 the	 same	 acoustical	

object)	 for	 each	 frame.	 	 The	 “channels”	 of	 the	 correlogram	 are	 the	 different	

time‐frequency	 components	 and	 are	 represented	 in	 such	 a	 way	 that	 the	

amplitude	 in	 each	 channel	 is	 most	 likely	 corresponding	 to	 a	 single	 periodic	

source	 [146].	 The	 correlogram	 is	 usually	 computed	 in	 the	 time	 domain	

(although	 studies	 have	 suggested	 greater	 efficiency	 when	 computed	 in	 the	

frequency	domain	[151])	using	the	autocorrelation	function: 

݂ܽܿሺ݊, ܿ, ߬ሻ ൌ ܽሺ݊ െ ݇, ܿሻܽሺ݊ െ ݇ െ ߬, ܿሻ݄ሺ݇ሻ

ିଵ

ୀ

. (2.6)

As	 seen	 above,	 a(n,	 c)	models	 the	 action	 potential	 of	 the	 auditory	 nerve	 for	

frequency	 channel	 c	 at	 time	n,	τ	 is	 the	 time	 lag,	 and	K	 is	 the	 length	 of	 the—

typically—Hann	 window	 h(k).	 A	 correlogram	 of	 a	 “sawtooth”	 wave	 with	

fundamental	 frequency	440	Hz	after	pre‐processing	with	(2.1)	can	be	seen	in	

Figure	 2.8.	 Here,	 the	 first	 peak	 of	 the	 summative	 correlogram	 is	 at	 2.27	ms	

which	 corresponds	 to	 the	 period	 of	 the	 f0,	 i.e.	 T(440	 Hz)	 ≈	 0.0027	 s,	 as	

expected.		

When	 cross‐correlation	 instead	 of	 autocorrelation	 is	 used,	 the	 resulting	

representation	 is	 defined	 as	 a	 cross‐correlogram	 [152].	 The	 perceptual	

motivation	 this	 time	 is	 the	 left	 and	 the	 right	 ears	 of	 the	 listener	 [153].	 This	

concept	forms	also	the	base	for	the	inter‐aural	time	difference	(ITD)	and	inter‐

aural	 phase	 difference	 (IPD)	 that	 are	 used	 across	 many	 source	 separation	

methods	and	are	further	discussed	later	in	this	thesis.	
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Figure	2.8:	Correlogram	of	a	sawtooth‐wave	tone	at	440	Hz	(bottom)	and	summative	
correlogram	with	normalised	amplitude	(top)	

In	a	similar	way	to	(2.6)	the	cross‐correlogram	is	computed	as	[140]:	

݂ܿܿሺ݊, ܿ, ߬ሻ ൌ ܽሺ݊ െ ݇, ܿሻܽோሺ݊ െ ݇ െ ߬, ܿሻ݄ሺ݇ሻ

ିଵ

ୀ

.	 (2.7)

The	indices	L	and	R	represent	the	left	and	the	right	ears	respectively.	

2.6.5. Time‐frequency	mask	

A	 time‐frequency	 (TF)	 mask	 constitutes	 the	 cornerstone	 of	 many	 CASA	

systems.	This	mask	works	usually	on	a	frame	by	frame	basis	and	its	function	is	

to	isolate	the	spectral	components	that	belong	to	a	target	source	[154].	It	can	

be	classified	into	two	categories:	the	binary	TF	mask,	and	the	soft	TF	mask.		
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The	 binary	 TF	 mask	 can	 be	 better	 visualised	 as	 a	 two‐dimensional	 logical	

array.	 This	 array	 is	 superimposed	 on	 the	 short‐term	 frequency	 magnitude‐

spectrum	(or	energy‐spectrum)	of	the	target	source	and	allows	only	“true”	bin	

values	to	pass	through	at	certain	while	the	others	are	cancelled	[155].	On	the	

other	hand,	a	soft	TF	mask	works	in	the	same	way,	except	that	the	array	is	not	

binary.	 Instead,	 it	provides	a	gain	 for	each	 frequency‐transformed	magnitude	

point	in	time	[156].	

When	a	binary	TF	mask	is	included	in	a	system	as	the	last	process,	it	also	sets	

limits	 on	 the	 system	 in	 question	 [157].	 Particularly,	 its	 maximum	 isolation	

effectiveness	 matches	 the	 performance	 of	 the	 “ideal”	 mask,	 which	 is	 well	

defined	in	literature.	

Formally,	the	computation	of	the	ideal	binary	mask	(IBM)	is	as	follows	[158]:	

,ݐሺܯܤܫ ݂ሻ ൌ ൜
1, ܶሺݐ, ݂ሻ െ ܰሺݐ, ݂ሻ  Z
0, ݁ݏ݅ݓݎ݄݁ݐ

. (2.8)

Here,	T(t	,f)	is	the	spectrum	of	the	target	mixture	and	N(t,	f)	is	the	spectrum	of	

the	 interference,	 while	 t	 indicates	 the	 time	 index,	 and	 f	 represents	 the	 bin	

index.	Z	is	a	binary	threshold	that	is	usually	set	empirically.	For	the	case	of	the	

ideal	soft	mask	(ISM)	or	ratio	mask	[159],	equation	(2.8)	becomes:	

,ݐሺܯܵܫ ݂ሻ ൌ
ܶሺݐ, ݂ሻ

,ݐሺܯ ݂ሻ
. (2.9)

Above,	M(t,	 f)	 is	 the	 spectrum	 of	 the	 target	 mixture,	 i.e	 T(t,f)	 +	 N(t,	 f).	 An	

example	 of	 these	 two	 types	 of	 TF	mask	 for	 an	 excerpt	 for	 the	 song	 “Salala”	

[160]	 are	 given	 in	 Figure	 2.9.	 In	 this	 case,	 it	 is	 obvious	 that	 even	 the	 ideal	

binary	mask,	would	 let	 through	much	 interference	 because	 of	 the	 significant	

overlapping	frequencies	of	voice	and	music	in	the	mixture.	On	the	other	hand,	

ISM	provides	more	satisfactory	results,	given	an	accurate	phase	estimate.	
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Figure	2.9:	Spectrograms	and	TF	masks.	Isolated	source	(voice)	is	top	left	and	mixture	is	top	
right.	The	ideal	binary	and	soft	masks	for	the	target	source	are	shown	on	bottom	left	and	
bottom	right	respectively.	The	threshold	Z	is	set	to	1	dB.	Scaling	factors	in	the	TF	masks	are	

represented	in	dB	gain.	

2.6.6. Re‐synthesis	

The	previous	procedures	describe	different	representations	and	methods	that	

are	motivated	by	the	human	auditory	system.	Re‐synthesis	 is	the	term	that	 is	

used	 in	 this	 study	 for	 the	 purpose	 of	 collectively	 describing	 the	 various	

transformations	 from	 the	 aforementioned	 representations	 back	 to	 the	 time	

domain.		Since	some	of	the	representations	are	already	in	the	time	domain	(e.g.	

the	correlogram),	a	more	accurate	statement	is	that	re‐synthesis	in	this	context	

is	 the	conversion	to	an	acoustic	equivalent	of	 the	detected	source	[123].	This	

stage	 serves	 also	 to	 provide	 an	 output	 for	 subsequent	 evaluation	 of	 the	

effectiveness	of	a	system.	
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The	most	 intuitive	 approach	 for	 re‐synthesis	 concerns	 the	 transformation	 of	

the	TF‐masked	spectrogram,	which	is	done	with	the	process	of	inverse	short‐

term	Fourier	transform	(ISTFT)	e.g.	[135].	However,	there	are	approaches	that	

suggest	transformation	from	the	output	of	the	gammatone	filter‐bank	[130]	or	

even	 inversion	 of	 the	 correlogram	 in	 order	 to	 produce	 a	 single	 time‐domain	

signal	[161].	

2.7 Chapter	summary	

This	 chapter	 has	 presented	 an	 overview	of	 the	 anatomy	 of	 the	 singing	 voice	

given	together	with	the	major	differences	between	speaking	and	singing	voice.	

These	 differences	 were	 highlighted	 in	 order	 to	 clarify	 the	 deviation	 of	 the	

challenges	between	speech	segregation	and	SVS.	The	two	foundational	fields	of	

SVS	 were	 analysed:	 the	 auditory	 scene	 analysis	 (ASA)	 and	 the	 perceptually	

based	 computational	 auditory	 scene	 analysis	 (CASA).	 These	 two	 fields	 are	 in	

close	relationship	with	each	other	not	only	because	CASA	is	motivated	by	ASA,	

but	also	due	to	the	modelling	of	the	human	auditory	system	that	CASA	aims	to	

achieve.	 CASA	 is	 the	 oldest	 attempt	 in	 source	 separation	with	 computational	

aid	 and	 the	 majority	 of	 its	 approaches	 concern	 monaural	 inputs.	 The	 next	

chapter	details	 the	process	of	 stereophonic	music	production	and	 focuses	on	

stereophonic	 source	separation	methods	 that	are	 important	 in	 the	context	of	

this	thesis.	
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This	 chapter	 is	 introducing	 the	 family	 of	 the	 blind	 source	 separation	 (BSS)	

algorithms.	 These	methods	 are	 based	 on	 statistical	 properties	 of	 the	 signals,	

e.g.	principal	component	analysis	(PCA)	and	independent	component	analysis	

(ICA).	 Due	 to	 the	 reason	 that	 these	 algorithms	 are	 closely	 linked,	 particular	

weight	 is	 given	 in	 highlighting	 the	 differences	 between	 them.	 The	 chapter	

concludes	with	the	description	of	the	most	prominent	algorithm	in	this	family	

(i.e.	fast	ICA)	and	the	identification	of	the	shortcomings	thereof	with	regards	to	

SVS.	
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3.1 Blind	source	separation	

The	 field	 of	 blind	 source	 separation	 (BSS)	 postulates	 the	 challenge	 of	blindly	

separating	 sources.	 The	 term	 was	 first	 used	 by	 Herault	 and	 Jutten	 in	 1986	

[162].	 In	 this	 case,	 the	 sources	 are	 the	 original	 signals,	 e.g.	 speakers	 in	 a	

cocktail‐party	 problem.	 The	 adjective	 blind	 is	 used	 because	 only	 weak	

assumptions	of	the	original	sources	can	be	made.	This	terminology	stems	from	

the	 field	 of	 digital	 communications,	where	blind	 techniques	were	 intended	 to	

work	when	the	“eye”,	 i.e.	 the	oscilloscope	diagram	of	a	synchronised	discrete	

signal,	was	closed	[163].	

In	literature,	the	terms	BSS	and	ICA	are	often	used	interchangeably	[164,	165];	

in	 this	 thesis,	 however,	BSS	 is	 studied	 as	 a	 specific	 challenge,	while	PCA	and	

ICA	 (sections	 3.2	 and	 3.3)	 are	 discussed—in	 the	 rest	 of	 this	 chapter—as	

proposed	solutions	to	the	BSS	problem.	

	

Figure	3.1:	BSS	challenge	model	

	

s2s1

x2x1

Original Sources

Observed Mixtures
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In	its	simplest	form,	the	challenge	of	BSS	is	to	separate	two	utterances	(s1	and	

s2)	 by	 solely	 observing	 their	 mixtures	 x1	 and	 x2	 (Figure	 3.1).	 In	 this	 model,	

linearity	and	stationarity	of	the	mixing	effects	of	the	environment	are	assumed.	

Thus,	Figure	3.1	can	be	formally	expressed	as	[166]:		

ଵሾ݊ሿݔ ൌ ܽଵଵݏଵሾ݊ሿ  ܽଵଶݏଶሾ݊ሿ, and (3.1)

ଶሾ݊ሿݔ ൌ ܽଶଵݏଵሾ݊ሿ  ܽଶଶݏଶሾ݊ሿ, (3.2)

where	αij	are	the	mixing	parameters	that	depend	on	the	distance	and	the	axis	

of	each	speaker	to	the	microphones,	while	x1	and	x2	are	the	observed	mixtures	

(e.g.	the	two	channels	of	a	stereo	recording),	and	n	is	the	discrete	time	index.		

For	 N	 sources	 and	 mixtures,	 the	 equations	 	 (3.1)	 and	 (3.2)	 are	 rewritten	

describing—thus—a	latent	(i.e.	hidden)	variables	model	[167]:	Let	N	sources	xi	

…	xN	be	modelled	as	linear	combinations	of	J	random	variables	sj,	i.e.	

ݔ ൌ ܽଵݏଵ  ܽଶݏଶ  ⋯ ܽݏ	 ܽ, ݅, ݆ ∈ Ժ. (3.3)

Note	that	index	n	is	dropped	from	the	above	equation.	This	model	is	called	the	

instantaneous	model,	 in	which	any	delay	between	 the	sources	or	 interference	

(noise)	 that	might	exist	 in	 the	observed	mixture	 is	not	considered	[168].	The	

relation	between	 the	number	of	 sources	 J	 and	 the	number	of	 observations	N	

defines	two	categories	of	BSS:	when	J>N	the	class	of	BSS	is	(under)complete	or	

underdetermined	 [169],	while	 J≤N	defines	an	overcomplete	 or	overdetermined	

case	[170].	The	assumption	that	is	common	in	all	the	approaches	to	BSS	is	the	

statistical	 independence	 of	 the	 sources	 sJ.	 An	 explanation	 of	 this	 statistical	

property	is	provided	in	Section	A.1	of	the	appendix.	
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Figure	3.2:	Function	of	the	mixing	matrix	in	the	instantaneous	model.	The	stereo	signal	
denoted	as	vector	x	is	produced	from	two	sources	that	constitute	vector	s.	This	mixture,	in	

terms	of	stereo	localisation,	gives	the	impression	that	the	s1	is	left	and	the	s2	is	right.	Provided	
that	var(s1)	≅	var(s2),	s1	will	also	be	perceived	as	being	louder	than	s2	.	

In	 vector/matrix	notation,	 equation	 (3.3)	 can	be	 simplified.	 In	equation	 (3.4)	

vectors	are	denoted	as	bold	lowercase	letters	and	matrices	as	bold	uppercase	

letters.	Vectors	are	column	vectors	unless	otherwise	stated.	

ܠ ൌ ,ܛۯ (3.4)

where	A	is	the	mixing	matrix.	

Figure	 3.2	 illustrates	 how	 a	 mixing	 matrix	 functions	 to	 produce	 a	 stereo	

mixture	 from	 two	 sources.	 In	order	 to	 solve	 equation	 (3.4)	 for	s,	 the	 inverse	

(i.e.	A‐1)	of	the	mixing	matrix	is	needed.	This	de‐mixing	matrix	is	noted	as	W:	

ܛ ൌ .ܠ܅ (3.5)

The	 objective	 of	 BSS	 is	 to	 estimate	 the	 de‐mixing	 matrix	 using	 an	 inverse	

system	(referred	to	as	a	reconstruction	system),	which	is	commonly	based	on	a	

neural	 network	 and	 adaptive	 learning	 [171,	 172].	 A	 unified	 model	 of	 the	

algorithma	that	target	BSS	can	be	seen	in	Figure	3.3.	
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Figure	3.3:	BSS	generic	model	[173].	sj(t)	and	yj(t)	are	the	original	and	estimated	sources	
respectively.	The	term	zi(t)		represents	interference	(noise)	where	applicable.	

Here,	 the	 original	 sources	 are	 mixed	 with	 an	 unknown	 matrix	 and	

contaminated	 with	 noise.	 The	 target	 of	 the	 system	 is	 to	 derive	 the	

decontaminated	sources	si	by	observing	their	mixtures	xi.	

After	 formulating	 the	 problem	 of	 BSS,	 the	 rest	 of	 this	 chapter	 discusses	

methods	 that	 attempt	 to	 solve	 this	 problem.	 Particular	 focus	 is	 given	 to	

principal	 component	 analysis	 (PCA)	 and	 Independent	 component	 analysis	

(ICA).	These	methods	enjoy	growing	interest	 in	many	research	areas,	such	as	

astrophysics	 [174],	 image	 de‐noising,	 data	 compression,	 and	

magnetoencephalography	(MEG)	[175].	However,	the	discussion	in	this	thesis	

is	 adjusted	 to	 the	perspective	of	 their	 application	 in	 audio	 source	 separation	

from	stereophonic	signals.	

3.2 Principal	component	analysis	(PCA)	

PCA	is	a	mathematical	process	of	second	order	statistics,	developed	in	1901	by	

Pearson	 	 and	 is	 often	 used	 as	 a	 dimensionality	 reduction	 technique	 in	

multivariate	 statistical	 analysis	 [176,	 177].	 	 Its	 main	 feature	 is	 the	
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decomposition	of	the	covariance	matrix	of	input	data.	

The	general	PCA	model	usually	begins	with	centring	the	data:	The	mean	of	the	

data	becomes	zero	by	subtracting	the	 initial	mean	average.	This	procedure	 is	

only	for	simplifying	the	model	and	is	not	destructive,	as	the	mean	can	be	added	

back	at	a	later	stage	[178].		

Taking	into	consideration	the	problem	postulated	by	BSS	in	(3.4),	PCA	aims	to	

linearly	transform	the	vector	x	into	ẍ	by	multiplying	it	with	a	matrix	V	so	that	

E[ẍẍT]	=	I	,	Where	E[⋅]	is	the	expected	value,	and	I	denotes	the	identity	matrix:	

ሷܠ ൌ 	.ܠ܄ (3.6)

The	 aforementioned	 process	 is	 also	 referred	 to	 as	 whitening12	 [179]	 or	

sphering	 [180].	 From	 the	 above	 equation	 and	 equation	 (3.4),	 derives	 a	 new	

mixing	matrix	Ã	as	follows13:	

ሷܠ ൌ ܛۯ܄ ൌ .ܛ෩ۯ (3.7)	

The	principal	components	of	the	bivariate	vector	ẍ	are	the	orthonormal	basis	

unit	vectors,	 that	demonstrate	the	maximised	variance	of	 the	data	[181].	The	

main	 advantage	 of	 this	 transformation	 is	 that	 the	 new	 mixing	 matrix	 	෩ۯ is	

orthogonal:	

Eሾܠሷܠሷ ்ሿ ൌ ෩்ۯሿ்ܛܛ෩Eሾۯ ൌ ෩்ۯ෩ۯ ൌ ۷. (3.8)

																																																								

12 Generally, whiteness of a zero-mean random vector means that its components are uncorrelated 
and their variance equals one. 
13 In this thesis, a tilde (~) is used over a letter only as a diacritic, and does not indicate matrix 
transposition, which is denoted by the superscript italic letter T (i.e. T ). 
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Orthogonality	 of	 the	 target	 de‐mixing	 matrix	 is	 seen	 as	 a	 way	 to	 limit	 the	

search	to	the	group	of	unitary	or	orthonormal	matrices,	depending	on	the	case	

[163].	In	fact,	this	process	significantly	improves	the	efficiency	of	the	algorithm	

as	 orthogonal	 matrices	 have	 only	 n(n‐1)/2	 parameters,	 instead	 of	 n2.	 For	

example,	 for	 a	 two‐dimensional	matrix,	 a	 single	 angle	parameter	 is	 sufficient	

[182,	 183].	 This	 is	 also	 a	 significant	 aid	 to	 computational	 efficiency	 as	

whitening	 is	a	simple	and	standard	procedure	and	reduces	 the	complexity	of	

the	problem	of	BSS	at	least	by	a	factor	of	two	[184].		

	

Figure	3.4:	Bivariate	distributions	of	a)	two	sources	with	uniform	distributions	(μ	≈	0,	σ	≈	1).	
horizontal	axis:	s1(t)	vertical	axis:	s2(t)	b)	two	mixtures	of	the	same	sources	and	c)	the	same	

mixtures	after	whitening.	The	equivalent	expressions	of	the	instantaneous	model	are	
presented	on	top	of	each	drawing.	

An	example	of	whitening	of	mixtures	deriving	from	uniformly	distributed	data	

can	be	seen	in	Figure	3.4.	Here,	dist(cov(ẍ),	I)	≈		5	x	10‐15,	where	dist(⋅)	denotes	

Euclidean	 distance,	 and	 cov(⋅)	 denotes	 covariance	 [185].	 From	 a	 visual	

perspective,	whitening	initially	rotates	a	matrix	and	subsequently	stretches	it.	

The	directions	of	the	mixing	matrix	are	visually	so	prominent,	that	it	is	almost	

tempting	 to	 try	 to	 estimate	 the	 mixing	 matrix	 heuristically.	 However,	 as	

discussed	in	A.1,	such	methods	are	generally	not	robust.		
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Figure	3.5:	Bivariate	distributions	of	a)	two	sources	with	Gaussian	distributions	(μ≈0,	σ≈1).	
horizontal	axis:	s1(t)	vertical	axis:	s2(t)	b)	two	mixtures	of	the	same	sources	and	c)	the	same	

mixtures	after	whitening.	dist(cov(ẍ),	I)	≈		8	x	10‐15.	The	equivalent	expressions	of	the	
instantaneous	model	are	presented	on	top	of	each	drawing.		

When	 the	 sources	 are	 normally	 distributed,	 whitening	 does	 not	 make	 the	

problem	any	easier	and—as	can	be	seen	in	Figure	3.5—there	is	essentially	no	

change	in	their	joint	distribution.	

	This	 is	 because	 no	 amount	 of	 rotation	 and	 stretching	 can	 make	 the	

distribution	 orthogonal.	 The	 limitations	 that	 Gaussian	 distributions	 pose	 are	

going	to	be	discussed	further	in	Subsection	3.3.4.	

There	are	several	methods	[184]	that	can	be	used	in	order	to	perform	PCA.	In	

the	next	two	subsections,	two	different	methods	for	the	purpose	of	whitening	

or	 solving	 the	 BSS	 using	 PCA	 are	 explored.	 These	 are	 the	 eigenvalue	

decomposition	(EVD),	and	the	singular	value	decomposition	(SVD)	[186].	The	

close	relationship	of	these	two	will	become	apparent	as	the	section	progresses.		

3.2.2. Using	eigenvalue	decomposition	(EVD)	

Eigenvalue	 decomposition	 is	 a	 procedure	 of	 linear	 algebra,	 whereby	 the	

eigenvalues	 λi	 and	 the	 eigenvectors	 gi	 of	 a	matrix	M	 ∊	ԹN	 x	 N	 are	 related	 as	

follows	[187]:	

ẍ=Vx
V	=[ ]	0.1770				‐0.2396

‐0.0926			‐0.0684

(c)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

A	=[ ]7		2
3		5

x=As

(b)

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

s

(a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4



Blind	source	separation	and	independent	component	analysis	

Singing	voice	separation	from	stereophonic	recordings	 45	

ۻ ൌ .	ߣ (3.9)

Here,	λi	is	a	scalar	and	gi	≠	0.	The	factorisation	of	M	can	be	expressed	as:	

ۻ ൌ ۵۵ିଵ, (3.10)

where	G	∊	ԹN	x	N	contains	the	eigenvectors	[gi	…	gN]	of	M,	while	Λ	contains	the	

corresponding	eigenvalues	λi	in	its	diagonal	in	such	way	that	Λ1,1	≥	Λ2,2	≥	...	ΛΝ,Ν.	

Each	 vector	 of	 matrix	 G	 is	 an	 estimated	 de‐mixing	 vector,	 i.e.	 a	 wi,	 that	

produces	 a	principal	 component	 (PC)	when	multiplied	with	 the	 input	x	 from	

(3.5)	 [188,	189].	For	 the	case	of	 solving	BSS	 the	usual	procedure	 is	 to	derive	

PCs	by	sorting	them	according	to	their	eigenvalues.	

For	 the	purpose	of	whitening,	 the	matrix	V	 of	 equation	 (3.7)	 is	derived	as	 in	

(3.11)	[190]:	

܄ ൌ ൫۵.൯
ି

ൌ ି.۵ିଵ ൌ ି.۵்	. (3.11)

3.2.3. Using	singular	value	decomposition	(SVD)	

The	 covariance	matrix	 can	 also	 be	 decomposed	with	 the	method	 of	 singular	

value	decomposition	(SVD)	[191].	When	applied	to	the	mixture,	the	process	of	

SVD	for	a	matrix	X	gives:	

܆ ൌ ,	۶்܃ (3.12)

where	U	∊	ԹM	x	M,	and	H	∊	ԹN	x	N	are	orthonormal,	while	Σ	∊	ԹM	x	N	≥	0	is	diagonal.	
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The	diagonal	values	of	Σ	are	also	called	the	singular	values	of	X,	and	they	satisfy	

the	condition	Σ1,1	≥	Σ2,2	≥	...	ΣΝ,Ν	[190].	On	the	other	hand,	U	and	H	contain	the	

left	singular	vectors	and	right	singular	vectors	respectively14.		

The	instantaneous	model	is	discarded	here	so	that	X	denotes	the	matrix	of	all	

samples	of	mixtures,	i.e.	X	=	AS,	where	the	components	of	S	are	listed	below:	

܁ ൌ 
ଵሾ݊ሿݏ ⋯ ሾ݊ሿݏ
⋮ ⋱ ⋮

ଵሾNሿݏ ⋯ ሾNሿݏ
	.	 (3.13)

The	number	of	time	samples	is	denoted	as	N,	while	the	number	of	sources	as	J.	

Considering	 the	 similarities	 here	 with	 the	 decomposition	 of	 EVD,	 the	 left	

singular	vectors	are	the	eigenvectors	of	MMT,	the	right	singular	vectors	are	the	

eigenvectors	 of	MTM	while	 the	 diagonal	Σ	 contains	 the	 square	 roots	 of	MTM	

and	MMT.	

By	 rewriting	 equation	 (3.12)	 the	 de‐mixing	 matrix	 can	 be	 computed	 in	 the	

following	way:	

܆ ൌ ۶்܃ 	⇔ ்܆ ൌ ۶்்܃ ⇔ ்܃ ൌ ି்۶்்܆ , (3.14)

Thus,	the	de‐mixing	matrix	W	of	equation	(3.5)	is	identified	as:	

܅ ൌ ି்۶்	. (3.15)

																																																								

14 In SVD, the bold capital V is usually used for the right singular vectors. In this study this is 
replaced with H in order to avoid confusion with the matrix V that is used to modify the mixing 
matrix for the purpose of whitening in equation (3.6) onwards. 
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Taking	into	consideration	equations	(3.5)	and	(3.15),	the	columns	of	the	matrix	

U	correspond	to	the	de‐mixed	signals	(i.e.	the	estimated	sources	S)	[181].	

Accordingly,	for	the	case	of	whitening	the	expression	is:	

܄ ൌ ۶்√Ν	, (3.16)

where	N	is	the	length	of	mixing	matrix	A	as	in	(3.4).	

In	the	next	section,	the	ICA	technique	is	described,	as	well	as	the	usage	of	PCA	

in	its	context	for	the	purpose	of	pre‐processing.	

3.3 Independent	component	analysis	(ICA)	

ICA	is	a	general	purpose	statistical	technique	that	is	closely	related	to	the	case	

of	blind	 source	 separation	 (BSS),	 as	 the	 assumptions	 regarding	 the	nature	of	

the	 original	 sources	 are	 minimal.	 In	 addition,	 ICA	 is	 conceivably	 one	 of	 the	

most	widely	used	BSS	methods	[167].	The	name	of	this	technique	derives	from	

its	direct	association	with	PCA	[192].		The	key	difference	between	PCA	and	ICA	

is	that	the	latter	uses	higher‐order	statistics:	while	PCA	estimates	components	

by	deriving	a	de‐mixing	matrix	that	maximises	variance	(the	second	moment),	

the	 de‐mixing	 matrix	 that	 derives	 from	 ICA	 is	 based	 on	 maximising	

independence,	which	is	associated	with	the	fourth	moment,	i.e.	kurtosis.	

3.3.1. Uncorrelated	vs.	independent	multivariate	distributions	

At	 this	 stage,	 the	difference	between	 the	absence	of	 correlation	between	 two	

random	variables	and	their	statistical	independence	is	detailed.	This	is	deemed	

to	 be	 of	 particular	 importance	 as	 a)	 it	 is	 one	 of	 the	 two	 critical	 differences	

between	 PCA	 and	 ICA,	 and	 b)	 the	 distinction	 is	 not	 always	 clear	 in	 the	

literature.	
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Intuitively,	two	variables	(e.g.	x	and	y)	are	independent	if	x	does	not	give	any	

information	about	y.		

Although	 independence	 implies	 lack	 of	 correlation,	 this	 is	 not	 commutative.	

For	example,	if	x	is	the	result	of	rolling	one	die	and	y	is	the	result	of	rolling	the	

same	die	 a	 second	 time,	x	 and	y	 are	 independent	 (and	uncorrelated).	On	 the	

other	hand,	 if	x	 is	a	card	drawn	randomly	 from	a	deck	and	y	 is	a	card	drawn	

subsequently	 from	 the	 same	 deck	 without	 replacing	 x,	 then	 x	 and	 y	 are	

uncorrelated	 but	 not	 independent,	 as	 drawing	 x	 made	 drawing	 y	 more	

probable).		In	technical	terms,	their	independence	can	be	determined	by	their	

probability	densities	(i.e.	the	occurrence	of	x	makes	the	occurrence	of	y	neither	

less	nor	more	probable	and	vice	versa).	The	relationship	of	lack	of	correlation	

and	independence	is	formally	explained	below.	

