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Abstract 

 

The thesis presents an experimental investigation of combustion performance and 

emissions of waste cooking oil (WCO) based biodiesel. To evaluate the 

comparative performance of biodiesel and diesel, combustions tests were 

conducted using Continuous Combustion rig (CCR) and Land Rover VM diesel 

engine.  

Firstly, physical properties of WCO biodiesel and diesel samples were measured 

in the laboratory. Elemental analysis of WCO biodiesel showed that there are 

differences between the functional groups in diesel and biodiesel which lead to 

major differences in the combustion characteristics of the two fuel types. It was 

found that biodiesel had 10% lower carbon content, almost no sulphur content for 

biodiesel and up to 12% more oxygen content compared with diesel.  This 

explains the lower caloric value for WCO biodiesel (up to l8 %) compared with 

diesel.  However, higher oxygen content and double bounds in WCO biodiesel 

increase its susceptibility to oxidation.  

The CCR test results showed an increase in combustion gas temperature with the 

increases in biodiesel blend ratio in diesel. This was due to a faster reaction rate 

for biodiesel than that of diesel leading to a faster brakeage of the hydrocarbon 

chain to release more heat.  The engine tests were performed to measure the 

torque and emissions for different engine speeds and loads.  In general a decrease 

in engine torque with up to 9% for biodiesel was observed, which was due to the 

lower calorific value of biodiesel compared with that of diesel. The brake specific 

fuel consumption (BSFC) increased as the biodiesel blend ratio in diesel increases 

due a greater mass of fuel being injected at a given injection pressure, compared 

with diesel. Using WCO blends ratio up to 75% in diesel showed a reduction in 

exhaust emission compared with diesel, however, at the cost of increased fuel 

consumption. A common conclusion can be drawn in favour of the WCO 
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biodiesel as being a greener alternative to petro-diesel when used in blend with 

diesel.  However, due to large variations in the biomass used for biodiesel 

production could lead to variations in physical and chemical properties between 

biodiesel produced from different biomass. Therefore more stringent standards 

need to be imposed for biodiesel quality in order to diminish the effect of 

variation in physicochemical properties on engine performance and emissions. 

The future work in developing standard test procedures for establishing fuel 

properties and limits/targets would be beneficial in using a large amount of waste 

cooking oil in the production of biodiesel, thus contributing to reduction in CO2 

and waste minimisation. 
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Chapter 1 -Introduction 

1.1.  Introduction 

Last century has seen rapid industrialisation and urbanisation leading to problems of 

global environmental pollution and energy deficit in many countries. The AA Public 

Affairs Fuel Price Report showed that the UK has the seventh highest petrol price in 

Europe and the second highest diesel price [1]. Limited fossil resources, continuously 

increasing fuel cost and issues related to global warming lead to necessity of finding 

new substitutes for petroleum diesel. However, the continued development in the past 

decades of internal combustion (IC) engines makes it difficult for alternative fuels to 

compete with petroleum fuels. 

The transportation sector is one of the main contributors to the formation of ground-

level ozone. Emissions also have a negative effect on the environment due to their 

intrinsic toxicity, which cause the ozone formation mechanism and their direct or 

indirect influence on the "greenhouse effect". Incomplete combustion in IC engines 

produces a series of emissions such as unburned hydrocarbons, solid particles, 

aldehydes, polycyclic aromatic hydrocarbons, carbon monoxide, nitrogen oxides, and 

sulphur oxides. In some congested urban areas, engine emissions such as CO, NOx, 

HC and particulates often may exceed the limits regulated by law. In order to meet the 

European Emission Trading System (EU ETS) operational phases starting from 

December 2007 and ending in December 2020, the Environment Agency has 

introduced more stringent restrictions regarding acceptable limits of exhaust emissions 

and diesel engine characteristics. All these emissions are closely related first to the 

fuel type, and second to the diesel engines characteristics.  

In response to the environmental problems created by pollution and to the issue of 

fossil fuel depletion alternative solutions have been taken into consideration. 

Using biodiesel fuels in place of petroleum derived fuels is essential for reducing the 

dependence on foreign oil and emissions that harm air quality. The collection of waste 
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cooking oil for biodiesel production supports both the reduction in dependency upon 

landfill sites as a means of waste disposal and reducing the use of petroleum fuels for 

energy generation. 

Biodiesel has lower pollutant emissions compared with diesel, which makes it a 

cleaner-burning alternative to petroleum fuel, and can be used neat or in blends with 

diesel fuels in various proportions, in the classical diesel engines. 

Although biodiesel brings a significant number of positive aspects, several negative 

aspects should be considered, i.e. biodiesel biodegradability, the capacity of an engine 

to operate on various fuels, engine efficiency and emissions. 

Biodiesel has the advantage of being biodegradable. However, biodegradability makes 

biodiesel more susceptible to microbial contamination than petroleum fuels. Certain 

types of bacteria and fungi can grow in diesel or biodiesel fuel tanks. These micro-

organisms can be either aerobic or anaerobic but typically require at least a small 

amount of water to be present. The presence of moisture in fuel can be a result of the 

final washing stage during the manufacturing process or the absorption of moisture 

and contaminants from condensation during the fuel storage. Biodiesel is more 

hygroscopic than diesel, thus resulting in biodiesel having a greater capacity for 

absorbing moisture compared to diesel fuel. Free fatty acids are formed as a 

consequence of hydrolyses of ester bonds, this result in a decrease in pH value of the 

hydrocarbon. Microbiological growth is one of the consequences of biodiesel’s 

biodegradability. With the biotic degradation reactions, the properties of biodiesel also 

change, leading to an increase in biodiesel’s corrosivity, changes in physical and 

chemical properties, therefor a poor fuel quality. 

Some properties of the oil such as viscosity, melting point, thermal stability, cetane 

index, are directly related to the chemical composition of the biomass used. Therefore, 

the chemical properties of oils obtained from different raw materials vary. 
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Conventional diesel engines are designed for a particular type of fuel. When high 

blends of biodiesel in diesel are used in internal combustion (IC) engines, the engines 

show decrease in performance and efficiency due to the differences in physical 

properties between diesel and biodiesel. There are differences between the emission 

characteristics for biodiesel and diesel. However, there are some advantages of using 

biodiesel in IC engines which are: 

 Emit less CO and HC compared with diesel fuel; 

 Reduced smoke and odours; 

 Contains almost no sulphur; 

 The high flash point makes the biodiesel safer for storage compared to diesel; 

 In neat form biodiesel is biodegradable being safer for handling; 

 Higher cetane number compared with diesel fuel; 

 Biodiesel can be used in diesel engines for lubrication purpose; 

 In low blend can be used in diesel engine without any modification; 

 Naturally oxygenated fuel. 

 Biodiesel made from waste oils help the environment by recycling the waste. 

Some of the disadvantages of using biodiesel are: 

 High cloud point resulting in crystallization  at higher temperature compared with 

diesel fuel; 

 Higher viscosity than diesel fuel; 

 Shorter shelf life compared to diesel and more prone to biodegradation; 

 Lower calorific value compared with diesel fuel; 

 Relative higher NOx to diesel fuel; 

 Biodiesel cannot completely replace fossil fuel. 

Biodiesel could contribute to the decrease in the demand for fossil fuel when use in 

blend with petroleum diesel. Generally, biodiesel has lower energy content compared 

with diesel. The yearly net energy per hectare of fuel crop required in order to sustain 



 

4 

 

the continue increase in energy demand and the issues of food price rising that this can 

trigger make biodiesel unfeasible to completely replace petro-diesel. 

Numerous experiments have been performed on a diesel engine operating under 

various conditions using biodiesel derived from soybean, rapeseed, palm and Jatropha 

oil, but not as much research was done in engine emissions and performance using 

biodiesel made from waste cooking oil (WCO). Biodiesel produced from waste 

cooking oil has potential to be used in engines instead of diesel and offering 

environmental benefits. For example it will reduce domestic waste and it does not 

compete with food crops.  

The aim of the present research is to evaluate the “quality” of biodiesel produced from 

waste cooking oil. To achieve this a series of experimental investigations of biodiesel 

biodegradability, combustion characteristic, emissions and its performance in 

compression ignition (CI) engine are carried out.  

The experiment investigations were conducted over a period of three years, in the 

following stages; firstly, the microbiological contamination of biodiesel was 

investigated, then the emissions characteristics of biodiesel using a Continuous 

Combustion Rig (CCR) were evaluated and finally the engine emissions and 

performance characteristics of VM 2400 diesel engine using various diesel biodiesel 

blends were obtained. It was not possible to obtain the entire biodiesel from one 

supplier over the entire experimental period because there were changes in the 

biodiesel suppliers. Although the fuel suppliers were different, the biodiesel properties 

were found to be very similar. Therefore there would be little or no significant effect 

on the engine performance and emissions between the biodiesel from different 

suppliers.  
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The physical properties of the biodiesel from the three suppliers are presented in Table 

1-1.  

 Table 1-1 Physical properties of the biodiesel fuels investigated 

Physical  

Properties of  

Bolton 

Biodiesel 
Sheffield 

Biodiesel 

VEPower 

Biodiesel 
Diesel 

Specific gravity  0.886 0.878 0.882 0.834 

Kinematic viscosity at 40°C 

(mm2/s) 
4.48 4.46 4.47 3.5 

Lower calorific value (MJ/kg) 33384.256 33399.628 33374.209 41098.325 

Sulphur, wt% <1 <1 <1 0.50 

Cloud point °C -13 -11 to 16 -11 to 16 -9 to 10 

Pour point °C -8 -12 -10 -30 

Iodine number 127.07 124.37 122.99 - 

The overall quality of neat biodiesel and various proportions of biodiesel-diesel blends 

are compared with diesel, to evaluate its performance in IC engines and environmental 

benefits.  

 

1.2.  Objectives 

The following objectives of investigation were set in order to achieve this aim:   

 A review of the literature on fuel biodegradation and biodiesel used as 

substitute on CI engines; 

 Evaluation of microbial contamination for biodiesel and diesel and biodiesel 

blends in various proportions: diesel 100% - biodiesel 0% (B0), diesel 50% - 

biodiesel 50% (B50) and diesel 0% - biodiesel 100% (B100);  

 Evaluation of characteristic emissions from a laminar premixed flame for 

diesel 100% - biodiesel 0% (B0), diesel 75% - biodiesel 25% (B25), diesel 

50% - biodiesel 50% (B50), diesel 25% - biodiesel 75% (B75) and diesel 0% - 

biodiesel 100% (B100); 

 Evaluation of Land Rover VM 2400 diesel engine performance and emissions 

using different diesel – biodiesel blends: B0, B25, B50, B75 and B100;  
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1.3.  Thesis Layout 

A range of theoretical and experimental techniques was used for achieving the 

objectives and aim of the research.  

The Evaluation of WCO biodiesel was focussed on 3 main issues as shown in Figure 

1-1: 

• Microbiological contamination test - a comparative study between diesel and 

biodiesel available at the petrol station.  

• Pilot scale combustion test - exhaust emissions from a laminar premixed 

flame.    

• Performance and emission test from diesel engine using biodiesel.  

 

 

Figure 1-1: An overview of biodiesel main area analysed 
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Figure 1-2 shows the proposed methodology. The chart presents three main parts of 

the research, with the central part representing the study divided into three main 

sections which are the fuels properties, continuous combustion rig (CCR) and 

compression ignition (CI) engine. 
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Figure 1-2: Flow chart of research methodology 
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The main issues related to the use of WCO biodiesel as a substitute for diesel were 

evaluated. Microbial contamination of the fuel is one of the main factors which lead to 

biodegradation and changes in physicochemical properties of the fuel, leading to a 

fuel of a poor quality. The use of low quality fuel in a diesel engine can result in 

engine operation malfunctions, decrease in performance and increase in emissions. 

This thesis comprises of eight chapters. Chapter 1 introduces the world wide problems 

of energy based on petroleum fuels and its pollutant emissions impact on the 

environment, and defines the aim and objectives of the research. Chapter 2 provides a 

theoretical background of the subject in order to comprehend the aspects of fuel 

biodegradability and its characteristic emissions when used in premixed combustion 

and unmodified CI engines. 

Chapter 3 presents a review of the published scientific literature on fuel 

biodegradability and performance, efficiency and emissions from CI engines using 

different types of biodiesel under various engine operating conditions. Chapter 4 

presents the physical and chemical properties of diesel, neat WCO biodiesel and 

various blends of the diesel and WCO biodiesel fuel investigated, and the diesel and 

biodiesel microbiological degradation. Chapter 5 describes the methodology, 

experimental setup and results from the experimental evaluation of the exhaust 

emissions from diesel, WCO biodiesel and various blends of diesel and biodiesel 

burned in a continuous combustion rig (CCR). Chapter 6 describes the methodology, 

experimental setup and results from the experimental evaluation of Waste Cooking 

Oil Biodiesel in a Land Rover Diesel Engine.  

Chapter 7 and Chapter 8 present overall discussion and conclusions of the 

experimental work.  

Chapter 9 provides recommendations for further research of the WCO biodiesel as a 

potential substitute or blend for petroleum petro-diesel.  



 

9 

 

Chapter 2 -Theoretical Background 

2.1. Introduction 

In this chapter the physical properties of diesel and biodiesel and their predisposition 

to microbial contamination are discussed. Notions of combustion fundamentals are 

also presented along with the performance parameters of an internal combustion 

engine.  

2.2. Fuels 

Liquid fuels are generally complex mixtures of long chains of hydrocarbon species. 

Fuel compositions consist mainly of mass fractions of carbon, hydrogen, sulphur, 

oxygen, nitrogen, ash and traces of metals. Fuel properties and combustion 

characteristics of diesel and biodiesel are discussed in detail in the following section. 

2.2.1. Diesel 

Fractions of diesel (C13 - C14 to C20 - C25) are used to produce diesel and household 

fuels [2]. Diesel composition contains paraffinic, naphthenic, aromatic and mixed 

hydrocarbons with distillation limits between 200 and 400 °C. Diesel with higher 

distillation range contains sulphur, oxygen and nitrogen compounds, and small 

proportions of metal compounds. In most cases this comes from the process of diesel 

distillation, from hydro-cracking, or fractions of thermal cracking as it is refined from 

the extraction of aromatic compounds. 

The characteristics of diesel engines require two categories of diesel fuel properties: to 

ensure the smooth operation and fuel system performance (cold filter plugging point 

and cloud point, viscosity, water content) and the operating performance of engines 

(cetane, volatility, sulphur content, etc.).   

The cold filter plugging point and cloud point temperatures of diesel affect the proper 

functionality of diesel engines especially in low temperature environments, whereas 

paraffin precipitation may cause clogging in a diesel fuel system. Therefore, it is 



 

10 

 

necessary for diesel engines to have a low cloud point and cold filter plugging point 

temperature.  

One of the main diesel properties is the cetane number. There are four different 

classes of hydrocarbons as cetane decreases in order: paraffin, iso-paraffin, 

naphthenic, aromatic. Paraffinic hydrocarbons have the disadvantage of a high 

temperature of crystallization, high cloud point and pour point temperature which 

involves a specific processing of mixture fractions. Thus, diesel is selected from 

paraffinic or naphthenic oils, and then fractionated so that they meet the requirements 

for cloud point temperature.  

The American Society for Testing and Materials (ASTM), has classified diesel in four 

grades: 

 Grade No. 1-D is a light distillate fuel usually used in light trucks and busses, 

and during the winter time grade 1-D is blended with grade 2-D in order to 

improve the cold flow properties of the fuel. 

 Grade No. 2-D is a middle distillate fuel, suitable for high speed engines that 

operate mostly at high load. 

 Grade 3D diesel is the highest quality diesel fuel ultra-low sulphur, suitable for 

marine engines. 

