Modular design of data-parallel graph algorithms

Santanu Kumar Dash, Sven-Bodo Schofz Bruce Christianson
*University of Hertfordshire, Hatfield, United Kingdom
{s.dash, b.christians¢@herts.ac.uk
T Heriot-Watt University, Edinburgh, United Kingdom
S.Scholz@hw.ac.uk
contact author: Santanu Kumar Dash

The authors would like to thank Dr. Keshav Pingali and DmiRm®untzos of University of Texas at Austin for fruitful digsions while this work was
conducted at the University of Texas at Austin.
The authors would also like to thank the University of Hendfehire for supporting this research work through a resegrant.

Modular design of data-parallel graph algorithms

Abstract—Amorphous Data Parallelism has proven to be a [5] [4]. Secondly, algorithms possessing ADP properties ar
suitable vehicle for implementing concurrent graph algorithms formulated on a single layer of abstraction that enables the
effectively on multi-core architectures. In view of the growing encapsulation of the low-level concurrency mechanisms int
complexity of graph algorithms for information analysis, there highl timised librari Th librari fine-tutede-
is a need to facilitate modular design techniques in the context ,'g y op imise _' raries. e§e ! _rarles are _|r_1§ u . e
of Amorphous Data Parallelism. In this paper, we investigate ||Ver eff|C|ent multI—COI’e execution W|th0ut EXp|ICItII‘lS|CtI0nS
what it takes to formulate algorithms possessing Amorphous from the programmer. Consequently, application prograreme
Data Parallelism in a modular fashion enabling a large degree can focus on writing the graph algorithms without worrying
of code re-use. Using the betweenness centrality algorithm, a about low-level concurrency tuning.

widely popular algorithm in the analysis of social networks, . . . N .
we demonstrate that a single optimisation technique can suffice ,Th's paper 'nveSt'gateS how far this b"SeCt,'on of progrgm-
to enable a modular programming style without loosing the Ming skills can be driven forward. In most published works, i
efficiency of a tailor-made monolithic implementation. dividual algorithms under investigation have been harftena
Index Terms—multi-core, parallelisation, programming model ~ With @ view to performance. Re-using pre-developed codebas
of other applications has been of minor concern. However, if
ADP is to be used in main-stream computing it is very likely
. INTRODUCTION that programmers will try to adopt a programming style that
With the recent advent of the internet and social networkattempts to maximise modularity and, with it, the amount of
massive amounts of digital information is being generatetde re-use possible. In this paper, we investigate thenpate
today. A need to analyze this information has triggered tli@pact such a modularised programming style may have on
development of sophisticated graph algorithms [1]. The-corthe overall performance achieved.
plexity of these algorithms coupled with the massive ddsase As an example, we look at the betweenness centrality
that they are typically applied to creates a strong demand #igorithm - a widely used algorithm in the analysis of social
an efffective utilisation of multi- and many-core systems. networks. We implement two versions of this algorithm: a
Unfortunately, graph algorithms do not lend themselves wehonolithic version that implements the entire algorithnthivi
to implementation on multi-core architectures. The irtagu one ADP operation, and a modularised version where the
structure of graphs makes static analysis a hard task asd itligorithm is formulated as a composition of several much
difficult to foretell the execution footprint of graph algihms. simpler ADP operations developed for potential re-use in
Much of the parallelism inherent in graph algorithms comegried contexts.
from the complex interplay of runtime factors which cannetb The main contribution of the paper is not only an extensive
modelled statically. While some of the algorithms have beexperimental comparison of the two versions but also an
successfully deployed on multi-core architectures thiothg identification of an optimisation technique that allows to
use of clever heuristics [2][3], a large class of graph atbors transform one form into the other. Furthermore, we briefly
have eluded a parallel implementation. To ameliorate thifiscuss the challenges in automating the optimisationimith
situation, researchers have focused on identifying genes compiler setting and highlight how expressing the alparit
models for parallelism in graph algorithms. in a functional language can simplify the applicability okt
One recent approach known as Tao Analysis abstracts avggimisation.
from the algorithmic specification and instead, formulates The rest of the paper is organized as follows. In section
graph algorithms in terms of operations that are performed we give an introduction to the Tao analysis of algorithms
on the graph structure as a whole [4][5]. The key idea of thghd ADP. We give an overview of the betweenness algorithm
Tao Analysis is to identify a set of nodes nanstive nodes in section Ill. The operator formulation of the betweenness
and then to collectively apply a combination of operatoralto algorithm is discussed in section IV. Section V describes
these nodes. When an operator is applied to an active nodehé advantages of operator fusion and presents experimenta
usually affects not only the node itself but also an area ef thesults to reinforce the advantages of operator fusion. A
graph around that node. This operator-specific and potintiacase for implementing operator formulations in functional
also node-specific area is referred to as tieéghbourhood |anguages is presented in section VI. Finally, the paper is
The concurrency in an algorithm is exposed when operat@gncluded in section VII.
with non-overlapping neighbourhood are executed in palrall
This form of parallelism is called Amorphous Data Paradieli
(ADP) and has been shown to be prevalent in a broad class
of graph algorithms [5]. The operator formulation of graph algorithms expresses
ADP offers several benefits to the application programmegorithms in terms of actions they perform on the graph.
Firstly, ADP paves the way for realising scalable perforogan Vertices on which these operators are applied are callégeact
on multi-core systems for a large group of graph algorith&is [nodes. Upon application of an operation to an active node,