Generally,	 two	 variables	 x	 and	 y	 are	 deemed	 to	 be	 statistically	 independent	

when:		

ሻݕ⋂ݔሺ ൌ ,ሻݕሺሻݔሺ (3.17)

where	p(⋅)	denotes	probability.	Assume	that	the	bivariate	distribution	of	(y1,	

y2)	comprises	discrete	values	and	have	a	uniform	distribution	among	the	

values	[0,	1],	[0,‐1],	[1,	0],	[‐1,	0].	These	are	uncorrelated,	as	their	covariance	is	

zero:	

Eሾݕଵݕଶሿ െ EሾݕଵሿEሾݕଶሿ ൌ 0, (3.18)

but	they	are	not	independent	because:	

Eሾݕଵ
ଶݕଶ

ଶሿ ൌ 0 ്
1
4
ൌ Eሾݕଵ

ଶሿEሾݕଶ
ଶሿ. (3.19)
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3.3.2. Basic	concept	of	ICA	

According	 to	 the	 central	 limit	 theorem	 (CLT),	 the	 distribution	 of	 a	 sum	 of	

independent	random	variables	tends	toward	a	Gaussian	distribution,	provided	

that	the	random	variables	have	finite	variance	[193].	The	estimation	of	the	de‐

mixing	matrix	W	 in	 ICA	 is	based	on	 the	reverse	of	 this	 theorem,	 i.e.	different	

values	 of	W	 are	 applied	 in	 iterations,	 and	 converge	when	 the	 rows	 of	 s	 (the	

estimated	sources)	reach	maximally	non‐Gaussian	distributions.	

3.3.3. Maximisation	of	non‐Gaussianity	

In	order	 to	 examine	how	 the	maximisation	of	non‐Gaussianity	 is	 carried	out,	

assume	 sources	 s1	 and	 s2	where	 their	 probability	 distribution	 functions	 are	

identical,	i.e.	pdf(s1)	≡	pdf(s2).	These	two	sources	are	mixed	with	an	unknown	

mixing	matrix	A,	in	order	to	produce	the	observed	mixtures	x1	and	x2.	After	the	

centring	and	whitening	of	these	mixtures,	the	target	is	to	estimate	initially	one	

of	 the	 sources	 (say	 š).	 	 Consider	w,	which	 is	 a	 row	of	 the	de‐mixing	W	 from	

equation	(3.5),	as	the	de‐mixing	vector	for	this	source.		

Formally	expressed,	the	above	becomes:	

ݏ̌ ൌ ܛۯ்ܟ ൌ ܠ்ܟ ൌݓ


	,ݔ (3.20)		

where	 i	 is	 the	source	 index.	Hence,	š	 is	a	 linear	combination	of	s1	and	s2	with	

coefficients	wTA,	that	should	be	either	[1,	0]	or	[0,	1].	

At	 this	 point	 the	 theoretical	 foundation	 of	 the	 central	 limit	 theorem	 (CLT)	 is	

employed.	As	mentioned	before,	according	to	CLT	the	distribution	of	a	sum	of	

independent	random	variables	tends	toward	a	Gaussian	distribution,	provided	

that	 the	 random	 variables	 have	 finite	 variance	 [193].	 So,	 the	 sum	 of	 two	

independent	values	(in	this	case	x)	is	more	Gaussian	than	s1	or	s2.	As	a	result,	

wTx	 will	 be	 the	 least	 Gaussian	 when	 it	 equals,	 in	 fact,	 one	 of	 the	 sources.	
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Therefore,	 the	 aim	 here	 is	 to	 find	 a	 vector	 w	 that	 maximises	 the	 non‐

Gaussianity	of	wTx;	this	vector	cannot	be	determined,	but	it	can	be	estimated.		

This	is	one	of	the	core	ideas	of	ICA,	namely	that	maximising	the	projected	non‐

Gaussianity	gives	us	one	of	the	independent	components.	However,	w	can	have	

2n	 local	maxima,	 i.e.	 two	 for	 each	 source	 (this	 is	 the	 reason	 that	 one	 of	 the	

ambiguities	 of	 ICA	 is	 the	 signal	 phase	 of	 the	 obtained	 ICs	 as	 described	 in	

Section	3.5).			

After	the	estimation	of	the	‘first’	w,	the	rest	of	these	components	are	estimated	

by	 finding	 all	 the	 local	 maxima.	 In	 addition,	 since	 the	 sources	 are	 assumed	

uncorrelated,	 the	search	for	the	rest	of	 the	estimates	 is	restricted	to	the	ones	

that	exhibit	poor	correlation	with	the	first	IC.	

3.3.4. Assumptions	of	ICA	

In	 this	 subsection,	 the	main	 restrictions	 for	 estimating	 the	 de‐mixing	matrix	

using	ICA	are	listed.	However,	it	should	be	noted	that	all	these	restrictions	have	

been	proven	quite	relaxed,	as	there	have	been	studies	on	tackling	each	one	of	

them.	 These	 studies	 are	mentioned	 here	 but	 not	 described,	 as	 this	 review	 is	

mainly	concentrated	on	the	main	idea	of	ICA.	Later	in	this	thesis,	the	effect	of	

these	restrictions	is	investigated,	particularly	for	the	case	where	the	observed	

mixtures	are	music	recordings.	

Square	mixing	matrix:	 One	of	 the	 critical	 requirements	 is	 that	 the	number	of	

observed	mixtures	xi	equals	or	outnumbers	the	number	of	sources	sj,	 i.e.	N≥	J.	

Otherwise,	 the	 problem	 is	 called	 underdetermined	 and	 the	matrix	 cannot	 be	

inverted.	However,	during	the	last	few	years,	there	are	studies	suggesting	that,	

even	 when	 the	 observed	 mixtures	 are	 fewer	 than	 the	 original	 sources,	

components	can	still	be	computed	[194‐196].		

Non‐Gaussian	 sources:	 The	 variables	 sj	 are	 not	 allowed	 to	 have	 Gaussian	

distributions.	 If	 they	 do,	 that	 means	 that	 the	 observed	 mixtures	 xi	 are	 also	

Gaussian.	As	it	is	explained	in	3.4,	higher‐order	statistical	information	diversity	
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is	essential	for	the	estimation	of	W	in	ICA;	in	the	case	of	Gaussian	distribution,	

skewness	and	kurtosis	are	zero	[197].	Nonetheless,	it	is	not	assumed	that	the	

pdfs	 of	 sj	 are	 known	 (if	 they	 were	 known,	 the	 problem	 would	 be	 much	

simpler).	In	some	instances	of	ICA,	though,	the	assumption	of	non‐Gaussianity	

can	be	replaced	by	assumptions	on	the	time	structure	of	the	signals	[198].	

Statistical	independence:	The	sources	sj	must	be	statistically	independent.	This	

is	 explained	 in	3.3.1	 and	 it	 is	 perhaps	 one	 of	 the	 fundamental	 restrictions	 of	

ICA,	as	the	acronym	itself	suggests.	At	this	point,	it	is	important	to	emphasise	

that	 this	 restriction	 concerns	only	 the	 sources	 sj	 and	not	 the	mixtures	xi	 that	

are—in	every	case—dependent	(see	A.1).	The	assumption	of	 independence	is	

not	unrealistic	in	most	cases	and—surprisingly—it	doesn’t	need	to	be	exactly	

true	[199,	200].	

Stationarity:	 	 The	 instantaneous	 model	 in	 equation	 (3.3)	 has	 the	 restriction	

that	 the	 statistical	 properties	 of	 the	 sources	 as	well	 as	 of	 the	mixing	matrix,	

must	 not	 change	 in	 time.	 In	music	 terms,	 the	 equivalent	 statement	 is	 that	 a	

source	should	not	change	in	pitch,	timbre,	amplitude,	or	panning	location.	For	

example,	a	sine	wave	is	stationary,	while	a	note	from	a	piano	is	not	(the	sound	

fades	out,	and,	at	the	risk	of	being	pedantic,	changes	in	timbre	and	decreases	in	

frequency	 after	 the	 hammer	 strikes	 the	 string	 [201]).	 Generally,	 a	 stochastic	

process	is	said	to	be	stationary	in	the	strict	sense	only	if	its	joint	density	doesn’t	

change	 between	 time	 shifts.	 Once	 again	 this	 restriction	 has	 been	 proven—in	

practice—to	be	able	to	be	bypassed	[202,	203].	

Noise	omission:	 	 In	the	instantaneous	model	of	ICA,	the	noise	term	is	omitted.	

For	 many	 purposes	 of	 ICA,	 this	 would	 be	 an	 unrealistic	 assumption;	

nevertheless,	it	is	made,	since	the	estimation	of	the	noise‐free	model	is	difficult	

enough	 in	 itself.	 	Despite	 this,	 this	 assumption	 seems	 to	be	effective	 in	many	

applications	 [204],	 such	 as	 fetal	 signal	 reconstruction,	 where	 the	 noise	 is	

treated	as	a	separate	source	[205].	However,	 there	are	some	approaches	that	

include	 a	 noise	 term	 in	 their	 problem	 formulations	 and,	 with	 appropriate	
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modifications,	the	cancellation	of	noise	as	well	as	the	separation	of	sources	are	

claimed	to	be	successful	[206,	207].	

Linearity:	By	 linearity	of	 the	mixing	process,	 it	 is	 implied	that	any	delays15	or	

reflections	that	would	occur	in	a	real‐world	environment	are	disregarded.	This	

is	 because	 the	 estimation	 of	 independent	 components	 from	 non‐linear	

mixtures	 poses	 a	 fundamental	 problem:	 solutions	 always	 exist	 and	 they	 are	

highly	non‐unique	[208].	

Filtering:	For	the	purpose	of	solving	BSS	time	signals	(e.g.	audio	signals)	using	

ICA,	frequency	filtering	can	be	occasionally	very	useful	[204],	as	discussed	later	

in	Chapter	6.	Although	each	case	 is	different	and	general	 filtering	parameters	

cannot	 be	 generalised	 it	 is	 important	 to	 show	 that	 the	 ICA	model	 still	 holds	

after	the	filtering.	

Hence,	 equation	 (3.4)	 is	 rewritten	 for	 the	 case	 of	 continuous	 signals,	 i.e.	

considering	the	composition	of	S	as	in	(3.13)	and	X	in	a	similar	manner,	where	

columns	of	X	represent	individual	observations	in	time:	

܆ ൌ ܁ۯ (3.21)

When	filtering	(represented	as	matrix	F)	is	applied	the	expression	becomes:	

ሖ܆ ൌ ۴܆ ൌ ۴܁ۯ ൌ ሖ܁ۯ (3.22)	

This	means	that	the	model	for	the	mixing	matrix	is	still	the	same,	but	the	target	

sources	are	filtered.	

																																																								

15 As seen in Figure 3.1, s1 is not equidistant from the two microphones. This results in a time/phase 
delay between the presence of s1 in the two mixtures. 
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3.3.5. Effect	of	ICA	assumptions	in	stereophonic	studio	recordings	

Since	 the	 object	 of	 this	 study	 is	 source	 separation	 from	 polyphonic	

observations,	 it	 is	 important	 to	 examine	 how	 restrictive	 the	 aforementioned	

assumptions	are	for	this	case.	

The	restriction16	of	time	delay	usually	does	not	pose	an	obstacle,	as	the	phase	

of	 the	 signal	 in	 studio	 recordings	 is	 coherent	 between	 the	 left	 and	 the	 right	

channels	and	only	its	intensity	varies,	as	discussed	in	Chapter	4.	

On	the	other	hand,	statistical	independence	and	stationarity	can	form	a	strong	

challenge	 in	 this	 field	 as,	music	 sources	 in	 a	 song	 do	 correlate	 and	 they	 are	

generally	not	stationary	[209].	

Noise	 omission	 from	 the	 model	 of	 ICA	 is	 not	 deemed	 to	 pose	 a	 significant	

challenge	 as	 every	 source	 in	 a	 music	 mixture	 is	 considered	 rather	 a	 music	

instrument	(even	if	in	a	different	context	it	would	be	noise).		

Non‐linearity	in	stereophonic	recordings	is	quite	often	the	case,	as	non‐linear	

effects,	 such	 as	 compression,	 limiting,	 and	 gating,	 are	 commonly	 used.	When	

these	 effects	 do	 not	 exist,	 the	 case	 is	 deemed	 to	 be	 plausible	 for	 ICA,	 as	 the	

mixing	is	linear	and	therefore	a	de‐mixing	matrix	W	exists.	

The	 assumption	 of	 non‐Gaussianity	 holds	 for	 the	 case	 of	music	 as	 the	music	

sources	 are	 generally	 not	 Gaussian.	 However,	 convolution	 during	 mixing	

makes	the	sources	more	Gaussian.	This	is	because	in	cases	such	as	mixing	(as	

well	 as	 others),	 convolution	 increases	 entropy	 [210].	 As	 a	 result,	 the	 more	

processing	 a	 source	 has,	 the	 more	 difficult	 is	 for	 ICA	 to	 find	 its	 de‐mixing	

matrix.	This	is	especially	evident	for	processing	that	has	long	filter	kernels,	e.g.	

reverberation	and	delay.	

The	most	restrictive	assumption	for	the	case	of	stereophonic	music	recordings	

																																																								

16 An exception to this is the addition of stereo delay-based effects in music production, which is 
nevertheless rare for the case of the main vocal part (though quite common for the backing vocals). 
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is	the	square	mixing	matrix.	Clearly,	most	stereophonic	tracks	of	music	contain	

more	 than	 two	 sources	 [211]	 and	 can	 reach	 tens	 or	 even	 hundreds	 in	 the	

extreme.	 With	 regards	 to	 this,	 Section	 4.1	 details	 mixing	 procedures	 in	

stereophonic	recordings	and	mixing	matrices	thereof.	

These	restrictions	indeed	suggest	against	the	feasibility	of	the	use	of	ICA	on	its	

own	in	the	case	of	music.	As	can	be	seen	 in	subsequent	chapters,	however,	 it	

can	 still	 be	 used	 as	 a	 pre‐processing	 step.	 In	 the	 next	 section	 a	 specific	

algorithm	that	performs	ICA	is	reviewed	and	analysed.	

3.4 Fast	independent	component	analysis	(FICA)	

There	are	several	algorithms	that	attempt	to	solve	the	model	of	BSS	by	using	

ICA.	 These	 include	 the	 Infomax	 [212]	 algorithm	 that	 uses	 the	 maximum	

likelihood	estimate,	and	Jade	[213]	that	uses	EVD.	Of	particular	interest	to	this	

study	 is	 the	 fixed‐point	algorithm	of	 fast	 ICA	(FICA)	because	of	 its	 speed	and	

robustness	[214].	In	this	section,	FICA	is	described,	with	emphasis	given	on	the	

metric	of	Gaussianity	that	is	used.	

3.4.1. Pre‐processing	

Centring:	 Similarly	 to	 the	 pre‐processing	 used	 for	 PCA	 in	 Section	 3.2,	 the	

mixtures	 are	 linearly	 ‘shifted’	 so	 that	 their	 means	 are	 zero.	 This	 process	 is	

reversed	 after	 the	 de‐mixing	 matrix	W	 is	 estimated:	 The	 expression	WΔμ	

(where	Δμ	is	the	mean	that	was	initially	subtracted	for	centring)	produces	the	

mean	vector	of	s	so	that	it	can	be	added	back	to	the	ICs.	

Whitening:	 PCA	 is	 used	 here	 for	 the	 purposes	 of	 whitening.	 Although	 PCA	

cannot	 recover	 non‐orthogonal	 sources	 [178],	 it	 has	 the	 advantage	 that	 the	

analysis	can	be	based	on	second‐order	statistics	only	and	can	be	a	useful	pre‐

processing	step	for	ICA	[214].	The	use	of	PCA	as	a	spatial	whitening	technique	

has	 commonly	 been	 viewed	 as	 a	way	 to	 simply	 limit	 the	 space	 of	 de‐mixing	
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matrices	 to	 orthogonal	 ones.	 In	 practice,	 though,	 it	 also	 demonstrates	 the	

property	 of	 reducing	 the	 unwanted	 contribution	 of	 additive	 noise	 in	 the	

mixtures	[190]. 

3.4.2. Measuring	Gaussianity	in	FICA	

One	of	 the	most	challenging	steps	of	 ICA	is	 to	measure	the	Gaussianity	of	 the	

resulting	vector,	after	each	 iteration/trial	of	a	de‐mixing	matrix	W.	Here,	 two	

standard	metrics	 for	 this	 purpose,	 namely	kurtosis	 and	negentropy	 (negative	

entropy),	are	described	and	reviewed	since	most	algorithms	that	perform	ICA	

are	based	on	these	methods	or	a	combination	of	them.	The	section	continues	to	

detail	 how	 they	 are	 combined	 for	 measuring	 Gaussianity	 in	 the	 fixed‐point	

algorithm	FICA.	

3.4.3. Kurtosis	

The	 most	 intuitive	 measure	 of	 Gaussianity	 is	 kurtosis,	 the	 fourth‐order	

cumulant.	 Kurtosis	 measures	 the	 curve	 “narrowness”	 of	 the	 probability	

distribution	 shape.	 If	 the	 curve	 is	 narrower	 than	 Gaussian,	 the	 kurtosis	 is	

positive17	 and	 the	 distribution	 is	 called	 leptokurtic	 or	 super‐Gaussian.	 If	 the	

curve	 is	wider	 than	Gaussian,	 the	 kurtosis	 is	 negative	 and	 the	distribution	 is	

called	platykurtic	or	sub‐Gaussian.	Gaussian	distribution	has	a	kurtosis	of	zero	

and	is	also	known	as	mesokurtic	[215].		

Typical	 examples	 of	 mesokurtic	 (Gaussian),	 leptokurtic	 (Laplacian)	 and	

platykurtic	(uniform)	distributions	are	given	in	Figure	3.6.	

																																																								

17 The correction factor of excess kurtosis is assumed (-3). 
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Figure	3.6:	Density	functions	of	three	typical	distributions.	The	range	of	values	of	the	selected	
functions	has	been	selected	so	that	μ	=	0	and	σ	=	1.	

Measuring	kurtosis	is	a	computationally	light	process	and	is	obtained	from	the	

fourth	moment:	

ሻݔሺݐݎݑ݇ ൌ Eሾݔସሿ െ 3ሺEሾݔଶሿሻଶ. (3.23)			

However,	 this	method	has	 significant	 disadvantages	when	 the	distribution	 is	

computed	based	on	observed	samples	(rather	than	a	function)	and	can	be	very	

sensitive	 to	 outliers,	 i.e.	 the	 estimation	 may	 be	 based	 only	 on	 a	 few	

observations	 from	 the	 tail	 of	 a	 distribution.	 This	 can	 result	 to	 a	 misleading	

measurement	[216],	because	expectations	of	polynomials	such	as	these	of	the	

fourth	order	are	more	affected	by	data	that	are	far	from	zero	than	data	that	are	

close	 to	 zero	 (or	 generally	 the	mean).	This	 is	 often	 referred	 to	 as	 the	 fat	 tail	

problem	 [217].	 For	 example,	 a	 sample	 of	 1000	 random	 values	 that	 has	 unit	

variance	and	zero	mean,	contains	one	value	equal	to	10,	so	the	kurtosis	equals	

at	least	104/1000−3		=	7,	which	is	very	large	(in	Figure	3.6,	the	kurtosis	of	the	

very	narrow	curve	of	the	Laplacian	distribution	is	only	3).	As	a	result,	kurtosis	

cannot	be	absolutely	reliable	for	non‐Gaussianity	measurement.	
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3.4.4. Negentropy	

Another	method	of	measuring	Gaussianity	(or	to	be	precise,	non‐Gaussianity)	

is	 the	 negative	 entropy,	 or	 negentropy.	 In	 information	 theory,	 entropy	 is	 a	

classic	mean	of	measuring	the	uncertainty	of	a	random	variable	[218].	Its	value	

is	 closer	 to	 zero	 when	 the	 value	 of	 the	 variable	 is	 very	 predictable,	 and	

acquires	 its	 maximum	 value	 when	 the	 result	 is	 unpredictable	 (i.e.	 all	 the	

possible	values	of	the	variable	have	the	same	probability).	For	example,	a	coin	

that	is	biased	will	have	a	value	closer	to	zero	than	a	fair	coin,	which	will	have	

entropy	 of	 one.	 On	 the	 other	 hand,	 a	 fair	 die	 roll	 will	 have	 a	 greater	 value,	

because	the	possible	outcomes	are	six	(log26	≈	2.6).		

Formally,	entropy	H(X)	for	discrete	random	variables	is	given	by:	

ሺܺሻܪ ൌ െሺݔሻ


ୀଵ

logଶ ሺ 	,ሻݔ (3.24)		

where	xi	are	the	n	possible	values	of	X.		

Entropy	can	be	generalised	to	continuous	random	variables.	This	case	is	called	

differential	 entropy	 [219].	 Assume	 a	 random	 variable	 vector	 x	 with	 a	

probability	density	function	pdf(x).	The	differential	entropy	h(x)	is	given	by:	

݄ሺܠሻ ൌ െ݂݀ሺܠሻ log ܠሻ݀ܠሺ݂݀ , (3.25)		

where	dx	 is	 the	difference	between	any	two	adjacent	values	of	x.	The	base	of	

the	 logarithm	 defines	 the	 units	 of	 the	 entropy	 (e.g.	 if	 it	 is	 log2	 the	 units	 are	

bits).	

In	 contrast	 to	 entropy,	 differential	 entropy	 gives	 a	 relative	 measure	 of	

randomness	and	can	have	negative	values:	a	continuous	variable	that	has	high	
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peak(s)	in	its	probability	density	shape	will	have	small	differential	entropy	(i.e.	

negative	 with	 large	 absolute	 value).	 It	 has	 been	 proven	 that	 a	 normally	

distributed	variable	has	the	largest	entropy	among	all	random	variables	of	unit	

variance	 [220,	 221].	 Therefore	 entropy	 can	 indeed	 be	 used	 as	 a	 non‐

Gaussianity	measure.		

Negentropy	J(x)	is	the	normalised	version	of	differential	entropy	[222]	and	is	

given	by:	

ሻܠሺܬ ൌ ݄൫ܠ௨௦௦൯ െ ݄ሺܠሻ, (3.26)			

where	 xgauss	 is	 a	 normally	 distributed	 random	 vector	 and	 has	 the	 same	

correlation	 and	 covariance	 matrix	 as	 x.	 The	 significant	 advantages	 of	

negentropy	 are	 that	 it	 is	 robust	 in	 relation	 to	 kurtosis	 and	 that	 it	 is	 well	

justified	 within	 the	 statistical	 theory.	 However,	 it	 is	 computationally	 very	

expensive	as	it	requires	estimation	of	the	pdf.	Hence,	computationally	simpler	

methods	are	usually	used	in	order	to	derive	an	efficient	ICA	algorithm.		

3.4.5. Approximation	of	negentropy	

As	a	‘lighter’	alternative	to	the	approximation	of	negentropy,	the	description	in	

[223],	involves	the	use	of	higher‐order	cumulants.	For	variable	x	with	μ	=	0,	σ	=	

1:	

ሻݔሺܬ ൎ
1
12

Eሾݔଷሿଶ 
1
48

	.ሻଶݔሺݐݎݑ݇ (3.27)			

Unfortunately,	this	estimation	method	involves	kurtosis	and	comes	with	all	its	

aforementioned	 weaknesses,	 especially	 if	 it	 is	 considered	 that	 the	 skewness	

(the	3rd	order	cumulant)	is	zero	for	symmetric	distributions.	This	would	make	

J(x)	solely	dependent	on	kurtosis.	
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Taking	 into	 consideration	 all	 the	 aforementioned	 advantages	 and	

disadvantages	of	measuring	Gaussianity,	FICA	[224]	generalises	the	estimation	

model	 (3.27),	 using	 non‐quadratic	 functions,	 defined	 therein	 as	 “non‐

polynomial	 moments”.	 The	 polynomial	 functions	 x3	 and	 x4	 are	 estimated	 by	

other	functions:	the	simplest	case	with	two	functions	G1(x)	=	x3	and	G2(x)	=	x4	is	

expressed	as:	

ሻݔሺܬ ൎ ݇ଵሺEሾܩଵሺݔሻሿሻଶ  ݇ଶሺEሾܩଶሺݔሻሿ െ Eሾܩଶሺߥሻሿሻଶ ,	 (3.28)		

where	k1	and	k2	are	positive	constants,	and	ν	 is	a	Gaussian	variable	with	zero	

mean	and	unit	variance.	The	significant	advantage	of	this	model	is	that,	even	if	

the	 approximation	 is	 not	 accurate,	 it	 produces	 a	 non‐negative	 value	 and	 is	

consistent,	 giving	 zero	 for	 Gaussian	 variables.	 Furthermore,	 if	 this	 model	 is	

considered	for	symmetrical	distributions	(i.e.	of	zero	skewness),	then	it	can	be	

rewritten	using	only	one	non‐quadratic	function:	

ሻݔሺܬ ∝ ሺEሾܩሺݔሻሿ െ Eሾܩሺߥሻሿሻଶ 	, (3.29)		

where	G(x)	=	 x4	 ,	 and	 the	 symbol	 ‘∝’	 indicates	 proportionality.	Although	 this	

seems	at	 first	 like	an	 approximation	of	 kurtosis	 that	would	 lead	 to	 the	 same	

problems,	 G(x)	 can	 be	 changed	 as	 follows	 so	 that	 it	 does	 not	 grow	 too	 fast	

[224]:	

ሻݔଵሺܩ ൌ
logሺcosh ܽଵݔሻ

ܽଵ
, or	 (3.30)		
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ሻݔଶሺܩ ൌ െ݁
షೣమ

మ , (3.31)			

where	1	≤	a1	≤	2	is	often	equal	to	1.	This	approximation	of	negentropy	is	fast	

and	constitutes	a	good	compromise	between	the	classic	methods	of	measuring	

Gaussianity	by	kurtosis	and	negentropy.	

3.4.6. FICA	for	one	component	

After	examining	the	approach	of	FICA	on	the	measures	of	non‐Gaussianity,	this	

subsection	describes	the	steps	of	the	algorithm	for	the	purpose	of	estimating	a	

vector	that	maximises	the	contrast18	 [225]	as	 in	equation	(3.20).	 Initially,	 the	

algorithm	 for	 the	 estimation	 of	 the	 first	 IC	 is	 described.	 As	 described	 in	

Subsection	 3.3.3,	 the	 vector	 that	 is	 important	 here	 is	w.	 Thus,	 the	 algorithm	

must	“test”	(or,	in	technical	terms,	update	by	learning	rule)	several	values	of	w	

in	order	to	maximise	the	non‐Gaussianity	of	the	projection	wTẍ.	

There	are	several	optimisation	methods	 in	order	 to	approach	 the	value	of	w,	

such	 as	 gradient	 descent	 [226],	 Newton	 iteration	 [227],	 and	 fixed‐point	

iteration	 [228].	 The	 latter	 optimisation	 is	 employed	 by	 FICA,	 as	 it	 is	

acknowledged	as	an	acceptable	trade‐off	between	efficiency	and	effectiveness	

[229].	The	measure	 for	updating	w	 is	negentropy,	as,	 the	higher	 the	 index	of	

negentropy,	the	further	the	distribution	from	Gaussian.	

Since	 the	approach	 is	 fixed‐point	optimisation,	 the	corresponding	derivatives	

of	equations	(3.30)	and	(3.31),	defined	as	g1(x)	and	g2(x)	respectively	are	used.	

Adding	 to	 these	 the	 derivative	 from	 kurtosis	 as	 described	 in	 3.4.3	 results	 in	

three	choices:	

																																																								

18 A contrast function F(x) is any non-linear function which permutation and scaling tolerant and 
estimates the level of statistical independence between the components of x. 
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ଵ݃ሺݔሻ ൌ tanhሺܽଵݔሻ, (3.32)		

݃ଶሺݔሻ ൌ ݁ݔ
ି௫మ
ଶ , or (3.33)		

݃ଷሺݔሻ ൌ ,ଷݔ (3.34)		

where	1	≤	a1	≤	2	is	a	scalar	constant	that	is	empirically	set	usually	to	1	[227].	

Table	3.1	gives	 the	description	of	 the	algorithm.	 In	practice,	 the	expectations	

are	estimated	as	an	average	over	the	available	data	sample	[230].	

	

1. Centre	the	data	so	that	μ	=	0	

2. Whiten	the	data	to	give	ẍ	

3. Choose	an	initial	vector	w	randomly	with	the	restriction	‖ܟ‖ ൌ 1	

4. Let		ܟ ← Eሾܠሷ݃ሺܠ்ܟሷሻሿ െ Eሾ݃ᇱሺܠ்ܟሷሻሿܟ	

5. Let	ܟ ← 	‖ܟ‖/ܟ

6. If	not	converged,	go	back	to	Step	4	

Table	3.1:	FICA	Algorithm	for	the	first	IC	

As	 can	 be	 seen	 in	 Table	 3.1,	 step	 4	 is	 the	 update	 of	 w	 by	 evaluating	 the	

projected	 negentropy	 as	 in	 (3.29).	 Following	 each	 iteration	 of	 step	 4,	w	 is	

normalised,	i.e.	it	is	divided	by	its	norm,	in	order	to	remain	on	the	unit	sphere	

and	keep	 the	projected	variance	of	wTẍ	constant.	 In	other	words,	 restraining	

the	norm	of	w	to	unity	is	equivalent	of	restraining	the	variance	of	wTẍ	to	unity,	
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because	ẍ	is	whitened.	The	function	g	can	be	any	of	the	equations	(3.32)‐(3.34).		

Convergence	 in	 step	 6	 means	 that	 the	 old	 and	 new	w	will	 have	 the	 same	

direction,	 that	 is	 a	 dot‐product	 equal	 (or	 almost	 equal)	 to	 1.	 Note	 that	 the	

vector	could	converge	to	two	points,	since	w	and	–w	have	the	same	direction.	