 Grade No. 4-D is a heavy distillate fuel used mainly in medium speed engines. 

Due to its high viscosity it is required heating in order to improve the spray 

atomization. 

Pollutant emissions from diesel engines are correlated directly with the quality 

characteristics of the diesel fuel used. The main pollutants from diesel emissions are 

unburned hydrocarbons, solid particles, aldehydes, polycyclic aromatic hydrocarbons, 

carbon monoxide, and nitrogen oxides. Experimental research on the incomplete 

combustion of the fuel mixture, fuel pyrolysis, on intermediary combustion products, 

and respectively on the diesel engine processes which lead to the formation of 

substances that form the initial components of smoke particles and coal deposits, 
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showed the complex influence of physical and chemical fuel properties. The main fuel 

properties that influence the emissions of particulate pollutants are the sulphur 

content, chemical composition and volatility, cetane number, density and viscosity.  

Sulphur content of diesel. Diesel fuel generally contains more sulphur than biodiesel. 

In diesel fuel formulation, the trend shows continuous reduction in sulphur content in 

order to reduce the SO2 emissions and particulate matter. High sulphur content in fuel 

lead to increase in the amount of insoluble organic fractions, as a result of the 

oxidation of small quantities (1 to 3%) of sulphur components in the fuel, resulting in 

forming SO2, SO3 and H2SO4. 

Chemical composition and volatility. Lowering the total aromatic content in diesel 

would results in reduction in emissions of unburned hydrocarbons and particulate 

matter, especially at values under 30% aromatic hydrocarbons. The emissions from 

diesel were found to be influenced by following factors: 

- The ambient temperature has a remarkable influence on both fuel consumption 

and emissions of pollutants; 

- Increased levels of polycyclic aromatic hydrocarbons, and particularly the tri-

cyclic from diesel fuel, lead to increases of NOx emissions, particulates and 

smoke; 

- Mono-aromatic hydrocarbons have no effect on emissions, therefore the total 

aromatic content of fuel is not an adequate indicator of a fuel’s pollutant 

emissions; 

- Distillation limits influence the emissions. With the increase in initial and final 

distillation temperature, NOx, HC, CO emissions, smoke and fuel 

consumption increase.  

Cetane (CN). Diesel cetane number is correlated with the level of emissions. With the 

increase in cetane number a reduction of CO, HC, the volatile particulates fraction, 
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and even the noise could be achieved. High cetane number in the range of 49 to 52 

can reduce particulate emissions by up to 0.01 g / km [3].  

Diesel fuel density. Volumetric mass density is an important property of the fuel 

because it controls the amount of fuel that is compressed and burned in the 

combustion chamber. The higher the fuel density the more fuel is injected in the 

combustion chamber, which can result in an increase in HC and CO and decrease in 

NOx and PM [4] 

Diesel fuel viscosity. Higher viscosity could worsen spray and atomisation, and 

therefore increase the CO and soot emissions [5]. 

Improvement or correction of petroleum product grades can be achieved by adding 

small amounts of additives, which is less expensive and easier than fuel reformulation. 

The most commonly used additives in diesel are detergent additives and cetane 

additives. Detergent additives have shown effectiveness in reducing emissions of 

unburned hydrocarbons, particulate and the soluble organic fraction of particles. 

Additives increasing the cetane number produce a particular reduction in emissions of 

the particulate soluble organic fraction. 

2.2.2. Biodiesel 

Biodiesel is a renewable fuel that can be produced from raw vegetable oils, used 

cooking oils, animal fats, algae and lignocelluloses biomass. The production of 

biodiesel from vegetable oil is not encouraged because it triggers issues related to 

food shortage.  Other types of biomasses, such as lignocelluloses and algae, are also 

suitable for biodiesel production, but the technological process is still under 

development and the production cost is high. The waste cooking oil used as biomass 

for biodiesel production presents the greatest advantage of recycling considerable 

amount of waste oil from restaurants and households.   

Biodiesel is generally defined as the mono-alkyl esters of long chain fatty acids 

derived from vegetable oils or animal fats. It is obtained through decomposition of 
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triglyceride (which represents the main constituent of vegetable oils and animal fats) 

into glycerine and fatty acid after a chemical reaction with an alcohol in presence of a 

catalyst (sodium or potassium peroxide). Transesterification reaction is the most used 

technological process for biodiesel production. Transesterification improves biodiesel 

fuel quality by decreasing its viscosity, density, and maintaining the same heating 

value.  

Biodiesel consists of a mixture of naturally formed fatty acids [6; 7]. Some properties 

of the oil such as viscosity, melting point, thermal stability, cetane index, are directly 

related to the chemical composition of the biomass used. Therefore, for oils obtained 

from different raw materials, the chemical properties vary. Compared with diesel, 

biodiesel has slight increased cetane number, almost no sulphur content, low amount 

of aromatics, lower volatility and a short distillation temperature interval. 

Biodiesel is almost 100% biodegradable and has less carbon dioxide emissions and 

particulate matter. However, issues of biodiesel biodegradability and the emissions 

level are in direct correlation with the percentage of diesel added into blend. The 

increase in diesel blend ratio in biodiesel will result in changes in viscosity, density, 

and also changes in biodiesel biodegradability and emissions. A reduction of CO2 

between 50% and 80% was observed for engines using waste oil biodiesel compared 

with petro-diesel [7-11]. The life cycles of CO2 emissions should be taken into 

consideration in order to assess the biodiesel effect on greenhouse gases. 

Physical and chemical properties of biodiesel, such as viscosity, cloud point, cetane 

number and biodiesel stability vary with the nature of biomass used. There are 

differences between diesel and biodiesel properties, as well as between biodiesel 

produced from different biomass. The differences in physicochemical properties 

between diesel and biodiesels have a direct effect over the internal combustion engine 

which was designed for diesel fuel. 

Storage stability. Storage stability refers to the capacity of the fuel to maintain its 

properties during long-term storage. One of the main issues during long term storage 
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are the oxidative attack and the water contamination and microbial growth. These can 

lead to reactions that take place inside of the fuel, which result in changes in 

physicochemical properties of the fuel, in this way affecting the fuel stability. 

Biodiesel is more hygroscopic than diesel fuel. This means that biodiesel stored over a 

long period of time could absorbs more water compared with petro-diesel. The 

presence of water or moisture as a result of the fuel tank condensation could lead to 

issues such as microbial contamination of the fuel, and fuel tank corrosion. The high 

moisture present in fuel reduces the fuel heat of combustion, which results in start-up 

problems in engines, emits more smoke and produced less power. The microbial 

growth could plug the filters and lead to engine operation failure. 

 

2.3. Diesel and Biodiesel Microbiological Degradation 

Various types of aerobic and anaerobic bacteria and fungi can grow in diesel fuel 

tanks. For an organism to grow and multiply inside of a certain environment, at least a 

small amount of water is necessary to be present. The organisms, generally, develop at 

the water-fuel interface, however some organisms can be found suspended in the fuel 

layer. Fuel contamination can lead to fuel filters blockage, increase in the fuel acidity 

and corrosion of the fuel tank. Limited experimental data were available for microbial 

inhabiting biodiesel. Due to the nature of biodiesel, biodiesel was expected that to be 

at higher risk of microbial contamination compared with petro-diesel. In order to 

control the microbial contamination of the fuel, it is important to eliminate the factors 

that could favour the microbial development. Eliminating the moisture and avoiding 

the fuel contact with open air could prevent the microbial contamination, although 

these two parameters are difficult to be controlled during fuel handling and storage. 

Fuel additive such as biocide and anti-fungal could enhance the fuel stability to 

microbial contamination, however these could affect the biodegradability and toxicity 

of biodiesel. 
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Due to high content of carbon, oxygen and hydrogen, biodiesel is a good environment 

for microbes to inhabit. Water is heavier than fuel and presents itself as a “water 

bottom” in a fuel tank. A small amount of water is enough for microbes to survive, 

multiply and grow. It is impossible to prevent water from condensation in the varying 

temperatures. Moisture and water are generally infested with micro-flora and 

introduce microbes to a rich carbon source. 

Water typically enters fuel tanks through vents and seals as humidity in the air. The 

water condenses or is dissolved into the fuel, or is found as free water collected at the 

bottom of the fuel tank, and can become acidic leading to the corrosion of the fuel 

tank. The other major problem associated with water contamination is that it 

contributes to microbial growth. There are species of yeast, fungi, and bacteria that 

will develop at the interface between the fuel and any free water that has collected at 

the bottom of a storage tank. The organisms metabolise the hydrocarbon and the 

resulted by-product can cause filter plugging. The amount of free water in the sample 

depends primarily on the quality of the “housekeeping” practices followed by the fuel 

distributors and consumers. Frequently draining the water from storage tanks, 

ensuring that vents and seals do not allow rainwater to enter, and not drawing from the 

bottom of the tank, should prevent large amounts of free water from entering the 

system.  

Contamination or dilution of the lubricating oil of diesel engines using biodiesel 

represents a major concern for the engine manufactures. Biodiesel consist of low 

volatility fuel components, compared with petro-diesel. When biodiesel is injected 

into the engine combustion chamber, the low volatile components left partially burned 

can deposit on the cylinder head and wall, over a period of time [2]. 

2.3.1. Microbes that Inhabit Diesel 

In the literature available it is shown that the microorganisms that grow in diesel and 

biodiesel are bacteria and fungi. Bacteria are single –cell organisms which do not have 

a membrane-bound nucleus, while fungi have a defined nucleus. The nucleus is the 
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organelle which contains most of the cell`s genetic material [12]. Microbes can also 

be classified by their activity and oxygen requirements: aerobes bacteria, anaerobes 

bacteria and facultative anaerobes.  

a) Aerobic bacteria  

Bacteria that require oxygen are called aerobes bacteria. The aerobes bacteria can 

contaminate the fuel, but they cannot survive in an environment containing less than 

minimum concentration of oxygen. 

Many studies have shown that different species are able to adapt to different 

conditions.  Some of the most common and well known aerobic bacteria have been 

exhibited in diesel. 

Pseudomonas species have been isolated in the contamination of diesel [13].  

Pseudomonas is a gram-negative bacterium. Bacteria are consider gram-negative 

because of their characteristic staining properties under the microscope, where they do 

not stain or are decolourised by alcohol during the gram method of staining [14]. P. 

aeruginosa is one of the most prevalent aerobic bacteria found inhabiting diesel. P. 

aeroginosa has the advantage over many other bacteria that it is capable of adapting 

its lipopolysaccharide cell wall to cater for inhabiting in diesel [15]. 

Lipopolysaccharide is a compound in which a lipid molecule is bound to a 

polysaccharide by a covalent bond. Certain bacteria cell walls contain 

Lipopolysaccharide. The role of gram-negative lipopolysaccharide strains is to help 

stabilize the membrane structure of bacteria and to protect it from certain chemicals 

[14]. 

P. citronellolis has been isolated metabolising crude oil derivatives, monoterpenes (a 

form of hydrocarbon). P. citronellolis is capable of metabolising acyclic 

monoterpenes under anaerobic conditions. Pseudomonas is capable of metabolising in 

aerobic or anaerobic conditions by metabolising oxygen or nitrate as a terminal 

electron acceptor [16]. If P. citronellolis can metabolise an acyclic hydrocarbon, there 

could be possibilities of it metabolising and biodegrading diesel. 

http://www.biology-online.org/dictionary/Polysaccharide
http://www.biology-online.org/dictionary/Covalent_bond
http://www.biology-online.org/dictionary/Chemical
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Species of Bacillus are frequently found in diesel. Bacilli are facultative organisms 

and are conveniently suited to a diesel tank. Bacillus are highly resistant to many 

forms of biocide that are introduced to diesel for sterility [13].  

One method of biodegradation of diesel is the production of a bio-surfactant. An 

Aeromonas spp. (species name not identified) is capable of producing bio-surfactants 

that can emulsify hydrocarbons. 

Other bacteria exhibited in diesel are Aerobacter, Brevibacterium, Micrococcus, 

Rhodococcus [17] and Geobacillus spp. [18].  

b) Anaerobic bacteria 

Anaerobes bacteria are organisms that do not require oxygen for growth. The 

anaerobes bacteria are classified in three categories: 

- Obligate anaerobes are organisms that are harmed by the presence of oxygen 

- Aero-tolerant organisms are organisms that do not use oxygen for growth, but 

can tolerate its presence 

- Facultative anaerobes are organism that can grow without oxygen, but use 

oxygen if it is present  

- Facultative anaerobes have a critical role in the process of contamination. 

Facultative anaerobes bacteria consume oxygen, and consequently create a 

suitable environment for anaerobes bacteria growth.  

There are two major microorganisms isolated from diesel storage tanks that are 

capable of metabolising diesel. One of these is Sulphur Reducing Bacteria (SRBs) 

[13]. SRB is aided by diesel, as it serves as a direct electron donor for sulphate. SRB 

causes biodegradation of the diesel tank. Sulphides corrode metals and in doing so 

could be the cause of irreversible corrosion, and weakening the structure of the diesel 

tank [19]. The SRBs are slow growth bacteria [20]. Examples of SRBs are 

Desulfovibrio, Desulfococcus [21] and Defulsfobacterium [17]. 
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Denitrifying bacteria are anaerobic bacteria capable of metabolising diesel 

constituents, such as ethyl benzene. Ferric iron reducing bacteria are metabolisers of 

constituents of diesel, in particular, toluene. Toluene is an octane enhancer and is 

introduced to diesel. The genus Geobacter has been the only reported anaerobic 

bacteria to metabolise toluene [19]. There are not many other ferric iron reducing 

bacteria that have reported in diesel. 

The methanogenic archaea can inhabit and metabolise hydrocarbons. Methanogens 

convert hydrocarbons into carbon dioxide (CO2) and many other compounds. 

Methanogens are part of the subclass Proteobacteria [19]. 

c) Fungi 

The other major microorganism isolated from storage tanks is Hermoconis resinae 

[13; 17; 22]. Hermoconis resinae, also known as Cladosporum resinae, a member of 

the phylum ascomycota [23], was also found inhabiting diesel. Cladosporum resinae 

is a fast growing fungus that can form a bio-film usually at the water/diesel interface. 

A bio-film in a diesel tank can cause many problems for uptake of diesel by the 

engine and the increased surface area gained by microorganism for the metabolism of 

diesel. The major limiting nutrients that H. resinae can metabolise are nitrogen and 

phosphorous, both of which can be found in diesel. H. resinae is resistant to hostile 

environments as it will sporulate during times of stress (i.e. depletion of the water 

bottom). H. resinae is the degrader of diesel and of fuel in general.  

Some bioremediation methods exploit some soil fungi to clear diesel pollution. Due to 

their capability of metabolising hydrocarbons there have been isolations of some 

fungus in diesel tanks that have also been identified in bioremediation. Fusarium, 

Gliocladmium, Mucor, Penicillium, Scopulariopsis and Trichoderma have been 

identified as major organisms in bioremediation of diesel [24].  

Other fungi that have been shown to exhibit growth in diesel also include 

Acremonium, Aspergillus, Cephalosporium, and Chaetomium. Fungi metabolise the 

carbon from diesel and release carbon dioxide, organic acids, alcohols and esters 
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resulting in alteration of the diesel quality. Fungi are typically found growing in diesel 

in contrast to bacteria. Whereas bacteria commonly grow in crude oil, fungi appreciate 

the more refined products. Bacteria exhibit in the water bottom, whereas fungi usually 

exhibit a wider range of conditions and resources in which it could survive and 

reproduce [17]. 

Yeasts are classified in the kingdom Fungi, and are capable of inhabiting diesel [17]. 

Yeasts are capable of metabolising aromatic compounds and hydrocarbons. 