Il. AMORPHOUSDATA PARALLELISM

other nodes or edges in the vicinity of the active node may’erex) Shortes; Ef‘tgs frow | Paths through d| dwe(d)
be modified. If there are no conflicting neighbourhoods for a a—sb—oc asbodoel| 1:4=025
activities at two different active nodes, then those atitigican a—-b—c—e ' ’
be executed in parallel. Otherwise, we may need some formlof az g: ‘2 —e

locking to enable the activities to execute. The paraltelisus b b—c—e bdoe 1-3=0.33
uncovered is known as Amorphous Data Parallelism (ADP). b—od—e

While ADP seems like an intuitive concept, exploiting latent TABLE |
ADP in applications is a non-trivial task. Amongst Other ExawpLe oF DEPENDENCE VALUE COMPUTATION FOR VERTEX D IN
things, one needs to understand the nature of active nodes an FIGURE 1
neighbourhoods in the operator formulation. An understand
of the life-cycle of active nodes is also necessary i.e. tag w
in which vertices become active. It is important to comprehe
whether active nodes can be executed in parallel or they need
to be executed in a certain order. This largely depends on the
nature of the operators that are applied to the active nodes.
Therefore, it is important to study the operators themselve
before deciding on a runtime scheme for scheduling andThe betweenness centrality measure is indicative of the
synchronizing parallel activities. In order to unravel ADP realtive importance of a vertex in a graph. For the subsedquen
an algorithm, therefore, we need a combination of a rigosirodiscussions let us assume that the algorithm operates on a
analytical framework as well as powerful runtime support fadfaphG =V x E, whereV’ is the set of vertices in the graph
different scheduling and synchronization policies. and E is the set of edges. Betweenness centrality for a vertex
While there are standard schemes available for schedulinég defined as the sum of the dependence of all verticed”
and synchronization, it is the initial analysis of the algon ©n v in reaching all other verticese V.
that is challenging and needs further elaboration. For wnco The computation of betweenness values for a vertas
ering the latent ADP in the algorithm and coming up with &hown in equation 1. Heré,.(v) is the dependence of vertex
suitable scheduling scheme, the analytical framework ithats Onv to reach all other vertices in the graph. Equation 2 shows
used is termed as Tao analysis [5]. There are three dimensipAW to compute the dependence of a vestex another vertex
to the Tao analysis which are enumerated below. v. This equation sums up the dependence ofi v in reaching
1) Topology It is important to understand the structure oft target vertext for all ¢ € V. Here, 05 (v) is the target
the graph on which the operators are executed. TriBecific depe_ndence @f_on v, Com_putation_ of target-sp_egific
information is necessary as regular graphs are amenaBfPendence is further highlighted in equation 3. Targetsis
to many compile time optimizations. Also, it is easiefeépendence of a given soureeon another vertex for a
to come up with a compile time scheduling policy fodiven targett is defined as the ratio of number of shortest
algorithms on regular graphs. paths bgtweera andt passing throughy (denoted byo,(v)
2) Active Node Often the execution of operators on curil €guation 3) to the ratio of the total number of shorteshpat
rently active nodes spawns new ones. It is necessa§tweens andt (denoted by, in equation 3).
to understand the manner in which active nodes come
into being. This information can be used to work out BC(v) = Z Sse(v) (1)
the right scheduling policy while applying operators to

operators necessitate the use of locking or roll-back
schemes is essential to ensure program correctness.