Hence,	the	sign	of	the	IC	is	ambiguous	in	ICA	(see	3.5).The	functions	ğ1,	ğ2,	and	

ğ3	that	correspond	to	g1,	g2,	and	g3,	are	given	as:	

෬݃ଵሺݔሻ ൌ ܽଵሺ1 െ tanhଶሺܽଵݔሻሻ	,	 (3.35)

෬݃ଶሺݔሻ ൌ ሺ1 െ ଶሻݔ exp ቀെ ௫మ

ଶ
ቁ	,	and	 (3.36)

෬݃ଷሺݔሻ ൌ 	ଶݔ3 (3.37)

The	derivation	of	the	above	is	given	in	[167].	

3.4.7. FICA	for	more	components	

The	 same	 algorithm	 can	 be	 used	 in	 order	 to	 estimate	 different	 components.	

The	way	that	this	can	be	implemented	is	to	start	from	different	initial	values	in	

step	3	in	Table	3.1	in	order	to	obtain	different	components.		

However,	 the	 faster	 approach	 is	 that	 the	 outputs	 ଵܟ
ሷܠ் ܟ…

ሷܠ் 	 are	

orthogonalised	 after	 each	 iteration.	 Since	 ẍ	 is	 whitened	 during	 the	 pre‐

processing	 stage,	 they	 can	 easily	 be	 orthogonalised	 by	 decorrelation.	 	 There	

are	two	different	ways	of	doing	this,	and,	because	this	is	an	important	step	of	

FICA,	each	way	gives	considerably	different	results	when	applied	on	the	same	

data	 set	 [204].	 These	 two	different	 approaches	 on	 orthogonalisation,	 namely	

deflationary	and	symmetric	are	given	in	A.2.	
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3.5 Ambiguities	of	ICA	

ICs	can	be	estimated	up	 to	an	arbitrary	permutation:	 In	order	 to	demonstrate	

this	problem,	equation	 (3.4)	 is	 rewritten	 so	 that	 the	 target	 is	 to	estimate	 the	

columns	of	the	matrix	A	(say	ai):	

ܠ ൌ܉s



ୀଵ

.
(3.38)

Obviously,	 the	 sums	 in	 this	 equation	 are	 interchangeable,	 so	 there	 is	 no	

possible	way	of	finding	the	“order”	of	the	ICs.	Although	this	might	sound	like	a	

minor	problem,	as	essentially	there	is	no	such	thing	as	“order”	 in	a	recording	

environment,	 the	 difficulty	 that	 this	 weakness	 of	 ICA	 exhibits	 is	 that	

consistency	 in	 the	 results	 cannot	 be	 guaranteed.	 That	 is,	 the	 same	 algorithm	

applied	on	 the	same	mixtures,	may	come	with	different	outcomes	every	 time	

an	experiment	is	performed.	Furthermore,	if	ICA	was	to	be	applied	on	a	short‐

term	basis,	the	IC	segments	cannot	be	easily	reconnected.	

Magnitudes	of	 the	 ICs	cannot	be	 found:	 In	equation	(3.4),	 the	matrix	A	(which	

consists	of	the	aij)	and	s	are	unknown.	Therefore,	the	individual	si	(which	are	

scalar)	 can	be	 cancelled	by	dividing	 the	 corresponding	column	ai	of	A	by	 the	

same	scalar,	e.g.	ai	:	

ܠ ൌ൬
1
ܽ
൰܉ ሺݏܽሻ



.	 (3.39)

Therefore,	the	mixing	matrix	can	be	estimated	up	to	an	arbitrary	magnitude.	

Phase	of	 the	 ICs	cannot	be	determined:	 	As	explained	 in	Subsection	3.3.3	 ,	 the	

vector	w	can	have	two	values	that	maximise	the	non‐Gaussianity	(i.e.	w	and	–w	

have	 the	 same	 direction).	 That	 means	 that	 the	 sign	 of	 the	 ICs	 cannot	 be	
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determined	 and	 the	 signal	 might	 have	 a	 rotation	 of	 180°.	 Again,	 this	 would	

seem	unimportant	 in	 the	case	of	an	audio	signal,	 as	 the	acoustic	 result	 is	 the	

same	no	matter	the	phase	of	a	signal.	However,	in	a	similar	case	of	segmenting	

and	 reconstructing	 a	 signal	 as	 mentioned	 above,	 this	 ambiguity	 can	 prove	

troublesome.	

3.6 Chapter	summary	

In	 this	 chapter,	 the	 BSS	 problem	 has	 been	 formulated	 and	 two	 possible	

solutions	for	this	purpose	were	analysed.	These	two	are	closely	related	as	they	

both	 implement	 projections	 of	 the	 de‐mixing	 matrix	 in	 order	 to	 maximise	

statistical	properties	of	 the	signal.	This	chapter	has	also	attempted	to	give	an	

in‐depth	 description	 of	 the	 statistical	 model	 of	 Independent	 component	

analysis	 (ICA)	with	 emphasis	on	FICA,	 a	popular	 fixed‐point	 implementation.	

Moving	away	from	the	BSS	formulation	of	the	source	separation	problem,	the	

next	section	describes	an	approach	that	is	specifically	designed	for	the	case	of	

stereophonic	recordings	and	is	based	on	inter‐channel	differences.	
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The	field	of	SVS,	which	is	of	particular	interest	in	this	thesis,	can	be	seen	as	a	

subset	 of	 audio	 source	 separation.	 The	 latter	 has	 taken	 mainly	 two	 paths	

(mono	and	stereo)	depending	on	the	nature	of	the	observed	mixture.	The	title	

of	 this	 chapter,	 source	 extraction	 from	 polyphonic	 mixtures,	 uses	 the	 term	

polyphonic	with	 its	dual	meaning:	polyphony	as	many	 individual	pitches	and	

sources	that	are	simultaneously	present	in	the	same	stream	[231],	and	multi‐

channel	 that	means	more	 than	one	 signals	of	 recorded	audio,	designed	 to	be	

listened	concurrently.	In	line	with	the	above,	the	chapter	gives	an	overview	of	

stereophonic	music	production	and	encompasses	the	polyphonic	path	of	audio	

source	 separation	 with	 emphasis	 on	 a	 method	 that	 is	 developed	 for	 stereo	

recordings	and	 is	 important	 in	 the	context	of	 this	 thesis,	namely	 the	azimuth	

discrimination	and	re‐synthesis	(ADRess).	
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4.1 Music	recording	and	stereophonic	production	
techniques	

Since	 the	 first	 [232]19	music	 recording	of	The	Lord’s	Prayer	 in	1884	by	Emile	

Berliner	 on	 an	 Edison	 cylinder	 machine	 [233],	 music	 recording	 techniques	

have	developed	dramatically	in	terms	of	process	and	sophistication.	Although,	

initially	 at	 least,	 the	 focus	 was	 on	 developing	 and	 enhancing	 the	media	 and	

reproduction	of	recordings,	it	soon	became	apparent	that	the	system	of	the	era	

(termed	 retrospectively	 as	 monophonic)	 had	 reached	 its	 limitations	 [234].	

Although	 the	 term	 stereophonic	 (from	 the	 Greek	 words	 στερεός	 (stereos),		

which	 means	 solid,	 and	 φωνή	 (phōnē),	 	 which	 means	 voice	 [235])	 was	

introduced	 in	 1880	 by	Graham	Bell	 [236],	 it	was	not	 until	 the	 12th	 of	March	

1932	 	 when	 Leopold	 Stokowski	 performed	 Scriabin’s	 Poem	 of	 Fire	 for	 the	

purpose	 of	 recording	 the	 first	 stereophonic	 disc	 [237,	 238]20.	 Following	 the	

initial	 development	 stages	 of	 this	 novel	 technology,	 the	 stereophonic	

reproduction	 system	 became	 the	 predominant	 choice	 for	 the	 purpose	 of	

listening	to	music	recordings	until	today.	

4.1.1. Stereophonic	or	binaural?	

It	 is	 important	 at	 this	 stage	 to	 clarify	 the	 terms	 binaural	 and	 stereophonic,	

because	the	distinction	is	not	always	clear	in	the	literature.		A	binaural	system	

makes	 use	 of	 two	 recording	 sources/microphones,	 and	 usually	 two	

independent	amplifying	channels.	This	process	duplicates	normal	listening.	On	

the	other	hand,	a	stereophonic	system	results	in	an	idiomatic	sound	pattern	at	

the	listener’s	ears	and	results	in	indication	of	direction	which		is		perceptually	

located	between	the	spatial	difference	of	the	loudspeakers	[239].	In	addition,	a	

																																																								

19 In fact, the very first audio recordings were performed with the phonautograph invented by 
Édouard-Léon Scott de Martinville in 1857. However, these recordings were not supposed to be 
played back but rather serve as a laboratory measurement of amplitude and waveforms. 
20 It is claimed that stereophonic discs were produced prior to this date. However, none of them has 
survived. 
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significant	difference	between	 these	 two	 systems	 is	 the	medium	 that	 is	 used	

for	 reproduction.	 In	 binaural	 systems,	 the	 intended	 reproducer	 is	 a	 pair	 of	

headphones,	 while	 in	 a	 stereophonic	 system	 the	 equivalent	 is	 a	 pair	 of	

loudspeakers	 (although	often	 listened	 to	 on	headphones	by	 consumers).	 The	

latter	 system	 results	 in	 the	 capability	 of	 the	 listener	 to	 turn	 their	 head	 and	

“face”	 a	 different	 source.	 The	 use	 of	 loudspeakers	 also	 introduces	 the	

shadow/ghost	 effect,	 i.e.	 each	 loudspeaker	 output	 arrives	 at	 both	 ears	 of	 the	

listener	from	different	angles	and	at	different	times,	even	filtered	through	the	

obstacle	of	the	head	[240,	241].	

4.2 Multi‐track	recording	and	stereo	mix‐down	

Although	stereophonic	and	quadrophonic	[242]	productions	coexisted	briefly,	

stereo	quickly	gained	popularity	and	soon	it	became	the	industry	standard.	In	

parallel	with	the	growth	of	stereophonic	production,	multi‐track	recording	was	

developed.	The	motivation	behind	this	type	of	production	was	Les	Paul,	a	jazz	

songwriter	who	needed	to	record	himself	playing	multiple	instruments.	As	the	

machines	of	the	era	(late	1950’s)	did	not	allow	him	to	accomplish	that	without	

significant	 degradation	 in	 sound	 quality,	 the	 company	 Ampex	 provided	 him	

with	 the	 first	multi‐track	 recorder	which	 he	 nicknamed	Octopus	 	 [243].	 The	

development	 of	 multi‐track	 recording	 together	 with	 the	 novelty	 of	

stereophonic	 production	 signified	 a	 milestone	 in	 the	 production	 of	 music	

recordings;	 after	 the	 late	 1960’s,	monophonic	 production	 had	mostly	 ceased	

and	 the	majority	 of	 commercial	music	 adhered	 to	multi‐track	 recording	 and	

stereophonic	mix‐down21.	

Briefly	 described,	 the	 aforementioned	 process	 involves	 N	 sources	 that	 are	

recorded	 individually	 and	 are	 subsequently	 electrically	 summed	 and	

																																																								

21 Mix-down is the term in audio engineering, when many tracks (considered to be sources) are 
mixed “down” to fewer channels (e.g. mono, stereo, surround) 
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distributed	across	two	channels	using	a	mixing	console	[244,	245].	The	spatial	

localisation	 (termed	 panning	 by	 mixing	 engineers	 [241])	 between	 the	 two	

channels	 (which	 correspond	 to	a	 left	 and	a	 right	 speaker)	 is	 achieved	by	 the	

use	of	 a	 panoramic	potentiometer	 (usually	 known	as	 a	 “pan	pot”	 [246])	 that	

divides	a	single	signal	into	two	continuously	variable	intensity	ratios	[247],	as	

seen	 in	 Figure	 4.1.	 This	 method	 of	 assigning	 sources	 to	 a	 left	 and	 a	 right	

channel	 constitutes	 the	 basis	 of	 what	 is	 commonly	 referred	 to	 as	 the	 stereo	

field.	

	

Figure	4.1:	Simplest	scenario	of	stereophonic	mixing	for	one	source.		

Usually,	the	simple	case	described	above	constitutes	only	a	part	of	the	mixing	

process,	as	 it	 is	common	that	some	 linear,	as	well	as	non‐linear	processing	 is	

applied.	 This	 processing	 frequently	 involves	 frequency	 filters	 (known	 as	

equalisation),	amplitude	compression,	and	reverberation.	They	can	be	applied	

either	 on	 the	 individual	 sources	 that	 are	 subsequently	 summed	 (Figure	 4.2),	

collectively,	or	both	individually	and	collectively	(Figure	4.3)	which	is	the	most	

typical	scenario	[246].	

	

Figure	4.2:	Stereophonic	mixing	for	two	sources	with	individual	processing.	The	processing	
might	comprise	several	functions	(e.g.	equalisation,	chorus	effect,	reverb)	but	is	represented	
here	as	a	single	impulse	response	(IR)	for	each	source.	The	asterisk	indicates	convolution.	
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By	examining	the	latter	scenario,	which	can	be	seen	in	Figure	4.3,	it	is	observed	

that	the	signals	of	the	sources	take	two	paths.	One	path	(usually	referred	to	as	

an	 auxiliary	 bus)	 consists	 of	 a	 ‘monophonic’	mixing	matrix22	 and	 its	 own	 IR	

convolution.	The	other	path	follows	a	convolving	procedure	and	gets	summed	

with	a	‘stereophonic’	matrix	before	the	signal	is	finally	convolved	with	another	

IR.	 In	 this	 case,	 the	 mixing	 matrix	 is	 not	 square	 as	 the	 number	 of	 sources	

exceeds	the	number	of	channels.	To	be	more	clear,	by	the	 first	 two	scenarios	

(Figure	4.1	and	Figure	4.2)	an	ideal	de‐mixing	matrix	produces	the	individual	

sources	 with	 their	 processing	 without	 cross‐contamination.	 In	 Figure	 4.3,	

however,	the	same	does	not	apply.	

	

Figure	4.3:	‘Real‐world’	mixing	scenario	for	two	sources.	The	auxiliary	bus	is	created	with	a	
‘monophonic’	matrix	and	is	treated	as	a	separate	source.	The	additional	processing	creates,	in	

practice,	a	very	long	IR	for	each	source.	

4.2.1. Mixing	conventions	

Over	the	years	of	stereophonic	mixing,	audio	engineers	have	developed	certain	

conventions	while	mixing	 and	mastering23	 [248].	 Such	 conventions	 exist,	 for	

example,	with	regards	to	panning.	During	the	first	steps	of	stereo	in	the	1960’s	

																																																								

22 In some cases, there are also stereophonic auxiliary buses. The result, however, does not increase 
the complexity of the mixing scenario, as the output of a stereophonic auxiliary bus is just treated as 
two sources instead of one. 
23 Audio mastering is usually the final step of audio post-production and comprises the preparation 
of recorded audio and its transfer from the state of the final mix to a data storage device. 
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the	panning	of	 instruments	was	either	hard	 left	or	hard	right	(e.g.	 in	the	first	

stereo	production	of	The	Beatles		[249]).	After	this	era	of	experimentation,	the	

panning	of	the	voice	is	traditionally	located	at	the	centre,	together	with	part	of	

the	 drum	 set	 (i.e.	 the	 bass	 and	 the	 snare	 drums)	 and	 the	 bass	 [240].	 	 The	

crystallisation	 of	 the	 artificial	 location	 of	 these	 three	 components	 is	 not	

arbitrary:	On	one	hand,	the	vocal	as	the	most	important	‘instrument’	of	a	music	

track	needs	 to	 be	 equally	 present	 in	 the	 left	 and	 the	 right	 channel.	 This	 also	

stems	from	the	use	of	popular	music	in	various	venues.	As	the	audience	is	not	

always	located	in	the	middle	of	the	stereo	field	in	such	places,	a	vocal	drifting	

from	 the	 centre	 would	 result	 in	 a	 part	 of	 the	 audience	 missing	 the	 vocal	

component	 of	 a	 song	 [240].	 On	 the	 other	 hand,	 bass	 frequencies	 (which	 are	

also	 the	main	 component	 of	 the	 bass	 drum)	 do	 not	 exhibit	 good	 localisation	

due	their	 long	wavelengths	[57,	250]	and,	as	a	result,	panning	deviation	from	

the	centre	does	not	have	an	effect.	

Another	convention	is	that,	with	rare	exceptions,	a	song’s	lyrics	are	intended	to	

be	intelligible.	Mixing	engineers	use	a	number	of	techniques	and	processes	to	

manipulate	 the	 contributing	 components	 and	ensure	 the	vocal	part	 is	 clearly	

audible.	This	usually	involves	dynamic	range	compression	to	impose	artificial	

stability	 in	 the	 amplitude	 of	 the	 vocal	 signal,	 and	 filtering	 to	 enhance	 the	

frequency	spectrum	of	the	singing	voice	in	bands	where	masking	occurs	[246].	

Finally,	 engineers	 tend	 to	 impose	 artificial	 loudness	 on	 music	 tracks	 (see	

“loudness	war”	[251]).	One	way	of	achieving	this	is	by	adjusting	the	spectrum	

of	music	tracks	in	order	to	match	the	Fletcher‐Munson	curve	of	equal	loudness	

(see	Figure	2.4),	in	addition	to	dynamic	range	compression.	

Having	examined	the	three	scenarios	of	mixing	in	Section	4.2,	the	next	section	

describes	the	method	that	is	termed	ADRess,	which	exploits	the	inter‐channel	

or	 inter‐aural	 intensity	 difference	 (IID)	 that	 naturally	 occurs	 in	 multi‐track	

recordings	that	are	mixed	down	as	stereo.	
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Although	the	focus	of	this	section	is	ADRess	as	it	is	important	in	the	context	of	

this	thesis,	it	should	be	noted	that	all	algorithms	that	involve	the	exploitation	of	

IID	[252‐254]	work	in	a	similar	manner.	

4.3 Azimuth	discrimination	and	re‐synthesis	(ADRess)	

ADRess	 is	 an	 algorithm	 for	 source	 separation	 that	 exploits	 prior	 information	

usually	 found	 in	 stereophonic	music	 recordings	 [255].	The	ultimate	 target	of	

ADRess	 is	 to	extract	one	music	 source	 from	the	others.	However,	 in	practice,	

ADRess	 extracts	 a	 panoramic	 audio	 subspace,	 rather	 than	 a	 specific	 music	

source.	To	make	this	clearer,	the	stereo	field	of	a	stereo	recording	is	visualised	

as	 a	 semicircle	 (Figure	 4.4).	 All	music	 sources	 included	 in	 the	 recording	 are	

distributed	across	this	area.	

	

Figure	4.4:	Illustration	of	the	functionality	of	the	ADRess	algorithm	

In	 geometric	 representation,	 ADRess	 aims	 to	 isolate	 a	 central	 angle	 of	 this	

semicircle	and,	in	fact,	every	music	source	that	is	contained	in	this	central	angle	

is	 going	 to	 be	 isolated.	 In	 ADRess,	 this	 central	 angle	 is	 named	 the	 azimuth	
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subspace	(illustrated	by	the	greyed	out	area)	and	has	two	parameters.	The	first	

parameter	is	the	discrimination	index,	which	could	be	represented	in	the	figure	

as	the	bisector	of	the	central	angle,	and	determines	the	panoramic	position	(i.e.	

the	 angle)	 of	 the	 azimuth	 subspace.	 The	 second	 parameter	 is	 the	 subspace	

width,	which	can	be	represented	as	the	arc	of	the	central	angle,	and	determines	

the	 radial	 span	of	 the	azimuth	 subspace.	 	These	 two	parameters	must	be	 set	

manually	by	 the	user	by	means	of	 trial	and	error,	as	ADRess	does	not	have	a	

way	of	detecting	them	for	the	target	source.	

The	 figure	 represents	 schematically	 how	 ADRess	 functions	 in	 stereophonic	

mixtures.	The	 two	parameters	 (i.e.	discrimination	 index	and	subspace	width)	

are	 set	 so	 that	 the	 saxophone	 can	 be	 isolated	 from	 the	 rest	 of	 the	 music	

sources.	 This	 graphical	 example	 also	 demonstrates	 the	main	disadvantage	 of	

ADRess:	 	when	two	or	more	music	sources	are	“close”,	 in	terms	of	panoramic	

positioning	(panning),	ADRess	will	not	be	able	to	completely	isolate	one	from	

another.	 For	 instance,	 although	 the	 aim	 is	 the	 extraction	 of	 the	 saxophone	

solely,	 some	 material	 (i.e.	 some	 of	 the	 frequency	 material)	 of	 the	 guitar	 is	

inevitably	 included.	As	explained	before,	 this	happens	because	the	two	music	

sources	 are	 located	 in	 close	 panoramic	 proximity.	 In	 order	 to	 avoid	 the	

smearing	from	the	guitar	 frequencies,	 the	subspace	width	should	be	reduced.	

However,	this	would	cause	some	of	the	frequency	components	that	constitute	

the	saxophone	part	to	be	left	out.	It	should	be	noted	that,	in	principle,	ADRess	

is	 not	 specifically	 meant	 for	 SVS,	 but	 rather	 for	 general	 music	 source	

separation,	as	it	essentially	targets	a	subspace,	which	is	set	by	the	user,	and	not	

a	specific	source	such	as	the	vocal	element.	

4.3.1. Basic	concept	of	ADRess	

Moving	 on	 to	 the	 theoretical	 concept	 that	 ADRess	 incorporates,	 every	music	

source	 has	 a	 panoramic	 position	 that	 can	 be	 expressed	 as	 an	 intensity	 ratio	

between	the	two	stereo	channels	[256].	ADRess,	exploits	this	principle	that	is	

termed	inter‐channel	intensity	difference	(IID)	[257].For	example,		the	piano	in	
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Figure	4.4	is	75%	left	and	25%	right,	the	guitar	is	80%	right	and	20%	left,	and	

the	 singer	 is	50%	right	 and	50%	 left	 (i.e.	 exactly	 at	 the	 centre).	Hence,	 if	 for	

example	 the	 right	 channel	 is	 multiplied	 by	 25%,	 the	 guitar	 is	 going	 to	 be	

equally	distributed	between	the	left	and	the	right	channel	(20%	left	and	20%	

right).		A	simple	subtraction	(left	channel	–	right	channel)	can	then	cancel	out	

(i.e.	 zero)	 the	 guitar.	 The	 algorithm	 will	 then	 be	 able	 to	 reconstruct	 the	

eliminated	guitar,	because	it	can	pinpoint	its	frequency	components,	which	are	

zeroed	after	the	previous	subtraction.	

There	are	two	fundamental	challenges	in	this	concept.	Firstly,	there	is	no	prior	

information	 about	 the	 panoramic	 positioning	 of	 the	 music	 sources	 in	 each	

song.	Hence,	the	correct	factor	(in	the	previous	example	25%)	that	will	bring	a	

music	source	to	equilibrium	between	the	two	channels	 is	unknown.	The	user	

must	manually	select	the	position	of	the	targeted	subspace,	and	therefore	the	

correct	 factor.	 In	 practice,	 this	 is	 achieved	 by	 means	 of	 trial	 and	 error.	 The	

second	 challenge	 is	 that	 every	 music	 source	 consists	 of	 many	 frequency	

components	 (partials)	 that	 are	 usually	 shared.	 For	 example,	 the	 guitar	 in	

Figure	4.4	might,	at	a	given	time‐point	of	a	song,	share	a	partial	with	the	singer.	

Assuming	 	 the	 panoramic	 positions	mentioned	 earlier	 and	 that	 the	 partial	 is	

equally	 shared	between	 these	 two	music	 sources,	 its	panoramic	position	will	

be	 the	 average	 between	 the	 positions	 of	 the	 guitar	 and	 the	 singer,	 i.e.	

(50+80)/2	 =	 65%	 right	 (and	 35%	 left).	 So,	 although	 the	 majority	 of	 the	

frequency	material	of	 the	guitar	will	be	80/20	right,	 there	will	be	one	partial	

that	will	 be	 found	 65/35	 right.	 Therefore	 a	 25%	 right	 channel	 gain	will	 not	

cause	the	subtraction	“left	channel	–	right	channel”	to	cancel	out	this	particular	

frequency,	which	means	that	it	will	not	be	included	in	the	reconstruction	of	the	

guitar.	 To	 tackle	 this	 problem,	 the	 user	 input	 is	 needed	 again	 in	 order	 to	

heuristically	 select	 the	 subspace	width,	 which	 is	 effectively	 the	width	 of	 the	

panoramic	area	that	will	be	extracted.	
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4.3.2. ADRess	on	a	stereo	signal	

Formally,	 the	description	of	ADRess	on	a	 stereo	 signal	 is	 as	 follows:	Let	ܮሺݐሻ	

and	ܴሺݐሻ	 be	 the	 audio	 signals	 in	 the	 left	 and	 right	 channels	 of	 a	 commercial	

stereo	recording	respectively.	These	can	be	expressed	as:	

ሻݐሺܮ ൌ 	ܲ ݈ ܵሺݐሻ	



ୀଵ

, and	 (4.1)			

ܴሺݐሻ ൌ 	ܲݎ ܵሺݐሻ	



ୀଵ

,	 (4.2)	

where	Sj	are	the	J	independent	sources,	while	Plj	and	Prj	are	the	left	and	right	

panning	coefficients	for	the	jth	source.	The	intensity	ratio	between	L(t)	and	R(t)	

for	the	jth	source	[258]	can	be	expressed		as:	

݃ ൌ

ە
ۖ
۔

ۖ
ۓ
ܲ ݈

ݎܲ
ݎܲ	݂݅									,	  ܲ ݈

ݎܲ
ܲ ݈

ݎܲ	݂݅										, ൏ ܲ ݈	

								.	 (4.3)			

The	above	derives		Plj	=	gj	×	Prj	or	Prj	=	gj	×	Plj.	Because	L(t)	and	R(t)	are	linear	

combinations	 of	 the	 same	 independent	 sources,	 the	 jth	 source	 could	 be	

cancelled	out	by	using	one	of	the	following	expressions:	

ሻݐሺܮ െ 	݃ሺ݆ሻ ൈ ܴሺݐሻ, or (4.4)	
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ܴሺݐሻ െ ݃ሺ݆ሻ ൈ .ሻݐሺܮ (4.5)

The	 choice	 between	 expressions	 (4.4)	 and	 (4.5)	 depends	 on	 which	 channel	

contains	the	jth	source	more	prominently	(i.e.	whether	Prj	is	greater	or	smaller	

than	 Plj	 respectively).	 Consequently,	 g	 ∊	 {0,	 1},	 which	 is	 needed	 to	 avoid	

possible	distortions	in	the	signal	[244].	In	case	Plj	=	Prj,	either	expression	(4.4)	

or	 (4.5)	 can	be	used.	Therefore,	 the	equations	 that	are	presented	hereinafter	

describing	ADRess	 follow	 two	paths	depending	on	equation	 (4.3):	 if	 the	user	

has	 determined	 that	 the	 source	 is	 louder	 in	 the	 right	 channel	 (i.e	 Prj	 >	 Plj),	

ADRess	 follows	 the	 equations	 with	 subscript	 index	 “R”.	 Otherwise	 the	

equations	with	index	“L”	are	followed.	

Further	 to	 the	magnitude	 spectral	 information	 obtained	 above,	g	works	 as	 a	

scaling	factor,	and	can	help	towards	the	extraction	of	a	target	source	from	one	

of	the	channels.	The	following	details	how	ADRess	helps	to	determine	the	value	

of	g	and	eventually	recover	the	source	after	it	has	been	cancelled	out.	

Initially,	 the	 signals	 from	 the	 left	 and	 right	 channel	 of	 a	 stereo	 mixture	 are	

broken	 down	 into	 segments.	 Each	 segment	 is	 then	 shaped	 using	 a	 Hann	

window	 before	 being	 subjected	 to	 a	 fast	 Fourier	 transform	 (FFT)	 process,	

which	is	given	as:	

ሺ݇ሻ݂ܮ ൌ  ሻ݁ିݐሺܮ
ଶగ
 	௧

ேିଵ

௧ୀ

, for	݇ ൌ 0,1,2…N െ 1,	 (4.6)

ܴ݂ሺ݇ሻ ൌ  ܴሺݐሻ݁ି
ଶగ
 	௧

ேିଵ

௧ୀ

, for	݇ ൌ 0,1,2…N െ 1,	 (4.7)		
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for	 the	 left	and	the	right	channel	respectively,	where	N	 is	 the	number	of	FFT	

points,	and	j	is	the	imaginary	unit.	In	[244]	it	has	been	recommended	to	apply	a	

4096‐point	FFT	at	1024‐point	intervals.	

The	 determination	 of	 ݃	 is	 based	 on	 applying	 different	 scaling	 values	 to	 the	

Fourier	 Transform	 of	 one	 channel	 and	 subtracting	 it	 from	 the	 Fourier	

Transform	of	the	other	channel.		This	is	performed	in	order	to	establish	which	

frequency	bins	get	cancelled	(zeroed)	by	different	values	of	g.	The	number	of	

equally	 spaced	 scaling	 values	 (gains)	 is	 termed	 the	 azimuth	 resolution,	 is	

represented	as	β,	and	is	related	to	g	as:	

݃ሺ݅ሻ ൌ 	
݅
β
	 , for	݅ ൌ 1,2,3…β	 (4.8)			

The	authors	in	[244]	use	an	azimuth	resolution	β	=	100.	Hereon	it	is	assumed	

that	β	=	100	unless	otherwise	stated.	