Species of yeast isolated and characterised were Pichia membranaefaciens, Candida 

rugosa and C. tropicalis. C. tropicalis showed the highest biodegradability for 

phenols [25]. This shows the potential of yeast of inhabiting diesel. 

Microbes, like any other organisms cannot survive without water. Only few microbes 

can grow in fuel itself. Water can get into the fuel storage system through various 

ways. Condensation is one of the problems that cannot be easily controlled. Generally 

microbes find their growth at the interface between fuel and water. Bacteria first 

colonise the interface and the resulting by-product are surfactants and 

lipopolysaccharides, also known as scinnogens [26]. Membranous scinnogens can act 

as solid surfactants, enabling bacteria to metabolise the fuel hydrocarbons. Similarly, 

at the solid-liquid interface the lipopolysaccharides are generally referred as the 

glycocalix [27].  

Certain microbes do not metabolise hydrocarbons. However, those microbes that 

metabolise hydrocarbons can produce toxic metabolites that other species use as 

nutrients [28]. These can result in an accelerated fuel bio-deterioration due to the 

presence of a wide diversity of microbes.  
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2.4.  Bio-fouling of Diesel 

Bio-fouling or biological fouling is the degradation of a surface as a result of 

accumulation of organisms on a wetted surface. The greater the number of carbon 

atoms in a compound the easier it is for a microbe to metabolise it. The fuel 

contamination leads to fuel biodegradation and bio-fouling. These have as 

consequences blockage of pipes, blockage of valves, fouling of injectors, which leads 

to shorter lifetimes for diesel engines. During storage and transportation, the micro-

flora continues to increase because of the moisture in the water bottom of the fuel 

tank. 

2.4.1. Conditions for Bio-fouling of Diesel 

To increase the shelf life of diesel, certain stabilisers are added during the refinery 

process. The additives also increase the diesel cetane number. However, these 

additives are a source of nutrient for some microbes [13]. Octane enhancers are esters 

which are added to diesel to inhibit microbial growth and biodegradation. Octane 

enhancers also lower the emission of volatile organic compounds. However, these 

additives create a good environment for the growth of microbes in diesel, whereas, 

biodiesel due to the high carbon content naturally provides a more favourable 

environment for microbial growth, compare with diesel. 

Nutrients factors involved in microbial growth in diesel/biodiesel are: 

a) Carbon is contained in high amounts in diesel/biodiesel, and combined with 

other nutrients provide a suitable medium for microbial colonies growth. The 

carbon in diesel and biodiesel comes in various forms and it can determine the 

range for a variety of micro-flora. 

b) Temperature. The conditions for microbes to survive and grow in diesel tanks 

are favourable. Outside environmental temperatures can be unpredictable and 

microbes can tolerate between 4°C to 60°C and above [29]. The metabolism of 

microbes also generates heat which is able to add to the environmental 
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temperatures exhibited within the diesel tank [30]. High temperature inside of 

the fuel tanks can destabilise diesel as a result of cetane stabilizer denaturation. 

Cetane stabilisers may act as minor nutrient for micro-flora, the denaturation 

would add to changes in chemical composition [31].  

c) pH. Microbes that inhabit fuel have a preference for neutral pHs: conditions 

between pH 4 and pH 9 will suit a wide range of microbes [32]. The products 

produced by the microbes generally lower the pH making the water interface 

more acidic [22].  

d) Oxygen is normally present in diesel and accumulates during the refuelling 

stage. The majority of microbes that degrade diesel are aerobic. The presence 

of oxygen allows the biodegradation of hydrocarbons in the diesel. An 

increase in aeration does increase a microbe`s hydrocarbon metabolism, 

however, a concentration of oxygen as low as 0.1 ml 1-1 is sufficient [17]. 

Having a completely anaerobic tank does not ensure sterility. Anaerobic and 

facultative microbes are able to utilise this environment and are capable of 

metabolising hydrocarbons within diesel [22]. 

e) Water is essential for microbes to grow. A minimum of 1% water will suffice 

for growth. The water can be present as a water bottom, with a clear 

diesel/water interface [17] or as water –in oil-mixture. Droplet size in a water-

in-oil mixture would be in the range of 1.0 – 10 µm in diameter and are able to 

sustain micro-flora in diesel. Quality standards would normally allow a 

maximum of 0.1% water in diesel.  

f) Mineral and minor nutrients. Some of the limiting factors in diesel and 

diesel/water are some of the essential minerals. Iron, iron ions and other ions 

are limited in diesel and diesel/water, but within a metallic diesel tank ions are 

present. The biodegradation of the tank increases metal ion concentration in 

diesel [17]. 

Water is used as part of the extraction process and ships use water for ballast. Fresh 

and ocean water contain low concentration of sulphates. Sulphates are an alternative 
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electron acceptor to oxygen and will cater for the anaerobic micro-flora. Sulphur 

reducing bacteria (SRB) are some of the few bacterial organisms who can metabolise 

sulphates [17]. 

Phosphorus and nitrogen are also present in fuel at very low concentration (<1 ppm) 

[13]. These are nutrients that could serve as limiting factors for restricting growth 

within a diesel tank. Although this will limit growth, this will not limit the 

biodegradation of diesel [22]. 

2.5.  Comparison Biodiesel – Diesel  

The characteristics and functions of biodiesel are very similar to diesel. There are only 

two differences between diesel and biodiesel: the hydrocarbon content and the 

biomass used. 

Yielding diesel requires the technique of distillation of crude oil. Crude oil is 

extracted from beneath Earth`s surface and can be distilled into many fractions, one of 

which is diesel. This method is quite a contrast to transesterification of rapeseed oil 

into biodiesel. Distillation of crude oil is where diesel has originated. Differences 

between the derivatives distilled from ground extracted crude oil and rapeseed 

transesterified oil is the common characteristic of petrochemical biomarkers; these are 

found within crude oil and are used to distinguish diesel from other diesel types [33]. 

Diesel and biodiesel exhibit similarities in their carbon atom content. Diesel has a 

carbon atom quantity between 15 and 22 rapeseed biodiesel has a carbon atom 

quantity between 16 and 22. Moreover, soya oil biodiesel has a carbon atom quantity 

15 and 22 [22]. 

Researchers showed a difference in quantity of each fatty acid that is exhibited in 

diesel and biodiesel. Palmitic acid is found to be 20% of the total amount in diesel 

[34]. Palmitic acid was exhibited at 3% of the total amount in biodiesel [6]. 
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Diesel is known to contain high amount of sulphur; this makes diesel a pollutant fuel. 

Biodiesel contains low amount of sulphur, in accordance with the European standard 

[35]. Both diesel and biodiesel contain sulphur and can influence the niche that a 

particular microbe might exploit. 

The biodiesel’s advantage over the diesel consists of the reduction of the harmful 

emissions without causing any severe engine damage. Some aspects of biodiesel have 

been found to enhance engine performance. Biodiesel is generally cheaper, renewable 

and does not emit any carcinogens. The emissions that are produced are less harmful 

to society [35]. 

 

2.6. Fuel Stability 

A fuel is considered unstable when it undergoes changes in the physiochemical 

properties. Previous studies showed that storage conditions such as the temperature, 

atmosphere and presence of pro-oxidant metals can affect the quality of the fuel stored 

over a long period of time.  

A fuel with high thermal stability refers to the fuel resistance to decomposition at high 

temperatures. These changes take place where the diesel engine reaches high 

temperatures.   The injection system of the diesel engine could reach temperatures of 

up to 100°C, whereas for the engine injector tip, the temperature could reach up to 

300°C.  

Oxidative stability refers to the tendency of fuels to react with oxygen at temperatures 

near ambient. The presence of air inside of the fuel tank can provide the oxygen 

necessary for the fuel oxidation reaction to take place. Generally, the rate of reaction 

doubles with every 10°C increase in temperature [36]. The oxidation reactions are 

much slower than thermal oxidations, which take place at elevated temperatures. As a 

result of oxidation, the oxides formed on the aluminium parts often dislodge, 

producing varnish deposits and sediments.  
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Storage stability refers to the stability of the fuel while it is kept in long-term storage. 

Some metals have a catalytic effect on the biodiesel oxidation process. Especially in 

long term storage, the contact with metals such as copper, and copper containing 

alloys, lead, tin, and zinc should be avoided. Oxidative reaction is an important issue 

of storage stability. Storage stability includes not only the presence of oxygen, but 

also the moisture which could introduce contaminants in the fuel during the period of 

storage. 

The unsaturated oils are more predisposed to the oxidation attack. The oxygen attach 

to the carbon element present in hydrocarbon molecule forming a hydro-peroxide 

molecule. The unsaturated biodiesel, containing multiple double bonds in its 

molecule, is highly susceptible to oxidation. Iodine Value (IV) or the iodine index are 

generally used to evaluate the content of hydro-peroxide in the fuel. Oils with high IV, 

such as soybean oil (has IV range from 130 to 135) are highly predisposed to 

oxidation while animal fats with low IV, such as tallow (has IV range from 30 to 48) 

are less susceptible.  Linoleic and linolenic acids, with two or three bonds, 

respectively, oxidise fast. The hydro-peroxides could either break apart in short chain 

aldehydes and acids, or they could form dimmers and polymers. The short chain acids 

lead to a decrease in the flashpoint, while the polymerisation could results in an 

increase in viscosity and formation of insoluble sediments and varnish deposits [37]. 

As a result of fuel polymerisation a high molecular weight of insoluble sediments and 

gums could formed. The acid formation as a result of polymerisation might cause fuel 

system corrosion, and the hydro-peroxides are very unstable and have the tendency to 

react with elastomers. The effect of the polymerisation can range from changes in 

biodiesel chemical composition to physical properties of biodiesel. These could result 

in increase in fuel viscosity, and affect the engine efficiency, and therefore the exhaust 

emissions.  
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2.7.  Combustion 

A large quantity of the world`s energy comes from the combustion of fossil fuels, as 

presented in Figure 2-1 [38]. The downside of fossil fuels is the high amount of 

pollutant emissions released from combustion. The amount of pollutant emissions are 

strictly regulated by legislations in most of the developed countries. In order to 

conform to these norms new greener sources of energy are of interest today, together 

with the development of new ideas on how to achieve better combustion [39].  

 

Figure 2-1: Energy by power source 2008 (38)  

NOTE: Source: IEA *`=solar, wind, geothermal and biofuels 

Combustion is defined as rapid oxidation producing heat, or both heat and light. The 

slow oxidation is a combustion process, as well, which generate little heat and no 

light. The slow oxidation occurs close to a catalytic surface at low temperatures, while 

the combustion process which takes place, for example, in burners and engines, is 

rapid oxidation which transforms the energy stored in the chemical bonds to heat [39].  

A typical engine combustion reaction and the resulted components from the reaction 

are presented in equation (1). 
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    𝐹𝑢𝑒𝑙 + 𝐴𝑖𝑟(𝑁2 + 𝑂2) → 𝐶𝑂2 + 𝐶𝑂 + 𝐻2𝑂 + 𝑁2 + 𝑂2 + (𝐻𝐶) + 

+𝑂3 + 𝑁𝑂2 + 𝑆𝑂2 + 𝑁𝑂𝑥 + 𝑃𝑀 
(1) 

  

where fuel can be - diesel = 𝐶𝑛𝐻𝑚 or  

           - biodiesel = 𝐶𝑎𝐻𝑏𝑂2. 

Carbon dioxide (CO2) is a colourless, odourless gas that results from petroleum fuel 

combustion. CO2 directly affects the human health and contributes to “greenhouse gas 

effect” [39].  

Carbon monoxide (CO) is a result of the incomplete combustion of the fuel. Vehicles 

powered by diesel release carbon monoxide emissions. Common conditions for the 

carbon monoxide to form are when the air-fuel ratio in the engine is low, at cold 

engine start and at high altitudes, where the content of oxygen in the air is low [39]. 

At the high temperature conditions in the engine, nitrogen and oxygen atoms in the air 

react to form various nitrogen oxides, known as 𝑁𝑂𝑥. Nitric oxide (NO), like 

hydrocarbons is the precursor of ozone. Nitrogen dioxides are considered major air 

pollutant and contribute to the formation of acid rain. 

Hydrocarbons (HC) emissions or unburnt hydrocarbon are a result of a partially burnt 

molecule. Hydrocarbons are major pollutants. Together with nitrogen oxides and in 

the presence of sunlight contribute to ground-level ozone.  

Sulphur oxides (SOx) are colourless gases formed due to the presence of sulphur in 

fuel. Sulphur oxides are very harmful for human health and environment.  

Particulate matter (PM) are tiny solid or liquid particles of soot, dust, smoke, fumes, 

and aerosols. PM causes human health problems, visibility reduction and contribute to 

air pollution [39]. 

The results of the complete combustion process are CO2, water and heat of 

combustion or energy. During combustion, the combustible part of fuel is subdivided 
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into a volatile part and a solid residue. The fuel`s volatile components evaporate 

together with a part of carbon in the form of hydrocarbons, combustible gases, and 

carbon monoxide released by thermal degradation of the fuel [40] [39].  

The fuel is heated above the ignition temperature in the presence of an oxidant. When 

complete combustion occurs, the combustible elements C, H and S react with oxygen 

content of air to form CO2, H2O and mainly SO2.  

If the oxidant necessary for the reaction to be sustained is not enough, then the 

exhaust gas is partially cooled below the ignition temperature and the combustion 

process remains incomplete. As a consequence of the partial combustion, carbon 

monoxide (CO), unburned carbon (HC) and various hydrocarbons (CnHm) are formed 

[39]. 

Complete combustion can be achieved only if the right amount of fuel and oxidiser is 

supplied. Air is commonly used for oxidising the fuel. The air consists of a mixture of 

20.9% oxygen and 79.1% nitrogen by volume, or 23.3% oxygen and 76.7% nitrogen 

by mass. Nitrogen reduces the combustion efficiency by absorbing heat from the 

combustion of fuel and diluting the flue gases [40]. Thus, every mole of oxygen 

necessary for the combustion, introduces 3.78 mole of nitrogen.  

There are three important factors which need to be achieved for a good combustion: 

1) The temperature should be above the ignition temperature of the fuel, for the 

fuel to ignite and maintain the combustion, 

2) Turbulence, swirls or intimate mixing of the fuel and oxidant, and 

3) Sufficient time for the combustion to complete. 

The results of a hydrocarbon fuel complete combustion are carbon dioxide and water. 

The water vapours produced after combustion absorbs heat from the flue gas, which 

would otherwise be available for heat transfer [39]. 
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The stoichiometric relation for complete combustion of a hydrocarbon fuel, CnHm 

becomes: 

𝐶𝑛𝐻𝑚 + (𝑛 +
𝑚

4
) (𝑂2 + 3.78𝑁2) → 𝑛𝐶𝑂2 +

𝑚

2
𝐻2𝑂 + 3.78 (𝑛 +

𝑚

4
) 𝑁2 (2) 

Thus for every mole of fuel to be burned it is required 4.78(𝑛 + 𝑚 4⁄ ) 𝑚𝑜𝑙 of air and 

resulting [4.78(𝑛 + 𝑚 4⁄ ) + 𝑚 4⁄ ] 𝑚𝑜𝑙 combustion products.  