IIl. THE BETWEENNESSCENTRALITY MEASURE

active nodes. For the same purpose, it is important to o

understand whether operators on the currently active Ose(v) = Z 95t (v) @)

nodes can be executed in a certain order or they can tevitzy

be executed in any order. Sulv) = ost(v) 3)
3) Operators A good understanding of the nature of op- Ost

erators is necessary in deciding what kind of locking Take the case of the graph shown in figure 1 as an
and roll-back mechanism may be necessary for txample. The matrix alongside the graph shows all shortest
algorithm. There are three classes of operators that hgaths between pairs of vertices. Let us try to compute the
been discovered so far in the context of graph algorithnh&tweenness value for vertek here. Only shortest paths
[5]. The first class of operators is the morph operatdirom a andb to other vertices pass through Therefore, the
This operator modifies the graph in the neigbourhoadkependence of other vertices drcan be ignored in this case.
of the active nodes. The second class of operators &few let us look at the paths themselves. Table Il shows the
called local computations. They do not modify the grapshortest path information from andb to other vertices. It also
but update the values on the vertices and edges shows shortest paths from and b to other vertices passing
the vicinity of the active nodes. Finally, readers dd¢hroughd and the computation of dependence values from this
not modify or update values on vertices and edgesformation. Thus, the betweenness value for veddxased
Instead, they are commonly used to read these values.the information from table 11l i9.25 + 0.33 = 0.58.

For most reader and local computation operators, noAs can be observed, computation of the betweenness values
locking scheme is normally necessary. However, morphvolves computation of all-pair all-shortest-paths. Sitan

© b c d e
ala—wbla—-b—-c|la—b—d a—rb-c—e
(b) a—-b—-d—e
b b—c b—d b—c—e
e 0 b—-d—e
c c—e
(o) d d—oe

Fig. 1. All-pair all-shortest-paths for a directed graph

be very expensive even for small graphs. However, it w#s Active Nodes
observed in [7] that the computation of the number of shortes
paths i.es; values can be done using a modified breadth firé
search. For the subsequent discussion, we define the dept
a nodev in a breadth first tree as the hop distancesdfom
the source of the breadth first tree. The observation in [§
based on the fact that if a parenthas a depth of one less
that the depth of its child in the graph for a given breadth
first tree spanning the graph, then the shortest path frora e
from the source t@ augmented with the edge fromto ¢ is
also a shortest path from the sourcegto

If for every vertext, we can compute a parent sub-$&t¢)
such that these parents have a depth of one lessttirathe

For every vertex in the graph, we need to compute its
bpendence on other vertices in the graph. For a given vertex
v,(%nce we have the dependence of other verticesvon
Wwe need to add the dependence values of all vertices on
B get the betweenness centrality for This exercise needs
to be repeated for every vertex. Therefore, it can be safely
ssumed that all vertices in the graph are active nodes in the
tweenness centrality algorithm. The more important mbse
vation here is that no new active nodes are spawned during the
application of operators to the currently active nodes.hia t
Tao analysis framework such algorithms are called topclogy
! s driven algorithms. For topology-driven algorithms, apption
breadth_ first search originating a we can computer; as of opera?ors at an activs no%{: does no% cause otESr vertices
shown in 4. It was further shown in [7] that thi, values to become active. This is in contrast to data-driven albord

can be -computeld recursively as-well using H‘L@ V"’?'“es as \where application of an operator at an active node causes oth
shown in equation 5. The details of the derivation of th

expression can be found in equation 5 and the derivation uses
a similar observation as the one used for simplifying #he
computation.

ertices to become active.

B. Operators

As evidenced from the discussions in section I, there

Ost = Z Osr (4)
rePg(t)
Osr
Sa) = Y Tassw) ©® D
rePy(t) St

There are two distinct advantages of equations 4 and 5.
Firstly, they do away with the added complexity of computing
the number of shortest paths passing through a given vertex
(denoted by (v)). Secondly and more importantly, they sim-
plify the computation of dependence values to an extendevher
it can be done recursively using a breadth first backtracking 2)
other words, if we start at the leaves of a breadth first trek an
backtrack we can recursively compute the dependence values
by using equation 5.