Therefore,	 depending	 on	 which	 channel	 contains	 the	 target	 source	 more	

prominently,	one	of	the	following	equations	is	used	to	construct	a	 frequency‐

azimuth	spectrogram	(defined	as	azimugram):	

,ோሺ݇ݖܣ ݅ሻ ൌ∣ ሺ݇ሻ݂ܮ െ ݃ሺ݅ሻ ൈ ܴ݂ሺ݇ሻ ∣ (4.9)			

,ሺ݇ݖܣ ݅ሻ ൌ∣ ܴ݂ሺ݇ሻ െ ݃ሺ݅ሻ ൈ ሺ݇ሻ݂ܮ ∣ (4.10)			

The	 azimugram	 shows,	 in	 fact,	 the	 frequency	 bins	 (i.e.	 rows	 k)	 that	 get	

cancelled	 out	 (i.e.	 ≈	 0)	 at	 specific	 scaling	 factors	 (i.e.	 columns	 i).	 	 To	

demonstrate	 the	 concept	 of	 the	 azimugram,	 let	 us	 consider	 a	 very	 simple	

stereophonic	mixture	consisting	of:	

Source	1:		A	sum	of	5	sinusoids	of	equal	amplitude	and	frequency	of	2540	Hz,	
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5080	Hz,	7620	Hz,	10160	Hz,	and	12700	Hz	respectively.	This	is	perceived	as	a	

tone24	 	with	 fundamental	 frequency	 (i.e.	 pitch)	 of	 2540	Hz,	 and	 Source	2:	 	 A	

sum	 of	 5	 sinusoids	 of	 equal	 amplitude	 and	 frequency	 of	 4350	 Hz,	 8700	 Hz,	

13050	Hz,	17400	Hz,	 and	21750	Hz	 respectively.	 This	 is	 perceived	 as	 a	 tone	

with	pitch	of	4350	Hz.	These	 sources	are	mixed	 in	a	way	 so	 that	Source	1	 is	

distributed	75%	 left	and	25%	right	and	Source	2	 is	distributed	54%	 left	and	

46%	right.	

In	Figure	4.5,	the	resulting	azimugram	can	be	seen	as	in	equation	(4.10),	for	a	

frame	of	2048	samples.	The	arrows	show	 the	null	points,	where	each	 source	

gets	cancelled	out.	

	

Figure	4.5:	Azimugram	of	the	left	channel	for	two	non‐overlapping	sources.	

It	is	shown	above	that	Source	1	would	get	cancelled	out	when	the	STFT	of	the	

left	channel	 is	multiplied	by	the	value	deriving	 from	equation	(4.8)	 for	 i	=	85	

																																																								

24 It is perceived as one tone because all the sine waves that comprise it have frequencies that are 
multiples of the fundamental frequency (i.e. 2540 Hz). 

20 30 40 50 60 70 80 90 1000 10

200

400

600

800

1000

0 -40

-30

-20

-10

0

10

20

30

40

Source 2Source 1

fr
eq

u
en

cy
 b

in
s

azimuth scale (0 = left, 100 = centre)

Azimugram



Applied	source	extraction	from	polyphonic	mixtures	

78	 Singing	voice	separation	from	stereophonic	recordings	

(i.e.	g(85)	=	85/100)	and	then	subtract	it	from	the	right	channel.	For	Source	2	

the	 respective	 values	 is	 g(32)	 =	 32/100.	 It	 is	 worth	 mentioning	 that	 the	

azimuth	scale	refers	only	to	the	channel	that	is	selected	from	the	equation	(4.3)	

onwards.	If,	unlike	Figure	4.5,	the	right	channel	is	selected,	the	value	of	zero	on	

the	azimuth	scale	will	 translate	to	right,	while	 the	value	of	β	will	 translate	 to	

centre.	

After	 the	 computation	 of	 the	 azimugram,	 the	 nulls	 need	 to	 be	 turned	 into	

peaks.	 This	 procedure	 will	 help	 recovering	 the	 target	 source	 by	 using	 the	

inverse	 fast	 Fourier	 transform	 (IFFT).	 Unfortunately,	 the	 magnitude	 of	 the	

peaks	is	unknown	and	will	need	to	be	estimated.	

,ோሺ݇ݖܣ ݅ሻ ൌ ൜
ோሺ݇ሻ௫ݖܣ െ	ݖܣோሺ݇ሻ , ݂݅ ,ோሺ݇ݖܣ ݅ሻ ൌ ோሺ݇ሻݖܣ
0	,							 																							 otherwise, 					

	 (4.11)			

,ሺ݇ݖܣ ݅ሻ ൌ ൜
ሺ݇ሻ௫ݖܣ െ	ݖܣሺ݇ሻ , ݂݅ ,ሺ݇ݖܣ ݅ሻ ൌ ሺ݇ሻݖܣ
0	,																																																						otherwise,																													

	

for	i	∊	{1,	2,	3...	β},	and	k	∊	{1	,2	,3	...	N/2},	
(4.12)			

where	N	 is	 the	number	of	FFT	points.	Effectively	 this	process	 turns	 the	nulls	

from	 equations	 (4.9)	 and	 (4.10)	 into	 estimated	 maxima,	 and	 sets	 all	 other	

frequency	 bins	 to	 zero.	 Based	 on	 these	 equations,	 the	 magnitudes	 are	

reconstructed	on	the	frequency‐azimuth	plane	as	shown	in	Figure	4.6(a).	

	In	 an	 ideal	 situation,	 where	 the	 sources	 have	 no	 overlapping	 frequency	

content,	only	a	single	column	vector	from	the	above	matrix	would	be	needed	in	

order	 to	 recover	 the	 targeted	 source	 by	 using	 IFFT.	 For	 example,	 in	 Figure	

4.6(a),	where	an	AZL	matrix	with	dimensions	1024×100	is	shown,	Source	2	 is	

obtained	from	the	vector	that	has	an	x	axis	value	equal	to	32,	and	that	includes	

all	of	the	target	frequency	bins.	However,	this	case	is	extremely	rare,	as	the	two	

sources	have	no	overlapping	frequency	content	whatsoever.	In	the	cases	where	



Applied	source	extraction	from	polyphonic	mixtures	

Singing	voice	separation	from	stereophonic	recordings	 79	

overlapping	harmonics	 (or	any	overlapping	partials)	exist,	 then	 these	appear	

as	 peaks	 between	 the	 azimuth	 location	 of	 Source	 1	 and	 Source	 2.	 	 This	

challenge	 is	 demonstrated	 in	 Figure	 4.6	 (b),	 where	 the	 frequency‐azimuth	

domain	 plane	 is	 presented	 for	 the	 case	 of	 two	 synthetic	 sources	 with	 five	

harmonics	each.	 In	 this	case	 though,	 the	 two	sources	do	share	one	harmonic,	

which	 appears	 in	 the	middle.	 The	 reason	 is	 that	 this	 particular	 harmonic	 is	

affected	by	panning	coefficients	from	Source	1	and	Source	2	at	the	same	time.	

Hence,	75%	of	Source	1	is	distributed	left	and	54%	of	Source	2	is	distributed	

left.	 That	 will	 mean	 that	 their	 shared	 harmonic	 will	 have	 an	 intensity	 of	

(0.75+0.54)/2	 =	 64.5%	 in	 the	 left	 channel,	 which	 subsequently	 is	 cancelled	

when	 the	 left	 channel	 was	 multiplied	 by	 a	 g(55)	 =	 0.55	 (≈	 0.355/0.645)	 in	

equation	(4.10).	As	a	result,	 this	particular	peak	has	a	column	index	 i	=	55	as	

shown	 in	Figure	4.6(b).	 Indeed,	all	 songs	 tend	to	have	overlapping	 frequency	

material	 between	 their	 music	 sources.	 This	 problem	 must	 therefore	 be	

addressed.	For	this	purpose,	the	subspace	width,	H,	is	defined,	such	that	H	∊	[1,	

β].	

	

Figure	4.6:	Frequency‐azimuth	plane	showing	the	reconstruction	of	the	magnitudes	for	two	
tones	(a)	without	overlapping	frequency	content	and	(b)	with	an	overlapping	harmonic.	The	

subspace	width	is	denoted	by	H.	
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It	 is	 evident	 that,	 a	 large	 subspace	 width	 (H)	 rejects	 fewer	 nearby	 sources,	

whereas	a	narrow	H	 includes	 less	 frequency	material	 from	the	 target	source.		

In	 addition	 to	 H,	 the	 discrimination	 index	 d	 is	 defined	 as	 the	 centre	 of	 the	

azimuth	 subspace,	 so	 that	 the	 subspace	 spans	 from	 d	 −	 H/2	 to	 d	 +	 H/2.	 In	

Figure	 4.6	 (b),	 the	 discrimination	 index	 (d)	 is	 48	 and	 the	 azimuth	 subspace	

width	(H)	is	38.	Hence,	the	selected	azimuth	subspace	spans	from	29	to	67.	

In	practice,	 the	user	manually	selects	the	values	of	d	and	H,	by	means	of	trial	

and	 error,	 in	 order	 to	 achieve	 optimal	 results.	 This	 is	 one	 of	 the	 inherent	

disadvantages	of	ADRess,	as	there	is	no	provision	for	the	automatic	detection	

of	H	and	d	[259]25.	

Subsequently,	by	using	H	and	d,	the	peaks	are	extracted,	i.e.	isolated,	from	the	

rest	 of	 the	 frequency‐azimuth	 domain	 plane,	 by	 using	 one	 of	 the	 following	

equations:	

ோܻሺ݇ሻ ൌ  ,ோሺ݇ݖܣ ݅ሻ,

ௗାு/ଶ

ୀௗିு/ଶ

	for	1  ݇  ܰ	, or	 (4.13)			

ܻሺ݇ሻ ൌ  ,ሺ݇ݖܣ ݅ሻ,			

ௗାு/ଶ

ୀௗିு/ଶ

for	1  ݇  ܰ		,	 (4.14)			

where	YR(k)	and	YL(k)	are	magnitude	spectrograms.	

From	the	above	equations,	a	short	time	magnitude	spectrum	of	the	estimated	

source	 is	obtained.	However,	as	discussed	earlier,	 if	 two	or	more	sources	are	

panned	 to	 the	 same	 horizontal	 location	 of	 the	 stereo	 field,	 the	 obtained	

																																																								

25 Although methods have been developed for automated detection of H and d, these require an 
exhaustive search of all possible combination, which is deemed inefficient. 
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mixtures	will	contain	all	of	them.	In	other	words,	if	two	or	more	music	sources	

appear	in	the	selected	subspace,	ADRess	will	not	separate	one	from	the	others.	

After	the	equations	above,	the	phase	of	the	signal	is	also	needed,	in	order	to	re‐

synthesise	the	target	source	signal	using	IFFT.	 	In	[255],	 it	 is	claimed	that	the	

phase	 information	 from	the	FFT	of	 the	original	channel—equations	(4.6)	and	

(4.7)—is	adequate		[260].	To	restore	the	phase	information,	i.e.	Φ,	polar	must	

be	converted	to	complex	form:	

Φோሺ݇ሻ ൌ ∠ሺܴ݂ሺ݇ሻሻ, (4.15)		

Φሺ݇ሻ ൌ ∠ሺ݂ܮሺ݇ሻሻ. (4.16)		

The	real	and	imaginary	parts	of	the	spectrum	of	the	target	source	signal	are	

estimated	as:	

መܵሺ݇ሻ ൌ ቊ
Թ መܵሺ݇ሻ ൌ ܻሺ݇ሻܿݏΦሺ݇ሻ
ॴ መܵሺ݇ሻ ൌ ܻሺ݇ሻ݊݅ݏΦሺ݇ሻ

ቋ			,	 (4.17)		

where	Ŝ(k)	 is	a	complex	spectrogram.	Each	time	frame	is	then	re‐synthesised	

using	IFFT:	

ሻݐሺݏ̂ ൌ
1
N
 መܵሺ݇ሻ݁

ଶగ
 	௧



ୀଵ

	 , for	ݐ ൌ 1…N	 (4.18)		

The	re‐synthesised	time	frames	are	then	recombined	using	a	standard	overlap	

and	add	scheme	[261].	
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As	 is	 described	 in	 this	 section,	 ADRess	 is	 an	 algorithm	 that	 usefully	 exploits	

prior	information	especially	for	the	case	of	commercially	produced	songs,	but	

has	 two	major	 drawbacks:	 the	manual	 user	 input	 of	 critical	 parameters	 (i.e.	

discrimination	 index	 (d),	 subspace	 width	 (H),	 channel	 where	 the	 targeted	

source	 is	 louder),	 as	 well	 as	 the	 algorithm’s	 inherent	 incapability	 to	 extract	

closely	positioned	sources.	The	latter	can	be	a	significant	challenge	for	the	case	

of	SVS,	as	most	of	the	songs	have	the	singer	panned	at	the	centre,	together	with	

other	music	sources,	such	as	parts	of	the	drum	kit	and	the	bass.	

4.4 Chapter	summary	

In	 this	 chapter,	 the	 stereophonic	 mixing	 techniques	 as	 they	 generally	 apply	

today	 have	 been	 discussed.	 The	 chapter	 has	 concluded	with	 the	 review	 of	 a	

method,	 termed	 ADRess,	 which	 is	 specifically	 developed	 for	 stereophonic	

recordings.	ADRess,	as	with	many	algorithms	that	make	use	of	IID,	is	based	on	

the	assumption	that	the	sources	exhibit	same	phase	characteristics	across	the	

two	channels	of	the	stereo	mix.	After	reviewing	in	the	previous	chapters	three	

different	categories	of	methods	for	source	separation	(CASA,	BSS,	and	IID)	the	

next	chapter	continues	to	introduce	a	novel	method	for	SVS.	
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In	 this	 chapter,	 a	 new	 approach	 for	 the	 purpose	 of	 SVS	 is	 presented.	 The	

approach,	 termed	singing	extraction	 through	modified	ADRess	and	non‐vocal	

independent	component	subtraction	(SEMANICS),	combines	properties	of	 the	

azimuth	 discrimination	 and	 re‐synthesis	 (ADRess)	method	with	 independent	

component	analysis	(ICA).	 	The	proposed	method	is	developed	and	optimised	

specifically	 for	 the	case	of	SVS	 from	stereophonic	recordings,	which	 form	the	

majority	of	commercially	distributed	music	tracks.	This	chapter	also	presents	

the	 dataset	 that	 was	 developed	 for	 the	 purpose	 of	 evaluation.	 Finally,	 the	

experimental	 investigations	 that	 are	 based	 on	 the	 bss_eval	 [43]	 metrics	 are	

analysed.	



Singing	extraction	through	modified	ADRess	and	non‐vocal	independent	component	subtraction	

84	 Singing	voice	separation	from	stereophonic	recordings	

5.1 ADRess	as	the	basis	of	a	singing	extraction	system	

As	 described	 in	 Chapter	 4,	 ADRess	 is	 an	 algorithm	 that	 exploits	 prior	

information	 especially	 for	 the	 case	 of	 commercially	 produced	 songs,	 but	 has	

two	 major	 drawbacks:	 the	 crucial	 user	 settings	 (i.e.	 discrimination	 index	 d,	

subspace	width	H,	and	determination	of	the	channel	in	which	the	target	source	

is	 louder),	 and	 the	 algorithm’s	 inherent	 incapability	 to	 extract	 closely	

positioned	sources.	The	latter	can	be	a	significant	challenge	for	the	case	of	SVS,	

as	most	of	the	songs	have	the	singer	panned	at	the	centre,	together	with	other	

music	 sources,	 such	 as	 parts	 of	 the	 drum	 kit	 and	 the	 bass	 guitar.	 The	 next	

section	investigates	how	ADRess	can	be	modified	and	optimised	for	the	case	of	

SVS.		

5.2 Modification	of	ADRess	

For	 the	 case	 of	 SVS,	 a	 further	 assumption	 can	 be	 made	 that	 will	 help	 the	

azimuth	discrimination,	and	has	not	been	sufficiently	considered	in	ADRess:	

As	 described	 in	 Subsection	 4.2.1,	 the	 lead	 vocal	 component	 of	 a	

stereophonically	mixed	song	is	traditionally	placed	at	the	centre.	Although	this	

does	 not	 eliminate	 the	 need	 for	 an	 azimuth	 subspace,	 it	 is	 sufficient	 to	

minimise	 user	 input.	 To	 be	 specific,	 the	 upper	 limit	 of	 the	 subspace	 as	

described	in	4.3	is	set	equal	to	β	and	the	lower	limit	to	β	−	H.	Thus,	only	one	

scalar	needs	to	be	defined.	For	example,	if		H	=	4	and	β	=	100,	the	value	of	d(H)	

will	be	98,	and	the	subspace	will	span	from	96	to	100.	The	difference	 is	 that,	

although	the	value	of	d(H)	can	vary,	it	is	determined	solely	by	the	width	of	H	as	

d(Η)	=	β−Η/2,	where	H	 and	β	 are	 by	definition	 even	 integers.	 As	mentioned	

before,	depending	on	the	value	of	H,	a	trade‐off	applies:	a	large	value	includes	

more	vocal	components	but	results	in	poor	separation,	whereas	a	small	value	

provides	better	separation,	but	excludes	some	of	the	target	bins.	

The	user	 input	 in	 the	original	ADRess	 includes	 the	determination	of	d	 and	H,	
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and	 the	 selection	 of	 the	 channel	 that	 contains	 the	 target	 source	 more	

prominently.	 As	 voice	 will	 be	 equally	 present	 in	 both	 channels,	 the	 latter	

parameter	choice	can	also	be	eliminated.	 In	other	words,	 the	choice	between	

(4.4)	 and	 (4.5)	 is	 not	necessary,	 as	 either	 is	 sufficient	when	 the	 target	 is	 the	

central	position	of	the	stereo	mix.		Thus,	user	input	is	reduced.	

As	described	in	Section	4.3,	one	of	the	main	limitations	of	ADRess	is	its	inability	

to	separate	sources	that	are	close	in	panoramic	position.	However,	the	central	

position	of	the	mix,	which	is	where	the	vocal	element	usually	exists,	is	arguably	

one	of	the	most	occupied	spaces	of	the	stereo	field.	In	an	SVS	system,	ADRess	

on	 its	 own	 will	 only	 help	 to	 isolate	 the	 central	 panoramic	 subspace.	 This	

subspace	will	include	the	voice	mixed	with	all	the	instruments	that	exist	in	the	

centre,	but	in	order	to	further	isolate	the	voice,	further	processing	needs	to	be	

employed.		

Having	 identified	 the	 advantages	 and	 disadvantages	 for	 ADRess	 towards	

unsupervised	 SVS,	 a	 new	 approach	 is	 proposed	 here	 termed	 “singing	

extraction	 through	 modified	 ADRess	 and	 non‐vocal	 independent	 component	

subtraction	(SEMANICS)”.	

5.3 SEMANICS	

SEMANICS	is	a	SVS	system	that	could	be	better	described	as	a	fusion	between	

ADRess	and	ICA.	The	modification	applied	to	ADRess	for	this	purpose	consists	

mainly	 of	 an	 approach	 that	 is	 described	 in	 this	 chapter,	 and	 is	 termed	

“amplitude	discrimination”.	The	ICA	part	of	SEMANICS	exploits	the	application	

of	ICA	to	stereophonic	mixtures.		

Figure	 5.1	 shows	 a	 schematic	 representation	 of	 the	 algorithm.	 The	 novelties	

introduced	 in	 SEMANICS	 involve	 two	main	 stages:	 amplitude	 discrimination	

(which	 operates	 based	 on	 the	 threshold	 computation),	 and	 the	 non‐vocal	

independent	 component	 subtraction	 process,	 which	 requires	 the	 non‐vocal	



Singing	extraction	through	modified	ADRess	and	non‐vocal	independent	component	subtraction	

86	 Singing	voice	separation	from	stereophonic	recordings	

independent	component	(NIC)	determination	shown	in	the	figure.	

	

Figure	5.1:	Structure	of	the	proposed	SEMANICS	approach	to	SVS	

The	following	subsections	detail	the	process	involved	in	these	two	stages.	

5.4 Modified	ADRess	–	amplitude	discrimination	

Equations	 (4.9)	 and	 (4.10)	provide	a	matrix	Az,	whose	 rows	݇	 are	 frequency	

bins	 that	contain	peaks	at	specific	Azimuth	values	(i.e.	columns	 ݅).	Peaks	that	

are	near	the	end	of	the	Azimuth	(i.e.	~β)	contain	the	music	sources	that	are	at	

the	centre	of	the	original	mix.	As	discussed	before,	in	the	considered	case,	the	

voice	will	always	appear	at	the	centre	of	the	mix.	However,	other	instruments	

(e.g.	bass,	bass	drum)	are	traditionally	placed	also	at	the	centre	of	the	mix,	and	

the	algorithm	of	ADRess	is	unable	to	separate	them	from	the	voice.	

The	 herein	 proposed	 “amplitude	 discrimination”	 (AD)	 is	 motivated	 by	 the	

premise	 that	 the	existence	of	a	 singer	 in	a	music	 track	often	 implies	 that	 the	

singing	part	 is	 the	 leading	music	 source	of	 the	mix.	Moreover,	 the	 lyrics	 that	

are	sung	usually	need	to	be	intelligible,	even	when	the	singing	voice	overlaps	

tonally	with	other	music	sources.	Therefore,	mixing	engineers	tend	to	process	

the	 vocal	 part,	 such	 that	 it	 is	 not	masked	 by	 the	 accompanying	 instruments.	
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The	 process	 often	 includes	 the	 enhancement	 of	 the	 frequency	 ranges	 of	 the	

voice	where	significant	overlap	occurs	[246].	The	aforementioned	statements	

lead	 to	 the	 the	 assumption	 that	 the	vocal	 component	will	 be	more	dominant	

than	the	other	music	components	in	the	estimated	magnitude	spectrogram	Az.	

By	more	dominant,	 it	 is	 implied	 that	 the	magnitude	of	 each	of	 the	 individual	

bins	that	contain	the	vocal	frequencies	is	generally	higher	than	the	mean	of	the	

frequency	bins	within	designated	frequency	bands.		Based	on	this	assumption,	

four	amplitude	discrimination	sub‐bands	(i.e.	0,	1,	2,	3)	are	defined.	The	mean	

magnitude	 is	 then	 calculated	 for	 each	 of	 the	 sub‐bands	 1‐3	 (shown	 as	

“threshold	 computation”	 in	 Figure	 5.1),	 and	 only	 the	 individual	 bins	 that	

exceed	 the	 mean	 within	 their	 corresponding	 sub‐band	 are	 extracted.	 It	 is	

worth	noting	 that	sub‐band	zero,	 in	effect,	 represents	a	 frequency	range	 that	

the	 human	 voice	 cannot	 extend	 to.	 Therefore,	 all	 the	 frequency	 bins	 in	 sub‐

band	zero	are	discarded.		

The	 number	 of	 sub‐bands	 has	 been	 inspired	 by	 the	 four‐band	 dynamic	

compression	 (also	known	as	multiband	compression)	 that	 is	 applied	 to	most	

commercial	 songs	during	mastering.	Preliminary	experiments	also	confirmed	

this	number	to	be	effective.	

In	order	to	calculate	the	threshold	for	each	sub‐band,	the	frequency	bins	that	

correspond	 to	 the	 selected	 sub‐bands	 need	 to	 be	 calculated.	 This	 task	 is	

performed	as	follows:	

܃ ൌ ሾ1,2, …  ଵܷሺݐݎܽݐݏሻ

Sୖ
N െ 1ሿ, and	 (5.1)
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܃ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ܷሺݐݎܽݐݏሻ

Sୖ
N

⋮


ܷሺ݁݊݀ሻ

Sୖ
N

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

, for	݉ ∈ ሼ1, 2, 3ሽ,	 (5.2)

where	Um	and	U0	are	vectors	of	integers,	m	is	the	index	of	the	sub‐bands	to	be	

processed,	Um(start)	and	Um(end)	are	the	starting	and	ending	frequency	of	each	

sub‐band	m	measured	in	Hz,	N	is	the	number	of	FFT	points	used,	and	SR	is	the	

sampling	 frequency.	Subsequently,	 the	process	 involves	 the	calculation	of	 the	

mean	average	of	the	magnitudes	for	the	chosen	sub‐bands	1‐3	of	the	resulting	

matrix	from	(4.9)	or	(4.10):	

ߤ ൌ 	
1
Q
 ,			ሺ,ሻݖܣ for	ሺβ െ Hሻ  ݅  β,
∈܃

			and	݉	 ∈ ሼ1, 2, 3ሽ,	 (5.3)

where	μm	is	a	scalar,	i	is	the	discrimination	index,	m	the	index	of	the	sub‐band,	

β	is	the	azimuth	resolution,	Q	is	the	number	of	elements	that	are	summed,	and	

H	is	the	subspace	width.	The	mean	for	m	=	0	does	not	need	to	be	calculated	as	

sub‐band	zero	is	discarded.	

The	amplitude	discrimination	is	then	applied	as	follows:	

,ሺ݇ܣ ݅ሻ ൌ ൞

,௭ሺ݇ܣ ݅ሻ, 		if	ܣ௭ሺ݇, ݅ሻ  ଵߤ and ݇ ∈ ଵ܃
,௭ሺ݇ܣ ݅ሻ,			if	ܣ௭ሺ݇, ݅ሻ  ݇	and			ଶߤ	 ∈ ଶ܃
,௭ሺ݇ܣ ݅ሻ,			if	ܣ௭ሺ݇, ݅ሻ  ݇	and			ଷߤ	 ∈ ଷ܃
			0,							 						otherwise,

								for	ሺβെHሻ		i		β	 (5.4)
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This	algorithm	functions	as	a	brick	wall,	allowing	only	the	bins	with	magnitude	

higher	 than	 their	 respective	 sub‐band	 thresholds	 to	 pass.	 It	 should	 be	 noted	

that	 the	 amplitude	discrimination	 is	 applied	 after	 the	 subspace	 selection	but	

before	the	subspace	summation	(as	seen	in	Figure	5.1).	

	

Figure	5.2:	Example	of	amplitude	discrimination	on	the	FFT	magnitudes.	In	this	example,	H	=	
10,	therefore	ten	different	FFT	moduli	are	present	in	the	graph.	

The	example	presented	 in	Figure	5.2	 is	a	magnitude	spectrum	obtained	after	

selecting	a	subspace	of	H	=	10	 (therefore	d(10)	=	95),	 for	a	Hann	window	of	

4096	 samples,	 and	 overlap	 of	 87.5%.	 The	 figure	 also	 illustrates	 how	 (5.4)	

operates	on	a	time	frame	(sampling	frequency	of	44.1	kHz,	sample	resolution	

of	16	bits).	The	rectangles	show	the	discrimination	between	the	bins	that	have	

a	 magnitude	 higher	 than	 the	 mean	 for	 each	 of	 the	 sub‐bands,	 and	 are	 thus	

included	 in	 the	 estimation	 of	 the	 target	 source.	 For	 each	 sub‐band,	 the	

computed	mean	value	operates	as	a	threshold.	Each	bin	that	is	not	included	in	

the	rectangles	will	be	set	to	zero.	Here	the	four	sub‐bands	chosen	are:	a)	0‐0.14	

kHz	b)	0.14‐1	kHz,	c)	1‐3	kHz,	and	d)	3‐22.05	kHz.	In	fact	the	information	of	the	

range	of	 the	 four	 sub‐bands	 can	be	 limited	 to	 their	 3	 crossing	points,	 in	 this	

case	[0.14,	1,	3	kHz].	The	issue	of	choosing	the	crossing	points	will	be	discussed	

in	Subsection	5.7.4.	

μ for each sub-band

frequency

m
a

gn
it

u
d

e

band 1 band 2 band 3band 0
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5.5 Non‐vocal	Independent	Component	(NIC)	Subtraction	

The	process	of	amplitude	discrimination	significantly	helps	towards	the	voice	

isolation,	 but	 it	 is	 not	 able	 to	 completely	 filter	 out	 all	 the	 frequency	

components	originating	from	other	sources.	In	this	section,	it	is	described	how	

SEMANICS	uses	the	Fast	ICA	algorithm	[204]	in	order	to	achieve	further	voice	

isolation	after	the	amplitude	discrimination	is	applied.	Initially,	the	properties	

of	ICA	are	exploited	in	order	to	obtain	a	mixture	of	music	instruments	from	the	

unprocessed	 song.	 Subsequently,	 this	 mixture	 of	 music	 instruments	 is	

“subtracted”,	 in	 the	 frequency	 domain,	 from	 the	 summed	 result	 of	 the	

amplitude	discrimination	process.	The	motivation	for	using	ICA	is	as	follows.	

When	the	ICA	algorithm	is	applied	to	underdetermined	mixtures,	 it	separates	

the	mixtures	 into	subspaces	(in	the	case	of	stereo	mixture	they	are	two)	that	

are	as	independent	as	possible	[262].	Some	of	the	source	signals	will	be	mainly	

in	the	first	output	while	the	other	sources	will	find	place	in	the	second	output	

[263].	Hence,	one	of	the	outputs	will	contain	the	vocal	element	mixed	together	

with	 some	 of	 the	 sources,	while	 the	 other	will	 contain	 only	 a	mixture	 of	 the	

remaining	 sources,	 with	 much	 less	 vocal.	 The	 latter	 mixture	 can	 be	 further	

processed	in	order	to	achieve	further	voice	isolation.	In	the	case	of	this	study,	

the	latter	is	referred	to	as	the	non‐vocal	independent	component	“NIC”.	