The products of combustion are generally expressed in terms of mole fractions since 

the mole fraction does not vary with the temperature or pressure. The product mole 

fractions of complete combustion 𝐶𝑛𝐻𝑚 ful are: 

𝑦𝐶𝑂2
=

𝑛

4.78(𝑛 + 𝑚 4⁄ ) + 𝑚 4⁄
 (3) 

𝑦𝐻2𝑂 =
𝑚 2⁄

4.78(𝑛 + 𝑚 4⁄ ) + 𝑚 4⁄
 (4) 

𝑦𝑁2
=

3.78(𝑛 + 𝑚 4⁄ )

4.78(𝑛 + 𝑚 4⁄ ) + 𝑚 4⁄
 (5) 

 

For most common fuels, the only chemical information available is its elemental 

composition on a mass basis. Consider a fuel that contains 86.9% C, 12.9% H, 0.07% 

O2, 0.02 N, 0.09% S and 0.02% ash by weight. The molar composition may be 

determined by dividing each mass percentage by the atomic weight of the constituent, 

Table 2-1. For convenience in stoichiometric calculations the composition is 

normalised with respect to carbon. 

Table 2-1: Fuel molar composition 

Element wt [%] mol/ 100g mom/ mol C 

C 86.9 ÷ 12.011 = 7.235 ÷ 7.235 = 1 

H 12.9 ÷ 1.0079 = 12.798 ÷ 7.235 = 1.769 

O 0.07 ÷ 15.999 = 0.00438 ÷ 7.235 = 0.001 

N 0.02 ÷ 14.007 = 0.00143 ÷ 7.235 = 0.0002 

S 0.09 ÷ 32.065 = 0.00281 ÷ 7.235 = 0.0004 

Ash 0.02  ÷ 7.235 = 0.0028 g/mol C 
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The chemical formula that can be used to describe this particular fuel is: 

𝐶𝐻1.769𝑁0.001𝑂0.0002𝑆0.0004  (6) 

 

The molar mass of the fuel is: 

𝑀𝑓 = 100 7.235[𝑔 𝑚𝑜𝑙 𝐶⁄ = 13.82[𝑔 𝑚𝑜𝑙 𝐶⁄ ]]⁄  (7) 

 

The combustion at stoichiometric condition is: 

𝐶𝐻1.769𝑁0.001𝑂0.0002𝑆0.0004 + 𝛼(𝑂2 + 3.78𝑁2)

→ 𝐶𝑂2 + 0.885 𝐻2𝑂 + 0.0004 𝑆𝑂2 (3.78 𝛼 + 0.0005)𝑁2 
(8) 

Where 𝛼 = (2 + 0.885 + 0.0008 − 0.0002) 2⁄ = 1.44 

The fuel/air mass ratio for stoichiometric combustion is: 

(𝑚𝑓 𝑚𝑎⁄ )
𝑠𝑡

=
13.82 [𝑔 𝑚𝑜𝑙⁄  𝐶]

1.44(31.998 + 3.78 × 28.014)[𝑔 𝑚𝑜𝑙 𝐶⁄ ]
= 0.696 (9) 

 

The total number of moles of gaseous combustion products per mole of C is: 

𝑁𝑇 = 1 + 0.885 + 0.0004 + 3.78 × 1.44 + 0.0005 = 7.329 (10) 

 

The species mole fractions in the combustion products are: 

𝑦𝐶𝑂2
=

1

7.329
= 0.136 = 13.6 % (11) 

𝑦𝐻2𝑂 =
0.885

7.239
= 0.122 = 12.2 % (12) 

𝑦𝑆𝑂2
=

0.0004

7.239
= 0.0000553 = 55.3 𝑝𝑝𝑚 (13) 

𝑦𝑁2
=

3.78 × 1.44 + 0.0005

7.239
= 0.752 = 75.2 % (14) 
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In real life it is very difficult to achieve stoichiometric combustion, thus in order to 

allow sufficient oxidant for the fuel it is preferable to operate the combustors with 

more than stoichiometric amount of air. The fuel/air ratio is used to define the 

operating conditions of a combustor. The fuel/air ratio required for stoichiometric 

combustion varies with the fuel composition [39].  

The stoichiometric condition is used as reference point for systems operating on 

different fuels [39]. The equivalent ratio, Ф, is defined as the fuel/air ratio normalised 

with respect to the stoichiometric fuel/air ratio: 

∅ =
(𝑚𝑓 𝑚𝑎⁄ )

(𝑚𝑓 𝑚𝑎⁄ )
𝑠𝑡

 (15) 

For  Ф < 1 means fuel-lean combustion, 

Ф = 1 stoichiometric combustion, and 

Ф >1 means fuel-rich combustion. 

The stoichiometric ratio, λ, is the actual air/fuel ratio normalized with respect to 

stoichiometric air/fuel ratio: 

𝜆 =
(𝑚𝑎 𝑚𝑓⁄ )

(𝑚𝑎 𝑚𝑓⁄ )
𝑠𝑡

=
1

𝜙
 (16) 

The percentage excess air, EA, is defined as:  

𝐸𝐴 = (𝜆 − 1) × 100 (17) 

The percentage theoretical air, TA, is: 

𝑇𝐴 = 𝜆 × 100% (18) 

The products of combustion vary with the equivalence ratio. The combustion 

conditions could be expressed in terms of a fuel/air ratio, and also in terms of the 

amount of excess oxygen in the combustion products. 
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2.7.1. First Law of Thermodynamics 

The first law states that the sum of all energies is constant in an isolated system, with 

no mass transfer and no energy transfer taking place.  

 

𝑑𝐸 = 𝛿𝑄 − 𝛿𝑊 (19) 

 

Where E represents the total energy of the system and includes the internal energy, U, 

the kinetic energy and the potential energy. The kinetic and potential terms can be 

neglected.  

The change in internal energy dU of a system is given by the sum of the heat 

transferred and the work to the system, 

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊 (20) 

 

As a general convention, the energy added to the system is taken as positive and the 

energy taken from the system is taken as negative.  

Integrated over a finite change of state from state 1 to state 2, the equation (20) 

becomes:  

𝑈2 − 𝑈1 = 𝑄12 − 𝑊𝑥12 (21) 

 

In general practice, the fuel and air enter the combustion zone across certain 

boundaries, and combustion products are exhausted across other boundaries. 

Therefore, the expression can be derived for the change in state of a fixed volume in 

space, called control volume [39].   

𝐸2 −  (𝐸1 + 𝑒̅𝛿𝑚) = 𝑄12 + 𝑝𝑣̅𝛿𝑚 − 𝑊𝑥12 (22) 

 

Where 𝑒̅ denotes the energy per unit mass or mass specific energy of 𝛿𝑚,  

 𝑣 ̅is the mass specific volume and is equal with 1/ρ, 
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 𝑝𝑣̅𝛿𝑚 is the work done on the combined system by the environment when the 

small volume enter the control volume surface, 

 𝑊𝑥  represents any work other than that associated with that volume 

displacement. 

 The over-bars denote mass specific properties. 

 

Rearranging the terms, eq. (22) becomes:  

𝐸2 −  𝐸1 = 𝑒̅𝛿𝑚+𝑝𝑣̅𝛿𝑚 + 𝑄12 + −𝑊𝑥12 

 

(23) 

 

𝑑𝐸 = (𝑒̅ + 𝑝𝑣̅)𝛿𝑚 + 𝑑𝑄 − 𝑑𝑊𝑥 (24) 

 

The time rate of change of the energy in a control volume with a number of entering 

and exiting mass flows can be express as [39]: 

𝑑𝐸

𝑑𝑡
+ ∑ (𝑒𝑗̅ + 𝑝𝑣̅𝑗)

𝑗,𝑜𝑢𝑡

𝑓𝑗̅ − ∑(𝑒𝑖̅ + 𝑝𝑣̅𝑖)

𝑖,𝑖𝑛

𝑓𝑖̅ = 𝑄 − 𝑊𝑥  (25) 

 

Where 𝑓𝑗̅ and 𝑓𝑖̅ are the mass flow rates leaving or entering the control volume, 

 Q is the rate of heat transfer to the system, and 

 𝑊𝑥  is the rate at which work is done by the system on its surrounding other than 

that associated with flows across the control volume boundary. 

Neglecting the kinetic and potential energy contribution to the total energy, eq. (25) 

becomes: 

𝑑𝑈

𝑑𝑡
= ∑ 𝑓𝑖̅

𝑖,𝑖𝑛

ℎ𝑖̅ − ∑ 𝑓𝑗̅

𝑗,𝑜𝑢𝑡

ℎ̅𝑗 + 𝑄 − 𝑊𝑥 (26) 

 

Where the mass specific enthalpy, ℎ̅, is defined as:  

 

ℎ̅ = 𝑢̅ + 𝑝𝑣̅ (27) 
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Rewriting the eq. (26) and (27) on a molar basis: 

 
𝑑𝑢

𝑑𝑡
= ∑ 𝑓𝑖

𝑖,𝑖𝑛

ℎ𝑖 − ∑ 𝑓𝑗

𝑗,𝑜𝑢𝑡

ℎ𝑗 = 𝑄 − 𝑊𝑥  (28) 

Where ℎ = 𝑢 + 𝑝𝑣 denotes the molar specific enthalpy, 

 𝑓𝑖  is the molar flow rate of species i. 

Consider the forward reaction occurring at steady state and constant pressure and 

isothermal conditions, as presented in Figure 2-2 [39]: 

𝑎𝐴 + 𝑏𝐵 → 𝑐𝐶 + 𝑑𝐷 

 

 

 

 

 

 

 

 
 

 

Appling the steady-state form of eq. (28) to the system present in Figure 2-2: 

 

𝑐𝑓ℎ𝐶(𝑇1) + 𝑑𝑓ℎ𝐷(𝑇1) − 𝑎𝑓ℎ𝐴(𝑇1) − 𝑏𝑓ℎ𝐵(𝑇1) = 𝑄 (29) 

 

Where 𝑊𝑥 = 0 as no work is done by the combustion gases, 

𝑎𝑓, 𝑏𝑓, 𝑐𝑓 and 𝑑𝑓 denotes the molar flow of A, B, C and respectively D into 

the volume control at the temperature 𝑇1.  

Q 𝑊𝑥 = 0 

A 

B

A 

C

A 

D

A 

T1 

a f 

b f d f 

c f 

T1 

Figure 2-2: Isothermal steady flow reactor 
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Dividing eq. (29) by 𝑓 obtains the heat transfer per mole necessary to maintain the 

process at a constant temperature, 𝑇 = 𝑇1: 

𝑐ℎ𝐶(𝑇1) + 𝑑ℎ𝐷(𝑇1) − 𝑎ℎ𝐴(𝑇1) − 𝑏ℎ𝐵(𝑇1) =
𝑄

𝑓
= ∆ℎ𝑟(𝑇1) (30) 

Eq. (30) is called the enthalpy of reaction, ∆ℎ𝑟(𝑇1) which is the difference between 

the molar specific enthalpies of the products and reactants at stoichiometric 

conditions. In order to define the enthalpy of a species it is necessary to consider a 

reference state at which the enthalpy it is taken to be zero. Generally, the reference 

temperature and pressure are taken to be 𝑇0 = 298𝐾 and 𝑝0 = 1𝑎𝑡𝑚 [39].  

The enthalpy of the reactants and products at the same temperature, 𝑇 is called the 

enthalpy of the formation. By definition, the enthalpies of formation of the elemental 

reference compounds are zero [39]. The enthalpy of species 𝑖 at temperature 𝑇 relative 

to the reference state is: 

 

ℎ𝑖
°(𝑇) = ℎ𝑖(𝑇) − ℎ𝑖(𝑇0) + ∆ℎ𝑓𝑖

° (𝑇0) (31) 

 

The superscript ° denotes evaluation with respect to the chemical reference state. The 

sensible enthalpy term may be evaluated as an integral over temperature of the 

specific heat constant pressure, 𝑐𝑝 = (𝜕ℎ 𝜕𝑇⁄ )𝑝 which is: 

ℎ𝑖(𝑇) − ℎ𝑖(𝑇0) = ∫ 𝑐𝑝,𝑖(𝑇`)𝑑𝑇`
𝑇

𝑇0

 (32) 

 

The specific heat, 𝑐𝑝,𝑖 is dependent of temperature, therefore it can be approximated as 

a linear function of temperature: 

 

𝑐𝑝,𝑖 ≈ 𝑎𝑖 + 𝑏𝑖𝑇 (33) 
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The approximation considered in eq. (33) estimates the value of sensible enthalpy for 

a range of temperature between 300 and 3000 K. 

The first law of thermodynamics for a chemically reacting open system becomes: 

 
𝑑𝑈

𝑑𝑡
+ ∑ 𝑓𝑗[ℎ𝑗(𝑇) − ℎ𝑗(𝑇0) + ∆ℎ𝑓,𝑗

° (𝑇0)]

𝑗,𝑜𝑢𝑡

− ∑ 𝑓𝑖 [ℎ𝑖(𝑇) − ℎ𝑖(𝑇0) + ∆ℎ𝑓,𝑖
° (𝑇0)]

𝑖,𝑖𝑛

= 𝑄 − 𝑊𝑥  

(34) 

 

If the chemical composition and thermodynamic properties of the fuel are known, eq. 

(34) can be used to approximate temperature changes, heat transfer, or work 

performed in combustion systems [39]. 

2.7.2. Adiabatic Flame Temperature 

Combustion reactions occur very fast – in the order of 1ms - and little heat or 

work transfer takes place on the time scale of combustion. For this reason the 

maximum temperature achieved in the combustion process is often near that for 

adiabatic combustion. This so-called adiabatic flame temperature can be calculated by 

applying the first law of thermodynamics to an adiabatic combustor [39].  

Considering a steady-flow combustor burning fuel with composition 𝐶𝐻𝑚, the 

combustion stoichiometry for fuel-lean combustion is: 

𝐶𝐻𝑚 +
𝛼𝑠

∅
(𝑂2 + 3.78𝑁2) → 𝐶𝑂2 +

𝑚

2
𝐻2𝑂 + 𝛼𝑠 (

1

∅
+ 1) 𝑂2 +

3.78𝛼𝑠

∅
𝑁2 (35) 

where 𝛼𝑠 = 1 + 𝑚 4⁄ . 

The first law of thermodynamics becomes: 
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𝑓 [[ℎ(𝑇) − ℎ(𝑇0) + ∆ℎ𝑓
° (𝑇0)]

𝐶𝑂2
+

𝑚

2
[ℎ(𝑇) − ℎ(𝑇0) + ∆ℎ𝑓

° (𝑇0)]
𝐻2𝑂

+ 𝛼𝑠 (
1

∅
− 1) [ℎ(𝑇) − ℎ(𝑇0) + ∆ℎ𝑓

° (𝑇0)]
𝑂2

+
3.78

∅
𝛼𝑠[ℎ(𝑇) − ℎ(𝑇0) + ∆ℎ𝑓

° (𝑇0)]
𝑁2

− [ℎ(𝑇𝑓) − ℎ(𝑇0) + ∆ℎ𝑓
° (𝑇0)]

𝑓

− 𝛼𝑠

1

∅
[ℎ(𝑇𝑎) − ℎ(𝑇0) + ∆ℎ𝑓

° (𝑇0)]
𝑂2

−
3.78

∅
𝛼𝑠[ℎ(𝑇𝑎) − ℎ(𝑇0) + ∆ℎ𝑓

° (𝑇0)]
𝑁2

] = 𝑄 − 𝑊𝑥 = 0 
(36) 

 

The adiabatic flame temperature, 𝑇 is calculated based on the sensible enthalpy and 

enthalpy of formation for each of the species. Using the linear approximation for the 

temperature dependence of the specific heats, equation (32) and (33):  

 

ℎ𝑖(𝑇) − ℎ𝑖(𝑇0) = 𝑎𝑖(𝑇 − 𝑇0) +
𝑏𝑖

2
(𝑇2 − 𝑇0

2) (37) 

 

After separating the terms and substituting equation (37) in equation (36), the problem 

of determination of adiabatic flame temperature is reduced to solving a quadratic 

equation [39].  

