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Is the Rapid Decay Phase from High Latitude Emission?

F. Genet and J. Granot

University of Hertfordshire

Abstract. There is good observationnal evidence that the Steep Decay Phase (SDP) that is observed in mostSwift GRBs
is the tail of the prompt emission. The most popular model to explain the SDP is Hight Latitude Emission (HLE). Many
models for the prompt emission give rise to HLE, like the popular internal shocks (IS) model, but some models do not, such
as sporadic magnetic reconnection events. Knowing if the SDP is consistent with HLE would thus help distinguish between
different prompt emission models. In order to test this, we model the prompt emission (and its tail) as the sum of independent
pulses (and their tails). A single pulse is modeled as emission arising from an ultra-relativistic thin spherical expanding shell.
We obtain analytic expressions for the flux in the IS model with a Band function spectrum. We find that in this framework the
observed spectrum is also a Band function, and naturally softens with time. The decay of the SDP is initially dominated by
the tail of the last pulse, but other pulses can dominate later. Modeling several overlapping pulses as a single broader pulse
would overestimates the SDP flux. One should thus be careful when testing the HLE.

Keywords: Gamma-rays: bursts
PACS: 98.70.Rz

INTRODUCTION

Most gamma-ray bursts (GRBs) observed by theSwiftsatellite show an early steep decay phase (SDP) in their X-ray
light curve. It is usually a smooth spectral and temporal continuation of the GRB prompt emission, strongly suggesting
that it is the tail of the prompt emission [1]. It is generallyexplained by High Latitude Emission (HLE), where at late
times the observer still receives photons from increasingly larger angles relative to the line of sight, due to the longer
path lenght caused by the curvature of the emitting region. These late photons have a smaller Doppler factor, which
results in a steep decay of the flux and in a simple relation between the temporal and spectral indicesα = 2+β , where
Fν(T) ∝ T−α ν−β [2]. We test the consistency of HLE with the SDP by modeling the prompt emission as a sum of its
individual pulses, including their tails. We calculate theflux for a single emission episode in the framework of internal
shocks, and then combine several pulses to model the prompt emission.

EMISSION OF A SINGLE PULSE

We consider an ultra-relativistic (Γ ≫ 1) thin (of width ≪ R/Γ2) spherical expanding shell emitting over a range
of radii R0 ≤ R≤ Rf ≡ R0 + ∆R. The Lorentz factor of the emitting shell is assumed to scales as a power-law with
radius,Γ2 = Γ2

0(R/R0)
−m, whereΓ0 ≡ Γ(R0). In order to calculate the flux received at any timeT by the observer

we intergrate over the Equal Arrival Time Surface (EATS; [3]), which is the locus of points from which photons
that are emitted at a radiusR, angleθ from the line of sight and lab frame timet reach the observer at the same
observed timeT. For a shell ejected at an observer timeTe j, the first photon reaches the observer at a timeTe j + T0

with T0 = (1+z)R0/[2(m+1)cΓ2
0]. We also defineTf ≡ T0(Rf /R0)

m+1 = T0(1+∆R/R0)
m+1, which is the last time at

which photons emitted from the line of sight reach the observer.
We choose for the emission spectrum the phenomenological Band function (Band et al., 1993) spectrum, which

generally provides a good fit to the prompt GRB emission. The co-moving peak spectral luminosity is assumed to
scale as a power-law with radius,L′

ν ′
p

∝ (R/R0)
a, whereν ′

p(R) is the peak frequency of the emittedνFν spectrum.

Since Internal shocks is the most popular model for the prompt emission, we consider it for the following. In this
framework, several simplifying assumptions can be made: the outflow is expected to be in the coasting phase (m= 0),
and the electrons are expected to be in fast cooling regime. The emission mechanism is assumed to be synchrotron.
This leads toν ′

p ∝ Rd with d = −1, andL′
ν ′

p
∝ (R/R0)

1, i.e a = 1. Then,T0 = (1+z)R0/(2cΓ2
0), Tf = T0(1+ ∆R/R0)
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FIGURE 1. Left: Evolution of the shape of one normalized pulse with the normalized frequencyν/ν0. Middle: Evolution of
the observed spectrum with time (corresponding to the values of T̄/T̄f written near each spectrum). The thin lines correspond to
the rising part of the pulse, the thick lines to the decaying part of the pulse.∆R/R0 = 1. ν/ν0(T0) = 1. Right: Comparison of the
evolution of the spectral (2+ β ; thin lines) and temporal (α; thick lines) slopes at fixed observed frequencies (forE′

0 = 0.5 keV
andΓ0 = 300, so thatE0,obs= 300 keV).

and the luminosity is

L′
ν ′ = L′

0

(

R
R0

)a

S

(

ν ′

ν ′
p

)

, S(x) = e1+b1

{

xb1e−(1+b1)x x < xb,

xb2xb1−b2
b e−(b1−b2) x > xb,

(1)

where S is the normalized Band function,x ≡ ν ′/ν ′
p, with ν ′ = (1+ z)ν/δ whereν is the observed frequency,

xb = (b1 −b2)/(1+ b1), andb1 andb2 are the high and low energy slopes of the spectrum;z is the redshift of the
source anddL the luminosity distance between the source and the observer. We defineν0 = 2Γ0ν ′