5.6 Using	NIC	to	further	isolate	the	singing	voice	

As	 seen	 in	Figure	5.1,	 the	NIC	determination	 takes	place	 after	 the	 fast	 ICA	 is	

applied	 on	 the	 original	 mixture.	 As	 described	 in	 Chapter	 3,	 one	 of	 the	

weaknesses	 of	 ICA	 is	 its	 ambiguity	 regarding	 the	 order	 of	 the	 independent	

components.	 In	 order	 to	 automatically	 choose	which	 one	 of	 the	 two	 outputs	

does	not	contain	the	vocal	part,	each	of	the	ICA	outputs	is	cross‐correlated	with	

the	 original	 mixture.	 For	 this	 operation,	 the	 Pearson	 product	 moment	

correlation	coefficient	is	used	[264]:	
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ߩ ൌ อ
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ቆ
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ܸሺݐሻ െ ߤ

ߪ
ቇ



௧ୀଵ

อ , ݊ ∈ ሼ1,2ሽ,	 (5.5)

where	ICn(t)	is	the	nth	ICA	output	,	V(t)	are	the	samples	of	either	the	left	or	the	

right	channel	of	the	stereo	mix	(depending	on	which	channel	has	been	selected	

throughout	the	algorithm),	and	T	is	the	number	of	samples	in	each	of	ICn(t)	and	

V(t).	μICn	and	μV		are	the	sample	means	of	ICn(t)		and	V(t)	respectively,	and		σICn,	

σV	are	their	standard	deviations.	

The	benefit	of	using	 the	absolute	value	of	PMCC	 is	 that	 the	 correlation	 index	

has	 fixed	 boundaries,	 i.e.	 	ρn	∊	 [0,	 1],	where	 the	 upper	 limit	 indicates	 strong	

correlation	(as	 in	this	case	 it	 is	not	significant	 if	 it	 is	positive	or	negative).	As	

the	vocal	is	usually	the	dominant	part	of	a	song,	the	ICA	output	containing	the	

vocal	will	give	a	higher	correlation	index,	whereas	the	other	(i.e.	NIC)	outputs	a	

lower	value.	This	is	because	of	the	statistical	independence	of	the	components	

as	well	as	the	dominance	of	the	vocal	part	over	its	accompaniment.	The	latter	is	

used	as	follows	to	enhance	the	vocal	separation	process.	

Initially,	 all	 the	 columns	 of	 the	matrix	 given	 by	 (5.4)	 are	 added	 in	 order	 to	

obtain	a	magnitude	spectrogram	in	one	vector,	i.e.	

ௌሺ݇ሻܯ ൌ  ሺ,ሻܦܣ

ఉ

ୀఉି௴

.				 (5.6)

MS	(k)	is	a	single	column	vector,	and	has	the	same	length	as	NIC.	This	operation	

is	 illustrated	 as	 summation	 in	 Figure	 5.1.	 Despite	 the	magnitude	 of	 the	 NIC	

being	arbitrary	(due	to	ICA	limitations	[265]),	the	magnitude	ratio	between	the	

sources	that	are	contained	in	NIC	will	be	similar	to	that	in	the	original	mixture.	

Therefore,	G(k)	is	defined	as	the	Fourier	transform	of	NIC,	and	then	it	is	scaled	
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to	match	the	sample	mean	of	the	magnitude	spectrum	MS(k).	By	subtracting	the	

scaled	absolute	of	G(k)	from	MS(k),	attempts	are	made	to	further	reduce	some	

of	the	music	sources,	i.e.	

መܵሺ݇ሻ ൌ ௌሺ݇ሻܯ െ
ெௌߤ
ீߤ

	,ሺ݇ሻܩ (5.7)

where	μMS	 and	μG	 are	 scalars.	 Subsequently,	 all	 the	negative	elements	of	Ŝ(k)	

are	set	to	zero:	

መܵሺ݇ሻ ൌ 			 ൜
መܵሺ݇ሻ, ݂݅ መܵሺ݇ሻ  0
0, otherwise.

	 (5.8)

The	subsequent	procedure	in	the	original	ADRess	is	the	signal	reconstruction	

in	 the	 time	 domain	 using	 the	 phase	 information	 from	 the	 original	 mixtures	

together	with	the	magnitude	spectrum	Ŝ(k).	

5.7 Experimental	investigations	

During	 the	 initial	 testing	 of	 SEMANICS	 on	 commercial	 songs,	 subjective	

evaluations	 showed	 significant	 improvement	 over	 the	 ADRess	 algorithm.	

However,	 in	 order	 to	demonstrate	 this	 improvement	 objectively,	 this	 section	

presents	the	evaluation	method	adopted,	as	well	as	the	dataset	used.	

5.7.1. Evaluation	metrics	

In	any	attempt	to	separate	the	singing	voice	from	a	song,	there	is	the	inevitable	

challenge	 of	 finding	 an	 objective	 testing	 method,	 and	 comparing	 a	 new	

algorithm’s	 performance	 with	 that	 of	 existing	 ones.	 The	 bss_eval	 system	

proposed	by	[43]	appears	an	appropriate	choice,	not	only	because	it	is	targeted	
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specifically	to	source	separation,	but	also	because	its	results	are	read	in	three	

different	values,	namely	source	to	distortion	ratio	(SDR),	source	to	interference	

ratio	(SIR),	and	source	to	artefacts	ratio	(SAR).	The	downside	of	this	approach	

is	that	it	requires	both	the	clean	source	track—in	this	case	the	isolated	singing	

voice	 track,	 hereinafter	 a	 capella—and	 the	 music	 accompaniment	 track,	

hereinafter	instrumental.		

The	bss_eval	metrics	system	takes	the	estimated	source	ŝj,	the	a	capella	and	the	

instrumental	as	input,	and	decomposes	ŝj	as	follows:	

ݏ̂ ൌ ୲ୟ୰ୣ୲ݏ  ݁୧୬୲ୣ୰  ݁ୟ୰୲ୣ	, (5.9)

where	 einterf,	 eartef	 	 are	 the	 interference,	 and	 error	 terms	 respectively.	 The	

additional	 advantage	 of	 bss_eval	 is	 that	 it	 allows	 for	 a	 time‐invariant	 gain	

deformation	of	the	starget,	as	matching	the	gain	of	the	input	source	is	usually	not	

important.		

The	measures	 (expressed	 in	 dB)	 that	 are	 used	 to	 evaluate	 the	 quality	 of	 the	

separated	source	are	computed	as	follows:	

Source	to	distortion	ratio:	

SDR ൌ 10 logଵ
ฮ௦౪౨ౝ౪ฮ

మ

‖౪౨ା౨౪‖మ
	,	 (5.10)

Source	to	interference	ratio:	

SIR ൌ 10 logଵ
ฮ௦౪౨ౝ౪ฮ

మ

‖౪౨‖మ
		,	and	 (5.11)



Singing	extraction	through	modified	ADRess	and	non‐vocal	independent	component	subtraction	

94	 Singing	voice	separation	from	stereophonic	recordings	

Source	to	artefacts	ratio:	

SAR ൌ 10 logଵ
ฮ௦౪౨ౝ౪ା౪౨ฮ

మ

‖౨౪‖మ
	.	 (5.12)

The	SIR	and	SAR,	can	be	regarded	as	valid	performance	measures	with	regards	

to	two	different	goals,	namely	the	rejection	of	interferences,	and	the	absence	of	

“burbling”	artefacts	(also	known	as	“musical	noise”)	respectively.	The	SDR	can	

be	seen	as	a	global	performance	measure	[266,	267].	 It	should	be	noted	that,	

recently,	 a	modified	version	of	bss_eval,	 called	bss_eval_images	 [268]	 includes	

an	additional	factor,	namely	the	source	image	to	spatial	distortion	ratio	(ISR).	

The	ISR	is	of	little	significance	to	separation,	but	is	important	for	applications	

that	use	phase	cancellation	(e.g.	karaoke)	 [268].	Furthermore,	 the	gain	of	 the	

estimated	output	plays	a	significant	role	on	ISR.	Therefore,	it	has	not	been	used	

in	this	study.	

5.7.2. Dataset	

As	 discussed	 above,	 bss_eval	 requires	 a	 set	 of	 pre‐existing	 data,	 namely	 the	

music	 accompaniment	 and	 the	 a	 cappella	 track,	 which	 are	 very	 difficult	 to	

retrieve	 for	 commercial	 music.	 However,	 artists	 have	 recently	 started	 to	

release	 their	 songs	 online	 in	 a	 multi‐track	 form,	 prompted	 by	 the	 growing	

interest	 for	music	remixing.	Although	these	multi‐tracks	are	sufficient	 for	 the	

assembly	 of	 a	 stereophonic	mixture,	 an	a	 capella,	 and	 an	 instrumental	 track,	

this	 assembly	 is	 a	 laborious	 procedure	 and	 the	 amount	 of	 samples	 that	 a	

customised	 database	 can	 contain	 is	 subject	 to	 human	 resources	 and	 time	

availability.	

As	there	is	lack	of	a	widely	available	dataset	that	fulfils	the	requirements	of	the	

bss_eval	 metrics	 for	 the	 case	 of	 SVS,	 a	 database	 comprising	 songs	 that	 are	

available	in	the	above	mentioned	multi‐track	format	is	created	for	the	purpose	
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of	 evaluating	 the	 proposed	 system.	 Two	 of	 the	 songs	 [269,	 270]	were	 taken	

from	[268]	while	most	of	the	multi‐tracks	are	licensed	under	CC	BY‐NC‐SA	2.5	

and	3.0	[271,	272],	and	can	be	acquired	from	the	World	Wide	Web.	During	the	

mixing	and	mastering	process,	common	types	of	convoluted	reverberation	as	

well	 as	 equalisation	 and	 compression.	 The	 details	 of	 the	 song	 excerpts	 [160,	

269,	270,	273‐280]	are	presented	in	Table	5.1.	

	

Title	 Artist	 Duration	
(s)	

Year Genre	 Format	

Salala		
Angelique	Kidjo	

Peter	Gabriel	
8.04	 2007

Afrobeat	/	reggae	
/	worldbeat	

PCM	(44.1	kHz,	
16	bit)	

Nude	 Radiohead	 13.80	 2008
Experimental	

rock	
PCM	(44.1	kHz,	

16	bit)	

Kunlarim	Sensiz	 Sevara	Nazarkhan 7.99	 2007 Uzbek	folk	
PCM	(44.1	kHz,	

16	bit)	

Help	Me	Somebody	
Brian	Eno	

David	Byrne	
8.91	 1981

Experimental	/	
art	rock	

PCM	(48	kHz,		
16	bit)	

Only	 Nine	Inch	Nails	 8.30	 2005
Industrial	rock	/	
electronica	

PCM	(44.1	kHz,	
16	bit)	

Resistencia	 Los	de	Abajo	 6.03	 2005 Reggae	 PCM	(44.1	kHz,	
16	bit)	

Tu	Vuò	Fà	
L'Americano	

Renato	Carosone	

Nicola	Salerno	
7.70	 2007 Jazz	/	swing	 PCM	(44.1	kHz,	

16	bit)	

Shock	the	Monkey	 Peter	Gabriel	 4.65	 1982 New	wave	
MP3	(160	kbps,	
44.1	kHz,	16	bit)

Roads	 Bearlin	 14.00	 2009 Rock	
PCM	(44.1	kHz,	

24	bit)	

Que	Pena	/	Tanto	Faz	
(1st	excerpt)	 Tamy	 13.00	 2007 Bossanova	

PCM(44.1	kHz,	
24	bit)	

Que	Pena	/	Tanto	Faz	
(2nd	excerpt)	

‐‐//‐‐	 23.00	 ‐‐//‐‐ ‐‐//‐‐	 ‐‐//‐‐	

Don’t	Know26	 Suicide	Sports	Club 7.26	 2005 Indie	Hip	Hop	
PCM	(44.1	kHz,	

24	bit)	

Table	5.1:	Description	of	the	dataset.	All	the	excerpts	are	stereophonic.	

																																																								

26 The multi-track was kindly offered by Bruce Aisher for the purpose of SVS evaluation. 
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5.7.3. Baseline	

Extensive	 experiments	 are	 performed	 on	 the	 aforementioned	 dataset,	

measuring	 the	 performance	 of	 original	 ADRess	 and	 SEMANICS.	 	 Initially,	

bss_eval	 is	 used	 to	 evaluate	 the	 baseline	 performance	 of	 the	 system.	 This	 is	

necessary	 as	 the	 vocal	 to	music	 ratio	 presents	 significant	 variation	 between	

different	songs.	This	ratio	can	also	be	regarded	as	one	of	the	“difficulty”	factors	

that	each	song	presents	in	terms	of	vocal	isolation,	i.e.	a	lower	ratio	means	that	

the	vocal	is	more	difficult	to	isolate.	For	this	purpose,	the	baseline	performance	

is	shown	in	Figure	5.3.	

	

Figure	5.3:		Baseline	performance	of	the	dataset,	i.e.	SDR	and	SIR	when	no	separation	is	
performed.	

The	 results	 are	 essentially	 a	 signal‐to‐noise	 ratio	 (SNR),	 where	 signal	 is	

represented	by	 the	vocal	part	and	noise	by	 the	music	accompaniment.	Yet,	 in	

order	to	be	consistent	with	the	rest	of	the	experiments,	bss_eval	was	also	used	

for	 measuring	 the	 baseline,	 resulting	 in	 the	 three	 aforementioned	 metric	
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factors,	i.e.	SDR,	SIR,	and	SAR.	The	baseline	with	bss_eval	is	obtained	in	practice	

by	replacing	the	estimated	source	ŝj	in	(5.9)	with	the	original	mixture.	As	there	

cannot	be	any	artefacts	(since	there	is	no	processing	on	the	mixture	during	this	

experiment),	SAR	 is	expected	to	be	 infinite	and	therefore	 is	not	shown	 in	the	

figure.	 However,	 as	 can	 be	 observed,	 the	 SDR	 and	 SIR	 present	 small	

fluctuations,	which	are	attributed	to	the	algorithm	of	bss_eval	not	being	able	to	

fully	distinguish	 the	difference	between	 interference	and	artefacts,	 as	well	 as	

rounding	 errors.	 In	 other	words,	 taking	 into	 consideration	 (5.10)‐(5.12),	 the	

SDR	should	match	the	SIR	when	there	are	no	artefacts.	The	differences	shown	

in	the	figure,	however,	are	minute	and	are	not	considered	to	significantly	affect	

the	evaluation	of	the	results.	

5.7.4. Experimental	setup	

In	order	 to	observe	 the	overall	performance	of	 the	combined	algorithms	and	

determine	the	dependence	of	improvement	upon	different	algorithm	settings,	

experiments	are	conducted	using	all	permutations	of	the	settings	below:	

1. Azimuth	subspace	width	(H),	set	to	4,	10,	20,	and	30	

Four	values	are	chosen,	ranging	from	very	narrow	width	(i.e.	Η	=	4)	to	a	

wide/relaxed	 one	 (Η	 =	 30).	 This	 approach	 will	 help	 to	 examine	 the	

relationship	 between	 the	 azimuth	 subspace	 width	 and	 the	 amount	

frequency	content	which	is	excluded.	

2. Window	size	set	to	512,	1024,	2048,	4096,	8192,	and	16384	samples	

In	[255]	a	window	size	of	4096	is	chosen.	However,	as	the	window	size	

will	 directly	 influence	 time‐frequency	 transformations,	 different	

window	sizes	are	tested	in	this	experiment.	

3. Window	overlap	of	75%,	and	87.5%	

The	 overlap	 process	 is	 an	 essential	 component	 of	 the	 time‐domain	

windowing	before	applying	FFT	to	the	raw	signal,	and	is	also	used	prior	

to	the	“overlap	and	add”	procedure	deployed	for	audio	re‐synthesis.	In	
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the	 original	 ADRess	 an	 overlap	 of	 75%	 was	 used.	 In	 this	 study,	 the	

potential	benefit	of	an	increased	overlap	(i.e.	87.5%)	is	also	examined.	

4. Three	 different	 choices	 of	 sub‐band	 sets:	 crossing	 points	 in	 the	

individual	cases	are	[0.14,	1,	3],	[0.14,	2,	5],	and	[0.1,	4,	8],	all	in	kHz.	In	

each	 case,	 the	 three	 crossing	 points	 provide	 four	 sub‐bands.	 For	

instance,	in	the	case	of	[0.14,	1,	3],	the	sub‐bands	are	0‐0.14	kHz,	0.14‐

1kHz,	1‐3	kHz,	and	3	kHz	to	the	end	of	frequency	spectrum.		

The	 first	choice	of	 frequency	sub‐bands	 is	based	on	Sundberg’s	work	[49,	61,	

281].	As	described	in	Section	2.4,	there	is	a	change	in	the	energy	of	the	singing	

voice	at	around	1	kHz	and	at	around	3	kHz.	Thus,	the	first	set	of	crossing	points	

are	 based	 on	 this	 observation.	 The	 other	 two	 sets	 of	 crossing	 points	 are	

empirically	set.	The	main	purpose	of	the	testing	with	different	permutation	of	

parameters	 is	 to	establish	 if	the	system	can	work	for	all	 the	songs	with	these	

settings	fixed	without	losing	significantly	in	performance.	

5.7.5. Results	

According	 to	 the	 experimental	 results,	 the	 decreased	 overlap	 size	 (i.e.	 75%)	

does	 not	 lead	 to	 a	 significant	 improvement	 in	 the	 outcomes	 (i.e.	 ‐	 0.1	 dB	

approx.),	 compared	 with	 the	 87.5%	 overlap,	 although	 the	 former	 enables	

slightly	 faster	 processing.	 The	 discrimination	 bands	 as	 well	 as	 the	 azimuth	

width	proved	 to	be	 idiomatic,	 in	 the	 sense	 that	 the	best	 results	 are	achieved	

when	these	parameters	are	adjusted	individually	for	each	song.	

However,	 in	order	 to	directly	evaluate	 the	performance	of	SEMANICS	against	

ADRess,	the	same	parameters	for	both	systems	are	presented	here.	These	are	

the	settings	with	which	ADRess	provided	the	most	satisfactory	results,	namely	

azimuth	subspace	width,	i.e.	H	=	20,	window	size	of	4096	overlapping	for	3584	

samples,	and	the	sub‐band	crossing	points	set	at	[0.14,	1,	3]	kHz.	Nonetheless,	

independently	 of	 the	 settings,	 the	 proposed	 system	 showed	 major	

improvement	 in	 SIR	 and	 significant	 improvements	 in	 SDR	 over	 the	 original	

ADRess.	
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Figure	5.4:	SDR	performance	of	ADRess	and	SEMANICS	

	

	

Figure	5.5:	SIR	performance	of	ADRess	and	SEMANICS	
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In	the	figures	above,	SEMANICS	is	compared	with	ADRess	in	terms	of	SDR	and	

SIR.	The	metrics	are	shown	in	terms	of	 improving	 isolation	over	the	baseline	

(Figure	5.3).	In	these	experiments,	the	only	allowed	deformation	of	starget	as	in	

(5.9)	is	a	time	invariant	gain.	

For	 presentation	 reasons,	 the	 illustrations	 in	 this	 section	 offer	 only	 the	

measurements	with	the	parameters	mentioned	in	the	start	of	this	section.	The	

fluctuation	 of	 the	 results	 according	 to	 these	 parameters	 and	 a	way	 to	 tackle	

this	will	be	discussed	further	in	Chapter	6.	

It	is	clearly	shown	that	the	proposed	method	increases	the	SDR	and	SIR	for	all	

the	songs	of	 the	dataset.	The	average	SIR	 improvement	over	ADRess	and	 the	

baseline	(effectively	represented	in	the	figures	as	the	0	dB	line)	achieved	with	

SEMANICS	are	seen	to	be	around	14	dB	and	15	dB	respectively.	For	the	case	of	

SDR	the	improvement	over	ADRess	and	baseline	are	approximately	5	dB	and	6	

dB	respectively.	The	full	table	of	numeric	values	for	these	figures	is	shown	in	

the	 appendix	 (Section	 A.3).	 It	 should	 be	 noted	 that	 the	 relatively	 poor	

performance	of	ADRess	(in	terms	of	SDR	and	SIR)	 is	mainly	due	to	the	target	

subspace	 being	 densely	 populated	 by	 various	 music	 sources,	 as	 well	 as	 the	

reverberant	 character	 of	 the	 mixtures.	 This	 is	 thought	 to	 be	 an	 inevitable	

situation	 in	 a	 variety	 of	 commercially	 produced	 recordings.	 	 In	 addition,	

ADRess	 is	 not	 designed	 to	work	 in	 an	unsupervised	way,	 i.e.	 the	 parameters	

should	be	set	by	means	of	trial	and	error	for	each	song.		

Figure	 5.6	 shows	 that	 ADRess	 produces	 fewer	 artefacts	 compared	 with	

SEMANICS.	 This	 is	 expected	 as	 ADRess	 fails	 to	 perform	 any	 significant	

separation	 (see	 Figure	 5.4),	 effectively	 leaving	most	 of	 the	 signal	 intact,	 and	

therefore	not	producing	any	artefacts.	This	is	also	supported	by	the	fact	that	in	

songs	where	ADRess	achieves	its	best	performance	in	terms	of	separation	(e.g.	

Nude	 and	Salala),	 the	 respective	SAR	 is	also	 relatively	 low.	 In	contrast	 to	 the	

previous	figures	of	SDR	and	SIR	the	values	in	the	figure	of	SAR	are	not	relative	

to	the	baseline;	as	mentioned	earlier,	the	baseline	is—in	theory—infinite.	
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Figure	5.6:	SAR	performance	of	ADRess	and	SEMANICS	

It	 should	 be	 stressed	 that	 SDR	 and	 SIR	 are	 much	 more	 important	 to	 the	

objective	 of	 this	 study,	 which	 is	 that	 of	 audio	 separation	 and	 minimising	

interference	(i.e.	achieving	a	high	SIR).	This	is	supported	by	the	study	in	[266],	

where	 the	metrics	 of	 SDR	 and	 SIR	 are	 found	 to	 be	 correlated	 well	 with	 the	

perception	 of	 source	 separation.	 A	 high	 value	 of	 SIR	 has	 proven	 to	 facilitate	

certain	important	areas	of	MIR,	such	as	singer	identification	[16].		

The	results	for	the	songs	that	are	taken	from	the	first	stereo	source	separation	

evaluation	campaign	(i.e.	Tanto	(1)	and	Roads)	compare	very	well	with	the	rest	

of	the	algorithms	that	were	tested	in	[268,	282];	a	comparison	is	provided	in	in	

Section	A.3	of	the	appendix.	
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5.8 Chapter	Summary	

In	 this	 chapter,	 a	 novel	 algorithm	 for	 the	 separation	 of	 singing	 voice	 (vocal	

component)	from	the	accompanying	music	has	been	introduced.	The	proposed	

method,	 termed	 SEMANICS,	 is	 specifically	 for	 commercially	 produced	

stereophonic	recordings.	 It	 is	based	on	the	 fusion	of	 independent	component	

analysis	(ICA)	with	a	modified	version	of	ADRess.	The	modification	of	ADRess	

is	 through	 the	 incorporation	 of	 an	 appropriate	 amplitude	 discrimination	

procedure.	

The	 experimental	 evaluation	 has	 been	 based	 on	 the	 use	 of	 the	 bss_eval	

approach	together	with	a	varied	dataset.	The	experimental	results	have	clearly	

illustrated	the	superior	performance	of	SEMANICS	over	ADRess	in	terms	of	SIR	

and	SDR.	

The	next	chapter	involves	further	exploitation	of	ICA	principles	in	order	to	

improve	the	vocal	separation	effectiveness,	and	to	reduce	the	dependence	on	

the	setting	of	parameters	in	the	system.		
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The	 previous	 chapter	 described	 a	 system	 that	 is	 based	 on	 azimuth	

discrimination	and	re‐synthesis	(ADRess)	and	can	extract	the	singing	voice	from	

reverberant	 stereophonic	mixtures.	 	 This	 chapter	 details	 an	 extension	 to	 the	

previous	method	that	is	not	based	on	ADRess	and	exploits	both	channels	of	the	

stereo	mix	more	effectively.	 In	addition,	 the	exclusion	of	ADRess	 renders	 the	

proposed	system	less	susceptible	to	performance	fluctuation	due	to	parameter	

settings.	 For	 the	 evaluation	 of	 the	 system	 the	 same	 dataset	 and	 evaluation	

method	is	used,	which	enables	a	direct	comparison	of	the	two	systems.	
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6.1 Motivation	

As	described	in	Section	4.3,	ADRess	achieves	separation	by	exploiting	the	inter‐

channel	 intensity	 difference	 (IID)	 that	 occurs	 in	 stereophonic	 studio	

recordings.		However,	ADRess	as	well	as	most	of	the	stereo	methods	that	utilise	

either	 IID	 or	 inter‐channel	 phase	 difference	 (IPD)	 face	 significant	 difficulties	

when	 processing	 reverberant	 mixtures	 [283].	 In	 addition,	 because	 of	 its	

supervised	 nature,	 ADRess	 relies	 heavily	 on	 user‐determined	 settings.	 As	 a	

result,	SEMANICS,	which	was	introduced	in	Chapter	5	and	is	based	on	ADRess,	

suffers	 from	 the	 same	 dependence	 on	 parameters.	 This	 dependence	 was	

mentioned	 in	 the	 previous	 chapter,	 and	 it	 was	 observed	 after	 testing	

SEMANICS	 with	 permutations	 of	 the	 parameters	 as	 described	 in	 Subsection	

5.7.4.	 The	 influence	 of	 various	 parameters	 on	 the	 performance	 of	 SEMANICS	

can	be	observed	in	Figure	6.1.	

	

Figure	6.1:	Effect	of	different	parameters	
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The	standard	deviations	in	the	figure	represent	the	variation	that	is	observed	

in	 the	 metrics	 when	 one	 of	 the	 four	 parameters	 changes	 while	 the	 others	

remain	fixed.	In	particular,	it	can	be	observed	that	different	overlap	settings	do	

not	 affect	 the	 results,	 while	 the	 selection	 of	 cross‐points	 of	 bands	 presents	

some,	 but	 not	 extensive	 fluctuation.	 Conversely,	 azimuth	width	 and	 stepsize	

(i.e.	 window	 size)	 alter	 the	 separation	 results	 considerably,	 especially	 with	

respect	to	interference	rejection.	

On	 the	 one	 hand,	 the	 explanation	 for	 the	 variation	 that	 the	 window	 size	

introduces	 to	 the	 metrics	 stems	 from	 the	 inherent	 assumption	 of	 STFT.	 In	

essence,	 STFT	 defines	 a	 window	 during	 which	 the	 signal	 is	 expected	 to	 be	

quasi‐stationary.	Having	 a	 large	window	voids	 this	 assumption,	while	 a	 very	

small	window	introduces	significant	spectral	leakage.	The	process	of	ADRess	is	

hindered	by	 this	 leakage	 as	 it	 finds	 false	 “null”	 points	during	 the	 azimugram	

construction,	i.e.	(4.9)‐(4.10).	Therefore,	bins	are	cancelled	(and	subsequently	

reconstructed)	 in	 positions	 that	 appear	 only	 due	 to	 spectral	 leakage.	 On	 the	

other	 hand,	 the	 azimuth	 width	 is	 the	 arc	 size	 of	 the	 central	 angle	 that	 is	

extracted	from	the	panoramic	hemisphere	(see	Figure	4.4)	and	thus	defines	the	

actual	 ‘points’	on	which	ADRess	applies	 the	subtraction.	Hence,	both	of	 these	

parameters	 that	 significantly	 affect	 the	 performance	 of	 the	 system	 are	

attributed	 to	 ADRess.	 Furthermore,	 approaches	 that	 attempt	 the	 automated	

estimation	 of	 the	 azimuth	width	 require	 an	 exhaustive	 search	 of	 all	 possible	

combinations	for	all	sources	[259].	

In	order	to	circumvent	the	above	challenges,	a	system	is	introduced	here	which	

is	 a	 modified	 version	 of	 the	 algorithm	 described	 in	 Chapter	 5,	 and	 involves	

removing	 the	ADRess	part.	 In	addition	 to	 running	unsupervised	and	utilising	

the	 novel	 approach	 of	 non‐vocal	 independent	 component	 (NIC)	 subtraction	

that	was	 introduced	previously,	 the	modified	 system	presented	here	exploits	

both	channels	much	more	effectively.	The	new	algorithm	termed	SEMANTICS	

(singing	 extraction	 through	multiband	 amplitude	 enhanced	 thresholding	 and	

independent	component	subtraction).		
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6.2 Overview	of	the	proposed	method	

As	can	be	seen	in	Figure	6.2,	the	proposed	system	splits	the	original	mixtures	

into	two	streams	for	each	channel.	The	first	stream	is	subjected	to	Fast	ICA	and	

subsequently	the	non‐vocal	independent	component	(NIC)	is	determined	with	

the	help	of	cross‐correlation	(PMCC).	The	second	stream	is	transformed	to	the	

frequency	 domain	 after	 it	 is	 filtered	 with	 a	 high‐pass	 filter.	 The	 NIC	 is	 also	

transferred	 to	 the	 frequency	 domain,	 scaled	 and	 subtracted	 from	 both	 the	

STFTs	of	the	processed	mixtures.	The	threshold	estimation	is	calculated	from	

both	 the	 channels	 in	 order	 to	 provide	 a	 threshold	 (i.e.	 Zm)	 to	 perform	 the	

amplitude	 discrimination.	 Finally,	 the	 signal	 is	 transformed	 back	 to	 the	 time	

domain	after	 a	binary	mask	 is	 applied	with	 the	help	of	 the	 right	 and	 the	 left	

channels.		