 

2.8.  Compression Ignition Engine 

2.8.1. Engine Performance 

Engine performance is an indication of how efficient the engine converts the chemical 

energy contained in the fuel into mechanical work. The parameters evaluating the 

performance of an engine are the following: 
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a. Brake Power; 

b. Brake Specific Fuel Consumption; 

c. Brake Mean Effective Pressure; 

d. Fuel-Air Ratio; 

e. Exhaust Emissions and Smoke; 

f. Brake Thermal Efficiency. 

 

a) Engine Brake Power 

The Brake Power is the useful mechanical power supplied by an engine as determined 

by a friction or absorption dynamometer that is applied to the output shaft or fly-

wheel of the engine. The measurement of the engine brake power involves the 

measurement of the engine torque and speed [39]. The brake power is given by 

equation (37). 

 

𝐵𝑃 =
2𝜋𝑁𝑇

60
 (38) 

 

where  T = torque [Nm]  

N = rotational speed in revolutions per minute. 

The total engine power developed in the cylinder is called the Indicated Power (IP). 

The difference between BP and IP is that the BP is the power left after some power 

was consumed by the moving parts of the engine due to the friction [39]. 

Indicated power is an indication of the combustion efficiency or the heat released in 

the cylinder, and is given by: 

 

𝐼𝑃 =
𝑀𝐸𝑃 × 𝐿 × 𝐴 × 𝑁 × 𝑘

60
 (39) 

 

where, MEP = mean effective pressure, [N/m2], 
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      L = length of the stroke, [m], 

      A = area of the piston, [m2], 

      N = rotational speed of the engine, [rpm] (It is N/2 for four stroke engine),  

       k = number of cylinders. 

 
The power lost due to the moving parts of the engine is called the friction power, FP. 

FP=IP-BP (40) 

  

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐵𝑃

𝐼𝑃
=

𝐵𝑃

𝐹𝑃 + 𝐵𝑃
 (41) 

 

b) Brake Specific Fuel Consumption 

Brake Specific Fuel Consumption, BSFC, is defined as the ratio between the rate of 

the fuels consumed and the brake power developed per hour. BSFC is an indication of 

engine efficiency. 

 

𝐵𝑆𝐹𝐶 =
𝑓𝑟

𝐵𝑃
 (42) 

 

where    𝑓𝑟  = rate of fuel consumption  

𝐵𝑃 = engine brake power. 

 

c) Brake Mean Effective Pressure 

Mean Effective Pressure, MEP, is the pressure applied on the top of the piston, after 

the compressed air-fuel mixture ignited. MEP can be evaluated based on the engine 

brake power, equation (43), or based on the indicated brake power, equation (44) [39]. 

 

𝐼𝑀𝐸𝑃 =
𝐼𝑃 × 60

𝐿 × 𝐴 × 𝑁 × 𝑘
 (43) 
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𝐵𝑀𝐸𝑃 =
𝐵𝑃 × 60

𝐿 × 𝐴 × 𝑁 × 𝑘
 (44) 

 

Similarly, the friction mean effective pressure (FMEP) can be defined as, 

 

𝐹𝑀𝐸𝑃 = 𝐼𝑀𝐸𝑃 − 𝐵𝑀𝐸𝑃 (45) 

 

From equation (38) and (39) result that torque is related to mean effective pressure by 

the relation presented in eq. (46) 

 
2𝜋𝑁𝑇

60
=

𝐵𝑀𝐸𝑃 × 𝐴 × 𝐿 × 𝑁 × 𝑘

60
 (46) 

 

From equation (46) it is observed that the higher is the BEP the more power the 

engine produces. 

 

d) Fuel-Air Ratio (F/A) 

Fuel-air ratio (F/A) is an important parameter for the diesel engine. The ratio of the 

fuel and air mixture determines the engine combustion efficiency. A combustion takes 

place at stoichiometric conditions when the ratio of the fuel to air is equal to one. The 

fuel-air ratio determines if the combustion is lean or rich, the flame propagation 

velocity and the heat of the combustion [39]. The relative fuel-air ratio, (𝐹 𝐴⁄ )𝑟𝑒𝑙   is 

given by equation (47). 

 

(𝐹 𝐴⁄ )𝑟𝑒𝑙 =
(𝐹 𝐴⁄ )𝑎𝑐𝑡

(𝐹 𝐴⁄ )𝑠𝑡
 (48) 
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e) Exhaust Emissions and Smoke 

With the increasing concern related to the effect of exhaust emissions and smoke on 

human health and environment, strict regulations were imposed. Nitrogen oxides, 

sulphur oxides are under strict regulations. Smoke is an indicator of incomplete 

combustion.  

 

f) Brake Thermal Efficiency  

Brake thermal efficiency, (BTE), of an engine is defined as the ratio of the output 

energy to that of the chemical energy input contained in the fuel. BTE is an indication 

of efficiency of the engine to convert the chemical energy from a fuel into mechanical 

energy [39]. Brake thermal efficiency is given by equation (49). 

𝐵𝑇𝐸 =
𝑚𝑓

𝐶𝑣
 (49) 

 

 

where,  𝐶𝑣 = the calorific value of the fuel, [kJ/kg]  

𝑚𝑓 = the mass of the fuel supplied, [kg/sec] 

 

2.8.2. Basic Measurement 

There are a large number of parameters that are used to evaluate the engine 

performance, such as: 

a) The engine speed 

b) The engine fuel consumption  

c) The air consumption 

d) The engine brake power 

e) The indicated power and friction power 

f) The heat going to cooling water and exhaust 

g) The exhaust emissions analysis. 
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Measuring methods and instrumentation used in order to evaluate the engine 

performance are described in the following.  

 

a) Measurement of Speed 

Speed is one of the main engine parameters used in engine`s performance 

evaluation. The engine speed can be measured using tachometer devices which 

count the number of revolutions at the engine shaft in a given time. The variations 

in engine temperature could affect the accuracy of tachometer measurements. In 

order to minimise the measurement errors, a magnetic pick-up positioned near the 

wheel attached to the engine shaft produces a pulse for every revolution, and a 

pulse counter will accurately measure the speed [41]. 

 

b) Fuel Consumption Measurement 

Another important engine parameter is the fuel consumption. There are two ways of 

measuring the fuel consumption: gravimetric or volumetric. 

i. Gravimetric Fuel Flow Measurement - the fuel consumption of an engine 

can be measured by determining the mass of fuel used in a given time 

interval. Gravimetric flow measurements are more accurate compared with 

the volumetric measurements since the weight of the fuel is directly 

measured, thus avoiding later correction of the fuel specific gravity. 

Gravimetric type of systems include the actual weighing of fuel consumed, 

four orifice flow-meter and coriolis flow meter. 

ii. Volumetric Fuel Flow Measurement – the fuel consumption can be also 

measured by recording the time required for consumption of a given 

volume of fuel. Volumetric type flow meter includes burette method, 

automatic burette flow-meter and turbine flow-meter. 
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c) Measurement of Air Consumption  

Accurate measurements of fuel and air for determining the engine performance is 

essential. Accurate air flow rate measurements could be achieved quite difficult due to 

the air flow pulsation caused by the engine`s cycles, as well as due to the air 

compressibility. The nozzles, orifices and venturi flow meter lead to variation in 

pressure gradient for a given set of flow conditions, which produce errors in 

measurements [39; 42; 43].  

 

d) Measurement of Brake Power 

The evaluation of the engine brake power involves the measurement of the engine 

torque and speed. Dynamometer measures both torque and speed. Dynamometers 

could be classified in two types: absorption or passive dynamometer and transmission 

or universal dynamometer.  

Absorption dynamometers absorb the power developed by the engine, which then is 

converted and dissipated as heat. Types of absorption dynamometers are Prony brake, 

rope brake, hydraulic dynamometer, etc. Eddy Current Dynamometers are a type of 

absorption dynamometers commonly used for engine torque measurements. Eddy 

Current Dynamometer consists of a stator with electromagnets and a rotor coupled to 

the engine`s shaft. The rotation of the rotor produces eddy currents in the stator which 

then are converted to heat. The load is controlled by regulating the current in the 

electromagnets [39; 41]. A water cooling system is used in order to keep the 

dynamometer operational at a constant temperature. 

A transmission dynamometers has to have the capability to drive the engine at the 

speed and torque required by the test conditions. The transmission dynamometer 

consists of a stand, prime mover and absorption device. 

e) Heat going to cooling water and exhaust 

The temperature of the water cooling entering and leaving the system, as well as the 

exhaust gas is measured with the help of the thermocouples. 
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f) Exhaust emissions analysis and smoke 

All the substances emitted into the atmosphere as a result of combustion are termed 

exhaust emissions, and are regulated by law. For combustion of hydrocarbon fuel at 

stoichiometric conditions, the resultant exhaust emissions would consist of carbon 

dioxide (CO2) and water vapours only. However, combustion at stoichiometric 

conditions is difficult to be achieved and the exhaust emissions consist of carbon 

monoxide (CO), unburned hydrocarbons (UBHC), volatile organic compounds 

(VOC), oxides of nitrogen (NOx) and excess oxygen. 

The common instruments used to measure the exhaust as are: Flame Ionization 

Detector (FID), spectroscopic analyser and gas chromatography.  

The working principle of a smoke meter is based on the measurements of the soot 

density as function of the mass of carbon measured in a given volume of exhaust gas. 

Other smoke measurements are performed using optical measurements. Fixed volume 

of exhaust gas is passed through the filter paper and the intensity of the smoke stain is 

measured. 
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Chapter 3 -Literature Review 

3.1.  Introduction  

In this chapter published literature on diesel and biodiesel fuels has been reviewed 

with the aim of knowing the scope of the research that has already been carried out in 

order avoid repetition and to find justification for the proposed research.  Most papers 

that could be sited were based on investigation of engine performance using biodiesel 

made from various types of feedstock. The mass fractions of biodiesel composition 

can vary from one biodiesel to another, depending on the biomass used in the 

production of biodiesel. These variations in physicochemical properties of biodiesel 

would influence the performance of an engine and the stability of the fuel under 

storage conditions. Unlike diesel, biodiesel’s physicochemical properties can vary 

widely, therefore understanding of biodiesel`s predisposition to biodegradability and 

conformity to a specific standard is important. Hence relevant research papers were 

reviewed to establish the state-of-the-art knowledge about using various types of 

biodiesel in engines. 

3.2.  Characterisation of Microbial Contamination in Fuel 

The issues of microbial contamination have been studied extensively and several 

research articles have been published in the technical literature. Important 

observations from these papers are summarised in this section.  

Bacteria and fungi commonly identified in contaminated diesel fuel and accumulation 

of water at the bottom of the fuel tank are presented in Table 3-1. 

 

 

 



 

45 

 

Table 3-1: Bacteria and Fungi commonly isolated from diesel fuel [28] 

Bacteria Fungi 

Pseudomonas species  Hormoconis resinae  

Flavobacterium species Fusarium species 

Sarcina species Candida species  

Desulfovibrio species Aspergillus species 

Desulfotomaculum species  

Hydrogenomonas species  

Clostridium species   

 

Several microorganisms are able to metabolise mineral oil, depending on 

environmental conditions and supply of nutrition and oxygen content [44]. 

Microorganism populations composed of Pseudomonas aeruginosa, Bacillus species, 

and Micrococcus were effective in degrading hydrocarbons. Short and medium chains 

of hydrocarbon present an advanced degradation compared with that of longer chains. 

Mixed microbial cultures accelerate diesel fuel biodegradability, compared with the 

pure cultures [45]. 

Mukherji isolated bacteria cultures from an oil field in the Arabian Sea in order to 

investigate their growth in diesel oil. He noticed thirty-nine per cent of the fuels were 

degraded under aerobic conditions [46]. Boobathy investigated anaerobic degradation 

of diesel in sulphate reducing, nitrate reducing, methanogenic reducing, as well as in 

mixed reducing environment, proving that various microorganisms participate in 

degrading diesel fuel. During a period of 310 days 81% of diesel fuel was degraded in 

mixed reducing atmosphere [47]. Pereira and Mundge in their tests showed that 

biodiesel made from vegetable oil presented an enhanced biodegradability compared 

with biodiesel made from used edible oil [48].   

T. Schleicher tested rapeseed oil methyl ester (RME) neat and in mixture with diesel 

in 20% RME and 80% diesel by volume (B20) and 5% RME and 95% diesel by 

volume (B5). Samples were inoculated with microorganisms found in soil. It was 

found that a higher diesel fuel ratio in diesel-biodiesel mixture resulted in a higher 
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microbial growth, while fungal growth was more in higher RME contents. All 

inoculated samples showed a reduction in oxidation stability compared with the blank 

sample. Optical evaluation of the samples showed the formation of turbidity and 

sediments in B20 and B5, as a result of microbial growth [30]. 

Blends of biodiesel and 10% by vol. RME resulted in three time higher microbial 

growth compared with the neat diesel. Blend samples of diesel up to 40% by vol. 

RME incubated at 25°C present higher microbial growth, while biodiesel 

concentration over 40% by vol. in diesel mixture promote fungal growth. At higher 

temperatures, 44°C, the fungal growth was inhibited, while bacterial growth was 

enhanced [49].  

Biodiesel as well as mixtures of diesel and biodiesel were more environmental 

friendly, compared with neat mineral oil, more rapidly biodegraded in soil and present 

lower toxicity to aquatic organisms in case of spillage [50; 51].   

The fuel composition also determines the rate of the biodegradation. Fatty acid methyl 

esters (FAME), n-alkanes as well as iso-alkanes, and simple and alkylated aromatic 

compounds and naphthenes compounds were observed to have a high biodegradation 

rate [52]. Smaller alkanes are degraded more slowly than the larger ones, but 

elthylalkanes are degraded less rapidly than methylalkanes [52]. 

There are three reactions which can affect the quality of biodiesel: the hydrolytic split, 

oxidation reaction and electrochemical corrosion. The formation of free fatty acids 

(FFA) can occur due to the presence of water in biodiesel, through hydrolytic split of 

fatty acid methyl ester (FAME). This is known to causes corrosion of metals and 

synthetic materials. Volatile secondary compounds can be created through FAME 

oxidation. Changes in viscosity, boiling point, foam formation and fouling are results 

of polymerisation reactions [30]. The presence of water in fuel leads to both, chemical 

corrosion and microbiologically influenced corrosion (MIC). MIC can increase with 

the increase in biodiesel usage compared with mineral oil [53; 54]. The condensation 

formed inside of the fuel tank and the formation of volatile organic compounds in 
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vapour phase above the surface of the fuel tank could generate favourable conditions 

for biofilm formation [28]. MIC can occur at the fuel or water interface with the 

surface of the storage tank [55-57]. Any irregularity, and or small damage of storage 

tank surface can provide a friendly environment for MIC. The development of biofilm 

inside of the storage tank can result in changes in fuel chemical composition [58]. 

Unrecognised biofilm and microbial growth formation lead to filter and fuel line 

blockage, which in turn result in operational failure in engine due to fuel starvation. 

The biofilm is mostly transparent and it could easily go unrecognised [59]. 

Microbiological contamination of fuel can have a negative impact on fuel tanks, on 

the fuel distribution line of the engine, injector, fuel filters, piston rings, and cylinder 

as well as combustion quality. A result of microbiological growth is fuel 

polymerisation, increased fuel acidity which leads to accelerated corrosion of e.g. fuel 

tanks, fuel distribution line, due to sulphur reducing bacteria (SRB).  

 

3.3.  Engine Performance with Biodiesel 

A review of literature research in diesel and biodiesel is presented in order to highlight 

the similarities and differences in the performance of the two fuel types. The most 

frequently used was either direct injection single cylinder engine or 4-cylinder indirect 

injection engine. The biodiesel fuels used in the reviewed studies were composed of 

methyl esters produce from different oils mostly soy bean, rapeseed, and waste 

vegetable oil.  