IV. OPERATOR FORMULATION OF THE ALGORITHM

In this section, we present the Tao analysis and operator
formulation of the betweenness centrality algorithm inesrd
to uncover latent amorphous data parallelism. We discuss th
nature of active nodes in the algorithm as well as the operato 3)
that operate on these active nodes. Finally, we comment upon
the source of parallelism based on the operator formulation
It must be noted here that the first dimension of Tao analysis
is inapplicable to the betweenness centrality algorithnitas
operates on unstructured graphs. Therefore, we focus on thd)
second and third dimensions.

are four operators in the betweenness algorithm which are
enumerated below.

Breadth first search and registration of leaf nod&e

first operator that is applied to the active nodes is the
breadth first walk that is initiated at each active node.
This walk is used to compute the level of each vertex and
this is done for each of the breadth first walks. At the end
of the breadth first walks, we store the leaf nodes in the
breadth first tree for the backtracking and dependence
value computation as described in section IlI.

Parent sub-set and all-pair shortest path countifidne
next operator that is applied traverses the graph starting
at each active node € V. The operator computes
the parent sub-seP;(¢) for the given active node

and a given vertex such that all vertices iP;(t) are
parents oft and have a depth of one less thain the
breadth first tree having as its root. As the vertices in
P,(t) are discovered, the computation &f; can also

be completed as described in equation 4.

Computation of dependence valuésbacktracking op-
erator is then applied which starts at the leaf nodes
of the breadth first trees that are recorded in the first
step. During the backtracking the dependence values are
recursively computed as shown in equation 5.
Betweenness centrality computatidrhe final operator
sums up the dependence values of vertices on active

nodes for each active node. This gives the final betweenf- 8 cores) processors running the Linux 2.6.32 kernel. The
ness centrality value for the active node. cores shared an L3 cache of 8MB. Figure V shows the runtime

Each of the operators stated above touches the entire grail scalability measures for the two graph sizes for both
Therefore, the neighbourhood of the operators is the entte fused and segmented operators. The scalibility messure
graph. One would think that this large a neighbourhood wouff€ obtained by dividing the runtime for a given number of
surely impede parallel execution of the operators at actipgocessor threads by the runtime for a single thread. The
nodes. However, upon closer inspection it can be seen tfifitire shows clearly how the segmented operator formulation
for the same operator, none of the active nodes depend syfifers from poor runtime performance. This is attributed t
results from operator applications at other active nodes. ineffective cache usage. More importantly, it can be oterv
other words, the application of operators to active nodesindhat the segmented version of the algorithm does not scale
not be ordered for the same operator. This observation alsra?eyond 4 cores. Our investigations have shown that due to the
the latent amorphous data parallelism in the applicatibthe Massive amount of intermediate data that is generated in the
active nodes have their own private copies of data, then tfegmented operator formulation, there is a significant amou

operators can be applied in parallel without paying attenti Of L3 cache thrashing beyond 4 threads. This makes the
to runtime coordination. computation memory bound and the runtime of the algorithm

does not improve despite increasing the number of threads.

V. IMPROVING RUNTIME AND SCALABILITY

. . . . VI. A CASE FOR FUNCTIONAL PROGRAMMING
While the Tao analysis framework provides a nice theoret-

ical basis for uncovering latent amorphous data parattelis In section V, we demonstrated the importance of operator
in an algorithm, it does not address subtle runtime issuission in improving the runtimes of operator formulation of
like memory access overheads. If the sequence of operatiaigorithms. While operator fusion is an essential ingretdien
is not scheduled properly, it may lead to cache thrashimegsure better runtimes and scalability through bettereash
and the operation may ultimately become memory bounage, it is not feasible to handcraft the fusion process feryev
This deteriorates algorithm runtimes and is detrimentah&® composition of operators. Moreover, handcrafting the dosi
scalability of the algorithm as well. In this section, we pogse process is at odds with code reuse and ease of programming
operator fusion as an optimization for operator formulaiio where the prgrammer wishes to compose new formulations
order to improve runtime and scalability of the algorithm akom a library of pre-developed operators. This creates a
the number of threads executing the algorithm is increasedneed for the fusion process to be a part of the compilation