	

Figure	6.2:	Overview	of	the	proposed	system	(SEMANTICS)	

For	 the	purpose	of	 ISTFT,	 the	phase	 information	 from	the	original	mixture	 is	

used.	 The	 rest	 of	 the	 chapter	 describes	 the	 mechanics	 of	 the	 modified	

algorithm,	with	 reference	 to	 the	parts	 that	 are	 replicated	 from	 the	 system	 in	

Chapter	5.	
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6.3 NIC	subtraction	as	pre‐processing	

The	previous	system,	 i.e.	 SEMANICS	can	be	summarised	as	 the	application	of	

modified	 ADRess,	 followed	 by	 the	 amplitude	 discrimination	 and	 the	 NIC	

subtraction.	 The	 amplitude	 discrimination	 helps	 significantly	 towards	 the	

voice	separation;	however,	it	is	the	modified	ADRess	that	enabled	the	latter,	as	

it	produces	signals	that	have	‘enhanced’	presence/dominance	of	the	vocal	part.	

In	 order	 to	 remove	 ADRess	 but	 still	 retain	 the	 efficiency	 of	 the	 amplitude	

discrimination,	the	NIC	subtraction	takes	place	immediately	after	the	FFT.		

In	order	to	be	able	to	perform	the	NIC	subtraction,	the	process	of	SEMANTICS	

starts	with	the	NIC	determination	(like	in	the	case	of	SEMANICS).	The	process	

is	thoroughly	detailed	in	Section	5.6.	In	brief,	it	involves	the	application	of	Fast	

ICA	 to	 the	 two	 channels	 of	 the	 original	 stereo	mixture	 in	 order	 to	 acquire	 a	

time	signal	whose	vocal	content	is	less	than	either	of	the	original	channels.	The	

latter	 mixture,	 referred	 to	 as	 NIC,	 is	 determined	 by	 cross‐correlating	 (using	

PMCC)	each	of	the	ICs	with	one	of	the	two	original	mixtures.	

Following	the	previous	process,	the	right,	i.e.	x1(t),	and	left,	i.e.	x2(t)	channel	of	

the	 original	 mixture	 are	 subjected	 to	 a	 high‐pass	 filter,	 for	 reasons	 outlined	

below.	Subsequently,	x1(t),		x2(t),	and	NIC(t),are	segmented	and	transferred	to	

the	 frequency	 domain,	 using	 a	 Hann	 window	 of	 4096	 samples	 at	 512‐point	

intervals	(i.e.	87.5%	overlap).	This	value	of	overlap	was	chosen	as	it	provides	

slightly	better	results,	while	the	additional	computational	cost	is	not	of	concern	

at	this	point.	

6.4 Filtering	requirements	

Due	to	the	gain	tolerance	of	the	de‐mixing	matrix	of	ICA	[227],	the	magnitude	

of	G(k)	(modulus	of	the	Fourier	transform	of	NIC)	is	unknown	at	this	stage.	In	

SEMANICS,	 this	 problem	 is	 tackled	 by	 scaling	 G(k)	 to	 the	 output	 of	 the	
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amplitude	 discrimination.	 Since	 the	 NIC	 subtraction	 is	 performed	 here	 as	 a	

pre‐processing,	the	scaling	procedure	is	modified.		

Based	on	the	premise	that	the	relative	magnitudes	of	the	sources	captured	in	

G(k)	are	similar	to	those	in	the	original	mixture,	an	intuitive	solution	would	be	

to	scale	G(k)	in	order	to	match	one	of	the	frequency	transforms	of	the	original	

mixture.	However,	 due	 to	 the	way	 that	 ICA	operates	 on	 complex	mixtures,	 it	

usually	 cancels	 out	 most	 low	 frequency	 components	 in	 the	 output	 that	

correlate	 poorly	 with	 the	 original	 audio	 mixture	 (i.e.	 NIC).	 Furthermore,	 in	

audio	mixtures,	 the	 lower	 region	of	 the	 frequency	 spectrum	usually	 contains	

most	of	the	energy	in	the	mix.	In	fact,	this	is	closely	in	line	with	the	sensitivity	

of	 the	 human	 ear	 to	 different	 frequencies	 (i.e.	 lower	 sensitivity	 to	 lower	

frequencies	[284]).		

This	 means	 G(k)	 will	 not	 contain	 much	 bass	 frequency.	 Therefore,	 this	

approach	would	 bias	 the	 scaling	 factor	 towards	 a	 smaller	 value.	 In	 order	 to	

tackle	the	aforementioned	problem,	the	proposed	method	subjects	the	signals	

x1(t)	 and	 x2(t)	 to	 high‐pass	 filtering	 in	 order	 to	 remove	 components	 that	

occupy	the	lowest	part	of	the	frequency	spectrum.	This	filtering	is	not	expected	

to	 cause	 significant	 loss	 of	 the	 vocal	 component,	 as	 vocal	 parts	 are	 typically	

high‐pass	filtered	during	the	mixing	process	in	commercial	recordings.	During	

initial	 investigations,	 the	 cut‐off	 frequency	 providing	 a	 good	 compromise	

between	 correct	 scaling	 and	 voice	 is	 around	 140	 Hz.	 The	 adopted	 high‐pass	

filter	 is	 a	 first	 order	 IIR	 system	with	maximally	 flat	magnitude	 response	 (i.e.	

Butterworth)	because	of	its	computational	efficiency.	The	cut‐off	frequency	of	

140	Hz	 is	not	 considered	 to	 cause	 significant	degradation	 to	 the	voice	as	 the	

pitches	below	that	(i.e.	E2	to	C♯3	)	are	deemed	rare.		

After	 the	 high‐pass	 filtering	 and	 the	 STFT	 process,	 the	 NIC	 subtraction	

proceeds	 as	 follows:	 G(k)	 is	 scaled	 in	 order	 to	 match	 the	 mean	 of	 the	

magnitude	spectrum	Xi(k).	By	subtracting	the	scaled	G(k)	from	Xi(k),	an	initial	

reduction	of	the	music	sources	is	achieved	as	follows:	
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݅	for											ሺ݇ሻ,ܩ ൌ 1, 2,	 (6.1)		

where	 i	 is	 the	 channel	 index,	 μXi	 	 and	 μG	 are	 the	 means	 of	 Xi(k)	 and	 G(k)	

respectively,	 and	k	 is	 the	 index	of	 the	FFT	bins,	while	Yi(k)	 is	 the	magnitude	

spectrum	of	the	processed	signal	that	contains	a	mixture	of	the	voice	and	the	

reduced	music	sources.	 It	has	been	observed	 that,	because	of	 the	 impurity	of	

G(k),	 (6.1)	 can	 sometimes	 produce	 negative	 values	 for	Yi(k).	 In	 such	 cases,	 a	

very	low	positive	value	is	assigned	to	Yi(k).		

6.5 Mel	sub‐band	characteristics	

The	 amplitude	 dominance	 of	 the	 voice	 is	 evident	 in	 the	 obtained	magnitude	

spectrogram	following	the	NIC	subtraction,	especially	since	many	of	the	music	

sources	are	reduced	by	the	aforementioned	process.		Hence,	it	is	assumed	that	

the	magnitude	of	each	of	the	individual	bins	that	contains	the	vocal	frequencies	

is	 generally	 higher	 than	 the	 mean	 of	 the	 frequency	 bins	 within	 designated	

frequency	bands.	This	is	similar	to	the	assumption	made	in	Chapter	5.		

Based	on	this	assumption,	M	amplitude	discrimination	sub‐bands	are	defined.	

In	order	to	limit	the	parameters	that	the	system	depends	on,	the	cross‐points	

are	 not	 manually	 set.	 Instead,	 preliminary	 investigations	 suggested	 that	 an	

acceptable	trade‐off	is	the	selection	of	crossing	points	such	that	each	sub‐band	

spans	an	equal	number	of	mels.	Thus,	 the	set	parameters	of	 the	system	have	

been	limited	to	only	one	scalar,	namely	M.	In	this	case,	3	≤	M	≤5	is	found	to	lead	

to	satisfactory	results.	

Formally,	 the	 thresholds	 are	 computed	 based	 on	 both	 spectrograms	 that	 are	

obtained	after	the	NIC	subtraction:	
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where	Q	is	the	number	of	elements	that	are	summed,		b	is	the	sub‐band	vector,	

and	 i	 is	 the	 channel	 index.	 It	 is	 noteworthy	 that	 the	 threshold	 is	 calculated	

across	 both	 channels	 and	 not	 individually	 in	 contrast	 to	 SEMANICS.	 This	

provides	a	much	more	accurate	estimation	of	the	thresholds,	since	it	evens	out	

peak	transients	of	music	sources	that	might	occur	 in	one	channel	but	not	the	

other.		

In	addition	to	the	M	number	of	sub‐bands,	a	sub‐band	b0	is	defined,	such	that	it	

matches	 the	 frequencies	 that	were	 attenuated	 during	 the	 high‐pass	 filtering,	

but	were	re‐introduced	due	to	STFT	errors.	

Subsequently,	the	amplitude	discrimination	is	applied	to	the	result	of	(6.1).	In	

this	 system	 though,	 this	 process	 results	 in	 a	 binary	mask,	 allowing	 only	 the	

bins	with	magnitude	higher	 than	their	respective	sub‐band	thresholds	across	

both	channels	to	pass.	The	bins	that	do	not	pass	this	threshold	are	set	to	a	very	

low	value	(i.e.	0	൏	ε	≪	1)	instead	of	zero.	This	is	also	in	line	with	the	spectral	

subtraction	 method	 in	 [285].	 Formally,	 the	 resulting	 spectrogram	 Ŝ(k,	 l)	

contains	the	averaged	bins	from	the	two	channels	as	follows:	

መܵሺ݇, ݈ሻ ൌ

ە
ۖ
۔

ۖ
1ۓ
2
 ܻሺ݇, ݈ሻ
ଶ

ୀଵ

							if ቐ
ଵܻሺ݇, ݈ሻ  ܼ
ଶܻሺ݇, ݈ሻ  ܼ
݇ ∈ ܊

ቑ 	݉	 ∈ ሼ1,2, …Mሽ

ε,				 																					otherwise,

		 (6.3)			

where	ε	represents	the	machine	epsilon	(in	this	case	ε	=	2‐53).		
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Figure	6.3	presents	the	binary	decision	(i.e.	binary	masking)	that	occurs	on	the	

left‐hand	 side	 of	 equation	 (6.3)	 on	 the	 FFT	 modulus	 of	 a	 Hann‐windowed	

frame	of	4096	samples	from	a	song	for	M	=	3.	

	

	

Figure	6.3:	(a)	Resulting	FFT	moduli	after	the	amplitude	discrimination	for	one	frame	of	an	
excerpt	of	the	song	Nude	[279]	.	Left	channel	(a),	right	channel	(b),	and	superimposed	(c).	The	
result	after	the	binary	mask	is	applied	is	shown	in	(d).	The	bins	that	are	set	to	the	value	of	ε	are	

omitted	here	for	illustration	purposes.	

It	 is	observed	 in	 the	 figure	 that	 the	 two	signals	 (i.e.	 left	 and	 right)	 that	are	a	

result	 from	 the	 amplitude	 discrimination	 exhibit	 substantial	 differences.	 In	

fact,	this	is	the	case	in	most	of	frames	of	the	tested	database.	This	is	because	of	

1 2 4 8
−45

−40

−35

−30

−25

−20

−15

−10

d
B

F
S

log frequency (kHz)

(a)

1 2 4 8
−45

−40

−35

−30

−25

−20

−15

−10

d
B

F
S

log frequency (kHz)

(b)

1 2 4 8
−45

−40

−35

−30

−25

−20

−15

−10

dB
F

S

log frequency (kHz)

(d)

left
right

1 2 4 8
−45

−40

−35

−30

−25

−20

−15

−10

dB
F

S

log frequency (kHz)

(c)



Singing	extraction	through	multiband	amplitude	enhanced	thresholding	and	independent	
component	subtraction	

112	 Singing	voice	separation	from	stereophonic	recordings	

transients	 that	 occur	 in	 the	music	 accompaniment	 in	 each	 channel	 and,	 as	 a	

result,	 they	 leak	 through	 the	 thresholds	 of	 AD.	 With	 this	 procedure,	 these	

transients	are	attenuated.	 In	addition,	 the	singing	voice	usually	exists	equally	

in	both	channels	 (as	 it	 is	panned	on	the	centre)	and	does	not	get	reduced	by	

the	aforementioned	process.	Hence,	the	importance	of	using	both	channels	for	

this	process	aids	substantially	towards	the	voice	separation.	It	should	be	noted	

that	 the	 binary	 masking	 is	 applied	 here	 on	 each	 frame	 separately	 and	 is	

different	from	binary	masks	that	are	part	of	several	CASA	systems	as	presented	

in	Figure	2.9.	

The	final	stage	of	SEMANTICS	involves	the	use	of	the	phase	information	from	

the	original	mixtures	in	order	to	transfer	Ŝ(k)	with	ISTFT	to	the	time	domain.		

6.6 Experimental	investigations	

For	the	objective	evaluation	of	the	separation	performance	of	SEMANTICS	

bss_eval	is	used	with	the	same	database	as	described	in	Chapter	5.	This	gives	

the	flexibility	of	direct	comparison	between	the	SEMANTICS,	SEMANICS,	and	

ADRess.	The	results	for	signal	to	interference	ratio	(SIR)	for	a	Hann	window	of	

4096	samples,	overlap	of	87.5%,	and	M	=	3	are	shown	in	Figure	6.4.	The	full	

table	of	the	numeric	results	is	provided	in	Section	A.3	of	the	appendix.		

It	 is	 observed	 that,	 in	 terms	 of	 SIR,	 SEMANTICS	 provides	 consistently	 better	

interference	 rejection	 over	 its	 predecessor	 for	 all	 the	 songs	 in	 the	 database.	

The	improvement	obtained	is	in	the	range	of	0.82	dB	to	6.29	dB	(μ	=		3.33dB).	

As	 discussed,	 this	 metric	 together	 with	 SDR	 are	 the	main	 indicators	 for	 the	

perceptual	efficiency	separation	of	 the	singing	voice	 from	a	given	song	[266].	

The	metric	of	 SAR	 (Figure	6.5)	 shows	overall	 slightly	better	performance	 for	

SEMANTICS	(μ	=	1.28	dB),	albeit	with	a	few	exceptions,	namely	2	out	of	the	12	

songs	show	slightly	worse	performance	by	0.2	dB	to	0.77	dB.	
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Figure	6.4:	SIR	performance	of	SEMANICS	and	SEMANTICS	

	

Figure	6.5:	SAR	performance	of	SEMANICS	and	SEMANTICS	
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The	better	performance	in	SAR	is	attributed	to	the	use	of	both	channels	and	the	

binary	 masking	 which	 reduces	 the	 leftover	 transients	 from	 music	

accompaniment	and	therefore	decreases	the	noise	floor.	

	

Figure	6.6:	SDR	performance	of	SEMANICS	and	SEMANTICS	

Finally,	 as	 seen	 in	 Figure	 6.6	 based	 on	 this	 dataset,	 SEMANTICS	 provides	

generally	better	results	also	in	terms	of	SDR	(μ	=	1.61	dB),	with	the	exception	

of	the	two	songs	that	are	slightly	lower	also	in	SAR.	

Similarly	 to	 the	 experimental	 setup	 that	 is	 discussed	 in	 5.7.4,	 the	 system	 is	

tested	 with	 different	 parameters.	 The	 results	 of	 the	 variation	 that	 these	

parameters	 introduce	 to	 the	performance	of	 the	system	can	be	seen	 in	Table	

6.1.	In	the	same	manner	as	in	Figure	6.1,	the	standard	deviations	for	the	mean	

average	 of	 the	 performance	 are	 shown	when	 one	 set	 of	 parameters	 changes	

while	 the	 others	 remain	 fixed.	 The	 results	 from	 SEMANICS	 are	 offered	 for	

direct	comparison.	
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 SEMANICS SEMANTICS 

 x-points stepsize overlap width (H) M stepsize overlap 

SDR 0.856	 0.931	 0.056	 1.361	 0.813	 0.885	 0.053	

SIR 0.473	 3.242	 0.051	 3.725	 0.463	 3.108	 0.041	

SAR 0.805	 0.863	 0.061	 0.629	 0.779	 0.857	 0.060	

Table	6.1:	Standard	deviations	of	the	results	with	different	permutations	of	parameters.	

In	 the	 table,	 the	 strongest	 advantage	 of	 SEMANTICS	 is	 demonstrated:	 except	

for	improving	interference	rejection	it	also	provides	consistency	of	separation	

efficiency	 and	 reduction	 of	 the	 user	 set	 parameters	 to	 a	 minimum.	 This	 is	

attributed	 to	 the	 overall	 modifications	 proposed	 here,	 but	 mainly	 to	 the	

removal	of	ADRess	from	the	system.	As	discussed	earlier,	SEMANICS	includes	

ADRess	and	therefore	suffers	from	dependence	on	its	parameters,		particularly	

the	azimuth	width(H).	SEMANTICS	on	the	other	hand	has	only	one	parameter	

(the	number	of	sub‐bands	M)	which	presents	low	variation	when	set	between	

3	 and	5.	 	 It	 should	 also	 be	noted	 that	 although	 the	window	 size	 of	 the	 STFT	

affects	the	system	(as	expected),	a	length	of	4096	or	8912	samples	consistently	

provides	the	best	results.	

6.7 Chapter	summary	

In	this	chapter	the	system	SEMANTICS	has	been	introduced	and	analysed.	This	

system	can	be	described	as	an	extension	of	the	previous	method	presented	in	

Chapter	 5.	 The	 proposed	method	 does	 not	 rely	 on	 ADRess	 and	makes	more	

efficient	use	of	both	channels	of	the	stereo	mix.	

In	particular,	the	modifications	include	the	readjustment	of	NIC	subtraction	in	

order	to	be	used	as	a	pre‐processing	stage,	which	also	involves	the	application	
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of	high‐pass	 filters	on	both	 channels	of	 the	original	mixture.	The	use	of	both	

channels	takes	place	in	amplitude	discrimination	where	a	binary	mask	is	also	

applied.	The	results	indicate	overall	improvement	over	the	previous	method	in	

all	three	aspects	of	bss_eval,	especially	in	the	area	of	SIR,	which	is	important	in	

the	context	of	this	study.	A	facet	of	the	modified	system	is	that	minimises	the	

user	settings	while	improving	consistency	of	the	separation	performance.	This	

is	 mainly	 attributed	 to	 the	 removal	 of	 ADRess.	 While	 this	 as	 well	 as	 the	

previous	chapter	have	dealt	with	the	separation	of	voice	when	music	and	voice	

overlap	in	the	frequency	domain,	the	next	chapter	details	methods	that	lead	to	

successful	removal	of	music‐only	time	segments.	
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The	 previously	 introduced	 systems,	 i.e.	 SEMANICS	 and	 SEMANTICS,	 address	

the	frequency‐domain	separation	through	the	combination	of	NIC	subtraction	

and	a	 frequency‐domain	separation	method	denoted	as	AD.	 In	 this	chapter,	a	

hybrid	 approach	 to	 SVS	 is	 proposed.	 The	 method,	 which	 is	 termed	 H‐

SEMANTICS	 (Hybrid	 SEMANTICS),	 is	 based	 on	 complementing	 previously	

introduced	 frequency‐domain	 separation	 algorithms	 with	 time‐domain	

separation.		

7.1 Overview	

For	 the	purpose	of	 time‐domain	separation	 (i.e.	music‐segment	pruning)	 two	

different	approaches	are	proposed	here.	The	 first	approach	 is	 termed	energy	

and	 ΝIC	 correlation	 (i.e.	 EΝIC)	 and	 can	 be	 viewed	 as	 a	 post‐processing	

separation	 stage	 in	 the	 time	 domain	 while	 the	 other,	 termed	 MFCC	 of	 IC	

Euclidean	distance	(i.e.	MICED)	 forms	an	 integrated	part	of	H‐SEMANTICS	by	

operating	on	cepstral	parameters.	
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Figure	7.1:	Overview	of	H‐SEMANTICS	with	ENIC	

In	 addition,	 H‐SEMANTICS	 enhances	 the	 approach	 for	 separation	 in	 the	

frequency	 domain	 (where	 music	 and	 voice	 overlap)	 by	 introducing	 several	

modifications.	These	modifications	involve	the	estimation	of	the	thresholds	in	

AD,	 the	approximation	of	 the	phase	 information	 for	 the	reconstruction	of	 the	

signal,	and	the	reconstruction	of	lost	voice	material	due	to	high‐pass	filtering.	

An	 overview	of	 the	 system	with	 the	 first	music	 pruning	method,	 i.e.	 ENIC,	 is	

presented	in	Figure	7.1.	
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Briefly	 described,	 the	 system	 operation	 involves	 subjecting	 the	 original	

mixtures	to	high‐pass	filtering	and	subsequently	to	STFT.	The	NIC	subtraction	

then	 follows	as	described	 in	Section	6.3.	Both	estimated	signals	 from	 the	 left	

and	 the	 right	 channels	 are	afterwards	used	 to	 estimate	 the	 thresholds	of	 the	

amplitude	discrimination	(AD).	Finally,	 the	 f0	restoration	 is	performed	before	

the	signal	is	pruned	in	the	time	domain.		

The	remainder	of	the	chapter	is	organised	as	follows.	The	modifications	to	the	

previously	introduced	SEMANTICS	(Chapter	6)	are	detailed	in	sections	7.2	and	

7.3.	 Section	 7.4	 discusses	 the	 enhancement	 of	 the	 extracted	 singing	 voice	

through	 the	 restoration	 of	 f0	 (fundamental	 frequency).	 In	 sections	 7.5	 to	 7.7,	

the	 proposed	 approaches	 to	 pruning	 the	 music‐only	 time	 segments	 are	

described.	Finally,	Section	7.8	presents	the	objective	evaluation	method	used	in	

this	study	and	analyses	the	experimental	results	for	the	proposed	system.	

7.2 Modifications	in	the	frequency‐domain	separation	

In	 contrast	 to	 SEMANICS	 and	 SEMANTICS,	 where	 the	 PMCC	 resulted	 in	 the	

determination	of	NIC	and	the	discarding	of	the	other	IC,	both	components	are	

used	 in	H‐SEMANTICS	 for	different	purposes.	While	NIC	 is	used	 for	an	 initial	

suppression	of	 some	of	 the	music	 sources,	 the	vocal	 independent	component	

(i.e.	 the	 other	 ICA	 output,	 denoted	 as	 VIC)	 is	 used	 for	 fine‐tuning	 of	 the	

estimated	vocal	and	reconstruction	of	its	phase.	

As	reported	in	Section	6.4,	applying	a	high‐pass	filter	to	x1(t)	and	x2(t)	before	

computing	their	Fourier	transforms	can	result	in	more	accurate	scaling	during	

the	NIC	 subtraction.	Depending	on	 the	 cut‐off	 frequency	 (fc)	 of	 the	high‐pass	

filter,	 some	 frequency	 components	 of	 the	 voice	 will	 also	 be	 lost	 but,	 as	

described	later	in	this	chapter,	they	can	be	recovered	afterwards.	It	should	be	

noted	that	fc	must	be	set	to	such	a	value	that	the	singing	voice	loses	at	most	its	

f0,	 but	 not	 its	 f1	 (first	 harmonic).	 This	 is	 important	 in	 order	 to	 successfully	
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estimate	 the	pitch	of	 the	singing	voice.	 	For	 that	purpose,	 the	high‐pass	 filter	

that	is	used	in	this	method	is	a	high‐order,	linear‐phase	FIR	filter	with	fc	=	200	

Hz.	 The	 reason	 for	 the	 choice	 of	 the	 higher	 order	 of	 the	 filter	 over	 the	 low‐

order	 Butterworth	 filter	 used	 in	 Section	 6.4	 is	 that	 it	 was	 observed	 during	

further	 experimentation	 with	 SEMANTICS	 that	 a	 non‐linear	 phase	 filter	 can	

affect	the	accuracy	of	the	STFT	process	that	follows.	

7.3 Threshold	estimation	

As	 discussed	 in	 previous	 chapters,	 mixing	 engineers	 use	 a	 number	 of	

techniques	 and	 processes	 to	 manipulate	 the	 contributing	 components	 and	

ensure	 the	 vocal	 part	 is	 clearly	 audible.	 This	usually	 involves	 dynamic	 range	

compression	to	 impose	artificial	stability	 in	the	amplitude	of	 the	vocal	signal,	

and	filtering	to	enhance	the	frequency	spectrum	of	the	singing	voice	in	bands	

where	 masking	 occurs	 [246].	 This	 standard	 mixing	 approach	 has	 been	 the	

main	motivation	behind	the	introduction	of	the	amplitude	discrimination	(AD)	

process	 as	 described	 in	 Section	 5.4.	 However,	 the	 study	 in	 Section	 6.5	 has	

shown	 that	 for	 maximising	 the	 effectiveness	 of	 such	 an	 approach,	 the	 AD	

should	be	 localised	by	dividing	 the	 full	 frequency	spectrum	 into	a	number	of	

sub‐bands.	 The	 other	 important	 consideration	 for	 the	 purpose	 of	 AD	 is	 the	

value	of	the	threshold	to	be	deployed	in	the	case	of	each	sub‐band.	

The	motivation	behind	the	modification	of	the	aforementioned	process	is	that	

the	 estimation	of	 the	 thresholds	 is	 critical	 to	 the	performance	of	 the	 system.	

For	 this	 purpose,	 the	 thresholds	 are	 calculated	 dynamically	 using	 mel‐

frequency	overlapping	Tukey	windows,	 that	are	used	as	 filters.	 	Formally,	 for	

each	l	frame	of	audio,	for	a	given	sub‐band	m,	the	threshold	Zm	is	defined	by:	
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where	 M	 is	 the	 number	 of	 equally	 spaced	 sub‐bands,	 Yi(k,	 l)	 are	 the	

spectrograms	 of	 the	 left	 and	 the	 right	 channels	 resulting	 from	 the	 NIC	

subtraction,	k	is	the	index	of	the	FFT	points,	i	is	the	channel	index,	and	w(k,	m)	

is	a	unit	weight	window	described	in	(7.2).		
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	 (7.2)		

The	variables	cm1 			to	cm4		represent	the	corners	of	the	frequency	bands	which	are	

defined	by:	
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(7.3)		

where	SR	is	the	sampling	rate,	K	is	the	FFT	size,	and	H(p)	=	[1+α,	1,	0,	‐α].	The	

parameter	 α	 defines	 the	 percentage	 of	 overlap	 of	 sub‐bands	 in	 the	 mel‐

frequency	 domain.	 The	 derivation	 of	 each	 of	 (7.2)	 and	 (7.3)	 is	 described	 in	

Section	A.4	of	the	appendix.	The	reason	that	the	corners	are	defined	in	such	a	
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way	 is	 that	 they	 overlap	 in	 the	mel‐frequency	 spectrum.	As	 can	 be	 seen,	 the	

formula	used	for	the	linear‐	to	mel‐frequency	conversion	is	the	one	suggested	

by	 O’	 Shaughnessy	 [286].	 It	 should	 also	 be	 noted	 that	 c11		is	 adjusted	

appropriately	so	that	it	excludes	the	band	that	has	been	filtered	out	during	pre‐

processing.	

	

Figure	7.2:	Amplitude	discrimination	of	H‐SEMANTICS	on	a	windowed	frame	of	audio	

The	AD	process	applied	subsequently	to	each	band,	functions	as	a	binary	mask,	

allowing	only	the	bins	with	magnitudes	higher	than	their	respective	sub‐band	

thresholds	to	pass.	Similarly	to	6.5,	the	resulting	spectrum	Ŝ(k,	l)	contains	the	

averaged	bins	from	the	two	channels	as	in	(7.4):	
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	 (7.4)		

where	 ε	 is	 the	 machine	 epsilon.	 According	 to	 Section	 6.5,	 satisfactory	

performance	is	achieved	when	the	number	of	sub‐bands	is	fixed	in	the	range	3	

to	5.	 	An	example	of	the	way	that	H‐SEMANTICS	calculates	the	thresholds	for	

AD	on	a	frame	of	audio	is	presented	in	Figure	7.2,	for	M	=	4	and	α	=	0.25.	The	

spectrum	 is	 shown	 in	 dBFS	 only	 for	 presentation	 purposes,	 although	 Yi	 are	

magnitude	spectra	in	the	proposed	approach.	

7.4 F0	restoration	

As	mentioned	in	Section	7.2	of	this	chapter,	the	observed	mixture	is	subjected	

to	high‐pass	filtering	(with	the	cut‐off	frequency	fc	=	200	Hz),	which	helps	with	

the	scaling	during	the	NIC	subtraction.	However,	this	value	of	 fc	also	removes	

the	f0	of	the	singing	part	for	some	frames,	when	the	singing	pitch	is	lower	than	

a	G3	(≈	196	Hz).	As	expected,	this	occurs	mainly	in	songs	by	male	singers.	

In	this	section,	a	method	is	described	that	attempts	to	restore	the	fundamental	

frequency	in	frames	where	pitch	estimation	shows	that	f0	has	been	filtered	out.	