A decrease in CO2, particulate matter (PM), carbon monoxide (CO) and sulphur 

oxides (SOx) was observed with the use of biodiesel. However an increase in NOx up 

to 15.7% was reported for 100% biodiesel (B100) [60; 61]. Biodiesel is a natural 

oxygenated fuel, with a content of oxygen up to 10% and a higher cetane number 

compared with diesel fuel. W. Quin and co-workers [62] investigated the effect of O2 

enrichment air on the combustion characteristics of fuel-lean methane/air flames. 
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Their test results showed that enhanced oxygen improves the combustion efficiency 

which resulted in reduced fuel consumption, lowered flame temperature and reduced 

NOx emissions. The reduction in NOx emissions when using O2 enriched air was 

justified as being due to the lower flame temperature and reduced N contents in the 

combustion air.  

“The reduction of NOx is caused by the synergistic effect of temperature 

and N2 concentration reductions as more O2 is added” [62].  

The differences in combustion gas between biodiesel and petro-diesel were expected 

due to the differences in the chemical composition. In the published literature it was 

found that short chained fatty acid methyl esters (FAME) and the saturated 

compounds could be associated with higher flame temperature, thus higher tendency 

for thermal NOx formation [63]. NOx emissions from a jet-stirred reactor were 

measured and the results showed that at 0.5-2.5ms residence time a minimum NOx of 

3.5ppm (15% O2 and 6.5atm) was measured. For residence time under 0.5ms an 

increase in NOx emissions was observed. This was explained by the increased 

presence of free radicals in the reactor which could result in higher NOx formation 

[64].  

The Environmental Protection Agency (EPA), in their review showed an increase in 

NOx emissions as the biodiesel content was increased.  

An increase in NOx was also observed by McCormick and Graboski et al. [60; 65]. 

They tested a single-cylinder research engine at 2000rpm and various loads with three 

waste oil biodiesel fuels. At low engine load they observed a slight decrease in NOx. 

However, it was observed an increase in NOx with the increase in engine load. A 70% 

reduction in HC emissions with neat biodiesel compared with petro-diesel was 

reported in the EPA`s review [66]. However, few researchers found similar HC 

emissions for biodiesel and diesel [67-71]. Only a small number of publications 

reported an increase in HC emissions for biodiesel compared with diesel [72]. EPA 

considers as a general trend a reduction by almost 50% in CO when biodiesel was 
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used, compared with conventional diesel [66]. Krahl et al. [73] compared biodiesel 

from rapeseed oil with both low and ultra-low sulphur diesel and obtained 

approximately 50% reduction in CO emissions for biodiesel compared with diesel. 

Similar results were obtained by Graboski et al. [74]. 

Due to the EPA`s regulatory standards the level of primary pollutant emissions such 

as CO, CO2 and HC emissions have been reduced, except the level of NOx. NOx 

refers to nitrogen oxide (NO) and nitrogen dioxide (NO2) which are one of the main 

contributors to the formation of ground level ozone. The ground level ozone, one of 

the main contributors to the greenhouse effect is formed due to the chemical reactions 

that occur in the presence of sunlight between volatile organic compounds and NO2. 

When NOx reacts with water in the air, nitric acid (NO) is formed. As with sulphur 

oxides (SOx), NO contributes to the formation of acidic rain and can cause health 

problems for human`s respiratory system. An in-depth understanding of the nitrogen 

oxides formation is essential since nitrogen oxides are one of the principal 

contaminants resulted from the combustion process. 

 

3.3.1. Engine Brake Power (BP) 

In order to compare the efficiency and emissions from an engine using different fuels, 

it is necessary that the tests to be carried out under same engine operating conditions. 

Tsolakis [75] compared ultra-low sulphur (ULS) diesel and rapeseed biodiesel fuels 

by defining three engine operating conditions in a single-cylinder naturally aspirated 

direct injection diesel engine by setting engine speed and load. Various tests were 

performed on direct and indirect diesel engine. The engine test conditions covered 

25%, 50%, 75% and 100% load and various engine speed [65; 75-79]. The test results 

showed that for the same fuel consumption, full load and engine speed conditions, 

biodiesel presented a reduction by 8% in power output compared with diesel fuel. 

This decrease in power output was due to the biodiesel’s low heating value. Tests 

using sunflower oil biodiesel in engine at various speeds and medium and full load, 
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showed a loss in torque and power between 5% and 10% compared with diesel, with 

the increase in engine speed [80]. When comparing waste-oil biodiesel and diesel 

fuels at full-load engine conditions, the loss of torque was only between 3% and 5% 

with biodiesel [81]. Test results from engine with ultra-low sulphur diesel, neat palm 

oil biodiesel and 20% palm biodiesel blend ratio in diesel, showed a reduction by 

3.5% for neat biodiesel and by 1% for the blend [82-84]. Few researchers also have 

found an increase of brake power and torque for engine with biodiesel. An increase in 

torque by 6.1% was reported for engine with tall biodiesel B70 (70% biodiesel – 30% 

diesel) compared with diesel fuel [85-87]. They explained that the increase in torque 

was due to the higher cetane number of biodiesel, higher density and viscosity and 

improved combustion compared with that of diesel. 

Some authors reported a reduction in brake power and torque when biodiesel with low 

calorific value was used in diesel engine. It was reported between 3% and 8% 

reduction in engine torque and power for cotton seed biodiesel compared with diesel 

[88]. They explained that the decrease in engine efficiency was due to difficulties in 

the fuel atomisation. Southwest Research Institute reported a reduction in engine 

brake power for 20% biodiesel blend ratio in diesel and for neat biodiesel, by 2% and 

8% respectively, compared with diesel [89]. Tests on a 6-cylinder DDC (Detroit 

Diesel Corp.) engine with rapeseed oil, soybean oil and cottonseed oil biodiesel were 

performed at engine speed of 1200 rpm and 2000 rpm. The results showed similar 

brake power for biodiesel compared with that of diesel [90; 91].  

The reduction in brake power and torque for engines with biodiesel was considered to 

be due to the higher viscosity of biodiesel compared with that of diesel. Tests were 

performed in a turbocharged engine with biodiesel using different injection pumps. At 

engine conditions of 1400 rpm and full load, it was observed that the volume of 

biodiesel injected using two different injection pumps was higher with 1.2% and 3.2% 

compared with that of diesel [92]. It order for the biodiesel to be injected in the 

cylinder at the same viscosity with that of diesel, the biodiesel injection temperature 

was increased. At these engine operating conditions the results showed an increase in 
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the volume of diesel injected as a result of its low density compared with that of 

biodiesel [86]. The low density of diesel resulted in high flow rate through orifices 

compared with biodiesel. The biodiesel`s high bulk modulus and high pressure wave 

propagation due to the biodiesel`s high speed of sound, could result in advanced 

injection due to the advanced needle lift of the injector nozzle. [90; 93; 94]. This and 

the biodiesel high viscosity lead to an advanced start of injection [92; 95; 96]. The 

temperature and the peak pressure inside of the cylinder can be reduced by delaying 

the start of combustion. These resulted in a reduction in nitric oxides, and also in 

engine thermal efficiency and brake power [85]. 

The conclusions derived from the literature survey were that, using biodiesel in diesel 

engines resulted in a decrease in engine power, and the increase in brake fuel 

consumption would compensates the lower heating value of biodiesel compared with 

diesel. However, some researchers reported a slight improvement in engine efficiency 

due to the lubrication property of biodiesel. 

 

3.3.2. Brake Specific Fuel Consumption (BSFC) 

Brake specific fuel consumption (BSFC) is a measure of engine efficiency. At fixed 

engine operating conditions, BSFC is the ratio between the amount of fuel consumed 

and the power generated by the engine. An increase of 14% in fuel consumption for 

engine with biodiesel would be expected due to the lower calorific value of biodiesel 

compared with diesel [97]. Biodiesel contains up to 10% oxygen in its composition, 

compared with diesel. This lead to reduction in biodiesel calorific value. Various tests 

were performed on engine with neat soybean oil biodiesel and various biodiesel blend 

ratio in diesel (20%, 35% and 65%) in order to assess the effect of oxygen content on 

brake specific fuel consumption [97]. The experimental results showed a correlation 

between brake specific fuel consumption and the oxygen content in the fuel. The 

oxygen content in the fuel resulted in the increase in BSFC, rather than when the 

oxygen enriched air was used [98]. BSFC was observed to increase with the decrease 
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in biodiesel calorific value. Some studies showed that brake fuel consumption in case 

of neat soybean biodiesel increased from 13% to 18% compared with diesel fuel, 

while blends of 20% soybean biodiesel (B20) showed an increase in BSFC in the 

range of 3% to 9% [89]. Similar results were obtained from diesel engine with palm 

oil biodiesel. An increase by 16.7% in BSFC was obtained for diesel engine with neat 

palm oil biodiesel, and by 3.3% for 20% palm oil biodiesel blend ratio in diesel 

compared with ultra-low sulphur diesel [82]. 

An increase by 2.5% in BSFC was observed for diesel engine with 20% soybean 

biodiesel blend ratio in diesel, and an increase by 14% in BSFC for neat soybean 

biodiesel compared with diesel [99; 100]. These variability in the experimental results 

could be due to the differences in the engine type used and the engine operating 

conditions. The BSFC from 1.9 l diesel engine with rapeseed biodiesel was 

investigated at various engine operating conditions [78]. The test results showed a 

correlation between the loss in calorific value and the increase in BSFC. Similar 

results were obtained from a single cylinder research engine with rapeseed biodiesel 

[75]. The influence of physico-chemical properties of biodiesel on bake specific fuel 

consumption was also investigated. Oxidised and non-oxidised soybean biodiesel 

were tested in a 4.5 litres engine [101]. The results showed an increase by 15.1% in 

BSFC for neat oxidised biodiesel, and by 13.8% for the case of non-oxidised 

biodiesel. Most of the authors explained the increase in brake specific fuel 

consumption to be a consequence of the loss in biodiesel calorific value. Few authors 

explained the increase in BSFC to be caused by the higher density of biodiesel 

compared with that of diesel [65].  A few other studies found small increase or similar 

brake specific fuel consumption for engine with neat cottonseed biodiesel and waste 

olive oil biodiesel compared with diesel fuel [87; 102].  

In summary, as a general trend, the brake specific fuel consumption was observed to 

increase with the increase in biodiesel blend ratio in diesel and with the decrease in 

biodiesel calorific value.  
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3.3.3. Brake Thermal Efficiency (BTE) 

Thermal efficiency is the measure of efficiency of fuel combustion, expressed as the 

ratio between power output and the energy introduced in the system. Where the 

energy introduced into the system is the product of the injected fuel’s mass flow rate 

and the lower heating value. The inverse of thermal efficiency is referred to as brake 

specific energy consumption, which is another parameter to be considered when 

different fuels are compared. In their research many authors would have observed no 

significant change in thermal efficiency when using biodiesel. Various types of 

biodiesel were tested in diesel engine and the results showed that the thermal 

efficiency was similar for biodiesel diesel [78; 97; 99; 101; 103]. Hamasaki et al. [72] 

tested biodiesel with different acid values in a single cylinder engine, at various 

engine load and constant speed, and found similar thermal efficiency in all cases.  

Puhan et al. [65] compared ester from mahua ethyl ester oil to normal diesel and 

found that the brake thermal efficiency of mahua ethyl ester was comparable with 

diesel. It was observed 26.36% for diesel whereas 26.42% for mahua ethyl ester. 

Kaplan et al. [80] reported an increase in brake thermal efficiency due to the improved 

combustion and reduction in friction between the moving parts of the engine when 

biodiesel used. Lin et al. [82] tested neat palm oil biodiesel and in 20% blend ratio in 

diesel in an indirect injection diesel engine, and reported a decrease in efficiency by 

2.3%. 

Labeckas and Slavinskas [68] tested blends of 5%, 10%, 20%, 36% and 100% 

rapeseed oil biodiesel in a 4.75 litres engine under different steady modes. The results 

obtained showed a maximum thermal efficiency for 5% to 10% blends. Murillo et al. 

[104] tested diesel and different blends of used cooking oil biodiesel in a marine 3-

cylinder naturally aspired engine. To the contrary, his results for blends of 10%, 30% 

and 50% biodiesel showed lower efficiency compared with highest efficiency 

obtained from neat biodiesel.  
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Most of the authors found no significant change in thermal efficiency for biodiesel 

compared with diesel fuel. The increase in fuel consumption for biodiesel was due to 

the biodiesel lower calorific value compared with that of diesel, hence the engine 

efficiency with biodiesel was observe to be similar to that of diesel.  

  

3.4.  Pollutant Emissions from Biodiesel 

Pollutant emissions are harmful to human health and environment. Any gases released 

into the atmosphere in high concentrations, such as those from vehicles, or as a result 

of fossil fuel combustion are strictly regulated by law. Pollutant emission could be 

classified in two categories: primarily pollutants and secondary pollutants. Primarily 

pollutants such as unburnt hydrocarbons (HC), carbon monoxide (CO), oxides of 

nitrogen (NOx), and particulate matter (PM) could react in the atmosphere and form 

secondary pollutants. These affect the air quality and lead to formation of ground-

level ozone, smoke, ozone depletion and climate change. Therefore, restrictions on 

pollutant emissions became more stringent. 

3.4.1. Total Hydrocarbon Emissions (THC) 

Many authors observed a decrease in THC emissions for engines with biodiesel 

compared with diesel [101; 105-109]. The Environmental Protection Agency review 

showed a 70% reduction of THC with pure biodiesel with respect to conventional 

diesel [66]. However, a few studies reported no significant differences [67- 70] or 

increase [72] in THC emissions from engine with biodiesel compared with that from 

diesel. Some authors reported reduction in unburnt hydrocarbon emission for engine 

with high biodiesel blend ratio in diesel, while for engine with low biodiesel blend, an 

increase in unburnt hydrocarbon emission was observed [110]. These results were 

explained to be either due to the small content of biodiesel blend ratio in diesel, or due 

to very low unburnt hydrocarbon emissions, which were lower than the detection 

range of the gas analyser [67-70]. Most of the studies reported a reduction by up to 
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70% in unburnt hydrocarbon when biodiesel was used compared with that of diesel 

[73; 111; 112].  

The influence of biodiesel content together with other parameters such as the presence 

of oxidative catalytic convertor, the injection pressure and the quality of the diesel 

used as a baseline has been also analysed. Charlet et al. [113], and Lapuerta et al. [77; 

114] tested biodiesel from rapeseed oil in a direct injection engine, and respectively 

cardoon and sunflower biodiesel in an indirect injection engine. They reported similar 

reduction in THC emissions from engine at various operating conditions. Few 

researchers reported a reduction in THC emissions only at low engine operating 

conditions, for engine with sunflower oil biodiesel [115]. Munack et al. [116] and 

Aakko et al. [67] tested biodiesel fuels from rapeseed, soybean and used cooking oil 

on a diesel engine on the ECE R49 test cycle. The results showed a reduction in THC 

emissions when biodiesel fuels were used, but this decrease was higher when the 

engine was not equipped with a catalytic converter. Leung et al. [117] observed an 

increase in THC emissions with the increase in injection pressure for both diesel and 

biodiesel fuels. The EPA review [66] reported reductions by 70% in THC emissions 

for neat biodiesel compared with conventional diesel fuel, and up to 50% compared 

with high cetane and low-density petro-diesel. Other studies reported reductions 

between 30% and 40% in THC emissions for engine with rapeseed, soybean and palm 

oil biodiesel compared with diesel [118]. A reduction by 20% in THC emissions was 

observed for engine with biodiesel compared with high cetane and ultra-low sulphur 

diesel [118]. Test performed in a turbocharged and direct injection engines with waste 

cooking oil and soybean oil biodiesel showed a reduction by 50% in THC emissions 

compared with diesel [95; 99]. Some studies reported a correlation between THC 

emissions and the biodiesel saturation and the carbon chain length in biodiesel. The 

test results showed greater reduction in THC emissions with the increase in biodiesel 

saturation and with the increase in carbon chain length in biodiesel [103; 119]. 