Consider the operator formulation of betweenness cetytralframework so that the programmer can compose formulations
as an example. There are two ways in which the operatevithout being concerned about runtime overheads.
can be applied to the active nodes in this algorithm. In the However, expressing operators in a imperative language
first way, each operator can be applied to all active nodeffen makes the analysis process complicated. Identificati
before the next operator is chosen. The other way is &wenues for fusion in an imperative setting is a non-tritask
apply all operators to an (or a set of) active node(s) befogésen that an imperative program may contain global vaesbl
moving on to other active nodes. We call the former wagnd state information which complicates data-flow analysis
of applying the operatosegmented operator formulatiand On the other hand, if the operator formulation is written in a
the later wayfused operator fomulatiorBoth versions of the functional language, we do not have any concept of a state.
operator formulations for the betweenness centralityréilyn Data flow analysis of a purely functional language is a much
are shown in table V. simpler task due to the referential transparency in funetio

In both versions of the formulation, all vertices in the drap languages. Consequently, the process of identifying a&nu
are marked as active nodes and the active nodes are storedbomperator fusion is greatly simplified if the operatorrfar-
a worklist - a data structure that holds currently activeasod lation is written in a functional style. In fact, a processgar
The runtime system fetches active nodes from the worklit operator fusion has already been successfully applied in
and executes operators on them. In the segmented versiorthef context of array programming in the Single Assignment
the algorithm, the four operators identified in section 1\ arC (SAC) language [8][9]. In SAC, this process is called with-
applied one at a time to all the active nodes in the worklidbop folding and operations on multiple array elements are
On the other hand, in the fused version, all operators dmdedtogether to form a unified operation wherever possible
applied to each of the active nodes in one go. This ensutesreduce memory overheads.
better cache utilization by improving data locality. As we Apart from simplifying the analysis process for operator
will demonstrate shortly with experimental results, theed fusion, functional languages offer other benefits as weihd-
version of the algorithm performs far better in terms of hom& tional languages typically come with rich features liketpat
and scalability as the number of processor threads is isetea matching, higher order functions and partial applicatiimese

We executed both the segmented and fused operator figatures are especially useful in expressing algorithnassinc-
mulations using two random graphs as inputs. The first grapimct manner thereby boosting productivity of programmers
had 8192 vertices and 60743 edges while the second grapte power of higher order functions and pattern matching in
had 16384 vertices and 123329 edges. The experiments wexpressing succinct graph algorithms has already been pre-
run on a machine with 2 Intel X5570 quad-core (giving a totalented in [10]. With improved modularity through highererd

Segmented operators Fused operators
1. G=VXE
2: forall v € V do
3: markAsActiveNode(v)
4: end for 1: G=VXxE
5: WL <+ activeNodes(G) 2: forall veVdo
6: for all s€ WL do 3: markAsActiveNode(v)
7: BFS(s) 4: end for
8: end for 5: WL <+ activeNodes(G)
9: for all se WL do 6: for all s€ WL do
10: 0ca1c(S) 7 BFS(s);
11: end for 8. 0calc(S);
12: for all s€ WL do 91 deaic(S);
13: dcalc(s) 10: BCea1c(s);
14: end for 11: end for
15: for all s€ WL do
16: BCcalc(S)
17: end for

TABLE I

SEGMENTED VS FUSED OPERATOR FORMULATION FOR THE BETWEENNESSENTRALITY ALGORITHM

Runtime (8192 vertices) Runtime (16384 vertices)

===Unfused ===Fused ===Unfused ===Fused

20 90 7
18 80 -
70
60
50
40

6 K £ 30 ¥
4 20

2 10 1

0 : ; : ‘ : :

4 5 6 7 8

Runtime (seconds)
=
=3
Runtime (seconds)

._-
~
w

-

~

w

4 5 6 7 8

Number of Cores Number of Cores
Scalability (8192 vertices) Scalability (16384 vertices)
=—Unfused =Fused ===Unfused ===Fused
8.00 7.00
7.00 6.00
6.00 1 5.00
£ 5w] : 400 -
S 400 3 215 -
8300 8
200 2.00
1.00 1.00 1
0.00 T T T T T T 1 0.00
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of Cores Number of Cores