At	 this	stage,	 the	pitch	estimation	method	 from	the	MIRToolbox	 [287,	288]	 is	

used,	with	the	parameters	set	such	that	only	the	most	significant	pitch	of	 the	

frame	 is	 extracted.	 The	 effectiveness	 of	 the	 pitch	 estimation	 is	 significantly	

facilitated	 by	 the	 processes	 that	 the	 signal	 has	 been	 previously	 subjected	 to,	

namely	 the	NIC	 subtraction	 and	AD.	 The	 approach	 described	 below	 replaces	

the	 bin	 that	 contains	 the	 estimated	 f0	 with	 the	 one	 from	 the	 short‐term	

spectrum	of	VIC,	i.e.	FVIC(k,	l).	
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At	 first,	Φ(l)	 is	 defined	 as	 the	 pitch	 estimated	 in	 every	 frame	 l,	 and	 this	 is	

assigned	 to	 the	 corresponding	 bin	 in	 the	 spectrum	 of	 the	 frame.	 This	

restoration	process	can	be	expressed	as	follows:	

መܵሺ݇, ݈ሻ ൌ ,ሺ݇ܥܫܸܨ ݈ሻ				݂݅	݇ ൌ ሺ݅  1ሻߔሺ݈ሻ ൏ ݂, ݅ ∈ ሼ0, 1, 2, . . . Θሽ,		 (7.5)			

where	 Θ	 is	 the	 maximum	 number	 of	 harmonics	 that	 are	 restored.	 	 The	

parameter	Θ,	which	is	 fixed	throughout	the	process,	can	be	set	 in	such	a	way	

that	it	accounts	for	harmonics	higher	than	the	f0	that	might	be	lost	during	high‐

pass	filtering.	In	the	present	study	though,	it	suffices	to	restore	just	the	f0	(i.e.	Θ	

=	0),	as	this	accounts	for	the	restoration	of	the	fundamental	frequency	down	to	

an	 estimated	 G2	 (≈	 98	 Hz).	 Songs	 with	 vocal	 frequencies	 falling	 below	 this	

musical	note	are	considered	very	rare.	As	a	reference,	only	a	bass	singer	can,	at	

his	 extreme	 lower	 end,	 extend	 down	 to	 an	 F2	 (≈	 87	 Hz).	 The	 other	 five	

predominant	vocal	ranges	(i.e.	 soprano,	mezzo‐soprano,	alto,	 tenor,	baritone)	

do	not	cover	notes	that	are	below	an	A2	(=	110	Hz)	[289].	

7.5 Pruning	music‐only	time‐segments	

As	a	general	observation,	songs	contain	some	time‐segments,	where	the	vocal	

rests.	 This	 can	 occur	 either	 between	 the	 melodic	 phrases	 of	 the	 singer	

(“breaths”)	or	when	the	singer	pauses	and	the	music	develops	instrumentally.	

Beyond	these,	there	are	always	segments	in	the	time	domain	where	the	singing	

vocal	 is	 not	 present	 and,	 therefore,	 no	 frequency	 overlapping	 is	 occurring.	

These	music‐only	time	segments	smear	the	output	of	any	frequency‐based	SVS	

system	 and	 can	 produce	 inaccuracies	 in	 subsequent	 applications,	 such	 as	

melody	transcription.	Thus	far,	only	the	frequency	overlapping	case	has	been	

discussed	in	the	proposed	methods	of	this	thesis.	However,	comprehensive	SVS	

must	 reject	 the	 time	 segments	where	 the	 vocal	 is	 simply	not	present.	 In	 this	
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section,	two	different	approaches	to	this	problem	are	described.	At	this	point,	it	

should	be	stressed	that	the	primary	objective	here	is	to	enhance	the	measured	

performance	of	the	proposed	system.	Therefore,	having	a	low	detection	rate	is	

not	 highly	 critical	 and	 instead,	 these	 approaches	 focus	 primary	 on	 achieving	

the	lowest	possible	false	alarm	rate.	

7.6 Energy‐based	pruning	

A	 consequence	 of	 the	 processes	 detailed	 above	 is	 that	 of	 considerable	

attenuation	of	the	energy	of	the	music	components.	As	a	result,	 the	energy	of	

music‐only	 time	 segments	will	 be	much	 lower	 than	 the	 vocal	 segments.	 The	

latter	can	be	exploited	in	order	to	identify	and	eventually	remove	such	purely	

music	segments.		

This	method	 	 takes	 place	 after	 all	 the	 signal	 frames	 have	 been	 processed	 as	

described	 previously	 and	 the	 signal	 is	 transformed	 back	 to	 the	 time	 domain	

with	the	inverse	short‐term	Fourier	transform	(ISTFT)	using	the	phase	of	VIC	

for	the	overlap‐add	reconstruction	process	[261].	

The	estimated	signal,	i.e.	ŝ(t),	is	segmented	into	v	rectangular	segments	of	250	

ms	and	the	root	mean	square	(RMS)	amplitude	of	each	segment	is	computed.	

The	 length	 (i.e.	 250	 ms)	 of	 segments	 is	 chosen	 in	 such	 a	 way	 to	 avoid	

inaccuracies	 due	 to	 possible	 transient	 peaks	 in	 the	 energy	 (e.g.	 attack	

transients).	 Moreover,	 the	 use	 of	 a	 shorter	 segment	 length	 may	 not	 be	

beneficial.	This	view	is	supported	by	the	observation	that	in	the	case	of	shorter	

segments	 (e.g.	 <200	ms)	where	 the	 vocal	 rests,	 there	 usually	 exists	 a	 reverb	

“tail”	from	the	vocal.	The	pruning	of	such	segments	is	not	necessarily	welcome.	

The	 proposed	 approach	 estimates	 a	 decision	 threshold	 that	 classifies	 each	

segment	 either	 as	 vocal‐and‐music	 or	 music‐only	 (i.e.	 above	 or	 below	 the	

threshold	respectively).	The	first	step	in	this	process	is	to	create	a	vector	Rŝ(v)	

containing	 the	RMS	value	of	each	segment.	An	 initial	 threshold	 is	 then	set	by	
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subtracting	the	standard	deviation	from	the	mean	of	the	given	vector.	This	step	

biases	 the	 decision	 towards	 having	 fewer	 false	 alarms,	 i.e.	 segments	 that	

contain	 vocal	 but	 are	 classified	 as	music‐only,	 at	 the	 expense	 of	more	miss‐

detections,	i.e.	segments	that	are	music‐only	but	are	not	pruned.	This	threshold	

is	 then	adjusted	dynamically	 in	 the	 following	manner.	The	 frequency	 spectra	

from	the	segments	of	VIC	and	from	the	estimated	signal	are	cross‐correlated,	

and	the	result	acts	as	a	segment‐specific	weight	resulting	in	a	dynamic	decision	

boundary	as	can	be	seen	in	Figure	7.3.		

	

Figure	7.3:	ENIC	pruning	for	the	song	excerpt	Salala	[160],	for	γ	=	0.4.	The	PMCC	index	
“Correlation	Ŝv(k)	vs	Gv(k)”	modulates	the	initial	threshold	(μRŝ(v)	−	σRŝ(v))	to	form	a	dynamic	

decision	boundary.	

A	 parameter	 γ	 is	 defined	 such	 that	 if	 the	 correlation	 exceeds	 it,	 the	 initial	

threshold	 is	 amplified	 linearly,	 otherwise	 it	 is	 attenuated	 similarly.	 The	

parameter	γ	is	set	in	such	a	way	that	ENIC	produces	the	least	number	of	false	

alarms	 at	 the	 expense	 of	misdetections.	 The	 value	 that	 is	 found	 to	meet	 this	

Index of Segments ( )v

M
ag

n
it

u
de

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5 Decision oundary b

True usic egments m  s

Corr vs G. Ŝ ( ) ( )v k kv

μ σRŝ v Rŝ v ( )  ( )−

RMS of ( )ŝ tv

Classified as music



Hybrid	SEMANTICS	

Singing	voice	separation	from	stereophonic	recordings	 127	

requirement	for	the	case	of	H‐SEMANTICS	is	γ	=	0.4.	

This	 approach	 is	 found	 to	 reject	 most	 of	 the	 non‐vocal	 segments,	 while	

maintaining	 a	 low	 false	 alarm	 rate.	 In	 order	 to	maintain	 the	 low	 false	 alarm	

rate,	a	complementary	approach	is	to	consider	a	segment	as	purely	music,	only	

when	it	has	a	similarly	labelled	neighbour.	

Formally,	this	approach	begins	with	the	calculation	of	RMS	for	each	segment:	

ܴ௦̂ሺ௩ሻ ൌ ඨ
∑ ሻଶݐ௩ሺݏ
௧ୀଵ

T
	ݒ∀						 (7.6)		

The	decision	for	binary	classification	is	provided	through	(7.7),	the	derivation	

of	which	is	presented	in	Section	A.4	of	the	appendix.	
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where	 Ŝv(k)	 and	 Gv(k)	 are	 the	 moduli	 of	 the	 Fourier	 transforms	 of	 Hann‐

windowed	 time	segments	of	ŝ(t)	 and	NIC	 respectively,	 and	γ	 sets	 the	 level	of	

correlation	 between	 Ŝv(k)	 and	 Gv(k)	 	 above	 which	 the	 decision	 boundary	 is	

increased.		

The	threshold	p(ŝv)	∈	[0,	1]	is	a	practical	way	of	classifying	a	segment	as	music‐

only	 (i.e.	 p(ŝv)	 <	 0.5)	 or	 vocal	 with	 music	 (i.e.	 p(ŝv)	 >	 0.5).	 Following	 the	

classification	 process,	 the	 groups	 of	 adjacent	 segments	 that	 are	 identified	 as	

music‐only	 are	 convolved	with	 an	 inverted	 Tukey	window	 (a	 =	 0.75)	 [290].	

This	window	is	used	after	the	IFFT	process	and	provides	a	smooth	transition	

between	the	vocal	and	the	music‐only	sections.	
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7.7 MFCC‐based	pruning	

Although	the	method	described	in	7.6	is	effective	inside	the	proposed	system,	

there	are	some	practical	 limitations.	First,	all	of	 the	signal	must	pass	through	

the	 system	 in	 order	 to	 calculate	 μRŝ(v).	 This	 is	 not	 advantageous	 in	 terms	 of	

memory	 requirements	 and	 reduces	 operational	 speed.	 Furthermore,	

depending	on	the	sampling	rate	as	well	as	the	window	size,	the	signal	will	have	

to	 be	 transformed	 back	 and	 forth	 from	 the	 frequency	 to	 the	 time	 domain	 in	

order	to	meet	the	specified	length	condition	(i.e.	250	ms).	In	other	words,	if	the	

number	of	FFT	points	(i.e.	K	)	≠	SR	/	4,	ŝ(t)	needs	to	be	subjected	to	STFT,	again	

reducing	efficiency.	

This	section	therefore	describes	an	alternative	approach	to	pruning	music‐only	

segments.	This	is	based	on	one	of	the	most	popular	parametric	representations	

of	 audio,	 the	 mel‐frequency	 cepstral	 coefficients	 (MFCC).	 The	 fundamental	

assumption	 of	 this	method	 is	 that	 the	MFCCs	 of	 the	 frames	 of	 the	 estimated	

signal,	i.e.	Ŝ(k),	and	NIC,	i.e.		G(k),	are	more	similar	when	the	Ŝ(k)	contains	only	

music.	 In	 the	opposite	 case,	 the	MFCCs	of	Ŝ(k)	show	greater	 similarity	 to	 the	

MFCCs	 of	 the	 VIC	 frame.	 Therefore,	 the	 decision	 in	 the	 proposed	method	 is	

based	on	the	ratio	of	similarity	of	the	features	of	the	estimated	signal	against	

the	VIC	and	NIC	respectively.	

Briefly,	the	proposed	MFCC‐based	music	pruning	works	as	follows.	The	MFCCs	

are	extracted	 for	Ŝ(k),	G(k)	and	FVIC(k).	Next,	 the	Euclidean	distances	 for	 the	

pairs	of	[Ŝ(k),	FVIC(k)]	and	[Ŝ(k),	G(k)]	are	measured.	The	decision	boundary	is	

obtained	by	processing	 the	 ratio	of	 the	distances	of	 the	 first	and	second	pair	

with	a	simple	moving	average	filter	(lag	=	19)	in	order	to	simultaneously	deal	

with	 any	 transients	 as	 discussed	 in	 7.6.	 The	 edges	 of	 the	 filter	 output	 are	

calculated	as	follows.	The	first	point	is	not	averaged,	and	the	points	from	2	to	

10	 are	 averaged	 over	 3,	 5,	 7,	 …	 19	 points	 of	 the	 input	 signal.	 The	 reverse	

process	is	followed	for	the	ending	edge	of	the	filter	output	[291],	while	the	lag	

(i.e.	τ)	of	19	was	chosen	because	it	is	consistent	with	the	250	ms	segments	that	
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were	 used	 in	 ENIC	 (i.e.	 nineteen	 4096‐length	 frames	 at	 87.5%	 overlap	 for	

approximately	278	ms	for	SR	=	44.1	kHz	and	256	ms	when	SR	=	48	kHz).		

According	to	the	literature	[292],	the	performance	of	the	MFCC	depends	upon	

the	 number	 of	 coefficients	 used,	 the	 number	 of	 filters	 in	 the	 filter‐bank,	 the	

type	 of	 filters,	 the	 spacing	 of	 the	 filters,	 and	 the	 equation	 that	 is	 used	 for	

warping	 the	 Fourier	 transform	bins.	The	 filter‐bank	used	 comprises	 40	unit‐

weight	 overlapping	 triangular	 filters	 equally	 spaced	 in	 the	 whole	 mel‐

frequency	 spectrum.	 An	 important	 aspect	 of	 the	 approach	 is	 that	 it	 uses	 13	

coefficients,	 including	 the	 usually	 discarded	 zeroth	 coefficient.	 The	 zeroth	

coefficient	can	be	perceived	as	the	average	energy	of	all	the	filtered	bands.	As	

seen	 in	7.6	 the	energy	of	 the	 signal	 is	 vital	 for	each	classification,	 and	 so	 the	

inclusion	of	the	zeroth	bin	is	deemed	necessary.	However,	the	major	deviation	

in	MICED	with	 respect	 to	many	 conventional	methods	 [293‐295]	 is	 that	 the	

whole	of	 the	processing	 is	performed	 “on	 the	 fly”,	 and	 there	 is	no	modelling,	

codebook,	or	training,	e.g.	[296].	In	fact,	this	is	one	of	the	main	reasons	that	a	

direct	 comparison	 of	 the	 proposed	 segregation	method	with	 existing	 ones	 is	

not	applicable.		

Formally,	the	Euclidean	distance	ratio	for	each	frame	is	calculated	as	in	(7.8):	

݀ሺ݈ሻ ൌ ඩ
∑ ቀܯௌመሺሻሺ݊ሻ െ ிூሺሻሺ݊ሻቁܯ

ଶ
ଵଶ
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ଶ

ଵଶ
ୀ

,	 (7.8)		

where	M	are	the	MFCCs	for	the	lth	frame.		

The	result	is	used	as	the	input	to	the	moving	average	filter,	which	is	calculated	

subsequently	as	follows.		
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where	L	 is	 the	 total	 number	of	 l,	 and	 τ	 is	 the	odd	number	of	 lag	 in	 samples.	

Segments	that	are	above	0.5	are	classified	as	music‐only.	Figure	7.4	shows	the	

results	of	this	approach	on	the	same	song	that	was	used	in	Figure	7.3.	

	

Figure	7.4:	MICED	pruning	for	the	song	excerpt	Salala	[160].	Although	the	method	operates	on	
250	ms	segments,	the	“resolution”	of	the	decision	boundary	is	much	higher,	as	it	is	calculated	

based	on	a	moving	average	of	overlapping	93	ms	frames	(l).	
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Not	 surprisingly,	 it	 can	 be	 seen	 that	 this	 approach	 produces	 similar	 results	

with	the	one	proposed	in	7.6,	albeit	with	a	few	false	alarms.	Particularly,	ENIC	

(Figure	7.3)	detects	correctly	13,	14,	and	32	without	false	alarms.	For	the	same	

excerpt,	MICED	 detects	 correctly	 segments	 13,	 14,	 15,	 and	 32,	while	 31	 is	 a	

false	 alarm.	 This	 is	 attributed	 mainly	 to	 the	 fact	 that,	 in	 contrast	 to	 ENIC,	

MICED	is	calculated	for	every	frame,	without	the	need	for	 information	on	the	

subsequent	parts	of	the	signal.		Therefore,	it	allows	for	the	whole	system	to	be	

implemented	in	real	time.	

7.8 Experimental	investigations	

The	experimental	investigation	is	presented	here	in	two	stages.	The	first	stage	

concerns	 the	 time‐domain	 segregation,	 while	 the	 second	 stage	 discusses	 the	

overall	evaluation	of	the	system.	

 Original with ENIC with MICED  

 M + V music Detected F. alarms Detected F. alarms 

Salala 27 5 3 0 4 1 

Nude 53 2 2 1 2 1 

Kunlarim 31 0 0 2 0 2 

Help Me 29 6 2 0 3 0 

Only 31 2 2 0 0 0 

Resistencia 24 0 0 1 0 0 

Americano 25 5 3 0 3 2 

Monkey 13 5 5 1 3 1 

Roads 51 4 1 1 1 1 

Tanto (1)  51 0 2 0 0 2 

Tanto (2) 88 3 1 3 2 4 

Don’t Know 27 1 0 1 0 2 

Table	7.1:	Performance	of	ENIC	and	MICED	on	the	time‐domain	separation.	“M	+	V”	and	
“music”	shows	the	hand‐labelled	vocal‐and‐music	and	music‐only	segments	(250	ms).	
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The	results	that	concern	specifically	the	time‐domain	separation	are	presented	

in	Table	7.1.	In	this	table,	the	250	ms	segments	from	the	original	mixtures	are	

manually	labelled	as	either	music	and	voice	(i.e.	M	+	V)	or	music‐only	(shown	

as	 “music”	 in	 the	 table).	 The	 segments	 that	 are	 successfully	 detected	 by	 the	

proposed	 methods	 as	 music‐only	 are	 presented	 for	 ENIC	 and	 MICED	

respectively.	The	column	labelled	as	‘F.	alarms’	shows	the	false	alarms	for	each	

system,	 i.e.	segments	that	are	actually	 	“M	+	V”	but	are	incorrectly	 labelled	as	

music‐only.	

	

Figure	7.5:	DET	plots	and	equal	error	rate	(EER)	for	ENIC	and	MICED	

Also,	as	the	time‐domain	segregation	is	essentially	a	detection	task,	a	detection	

error	 trade‐off	 (DET)	 plot	 [297]	 is	 offered	 in	 Figure	 7.5	 (using	DETware	 2.1	

[298]).	In	the	figure,	MICED	exhibits	a	lower	equal	error	rate	(EER)	than	ENIC.	
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every	false	alarm	resulting	from	the	pruning	process	has	a	negative	impact	on	

the	overall	separation	effectiveness.	

In	 order	 to	 have	 a	 direct	 comparison	 of	 H‐SEMANTICS	 with	 the	 previous	

systems	 that	 are	 proposed	 in	 this	 thesis	 (chapters	 5	 and	 6),	 the	 same	

experimental	 setup	 and	 metrics	 are	 used	 for	 assessing	 the	 separation	

effectiveness.	Furthermore,	 the	performance	of	 the	system	 is	evaluated	using	

the	 same	 database.	 For	 this	 purpose,	 the	 bss_eval	 results	 (in	 dB)	 for	 song	

excepts	using	a	Hann	window	of	4096	samples,	overlap	of	87.5%,	M	=	3,	and	γ	

=	0.4	(for	ENIC)	are	shown	in	Figure	7.6	for	SIR.	As	with	previous	experiments,	

the	full	table	of	the	numeric	results	is	provided	in	Section	A.3	of	the	appendix.	

	

Figure	7.6:	SIR	performance	of	SEMANTICS	and	H‐SEMANTICS	

The	 improvement	 of	 H‐SEMANTICS	with	 ENIC	 over	 the	 previous	 system,	 i.e.	

SEMANTICS,	spans	from	0.41	dB	to	5.44	dB	for	SIR	(with	μ	=	2.52	dB).	
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For	SAR	(Figure	7.7),	 the	 improvement	range	 is	0.04	dB	to	1.82	dB	(with	μ	=	

0.89	dB).	Although	the	SAR	does	not	show	significant	 improvement,	 it	clearly	

demonstrates	 the	 advantage	 of	 H‐SEMANTICS	 in	 terms	 of	 increasing	

separation	without	 introducing	additional	 artefacts.	This	 is	mainly	attributed	

to	the	restoration	of	f0:	an	addition	to	the	proposed	system	that	also	enhances	

the	audible	result.	

	

Figure	7.7:	SAR	performance	of	SEMANTICS	and	H‐SEMANTICS	

As	discussed	in	earlier	chapters,	the	SDR	is	a	collective	separation	metric	and	is	

directly	correlated	with	the	perception	of	acoustic	separation	[266].	As	seen	in	

Figure	 7.8,	 this	 measure	 also	 shows	 improvement,	 ranging	 from	 0.54	 dB	 to	

2.18	dB.	Furthermore,	the	overall	effectiveness	of	separation	when	compared	

to	the	baseline	is	also	highly	encouraging	(μ	=	8.59	dB).	Overall,	H‐SEMANTICS	

outperforms	 its	 predecessor	 in	 all	 three	 aspects	 and	 shows	 a	 significant	 SIR	
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improvement	 over	 the	 baseline.	 It	 is	 also	 noteworthy	 that	 the	 greatest	

improvements	 are	 associated	 with	 songs	 for	 which	 the	 SIR	 obtained	 with	

SEMANTICS	are	relatively	low	(<20	dB).	In	other	words,	the	newly	introduced	

system	shows	a	more	consistent	capability	in	achieving	separation,	even	in	the	

cases	where	the	previous	system	performed	relatively	poorly.	

	

Figure	7.8:	SDR	performance	of	SEMANTICS	and	H‐SEMANTICS	

It	 is	 also	 shown	 in	 the	 figure	 that	 the	 ENIC	 pruning	 method	 is	 better	 than	

MICED	 (although	 sometimes	 marginally).	 As	 presented	 earlier,	 although	

MICED	 has	 lower	 EER,	 it	 cannot	 ensure	 a	 <7.5%	 false	 alarm	 probability,	

independently	of	the	miss	probability.		This	is	why	ENIC	outperforms	MICED	in	

the	bss_eval	performance	metrics.	
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7.9 Chapter	summary	

A	 novel	 approach	 to	 unsupervised	 SVS,	 termed	 H‐SEMANTICS,	 has	 been	

proposed	and	investigated.	The	approach	entails	modifications	and	extensions	

to	 the	previously	 introduced	system,	 including	 the	 introduction	of	a	different	

method	 of	 threshold	 estimation	 for	 the	 amplitude	 discrimination	 process	

based	on	overlapping	tapered	cosine	filters	for	equally	spaced	mel	sub‐bands.	

In	 addition,	 restoration	 of	 the	 fundamental	 frequency	 (when	 required)	 is	

incorporated,	and	a	different	method	for	the	estimation	of	phase	during	ISTFT	

is	deployed.	More	importantly,	two	time‐domain	music‐only	pruning	methods	

are	 proposed.	 The	 first	 is	 based	 on	 the	 RMS	 of	 the	 estimated	 signal	 and	 its	

correlation	with	the	NIC	in	the	time	domain,	while	the	second	makes	use	of	the	

distance	 of	 the	 MFCC	 representation	 of	 each	 of	 the	 two	 independent	

components	 to	 the	 estimated	 signal.	 It	 is	 shown	 that,	 while	 the	 first	 one	

(termed	ENIC)	provides	better	performance,	the	MFCC‐based	system	(termed	

MICED)	is	more	efficient	computationally.	The	experimental	results	are	based	

on	 bss_eval,	 and	 clearly	 demonstrate	 that	 H‐SEMANTICS	 is	 improving	 the	

performance	of	its	predecessor	by	an	average	of	1.2	dB	SDR	and	2.5	dB	SIR	for	

the	 case	 of	 ENIC	 and	 by	 1	 dB	 SDR	 and	 2.4	 dB	 SIR	 for	 the	 case	 of	MICED.	 It	

should	also	be	noted	that	the	previous	system	has	already	been	shown	to	offer	

superior	 performance	 over	 the	 ADRess‐based	 source	 separation	 method	

SEMANICS	as	described	in	Chapter	5.	
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The	 aim	 of	 the	 research	 presented	 in	 this	 thesis	 has	 been	 to	 develop	 an	

effective	method	in	order	to	separate	the	singing	voice	from	stereophonically	

produced	 commercial	 recordings.	 For	 this	 purpose,	 an	 extensive	 literature	

review	has	been	carried	out	and	the	shortcomings	of	previous	work	in	the	field	

have	 been	 identified.	 The	 novel	 aspect	 of	 the	work	 has	 been	 the	 creation	 of	

three	systems	whose	effectiveness	has	been	confirmed	 through	experimental	

evaluations.	 The	 overall	 findings	 of	 this	 endeavour	 are	 summarised	 in	 this	

chapter.	 The	 chapter	 also	 includes	 suggestions	 with	 regards	 to	 the	

continuation	of	the	project.	

8.1 Summary	and	conclusions	

The	 singing	 voice	 is	 the	most	prominent	 content	 of	music	 tracks	 that	 can	be	

described	 as	 songs.	 The	 separation	 from	 its	 music	 accompaniment	 is	

considered	 highly	 desirable.	 One	 of	 the	 main	 reasons	 is	 that	 important	

applications	 of	MIR	 such	 as	 song	 identification,	 singer	 identification,	melody	

extraction,	 lyrics	 recognition,	 and	 lyrics	 alignment	 require	 the	 vocal	 element	

alone	and	hence	the	effective	separation	of	this	from	the	accompanying	music.		

This	 is	supported	by	studies	that	exhibit	severe	limitations	when	information	
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retrieval	is	attempted	without	prior	source	separation	as	discussed	in	Section	

1.2.	

MIR	can	be	broadly	separated	in	two	categories,	namely	the	symbolic,	and	the	

audio	 information	 retrieval	 (AIR).	The	 former	presents	disadvantages	as	 it	 is	

based	 on	 cues	 that	 are	 not	 always	 available,	 especially	 in	 the	 contemporary	

era.	In	contrast,	AIR	draws	information	from	the	audio	signal	per	se	and	thus	is	

more	 promising	 towards	 a	 generic	 solution	 for	 MIR.	 Furthermore,	 	 AIR	 is	

significantly	helped	by	successful	singing	voice	separation	(SVS).	

The	 complexity	 of	 the	 challenge	 of	 SVS	 has	 been	 identified	 as	 two‐fold:	

separation	 in	 the	 frequency	 domain	 (separation	 of	 overlapping	 music	 and	

voice	 frequencies),	 and	 segregation	 in	 the	 time	 domain	 (discrimination	

between	vocal	and	music	time	segments).	The	latter	has	received	considerable	

attention	from	the	research	community,	while	the	former	is	still	a	niche	field.	

The	challenge	in	this	area	is	found	at	the	inherent	diversity	of	music,	as	well	as	

the	 strong	 harmonic	 correlation	 that	 overlapping	 music	 and	 singing	 voice	

exhibit.	

The	 literature	 review	 in	 this	 thesis	has	 covered	 the	mechanics	of	 the	 singing	

voice	 and	 highlighted	 its	 differences	 from	 speech.	 These	 include	 certain	

formants	 that	are	more	prominent	 in	singing,	as	well	as	 the	duration	ratio	of	

vowels	to	consonants	which	is	significantly	lower	in	speech.	

The	 quest	 towards	 a	 generic	 solution	 for	 SVS	 has	 drawn	 the	 interest	 of	 the	

industry	 and	 the	 research	 community	 alike.	 In	 fact,	 several	 commercial	

approaches	exist	that	are	related	to	SVS.	However,	they	are	usually	dependent	

on	 supervised	 processes,	 and	 therefore	 are	 not	 appropriate	 for	 large	

databases.	 It	 is	worth	noting	 that	 such	methods	are	motivated	by	disciplines	

across	 a	 plethora	 of	 fields,	 such	 as	 neuroscience,	 cognitive	 psychology,	 and	

psychoacoustics.	

In	 this	 thesis,	 three	different	categories	of	approaches	have	been	analysed	 in	

this	 thesis.	 The	 first	 one,	 described	 in	 Chapter	 2,	 is	 named	 computational	
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auditory	 scene	 analysis	 (CASA)	 and	 is	 largely	 based	 on	 the	modelling	 of	 the	

human	 auditory	 system.	 In	 fact,	 a	 substantial	 part	 of	 the	 theoretical	

background	of	CASA	derives	 from	the	seminal	work	of	Bregman	on	ASA.	One	

significant	 idiom	 of	 CASA	 is	 that	 because	 of	 its	 vague	 definition,	 it	 lacks	

methodology	 boundaries.	 Therefore,	 the	 thesis	 has	 taken	 the	 approach	 of	 a	

unified	description	with	emphasis	on	features	that	are	quite	common	amongst	

different	 approaches.	 These	 are	 the	 cochleagram,	 the	 correlogram,	 and	 the	

time‐frequency	binary	and	soft	masks.	

The	 second	 category	 that	has	been	analysed	 in	Chapter	3	 is	 the	blind	 source	

separation	or	BSS.	The	family	of	BSS	algorithms	is	 largely	based	on	statistical	

properties	 of	 the	 target	 signal	 and	 its	 model	 is	 associated	 with	 the	 cocktail	

party	 problem.	 In	 contrast	 to	 CASA,	 which	 targets	 mainly	 single	 channel	

mixtures,	BSS	 requires	multiple	observations	of	 the	mixtures.	 In	 this	 context,	

the	 thesis	 described	 the	 anatomy	 of	 the	 principal	 component	 analysis	 (PCA)	

that	 is	based	on	the	second	order	bivariate	cumulant,	namely	 the	covariance.	