Graboski et al. [103] carried out engine tests with methyl and ethyl pure esters and 

conventional biodiesel fuels, in order to observe the effect of the alcohol type on the 
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engine emissions. Their results showed that the alcohol used in the biodiesel 

production does not have any significant effect on engine emissions with biodiesel. 

Few researchers investigated the effect of biodiesel oxidation on the engine emission. 

They compared non-oxidized biodiesel with oxidised biodiesel with a peroxide values 

ten times higher than the original one. The results showed a reduction in THC 

emissions for the engine with oxidised biodiesel. These results were explained by the 

increased cetane number and the presence of peroxide in the biodiesel [96]. 

Several reasons have been found for the decrease in THC emissions. The oxygen 

content found in the molecule of biodiesel leads to complete and clean combustion 

[89; 107]. Unburnt hydrocarbon emissions decreased with the increase in oxygen 

content in the combustion air or in the molecule of fuel [98]. The cetane number was 

observed to affect greatly the engine emissions. Researchers reported combustion 

delay for fuels with high cetane number [107; 120; 121]. These resulting in reduction 

in unburnt hydrocarbon emissions [96; 122]. Advanced injection was also reported for 

engines with biodiesel, due to the physical properties of biodiesel. The advanced 

injection was observed to contribute to the increase in nitric oxides emissions and 

lower the unburnt hydrocarbon emissions [123]. 

3.4.2. Carbon Monoxide Emissions (CO) 

Many authors observed a decrease in CO emissions compared with diesel, when 

biodiesel was used in diesel engines [66; 89; 107; 120; 121]. Few studies showed no 

significant differences in carbon monoxide emissions between diesel and biodiesel 

[69; 72]. Krahl et al. [73] compared biodiesel from rapeseed oil with both low and 

ultra-low sulphur diesel fuels and obtained a reduction by 50% in CO emissions for 

biodiesel. Similar results were obtained from a turbocharged engine with various 

blends of biodiesel and diesel fuel [74; 112]. Krahl et al. [35] reviewed some studies 

and reported 15% reduction for biodiesel compared with petro-diesel.  

Several researchers investigated the effect of engine load, biodiesel blend ratio in 

diesel and the effect of an oxidative catalyst on carbon monoxide formation. Most 
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authors pointed out the effect of engine load on the carbon monoxide emissions. Some 

researchers observed a reduction in CO emissions with the increase in engine load, 

while others found a greater reduction in CO emissions from engine at low load [93]. 

The Environmental Protection Agency, in their review reported a reduction by 45% in 

CO emissions compared with conventional diesel, and by 35% when high cetane 

number, low density diesel was used as baseline [66].  

Few researchers investigated the effect of oxidative convertor on engine emissions. 

They observed an increase in CO emissions for the engine equipped with convertor, 

while for the engine without the convertor, the CO emissions were reduced [67; 116]. 

The influence of biodiesel type on engine emissions was study. The EPA found grater 

reduction in CO emissions from animal fat biodiesel compared with vegetable oil 

biodiesel [66]. A grater reduction in CO emissions were observed for rapeseed oil 

biodiesel compared with soybean oil biodiesel. These results lead to the conclusion 

that the CO emissions decreased with the increase in biodiesel saturation. Similarly, 

reduction in CO emissions were observed from engine with waste cooking oil 

biodiesel compared with soybean oil biodiesel [95; 99]. Other researchers assessed the 

effect of carbon chain length on engine emissions. They tested diesel engine with 

lauric (C12:0), palmitic (C16:0) and oleic (C18:1) methyl ester biodiesel [119]. They 

observed a reduction in CO emissions with the increase in carbon chain length in 

biodiesel. The effect of biodiesel oxidation on engine emissions was studied. Three 

waste cooking oil biodiesel with different acid value where tested in a diesel engine in 

order to assess the effect of fuel acid value on engine emissions [72]. The results 

showed increase in CO emissions with the increase in biodiesel acid value, as a result 

of high hydro-peroxide concentration in biodiesel [72; 96].  

Several reasons have been proposed to explain the reduction of CO when biodiesel is 

used in diesel engines. Due to the fact that biodiesel is a natural oxygenated fuel, the 

additional oxygen in the biodiesel content enhanced the fuel combustion, thus 

reducing CO emissions [89; 107; 124].  
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Most of researchers reported reduction in CO emissions from engine with oxygenated 

fuel or when oxygen enriched air was used [98]. The decrease in CO emissions was 

also justified by the higher cetane number of biodiesel [107; 120; 121; 124]. The 

higher the cetane number, the lower is the probability of fuel-rich zone formations. 

Some authors explained the reduction in CO emissions from engine with biodiesel to 

be due to the advanced injection and combustion [123]. 

3.4.3. Nitric Oxides Emissions (NOx) 

Most authors in their work reported a slight increase in NOx emissions when using 

biodiesel fuel in diesel engine. However, some authors observed NOx increase only at 

certain engine operating conditions, while others found similar NOx emissions 

between diesel and biodiesel. Few studies reported even a decrease in NOx emissions 

for biodiesel compared with diesel fuel.  

Tests performed in a 6-cylinder diesel engine under different loads with 10%, 20%, 

30% and 40% soybean biodiesel blends showed up to 15% increase in NOx from 

engine with 40% biodiesel blend ratio in diesel [125].  A Cummins engine was tested 

under steady operating conditions with diesel and neat biodiesel and the results 

showed increase by 16% in NOx emissions for biodiesel compared with that from 

diesel [126]. Few other papers reported, also increase in NOx from engines with 

biodiesel [35; 74].  

Some authors investigated the dependence of NOx on the engine type and the engine 

operating conditions. Three engines were tested at transient operating conditions, with 

blend of 1800ppm diesel sulphur content and 10% sunflower biodiesel blends [69]. 

They reported both increase and decrease in NOx emissions, which were attributed to 

the differences in engine technology. 

Tests on a single cylinder research engine at 2000rpm and various loads with three 

waste oil biodiesel showed slight decrease in NOx emissions at low loads, while at 

high engine load the NOx increased [72]. 
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ECE R49 test cycle and urban transient cycle tests were performed for comparative 

reasons [105]. The tests results showed an increase by 9.5% in nitric oxide emissions 

for ECE R49 test cycle, and 6.5% reduction in NOx for transient urban cycle.  

Other researchers pointed out that the increase in NOx emissions from test performed 

in an engine bench are higher than those measured from vehicles [95]. This was due to 

the fact that the engine load set on the test bench are usually higher than those in the 

vehicles. 

Tests were performed on four different heavy duty engines turbocharged, naturally 

aspirated, direct and indirect injection. NOx emissions from these engines with neat 

biodiesels, diesel and 20% biodiesel blend ratio in diesel were measured and the test 

results showed no significant difference in NOx emissions [127]. Other authors 

measured NOx emissions from nine vehicles with 35% soybean biodiesel blend ratio 

in diesel and they reported no significant difference in NOx due to the engine type 

[128].  

Only a few studies reported a decrease in NOx emissions for diesel engine with 

biodiesel compared with diesel [102; 114]. Tests performed in diesel engine with ethyl 

and methyl ester biodiesel showed a reduction by 10% in NOx emission compared 

with diesel fuel [112]. Similar reduction by 5 to 10% in NOx emissions was obtained 

from Caterpillar engine at transient cycle with neat soybean biodiesel [2].    

The Environmental Protection Agency in their review reported an increase in NOx 

emissions with the increase in biodiesel blend ratio in diesel [66]. Most of the authors 

explained that the increase in NOx emissions was caused by the advanced injection 

which was triggered by the biodiesel physical properties. The biodiesel high viscosity, 

density, compressibility and sound velocity resulted in higher injection pressure 

compared with diesel fuel [129].  The increase in NOx emissions at high engine load 

was attributed to the shift in start of combustion. Biodiesel has lower compressibility 

compared with diesel. This resulting in faster propagation of biodiesel towards the 

injectors and earlier needle opening [70; 92; 101; 118; 119; 129]. However, few 
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authors found injection delay for engine with biodiesel compared with ultra-low 

sulphur diesel [130]. 

The influence of biodiesel type on NOx emissions was also investigated. Some 

authors found correlations between the increase in NOx emissions and the decrease in 

carbon chain length and unsaturation esters in biodiesel [103]. Several other studies 

also reported NOx increase with the increase in iodine number [103; 131]. The EPA 

concluded in their report that NOx emissions vary direct proportional with the 

biodiesel un-saturation [66; 95].  Some authors explained the increase in NOx 

emissions as a results of the adiabatic flame temperature and the different intermediate 

combustion products [119]. The adiabatic flame temperature was observed slightly 

higher for biodiesel [77; 132; 133]. Cheng et al. [134] tried to maintain both the start 

of combustion and the rate of premixed combustion unchanged. He tested three 

primary reference fuel blends in an effort to match precisely the ignition delay and 

premixed burn fraction of the reference fuel to that of B100. Each primary reference 

fuel blend was a mixture of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane, in the 

appropriate quantities to achieve a desired cetane number. The test results showed an 

increased in NOx for biodiesel due to the reduced soot radiative heat transfer, which 

resulted in high flame temperature. 

Other authors explain the NOx increase due to the increased cetane number of 

biodiesel, which leads to an advanced combustion by shortening the ignition delay 

[101]. The oxygen content in biodiesel, resulted in more oxygen available in the 

engine combustion chamber which could promote NO formation [106; 135]. Iida et al. 

[135] and Song et al. [136] found that both the oxygen content in fuel and the oxygen 

enriched air contributed to the increase in NOx emissions. The oxygen enriched air 

was observed to result in higher NOx formation compared with the oxygenated fuel 

[77]. The high cetane number of biodiesel could lead to advance combustion. This 

could lead to reduction in pressure and temperature in the combustion chamber, 

resulting in a reduction in NO emissions [106].  
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Few authors found that biodiesel chemical composition influenced NOx formation. 

They observed that a relation between the content of saturated esters in biodiesel and 

NOx formation. A reduction in nitric oxides was observed with the increase in ester 

saturation content in biodiesel [137].  

Some authors concluded that the increase in NOx formation for diesel engine with 

biodiesel was due to the advance injection. The fuel spray characteristics was another 

hypotheses considered to justify the increase in NOx. The fuel physical properties 

such as viscosity, surface tension and boiling temperature can influence the droplet 

size and spray distribution, droplet evaporation, droplet moment of inertia and heat 

dissipation. These could influence the start of combustion, the fuel-air mixture and 

diffusion, and consequently the NO formation [74]. 

 

3.4.4. Particulate Matter Emissions (PM) 

Most authors observed a noticeable decrease in PM emissions with the increase in 

biodiesel content [74; 77; 101; 105; 128; 129]. Reductions by 20% to 40% in PM 

emissions was observed from heavy-duty engines with biodiesel [35].  Many 

researchers reported greater reduction in PM emissions from diesel engine with 

biodiesel [72; 77; 138; 120]. Researchers reported reductions by 70% in PM emissions 

from engine with neat biodiesel and by 45% from engine with 20% biodiesel blend 

ratio in diesel [31; 45]. Engine tests were performed with soybean oil biodiesel and 

waste cooking oil biodiesel and the authors reported a reduction by 65% in PM 

emissions [99; 139]. Few studies reported even higher reductions, between 75% and 

91%, in PM emissions from engine with biodiesel compared with those from diesel 

[140; 141]. 

Few researchers reported similar PM emissions from diesel and biodiesel [70] or even 

found increase in PM emissions compared with diesel fuel [112; 116; 120].  
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Correlations between the biodiesel blend, the engine load and particulate matter 

emissions were observed. Test results showed reduction in PM emissions with the 

increase in biodiesel blend ratio in diesel at both transient and steady state engine 

operating conditions [79]. Many studies reported greater reduction in PM emissions 

from engine at high load [72; 117; 137; 142; 143]. The authors explained these 

reduction in PM emissions to be due to the oxygen content in biodiesel which lead to 

complete combustion. Small reductions in PM emissions were observed from engine 

with biodiesel compared with high cetane ultra-low sulphur diesel [66; 144].  

Several explanations for the reduction in particulate matter were found in the 

literature. A reason for the decrease of PM emissions was considered to be the oxygen 

content in the biodiesel molecule, which enabled complete combustion in fuel-rich 

regions inside of the combustion chamber, due to the diffusion flame [74; 77; 106; 

128; 137; 145; 146], and promotes the oxidation of the already formed soot. When 

engines with oxygenated fuel were tested, a greater reduction in PM emissions was 

obtained compared with the case of oxygen enriched air [106]. The lower 

stoichiometric need of air in the case of biodiesel combustion, reduces the probability 

of fuel-rich regions in the non-uniform fuel/air mixture [77]. The decrease in aromatic 

content obtained by Schmidt and Van Gerpen by blending diesel fuel with octadecane 

(C18H38) provided a significant reduction in PM emissions, which was even more 

significant when soybean-oil biodiesel was added in the blend [106]. 

The effect of biodiesel type on PM emissions was also investigated. Some authors 

reported a reduction in PM emissions with the increase in biodiesel saturation [66]. 

Others authors reported a reduction in PM emissions with the decrease in carbon chain 

length in biodiesel and due to the low oxygen content [119]. Few authors reported no 

difference in PM emissions due to the difference in biodiesel feedstock. Similar 

reductions in PM emissions were obtained from engine with soybean oil biodiesel and 

waste cooking oil biodiesel compared with those from diesel [95; 99].  A general 

agreement found in the published literature, was that the reduction in PM emissions 

was due to the oxygen content in the fuel [103; 147]. 
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3.5.  Justification of Objectives  

From the literature review of a majority of research papers published regarding engine 

performance using biodiesel and the specific emissions characteristics, the following 

general conclusions were drawn: 

- Engine brake power was found lower for biodiesel with up to 8% compared 

with diesel for most of the biodiesels over a wide operating conditions; 

- The majority of authors found an increase in brake specific fuel consumption 

when biodiesel was used, while just few papers stated a not significant change 

compared with diesel; 

- The majority of the publications show similar brake thermal efficiency for 

diesel and biodiesel; 

- A significant decrease in THC emissions were found in most of research 

papers; 

- CO emissions from biodiesel were found to be lower compared with diesel, 

when engine was under high load operating conditions. Also it was stated that 

the biodiesel nature has an influence on CO emissions. Some authors found a 

decrease in CO by advancing the injection and combustion; 

- NOx emissions were found by the large majority of authors to be higher for 

biodiesel compared to diesel; 

- PM from biodiesel is lower compared with diesel; 

- The experiments presented in literature were performed on single cylinder 

engines, two strokes and four strokes engines.   

In the literature reviewed it has been observed that the investigations of biodiesel are 

spread over biodiesel made from various exotic biomasses.  Biodiesel made from 

waste cooking oil and other waste oils is increasingly being made and promoted 

because it reduces waste and offers environmentally friendly utilisation of waste oil.   

However, information on the basic properties and performance data of such biodiesel 

is scarce. This research aims to provide an overview of biodiesel made from waste 



 

64 

 

cooking oil focussing on three main aspects of biodiesel: microbiological 

contamination, diesel engine performance using waste cooking oil biodiesel and 

emissions characteristics from WCO biodiesel. The effect on engine performance 

using biodiesel made from waste cooking oil is also experimentally investigated in a 

dynamometer, using a 4 stoke Land Rover diesel engine.  