Fig. 2. Runtime and scalability measures for random graphsl8? &nd 16384 vertices for the segmented and fused operatoulfdions

functions and the lack of side effects, understanding cerplproperty of functional languages which states that in the
code segments is much easier in a functional setting than inabsence of side effects, any two operations can be exeauted i
imperative setting. This makes maintenance of large softwaarallel provided there is no data dependency between them.
codebases much simpler in functional languages. With athrTThis is the reason why functional languages have been hugely
towards developing complicated techniques for informmaticsuccessful at harnessing the power of multi-core architect
analysis using graph theory, functional languages are a goo
candidate for implementing complex graph algorithms. Due to the above reasons, we believe that extending pre-
existing ideas in functional languages to the domain of amor
Finally, the biggest selling point of functional languagephous data parallelism presents a compelling case foreurth
are that they greatly simplify analysis of source code favork. It will be very interesting to explore the synergies
identifying task parallelism. This is due to the ChurctisRer between the two approaches and we intend to embark on this

task as a part of our future research work. [9] Sven-Bodo Scholz. Single Assignment C — efficient supgparthigh-
level array operations in a functional settinglournal of Functional
Programming 13(6):1005-1059, 2003.
VIlI. CONCLUSION [10] Martin Erwig. Inductive graphs and functional grapgaifithms.Journal
of Functional Programming11:467-492, September 2001.
In this paper, we discussed a parallel implementation of
the betweennes centrality algorithm. We did a Tao analysis
of the betweenness algorithm in order to better understand
the nature of active nodes and operators in the algorithm.
Then, we formulated the algorithm in terms of operators that
mutate information stored at active nodes. While the oper-
ator formulation of the algorithm exposed latent amorphous
data parallelism in the algortihm, we showed that avea
implementation of the operator formulation suffers frorsloa
thrashing and memory access overheads. We showed that
performance and scalability of operator formulations can b
significantly improved by augmenting operator formulation
with operator fusion and presented experimental results to
reinforce the value of the fusion process.
While operator fusion was shown to be invaluable in opti-
mizing operator formulations, it was discussed that anmsalys
source code to identify avenues for operator fusion was a non
trivial task. At the same time, it was showcased how the use of
functional languages to code operator formulations edses t
fusion analysis by doing away with the side effects. Given
the added benefits of functional languages like code-reuse,
modularity and Church-8sser property, it can be said that
functional languages are highly relevant to graph algorith
in general and parallel implementation of graph algorithims
particular. Therefore, it is worthwhile to consider the >s
of functional languages in the context of amorphous data
parallelism.

REFERENCES

[1] Ulrik Brandes and Thomas Erlebach, editddgtwork Analysis: Method-
ological Foundations [outcome of a Dagstuhl seminar, 13-April
2004], volume 3418 ofLecture Notes in Computer Sciencgpringer,
2005.

[2] David A. Bader and Guojing Cong. Fast shared-memory algms for
computing the minimum spanning forest of sparse gragh<Parallel
Distrib. Comput, 66:1366—1378, November 2006.

[3] John R. Gilbert and Robert Schreiber. Highly parallehrse cholesky
factorization. SIAM Journal on Scientific and Statistical Computing
13:1151-1172, 1992.

[4] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganeshianarayanan,
Kavita Bala, and L. Paul Chew. Optimistic parallelism regsirab-
stractions. InProceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementati®hDl '07, pages
211-222, New York, NY, USA, 2007. ACM.

[5] Keshav Pingali, Donald Nguyen, Milind Kulkarni, MartiBurtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario &tdez-Lojo, Dimitrios Prountzos,
and Xin Sui. The tao of parallelism in algorithms. Pnoceedings of the
32nd ACM SIGPLAN conference on Programming language desidgn
implementation PLDI '11, pages 12-25, New York, NY, USA, 2011.
ACM.

[6] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Ringa
Ordered vs. unordered: a comparison of parallelism and wéigiency
in irregular algorithms. IlPPOPPR, pages 3-12, 2011.

[7] Ulrik Brandes. A faster algorithm for betweenness cality. Journal
of Mathematical Sociology25:163-177, 2001.

[8] S.-B. Scholz. With-loop-folding irsac—Condensing Consecutive Array
Operations. In C. Clack, K.Hammond, and T. Davie, editbrglemen-
tation of Functional Languages, 9th International Worksht-L'97, St.
Andrews, Scotland, UK, September 1997, Selected Papstsne 1467
of LNCS pages 72-92. Springer, 1998.