The	 chapter	 continued	 with	 the	 younger	 ‘sibling’	 of	 PCA,	 the	 independent	

component	 analysis	 (ICA).	 ICA	 encompasses	 PCA	 in	 its	 pre‐processing	 stage,	

and	 draws	 its	 efficacy	 from	 the	 fourth	 moment,	 the	 kurtosis.	 Since	 the	

empirical	estimation	of	kurtosis	poses	a	challenge	not	only	in	ICA	but	generally	

in	statistics,	the	chapter	also	described	methods	of	how	this	problem	is	tackled	

in	the	algorithm	Fast	ICA	(FICA)	which	has	been	of	considerable	importance	in	

this	study.	

Finally,	 the	 third	 category	 (Chapter	 4),	 detailed	 in	 this	 study,	 makes	

assumptions	that	are	present	mainly	in	the	context	of	stereophonic	commercial	

recordings.	A	key	facet	of	this	approach	is	the	inter‐channel	phase	consistency	

of	the	sources.	In	other	words,	this	category	makes	use	of	the	inter‐channel	(or	

inter‐aural)	 intensity	 difference	 (IID).	 The	 algorithm	 that	 has	 been	 analysed	

from	 this	 category	 is	 one	 that	 shares	 significant	 theoretical	 background	with	

the	rest	of	IID	methods.	This	algorithm	is	termed	azimuth	discrimination	and	

re‐synthesis	(ADRess).	
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Having	 identified	 the	 downsides	 of	 all	 these	 attempts	 and	 analysed	 the	

methods	of	contemporary	music	production,	a	new	method,	termed	SEMANICS	

has	been	proposed	 in	Chapter	5.	The	method	 is	based	on	 the	modification	of	

ADRess	 and	 the	 introduction	 of	 two	 novel	 techniques,	 termed	 amplitude	

discrimination	(AD),	and	non‐vocal	independent	component	(NIC)	subtraction.	

The	motivation	for	the	use	of	AD	has	been	that,	with	rare	exceptions,	a	song’s	

lyrics	are	intended	to	be	intelligible	and	so	it	is	necessary	that	the	singing	voice	

is	 the	 dominant	 sound	 source	 in	 the	 final	 mixture.	 Therefore	 AD	 identified	

localised	 sub‐band	 thresholds.	 These	 thresholds	 act	 as	 a	 “brick	 walls”,	 and	

allow	 the	 inclusion	of	 the	 individual	 frequency	bins	 in	 the	output	 only	when	

their	magnitudes	exceed	them.		

The	 NIC	 subtraction	makes	 use	 of	 FICA	 in	 order	 to	 extract	 two	 components	

from	 the	 original	 mixtures,	 one	 that	 contains	 most	 of	 the	 singing	 voice	 (i.e.	

VIC),	 and	 another	 that	 consists	 of	 a	mixture	 of	 the	 remaining	 sources	 and	 a	

reduced	share	of	the	vocal	(NIC).	Despite	of	the	inherent	permutation	problem	

of	the	yielded	components	in	ICA,	the	output	with	less	vocal	(i.e.	the	NIC)	can	

be	 successfully	 pinpointed	 due	 to	 its	 weak	 correlation	 with	 the	 original	

mixture,	and	subsequently	subtracted	from	the	estimated	signal	after	AD.	

For	the	purpose	of	objective	evaluation	of	the	separation,	the	bss_eval	system	

has	been	used.	 Its	metrics	highlight	 three	different	aspects	of	 the	 separation,	

namely,	 the	 source	 to	 interference	 ratio	 (SIR),	 the	 source	 to	 artefacts	 ratio	

(SAR),	and	a	collective	measure	which	is	the	signal	to	distortion	ratio	(SDR).		

Due	 to	 lack	 of	 a	 widely	 available	 and	 standardised	 dataset	 fulfilling	 the	

requirements	of	the	bss_eval	metrics	for	the	case	of	SVS,	a	database	comprising	

songs	available	in	multi‐track	format	has	been	created	as	part	of	the	study.	The	

database	includes	song	excerpts	of	varied	genres	and	separation	difficulty.	The	

experimental	results	conducted	with	this	database	have	shown	that	SEMANICS	

outperformed	ADRess	in	SIR	and	SDR	categories	of	assessment.	

In	the	next	chapter	(Chapter	6)	several	disadvantages	of	SEMANICS	have	been	
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identified.	 These	 involve	 mainly	 the	 dependence	 of	 its	 performance	 on	 the	

user‐set	 parameters,	 a	 shortcoming	which	 is	 attributed	 primarily	 to	 ADRess.	

Certain	modifications	have	been	proposed	in	order	to	remove	ADRess	from	the	

system,	 eliminating—thus—the	 aforementioned	 shortcomings.	 The	 proposed	

improved	system	has	been	termed	SEMANTICS.	The	modifications	include	the	

more	effective	use	of	both	original	mixtures,	 the	use	of	high‐pass	 filtering	(to	

improve	the	NIC	scaling),	the	division	of	sub‐bands	according	to	the	mel	scale,	

and	 the	 introduction	of	 a	binary	mask	before	 the	 reconstruction	of	 the	 time‐

signal.	Based	on	sets	of	experimental	evaluations,	SEMANTICS	has	been	found	

to	 perform	 better	 separation	 than	 SEMANICS,	 but—most	 importantly—it	 is	

found	to	offer	performance	consistency.	

The	 H‐SEMANTICS	 system,	 that	 was	 proposed	 in	 Chapter	 7,	 includes	 the	

introduction	of	two	novel	time‐domain	procedures	for	music	pruning	and	the	

integration	 of	 each	 of	 them	with	 frequency‐domain	 voice	 isolation,	 which	 is	

based	 on	 the	 enhancement	 of	 the	 previously	 established	 procedures.	 The	

modifications	consist	of	an	improved	method	for	the	estimation	of	thresholds	

and	the	restoration	of	the	fundamental	frequency	that	is	lost	due	to	high‐pass	

filtering.	

The	 first	 time‐domain	 segregation	 method	 in	 H‐SEMANTICS	 is	 named	 ENIC.	

This	 is	 based	 on	 energy	 of	 the	 signal	 and	 the	 NIC	 correlation.	 The	 second	

method,	 termed	 MICED,	 performs	 classification	 by	 comparing	 the	 distance	

between	MFCCs	of	adjacent	time	segments	and	the	two	ICA	outputs	(i.e.	the	VIC	

and	 the	 NIC).	 In	 addition,	 MICED	 (as	 discussed	 in	 Chapter	 7)	 is	 deemed	

appropriate	for	the	implementation	of	a	real‐time	SVS	system.	

The	performance	 of	 the	 complete	 system	based	 on	 each	 of	 the	 above	music‐

pruning	methods	has	been	analysed	and	measured	using	a	set	of	experimental	

investigations.	The	outcomes	have	clearly	 illustrated	 that	 the	effectiveness	 in	

singing	 voice	 separation	 is	 considerably	 improved	 through	 the	 proposed	

approaches.	
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8.2 Suggestions	for	future	work	

The	 work	 presented	 in	 the	 context	 of	 this	 thesis	 does	 not	 provide	 a	

comprehensive	 solution	 to	 the	 challenge	 of	 unsupervised	 SVS.	 This	 section	

discusses	some	suggestions,	which	can	extend	the	approaches	that	have	been	

presented	in	this	study.	It	should	be	noted	that	a	number	of	these	suggestions	

stem	 from	 research	 that	 has	 been	 performed	 during	 the	 programme	 of	 the	

study	but	were	not	mentioned	in	the	main	body	of	the	thesis,	as	they	did	not	

lead	to	concrete	results.	

One	of	the	main	challenges	across	all	systems	discussed	here	is	the	estimation	

of	the	phase	for	the	reconstruction	of	the	time	signal.	In	fact,	this	seems	to	be	a	

common	 obstacle	 in	 most	 methods	 that	 perform	 spectral	 processing	 [299,	

300].	Indeed,	the	room	for	improvement	in	performance	is	in	the	order	of	4	dB.	

In	other	words,	if	the	phase	of	the	a	capella	is	used	in	the	reconstruction	of	the	

signal,	the	separation	effectiveness	can	be	increased	by	approximately	4	dB	in	

SDR	and	SAR.	

A	further	improvement	that	is	proposed	here	is	the	automated	selection	of	the	

ideal	number	of	sub‐bands.	It	seems	that	the	ideal	number	of	equal	mel‐spaced	

sub‐bands	for	AD	ranges	from	3	to	5,	as	discussed	in	Chapters	6	and	7.	This	is	

attributed	to	a	common	technique	 that	 is	used	 in	the	mixing	process,	namely	

multiband	compression.	This	technique	performs	dynamic	range	compression	

on	individual	sub‐bands	that	are	selected	manually	by	the	mixing	engineers.	As	

the	parameters	of	compression	are	different	for	each	sub‐band,	this	results	in	

very	 distinguishable	 sub‐band	 “cross‐points”	 that	 could	 be	 automatically	

identified.	 This	 is	 envisaged	 to	 significantly	 improve	 the	 separation	 of	 the	

proposed	systems	in	this	thesis.	

Since	an	important	aspect	of	SVS	is	to	facilitate	applications	of	MIR,	it	would	be	

beneficial	to	be	able	to	measure	its	performance	with	respect	to	the	level	of	aid	

that	 it	 provides	 to	 such	 applications.	 For	 example,	 existing	 methods	 that	
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perform	 singer	 identification	 or	 singer	 melody	 extraction	 [301]	 could	 be	

measured	 in	 terms	 of	 effectiveness	 with	 and	 without	 SVS.	 This	 would	 also	

provide	a	more	usable	metric	than	bss_eval	and	would	give	valuable	feedback	

in	order	to	improve	specific	aspects	of	the	proposed	systems.	In	fact,	a	glance	

of	 this	concept	 is	given	 in	Chapter	7	with	regards	to	the	 f0.	 It	has	been	found	

that	 the	 estimation	 of	 f0	 by	 the	 MIRToolbox	 is	 significantly	 better	 after	 H‐

SEMANTICS	 has	 separated	 the	 singing	 voice.	 Extending	 the	 aforementioned	

concept,	the	successful	f0	estimation	after	separation	could	provide	important	

melodic	cues	for	the	purpose	of	note‐based	source	separation	[302].	

Another	 area	 that	 could	 be	 promising	 is	 that	 of	 sinusoidal	 or	 pitch‐tracking	

[303]using	a	standard	algorithm	like	the	McAuley	and	Quartieri	[304].	Indeed,	

the	 vocal	 sinusoids	 were	 visually	 distinguishable	 in	 spectrograms	 produced	

after	 the	 separation	with	 H‐SEMANTICS.	 This	 has	 been	 observed	 during	 the	

experimental	investigations.		

Although	 the	 target	 mixture	 of	 this	 project	 has	 been	 the	 studio‐produced	

stereophonic	 recordings,	 SEMANTICS	 and	 H‐SEMANTICS	 have	 shown	

separation	efficiency	in	live	recordings	as	well.	However,	due	to	the	nature	of	

live	 recordings,	 the	 a	 capella	 and	 instrumental	 tracks	 are	 very	 difficult	 to	

acquire	without	cross‐contamination.	Therefore,	the	metrics	of	bss_eval	cannot	

produce	accurate	results.	An	area	of	future	research	could	be	the	development	

of	a	robust	metric	that	measures	the	separation	efficiency	when	SVS	addresses	

live	 recordings.	 The	 interesting	 challenge	 in	 this	 case	 is	 that	 live	 recordings	

have	 sources	 that	 usually	 exhibit	 delay	 between	 observations	 due	 to	 non‐

coincidental27	 microphone	 techniques.	 Taking	 into	 consideration	 the	

aforementioned,	a	large	standardised	database	should	be	developed	that	could	

help	 researchers	 to	 compare	 their	methods	with	 a	 common	 reference	 point.	

Finally,	future	work	is	envisaged	to	include	further	enhancement	of	MICED	in	

order	to	minimise	the	false	alarm	rate	with	the	use	of	probabilistic	distances.

																																																								

27 Non-coincidental are the microphone techniques that produce amplitude, as well as timing 
differences between observations/channels. 
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A.1.  Dependence of mixtures and heuristic approaches 

Consider	 two	 random	 vectors	 s1	 and	 s2	 with	 uniform	 distributions,	 unit	

variance,	and	zero	mean.	As	can	be	seen	from	Figure		A.1	(a),	their	joint	density	

is	 a	 “square”.	 This	 derives	 from	 the	 theory	 that	 the	 joint	 density	 of	 two	

independent	variables	is	the	product	of	their	marginal	densities	[305].		

	

Figure		A.1:	Joint	distribution	of		(a)	two	sources	(i.e.	s1	and	s2)	with	uniform	distributions	(μ	≈	
0,	σ	≈	1)	and	(b)	their	mixtures	(i.e.	x1	and	x2	)	

If	 these	 	 two	vectors/sources	are	mixed	using	 the	mixing	matrix	 from	Figure	
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3.2,	this	will	result	in	two	new	mixtures	x1	and	x2	that—in	a	stereo	recording—

would	 represent	 the	 left	 and	 the	 right	 channels	 accordingly.	 Their	 joint	

distribution	 can	 be	 seen	 in	 Figure	 	 A.1	 (b).	 Note	 that	 the	mixtures	 are	 not	

statistically	independent,	because	if	the	value	of	x1	is	known	it	is	easy	to	predict	

the	x2.	Without	doubt,	if	x1	reaches	its	minimum	or	maximum	range	limit,	this	

completely	 determines	 the	 value	 of	 X2.	 Furthermore,	 it	 can	 be	 seen	 that	 in	

Figure	 	A.1	 (b)	 that	 the	edges	of	 the	parallelogram	are	 in	 the	direction	of	 the	

mixing	matrix	that	is	used.	However,	such	heuristic	methods	would	only	work	

for	uniformly	distributed	sources	(which	is	a	highly	unrealistic	scenario),	and	it	

would	be	of	high	complexity	(i.e.	computational	cost).	The	sought‐after	method	

for	estimating	the	mixing	matrix	should	be	fast	and	reliable.	

A.2. Othogonalisation approaches for FICA 

This	method	of	 deflationary	orhogonalisation	 is	 related	 to	 the	Gram‐Schmidt	

process	 [191]	and	 in	 the	case	of	FastICA	 it	means	 that	 the	 IC’s	are	estimated	

one	 at	 a	 time.	 In	 practice,	 N	 independent	 components	 (or	 to	 be	 accurate	wN	

vectors)	are	estimated.	Then,	the	one‐component	algorithm	(Subsection	3.4.6)	

runs	 for	wi+1	 and	 after	 every	 iteration	 step	 the	 “projections”	ܟାଵ
் ,		ܟܟ ݆ ൌ

	:re‐normalised	is	wi+1	Subsequently,	wi+1.	from	subtracted	are		…,1

ାଵܟ	ݐ݁ܮ ൌ ାଵܟ	 െܟାଵ
்



ୀଵ

,ܟܟ and	 (A.1)	

ାଵܟ		ݐ݈݁ ൌ ାଵܟ	 െ ටܟାଵ
் െ 	ାଵܟ (A.2)	
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1. Choose	the	number	of	ICs	to	estimate	(say	N	which	is	usually	equal	to	

number	of	mixtures).	i	←	1.	

2. Pick	a	random	value	for	wi.	

3. Do	an	iteration	for	one	IC	

4. Orthogonalise	as	in	(A.1)‐(A.2)	

5. Let	ܟ ← 	‖ܟ‖/ܟ

6. If	not	converged,	go	back	to	step	3	

7. i	←	i+1	

Table		A.1:	Estimation	for	more	than	one	IC	using	deflationary	orthogonalisation 

Although	 the	 deflationary	 method	 	 produces	 satisfactory	 results	 [162],	 the	

disadvantage	 that	 estimation	 errors	 of	 the	 first	 vector	 b	 	 are	 carried	 on	 to	

subsequent	 estimations	 through	 orthogonalisation.	 Hence	 a	 way	 of	 tackling	

this	problem	is	the	symmetric	orthogonalisation	approach:	

1. Choose	the	number	of	ICs	to	estimate	(say	N	which	is	usually	equal	to	

number	of	mixtures).	

2. Pick	a	random	value	for	wi	

3. Do	an	iteration	for	one	IC	in	parallel.	

4. Do	a	symmetric	orthogonalisation	of	the	matrix	W	=	[w1,	...,	wN]	as	in	

(A.3)	

5. If	not	converged,	go	back	to	step	3	

Table		A.2:	Estimation	for	more	than	one	IC	using	symmetric	orthogonalisation 

This	method	 is	 described	 as	 the	 case	where	no	 vectors	 are	 “privileged”	 over	
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the	others	and	it	can	have	desirable	results	 in	certain	applications	[306].	The	

vectors	b	are	not	estimated	one	by	one	but	rather	in	parallel.			

The	 classic	 method	 for	 symmetric	 orthogonalisation	 involves	 matrix	 square	

roots	[307]:	

܅ ← ሺ்܅܅ሻିଵ/ଶ܅ (A.3)

In	 addition	 to	 tackling	 the	 first	 component	 estimation	 problem	 that	 is	

encountered	 in	 the	 deflationary	 method,	 the	 symmetric	 approach	 can	 also	

efficiently	exploit	the	computational	power	of	multi‐core	systems.	
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A.3. Collective bss_eval results 

 Baseline ADRess SEMANICS SEMANTICS H-S MICED H-S ENIC 
Salala ‐1.31	 0.14	 8.19	 8.09	 8.60	 8.63	

Nude ‐4.21	 ‐1.17	 6.24	 7.58	 8.13	 8.36	

Kunlarim ‐3.72	 ‐3.44	 ‐1.57	 1.14	 1.62	 2.00	

Help Me ‐0.87	 ‐0.20	 2.19	 5.12	 5.57	 5.72	

Only ‐4.81	 ‐4.41	 0.12	 1.35	 2.72	 2.82	

Resistencia ‐6.75	 ‐6.62	 ‐1.13	 0.35	 2.15	 2.15	

Americano 0.11	 1.12	 4.85	 4.24	 4.62	 5.28	

Monkey ‐2.95	 ‐2.68	 1.66	 4.95	 6.22	 7.13	

Roads ‐5.45	 ‐5.52	 2.22	 2.97	 4.80	 4.86	

Tanto (1)  0.16	 1.04	 6.00	 7.94	 8.60	 8.89	

Tanto (2) ‐1.73	 ‐0.08	 4.60	 5.72	 6.36	 6.47	

Don’t Know ‐10.44	 ‐10.53	 ‐6.08	 ‐2.83	 ‐1.49	 ‐1.20	

Table		A.3:	Absolute	SDR	(dB)	for	all	systems	rounded	to	two	decimals	

 Baseline ADRess SEMANICS SEMANTICS H-S MICED H-S ENIC 
Salala ‐1.31	 1.15	 23.35	 28.98	 30.92	 30.39	

Nude ‐4.17	 0.37	 24.58	 29.81	 29.95	 30.25	

Kunlarim ‐3.72	 ‐3.22	 2.84	 4.74	 6.40	 6.30	

Help Me ‐0.56	 0.28	 8.47	 12.01	 13.37	 13.34	

Only ‐4.81	 ‐4.22	 6.45	 7.40	 10.05	 10.64	

Resistencia ‐6.75	 ‐6.44	 7.04	 8.95	 12.59	 12.59	

Americano 0.11	 1.82	 14.73	 15.55	 19.51	 18.82	

Monkey ‐2.92	 ‐2.65	 11.4	 13.00	 16.03	 18.44	

Roads ‐5.43	 ‐5.08	 15.64	 18.77	 21.78	 21.80	

Tanto (1)  0.16	 2.46	 11.8	 18.09	 20.32	 19.98	

Tanto (2) ‐1.71	 1.56	 14.38	 17.20	 17.78	 17.61	

Don’t Know ‐10.2	 ‐10.28	 2.98	 9.10	 13.85	 13.67	

Table		A.4:	Absolute	SIR	(dB)	for	all	systems	rounded	to	two	decimals	
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 Baseline ADRess SEMANICS SEMANTICS H-S MICED H-S ENIC 
Salala 33.43	 9.44	 8.34	 8.14	 8.63	 8.66	

Nude 23.02	 6.92	 6.32	 7.61	 8.16	 8.39	

Kunlarim 30.17	 14.54	 2.19	 4.88	 4.27	 4.92	

Help Me 14.02	 12.45	 3.94	 6.38	 6.56	 6.75	

Only 38.06	 14.77	 2.15	 3.31	 4.02	 3.96	

Resistencia 39.95	 14.66	 0.36	 1.52	 2.80	 2.80	

Americano 35.70	 11.57	 5.46	 4.69	 4.81	 5.53	

Monkey 24.43	 23.72	 2.45	 5.90	 6.80	 7.52	

Roads 24.00	 10.88	 2.53	 3.15	 4.91	 4.97	

Tanto (1)  78.07	 8.54	 7.58	 8.44	 8.94	 9.28	

Tanto (2) 26.44	 7.26	 5.24	 6.12	 6.76	 6.89	

Don’t Know 12.86	 12.78	 ‐3.74	 ‐2.04	 ‐1.19	 ‐0.87	

Table		A.5:	Absolute	SAR	(dB)	for	all	systems	rounded	to	two	decimals	

 Tanto Roads 

System SDR	 SIR	 SAR	 SDR	 SIR	 SAR	

Ozerov, Favotte 3.6	 5.5	 8.1	 ‐3.0	 0.0	 ‐0.8	

Ozerov 5.1	 6.9	 9.8	 2.5	 4.7	 5.3	

Durrieu (1) 7.8	 18.9	 8.2	 N/A	 N/A	 N/A	

Durrieu (2) 6.9	 17.2	 7.0	 N/A	 N/A	 N/A	

Cobos 6.4	 19.5	 6.5	 2.5	 15.1	 1.5	

Vinyes Raso 4.9	 26.7	 5.3	 3.0	 10.4	 2.1	

SEMANICS 6.0	 11.8	 7.6	 2.2	 15.6	 2.5	

SEMANTICS  7.9	 18.1	 8.4	 3.0	 18.8	 3.2	

H-S MICED 8.6	 20.3	 8.9	 4.8	 21.8	 4.9	

H-S ENIC 8.9	 20.0	 9.3	 4.9	 21.8	 5.0	

Table		A.6:	Absolute	SDR,	SIR,	and	SAR	(dB)	rounded	to	one	decimal	for	all	unsupervised	
systems	competing	in	SiSEC	[282]	compared	with	the	systems	in	this	thesis.	
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A.4. Formulae derivation 

Equation	(7.2):	

The	standard	tapered	cosine	(i.e.	Tukey)	window	is	defined	by	[290,	308]:	
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	 (A.4)

where	Ν	 is	 the	 length	of	 the	window,	and	 ‘a’	defines	 the	 ratio	of	 the	 tapered	

length	to	the	length	of	the	flat	section.	

In	order	to	modify	the	above	for	defined	corners,	‘a’	is	set	to	1,	and	N	becomes	

2(cm2 		−	cm1 	)	for	the	first	tapered	section	of	the	window	(i.e.	the	ascending	part),	
and	2(cm4 		−	cm3 	)	for	the	descending	tapered	section	as	shown	in	Figure	7.2	(i.e.	
cm3 		to	cm4 	).	Accordingly,	k	is	offset	by	cm1 		in	the	first	case	and	by	cm3 			+	(cm4 		−	cm3 	)			
in	the	second	case.	Thus,	equation	(A.4)	for	m	=	1,	2,	...	Μ	sub‐bands	becomes:	
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The	window	 should	 also	be	of	 unit	weight	 since	 it	 is	needed	 to	 calculate	 the	

mean	of	the	section	cm1 		to	c
m
4 	.	In	order	to	calculate	the	weight	let:	

ଵܮ ൌ ܿଶ
െܿଵ

 െ 1, (A.6)

ଶܮ ൌ ܿଷ
െܿଶ

, and (A.7)

ଷܮ ൌ ܿସ
െܿଷ

 െ 1. (A.8)

Since	 L1	 and	 L3	 are	 the	 tapered	 sections,	 by	 definition	 their	 sums	 are	 N	 /	 2	

where	N	is	their	respective	length.	Thus:	

ݔ
ଵܮ
2
 ଶܮݔ  ݔ

ଷܮ
2
ൌ ଵܮ  ଶܮ  	,ଷܮ (A.9)

where	x	is	a	weight.	Solving	this	equation	gives:	
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ݔ ൌ
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 െ ܿଵ

ሻ

ܿସ
 െ ܿଵ
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 െ ܿଶ

 .	 (A.10)

Applying	this	weight	to	each	part	of	(A.5)	gives	equation	(7.2).	

	

Equation	(7.3):	

Linear‐	to	mel‐scale	frequency	conversion	[286]:	

݃ሺݔሻ ൌ 2595 ݈ ଵ݃ሺ1 
ݔ
700

ሻ .	 (A.11)

Mel‐	to	linear‐frequency	conversion	[286]:	

݂ሺݔሻ ൌ 700 ቀ10
௫

ଶହଽହ െ 1ቁ .	 (A.12)

Each	equal	mel	sub‐band	has	a	width	of:		

߂ ൌ
݃ሺSୖ/2ሻ

M
,	 (A.13)

where	M	is	the	number	of	sub‐bands	and	SR	is	the	sampling	rate.	

Sub‐band	corners	in	the	mel	domain:	

ܳ ൌ ൫݉߂ െ ሻ൯ሺܪ ∀݉, , (A.14)
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where	H(p)	=	[1+α,	1,	0,	–α],	while	α	is	the	percentage	of	overlap,	m	is	the	sub‐

band	index,	and	p	is	the	corner	index.	

Wrapping	mels	to	FFT	bins:	

ܿ ൌ ݂൫ܳ൯
K
SR

ൌ ܿ ൌ 700ቆ10	
൫݉߂ െ ሻ൯ሺܪ

2595
െ 1ቇ

K
SR
.	 (A.15)

where	K	is	the	FFT	size.	Simplify:	
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Therefore:	
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1400ቁ
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M

െ 1ቍ

SR
.	

(A.17)

	

Equation	(7.7):	
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The	PMCC	between	Ŝv(k)	and	Gv(k)	is	given	by:	

ߩ ቀ መܵ௩ሺ݇ሻ, ௩ሺ݇ሻቁܩ ൌ
1
K


ሺ መܵ௩ሺ݇ሻ െ ௩ሺ݇ሻܩௌመ௩ሻሺߤ െ ೡሻீߤ

ೡீߪௌመೡߪ

K

ୀଵ

.	 (A.18)

If	the	modulus	of	(A.18)	is	multiplied	by	1	/	γ	it	will	give	an	amplifying	gain	for	

ρ	>	γ	and	an	attenuating	gain	for	ρ	<	γ:	

ߩ ቀ መܵ௩ሺ݇ሻ, ௩ሺ݇ሻቁܩ ൌ อ
1
γK
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where	ߩ൫ መܵ௩ሺ݇ሻ, ௩ሺ݇ሻ൯ܩ ∈ ቂ0,
ଵ

ஓ
ቃ,	γ	>	0.	

The	 initial	 threshold	 is	calculated	by	subtracting	 the	standard	deviation	 from	

the	 mean	 of	 the	 vector	 Rŝ(v).	 Subsequently,	 this	 is	 modulated	 by	 (A.19)	 as	

follows:	

݄ܶሺ̂ݏ௩ሻ ൌ ൫ߤோೞො െ ො൫ߩோೞො൯ߪ መܵ௩ሺ݇ሻ, .௩ሺ݇ሻ൯ܩ (A.20)

This	gives	a	threshold	such	that	ŝv	is	classified	as	vocal	when	Rŝ(v)	>	Th(ŝv),	and	

music‐only	when	Rŝ(v)	<	Th(ŝv).	 By	 definition,	Rŝ(v)	 is	 in	 the	 range	 [0,	 1].	 In	

order	to	have	the	same	bounds	as	(A.19),	Rŝ(v)	 is	divided	by	γ.	Therefore	the	

decision:	

௩ሻݏሺ̂̌ ൌ
ܴ௦̂ሺݒሻ

γ
െ ൫ߤோೞො െ ොߩோೞො൯ߪ ቀ መܵ௩ሺ݇ሻ, ௩ሺ݇ሻቁܩ ,	 (A.21)
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where	ሺݏොݒሻ ∈ ሾെγ, γሿ	 indicates	 vocal	 segment	when	positive,	 and	music‐only	

segment	otherwise.	

For	 an	 intuitive	 result,	 bounds	 are	 normalised	 to	 [0,	 1]	 for	 a	 music‐only	

classification	when	ሺݏොݒሻ ൏ 0.5.	Therefore	(A.21)	becomes	(7.7).	

A.5. CD Contents 

The	CD	included	with	this	thesis	contains	audio	examples	from	the	three	novel	

methods	 described	 in	 this	 thesis,	 namely	 SEMANICS,	 SEMANTICS,	 and	 H‐

SEMANTICS.	The	examples	are	 in	 in	 the	 form	of	 .wav	 files	and	they	comprise	

the	 original	 mixtures,	 the	 a	 capella,	 and	 the	 estimated	 output	 from	 their	

respective	systems.	A	short	description	of	the	examples	is	also	included	in	the	

CD	in	the	form	of	a	text	file.	
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