0/(1+ z), where
ν ′

0 ≡ ν ′
p(R0). One should note that most of the results derived in the following hold only in the model of internal

shocks, and not in a more general case.
The observed flux is then (in the framework of internal shocks):

Fν(T ≥ Tej +T0) = F0

(

T −Tej

T0

)−2
[

(

min(T −Tej,Tf )

T0

)3

−1

]

S

(

ν
ν0

T −Tej

T0

)

, (2)

whereF0≡ (1+z)L0/(12πd2
L). Figure 1 (left panel) shows the variation of a pulse shape with the normalized frequency

ν/ν0. Different shapes can be obtained, form spiky to rouder. Form= 0 andd = −1 the observed spectrum is a pure
Band function, just like the emitted spectrum (see middle panel of Fig. 1), where the observed peak frequency of
theνFν spectrum decreases with time asνp = ν0/T̃, andT̃ = (T −Tej)/T0 = 1+ T̄. This corresponds to a softening
of the spectrum with time (Fig. 1 right panel) which agrees with observations. On the same panel we compare the
evolution of the instantaneous spectral slopeβ ≡ −d logFν/d logν with the temporal slopẽα ≡ −d logFν/d logT̃,
whereT̃ = (T−Tej)/T0 = 1+ T̄: we can see that the HLE relationα̃ = 2+β is valid as soon as̄T > T̄f . One should be
careful that this is true only in the framework of internal shocks model, and with this definition of the temporal slope
(for exemple,ᾱ ≡−d logFν/d logT̄, which is another definition of the temporal slope, approaches 2+ β only at late
time).

COMBINING PULSES TO OBTAIN THE PROMPT EMISSION

Within our model, the prompt emission is the sum of independent pulses, and the SDP is thus the sum of the tails of
these pulses. For a prompt emission composed of several equal pulses, at late time the contribution of each pulse is
equal, and the temporal slope just after the peak of a pulse increases with its ejection timeTe j. When varying several

parameters among the different pulses, the late time flux ratio of the pulse tails is the ratio of theirFpeakT
2+β
f . Just

after the peak of the last pulse, the SDP is dominated by the last pulse. This shows that several pulses can dominate



FIGURE 2. Left: Exemple of a prompt emission consisting of three pulses withTej =−1s,13s,21s, T0 = 2 s for all three pulses,
∆R/R0 = 3, 2, 1, and Fpeak/F0 = 0.7, 1, 0.7. Thin non-solid lines represent individual pulses, while the thick solid line shows the
total prompt emission.Right: Comparison between a fit with several pulses (12here) and a fit with one broad pulse. Thin non solid
lines shows each individual pulse, the thin solid line showsthe total prompt emission, and the thick solid line shows a possible fit
with one broad pulse. The normalized frequency isν/ν0 = 0.1. Both panels are in logarithmic scale.

the SDP at different times, as one can see in the left panel of Fig. 2. Therefore, one should be careful to consider this
when studying the temporal and spectral behavior of the SDP.

Figure 2 (right panel) shows what can happen if, because of noisy data or coarse time bins, a prompt emission (thin
solid line) which is actually composed by several pulses is fitted by one broad pulse (thick solid line): the fit would
give a tail with the same temporal slope at late time than the actual prompt tail, but with no higher temporal slopes just
at the end of the prompt, the whole tail of this broad pulse being close to a power law. Moreover, this overestimates
the flux of the SDP. It is important to keep this in mind when confronting such a model with actual data.

CONCLUSION

We have outlined a model for the prompt emission and its tail.This model contains a restricted number of free
parameters, 10 per pulse:a, m, d, F0, b1, b2, E0(T0), T0, Tf and Te j. In the case for internal shocks, this can be
reduced to 7:m= 0; d =−1 anda= 1; as in this framework∆R∼ R0 is expected, one can fixFf /T0 = 1+∆R/R0 = 2.
For a prompt emission withN pulses, the total number of free parameters can be further reduced to 3(N+1), instead
of 6N, as we expect the Band function parameters (b1, b2 andE0(T0)) to be similar for all pulses.

The shape of a pulse can vary considerebly in our model, from very spiky to rounder, which qualitatively reproduces
the observed diversity. The observed spectrum is a pure Bandfunction as the emitted one in the case of internal shocks,
and our model naturally produces a softening of the spectrum, as is observed.

When combining several pulses to model the prompt emission,the Steep Decay Phase is initailly dominated by the
last pulse, and is dominated at late times by the pulse with the largestFpeakT

2+β
f (essentially the widest pulse, except

if there is a large difference of flux between the pulses), butcan be dominated by other pulses in between.
When fitting data, one should be careful not to consider several overlapping pulses as a single broad pulse, which

would lead to an overestimate of the prompt tail flux and a misinterpretation of the steep decay phase.
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