3.6.  Methodology  

A range of theoretical and experimental techniques were used for achieving the 

objectives and aim of the research. A combination of microbiological tests, pilot scale 

combustion tests and performance test in diesel engine were performed. 

 Measuring of Fuel properties & microbial contamination  

The biodiesel analysed was obtained from the market from three UK providers.  First, 

waste cooking oil biodiesel was obtained from two different sources for comparison 

of microbial contamination and biodegradation test. The fuel samples to be tested 

were prepared as 20, 50 and 100% biodiesel blends with diesel and were duplicated. 

The biodiesel obtained from the third source was used for combustion investigations 

tests. The samples prepared to be tested on a CCR and a DI engine were 25, 50, 75 

and 100% biodiesel and diesel blends. 

The fuel properties were measured for neat diesel and biodiesel and the physical and 

chemical properties for the various diesel-biodiesel blends were deduced analytically. 

FT-IR analyses of each fuel sample were run in order to assess the diesel-biodiesel 

blend. Neat diesel and biodiesel samples were analysed for their functional groups by 

GC-MS in order to provide a more specific characterisation of the fuel composition 

tested. 

 Combustion characteristics  

Combustion in the Continuous Combustion Rig (CCR) of various diesel-biodiesel 

blends were investigated to provide an insight on the characteristic products from the 
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combustion of biodiesel at various equivalence ratios, focusing the attention on NO 

formation.  

 Engine performance  

Biodiesel blends were also tested in an unmodified direct injection diesel engine over 

a wide range of set of operational conditions. The engine performance was analysed in 

terms of engine brake power, brake specific fuel consumption, brake thermal 

efficiency and carbon monoxide, unburned hydrocarbon, nitrogen oxides and carbon 

dioxide emissions. 

Finally various performance data obtained from these tests was analysed to establish 

correlations between different parameters. 
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Chapter 4 - Measuring Fuel Properties and Microbial 

Contamination  

4.1.  Fuel Properties Measurements 

The fuel properties have a significant effect on the performance and emission 

characteristics of an engine. The physical properties of the biodiesel, diesel and blends 

of diesel with biodiesel used in the experiments, such as density, viscosity and 

calorific value were determined. Fuel elemental analyses, diesel and biodiesel 

spectrum were determined by Fourier Transform – Infrared Spectroscopy (FT-IR) and 

Gas Chromatography – Mass Spectrometry (GC-MS).  

The experiments to measure fuel calorific value, fuel density, fuel viscosity, CHNOS 

elemental analysis and FT-IR spectra of fuel were performed. The experimental 

procedure for each test is explained and the results are presented in this chapter. 

4.2.  Biodiesel Samples Preparation 

Blended samples of WCO biodiesel with diesel were made by intense mixing of both 

with the help of a stirrer at ambient temperature. All the blends were prepared and 

stored overnight before being tested. The fuel blends were prepared on volume basis. 

The nomenclature of the blends is given as follow: 

B0 – Neat diesel 

B25 – Blend of 25% biodiesel and 75% diesel 

B50 – Blend of 50% biodiesel and 50% diesel 

B75 – Blend of 75% biodiesel and 25% diesel 

B100 – Neat biodiesel 
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4.3.  Biodiesel Calorific Value 

The higher calorific value i.e. gross or total heat value of a fuel, whether solid or 

liquid, is the quantity of heat produced by complete combustion of a given mass of a 

fuel, usually expressed in joules per kilogram. A bomb calorimeter is used to 

determine the higher calorific value of the fuel.  

4.3.1. Apparatus 

The calorific value of net biodiesel and diesel was determined using a Parr 6200 

Bomb calorimeter. The schematic view and the working principle of the calorimeter 

are presented in Figure 4-1.  

 

 

Figure 4-1: Bomb calorimeter principle 
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The bomb calorimeter is made from high pressure stainless steel coated with an acid 

resistant metal. The threaded cover can be screwed on to the main body of the bomb. 

The cover has two terminals for electrical connections to the mains. A screwed steel 

wire form one connection and the other wire passes through an insulated plug 

protected against the high temperature inside the bomb. A silica crucible is kept in 

position by two projecting ends on two wires. A fuse wire of known mass is joined to 

the two wires keeping it in contact with the fuel. The whole calorimeter is kept 

submerged in a water jacket that surrounds the calorimeter. A motor driven stirrer 

constantly agitates the water keep its temperature uniform. The speed of the stirrer is 

kept within the range 150-200rpm. 

 

4.3.2. Procedure 

1. A measured amount of fuel is placed into the crucible. 

2. The cover of the bomb is tightened to hold the body in a stand. 

3. Oxygen is allowed to enter the bomb very slowly as to ensure that the sample 

does not spill in the crucible until the pressure is 20bar and then the oxygen 

cylinder`s valve is closed. 

4. The sealed bomb is then immersed in a bucket filled with known quantity of 

water (2 litres). 

5. The fuel is ignited and the heat released by fuel burning the fuel is transmitted to 

water and thus its temperature rises. 

6. A thermometer with a reading resolution up to 1/100th of a degree measure the 

temperature rise of water bath. 

7. The higher calorific value of the fuel is calculated from the temperature increase. 
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4.3.3. Methodology  

A small sample of fuel is accurately weighed and burned in an atmosphere of oxygen 

within the bomb immersed in stirred water bath. The energy released by the fuel 

sample through combustion results in a rise in water bath temperature. The total 

energy liberated is known as the increase of temperature and the thermal capacity of 

the bomb, water and water bath container. Calculations are simplified by taking 

thermal capacity of the bomb and water container as mass of water, which is termed 

as water equivalent of calorimeter. The higher heating value is measured by the Parr 

6200 instrument. Conforming to ASTM D240, the lower calorific value (LCV) for 

liquid fuels can be calculated when knowing the percentage of hydrogen in the fuel 

using the following correlation: 

 

𝐿𝐶𝑉 = 1.8𝐻𝐶𝑉 − 𝐻 

 

Where LCV is lower calorific value, HHV is higher calorific value, and H represents 

the percentage hydrogen content in the fuel. 

 

4.4.  Density Measurement 

Density of neat biodiesel and diesel was calculated from separate mass and volume 

measurements.  

4.4.1. Apparatus 

In order to measure the density of the samples, three 100ml graduated cylinders and a 

scale with a reading resolution of 0.01 grams were used.  

4.4.2. Procedure 

A 100ml clean, dry graduated cylinder was weighted. The distilled water, diesel and 

biodiesel fuel were kept at 20°C room temperature. The cylinder was filled with 
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100ml distilled water and was weighed on a scale and the weight was recorded. A 

second and third dry graduated cylinder was filled with 100ml diesel fuel, weighed on 

the scale and the weight was recoded. After each sample was weighing, its density 

was calculated. 

4.4.3. Methodology  

Density is a measure of the “compactness” of matter within a substance and is defined 

by the equation: 

ρ = m/V 

Where ρ is the density, m is the mass of the liquid weighted and V is the volume of 

the liquid measured. 

The standard metric units in use for mass and volume respectively are kilograms and 

cubic centimetres. Thus, density has the unit kilograms/cubic centimetres (kg/cm3).   

 

4.5.  Viscosity Measurement (EN ISO 3104) 

The viscosity is an important physical property of the fuel since it determines the 

optimum storage, operating and handling conditions. For measuring the fuel viscosity 

a capillary viscometer was employed. The kinematic viscosity of the fuel is 

determined by measuring the time for a volume of liquid to flow under gravity 

through a calibrated glass capillary viscometer. The dynamic viscosity can be 

measured by multiplying the kinematic viscosity by the density of the liquid. The 

range of the kinematic viscosities covered by this method is 0.2 to 300000mm2/s, at 

all temperatures. The ASTM standard specification of this procedure is D445. 
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4.5.1. Apparatus 

Figure 4-2 represents the capillary viscometer used to measure the viscosity of the 

biodiesel and diesel.  

 

 
Figure 4-2: Schematic representation of the capillary viscometer apparatus 

The apparatus is composed of a calibrated viscometer of the glass capillary tube, 

capable of being used to determine kinematic viscosity within the limit of precision, 

viscometer holders, temperature controlled bath, calibrated liquid glass thermometer 

of range 0-100°C and a stopwatch capable of taking reading with a resolution of 0.1s. 

4.5.2. Methodology 

A fixed volume of fuel is allowed to flow under gravity through the capillary of a 

calibrated viscometer under a reproducible driving head and at a closely controlled 

and known temperature, and the time is measured. The kinematic viscosity is the 

product of measured flow time and the calibration constant of the viscometer. 
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4.6.  CHNOS Elemental Analysis 

Carbon, hydrogen, nitrogen, oxygen and sulphur (CHNOS) elemental analysis of neat 

biodiesel and diesel were performed to determine the carbon, hydrogen, nitrogen, 

oxygen and sulphur content in the fuel.  

4.6.1. Methodology 

 Determination of Total Oxygen in Liquid, Chemical & Hydrocarbon Products was 

performed following MT/ELE/21 standard. The oxygen analysis was performed 

using EA Instruments 1110 oxygen analyser. 

 Determination of Carbon, Hydrogen and Nitrogen using a Thermoflash 2000 

analyser was performed using MT/ELE/13 standard. 

 Determination of Sulphur by combustion with UV fluorescence using Antek 9000 

analyser was performed following MT/MCR/12 standard. 

MT/ELE/01 standard was used for determination of metals by ICP-OES. 

 

 

4.7.  Biodiesel by Fourier Transform-Infrared Spectroscopy 

Neat diesel, biodiesel and various blends of diesel and biodiesel were analysed by FT-

IR in order to observe useful differences between the samples.  
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4.7.1. Apparatus 

Fourier transform - infrared spectra of the fuel samples were collected on a Varian 800 

Scimitar Series FT-IR spectrometer. The schematic representation of the FT-IR is 

presented in Figure 4-3. 

 

Figure 4-3: Schematic representation of FT-IR 

 

 

Figure 4-4: NaCl sample plate 

 

4.7.2. Methodology 

The instrument was setup to scan between 400 and 4500cm-1. The sample holder is 

scanned in order to collect the background information which later will be reduced 

from the sample scan. After the sample was prepared, the sample holder is fixed into 

the FT-IR analyser and scanned.  

Samples of neat biodiesel B100, B25, B50, B25 and neat diesel, B0 were analysed by 

FT-IR. Using a sterile pipette, a drop of the liquid sample was placed on the face of a 

highly polished salt plate (NaCl), and then the second plate was placed on top of the 

first plate, so as to spread the liquid into a thin layer between the plates and clamp the 

plate together, Figure 4-4. The sandwich plates were then mounted onto the sample 
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holder. After each sample was analysed, the salt plate used was washed with acetone 

in order to remove any residue from the previous sample. 

 

4.8.  Biodiesel Composition by GC-MS 

Samples of neat biodiesel and diesel were analysed in order to identify the compounds 

in samples using gas chromatography–mass spectrometry (GC-MS). GC-MS 

identification is based on retention time and mass spectrum.  

4.8.1. Apparatus 

The fuel samples were tested using Varian 450GC – Varian 240-MS. 

4.8.2. Methodology 

Samples of diesel and biodiesel were prepared for GC-MS analyses. Using a sterile 

syringe with an attached filter, 10 microliters of neat biodiesel and respectively diesel 

fuel samples taken respectively were poured in a sterile vial bottle and mixed with 

1ml of pure hexane. Using a sterile pipette, 2ml of the prepared solution were placed 

into a vial bottle and placed into the GC-MS automated sampler. One 2ml vial bottle 

was also prepared with pure hexane for reference. 

The following method was followed for sample analysis: 

 Column 500°T 

 Acquisition 

o Low mass 40 m/z 

o High mass 1000 m/z 

o Start at 5 min. 

o End at 30 min. 

 Ionisation source: electron ionization (EI) 

 Injection temperature 250°C 

 Split ratio 50 

 Oven Column 
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o 50°C to 280°C 

o rate 10°C/min 

o hold 5min 

o total time 30min 

 Injection volume 1μL. 

 

4.9.  Diesel and Biodiesel Microbiological Degradation 

4.9.1. Introduction 

Biodiesel degradation is enforced under the presence of microorganisms that find 

good growth conditions in the barrier between water and fuel. Microorganism 

population composed of strains of Pseudomonas and Micrococcus proved to be 

especially effective in degrading hydrocarbons. The differences exhibited in microbial 

growth, when two different types of biodiesels and diesel fuel were tested could prove 

that the chemical composition within the biodiesel and diesel samples were an 

important factor for the specificity of microbial growth. The chemical composition 

can be anything subtle, such as grade of diesel used, like low or normal sulphur or 

volume of medium used. Another factor taken into consideration is the inoculums 

added to the biodiesel bottles. The effect of microbial growth could affect the engine 

performance and in the long term lead to harmful effects on diesel engine operability. 

The biodiesel samples were obtained from two suppliers, Bolton and Sheffield, who 

also supplied the petrol stations with biodiesel in various blends. The experiments 

aimed to assess the “end user” biodiesel under microbial contamination compared 

with diesel. All biodiesel samples were previously treated with additive to improve the 

cold flow properties and stability to microbiological contamination. The additives 

used in preventing the microbial contaminations act primarily by inhibiting the 

quorum sensing of bacteria. Quorum sensing is a system of stimulus and response 

which coordinates gene expressions according to the density of their population. 
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4.9.2. Experimental Programme 

Experiments were conducted to investigate the effect of unknown consortia of 

microorganisms, which were previously collected from diesel tank sludge and soil, 

upon biodiesel. A water bottom was created by using Bushnell and Haas [BH] 

medium, and the rest of the space was filled with diesel, biodiesel, or a blend of diesel 

and biodiesel in different proportions. 

The experiment was observed over a ten week incubation period to assess levels of 

spoilage. The main aim of the investigation was to observe microbial growth, and 

report effects of microbial growth over physical properties of fuel.  

4.9.3. Methodology 

Biodiesel made from waste oil, provided from two different sources within of UK, Bio 

UK Fuels (Sheffield) Ltd and Bolton Alternative Fuels Coop were investigated. Each 

BH medium was contaminated with a mixture of diesel tank sludge and soil (10ml per 

200ml). Different blends of biodiesel and diesel (standard mineral diesel), and 

contaminated BH medium, in total volumes 1L sterile Duran bottles, were produced 

as follows: 

- Diesel – BH: 800 ml : 200 ml 

- Bolton Biodiesel – BH: 800 ml : 200 ml 

- Diesel – Bolton Biodiesel – BH: 400 ml : 400 ml : 200 ml  

- Diesel – Bolton Biodiesel – BH: 640 ml : 160 ml : 200 ml  

- Sheffield Biodiesel – BH: 800 ml : 200 ml 

- Diesel – Sheffield Biodiesel – BH: 400 ml : 400 ml : 200 ml  

- Diesel – Sheffield Biodiesel – BH: 640 ml : 160 ml : 200 ml  

Samples, each conducted in duplicates, were incubated in a 22ºC incubator for 10 

weeks.  
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Before the samples were inoculated, with a selected tank sludge and soil, the 

microbial population was enumerated on Yeast Extract Agar (YEA) and Malt Extract 

Agar (MEA) plates. Using serial dilutions, colony forming unit (cfu) were calculated 

for inoculation into biodiesel bottles. The calculated cfu that was inoculated into 

biodiesel was 7.66×106 cfu ml-1 of sludge/soil mixture, which resulted in a total 

inoculators of 1.4×108 cfu per sample. 

During a six weeks period of incubation, visual observations of the changes in the 

biodiesel bottles were noted at an interval of fourteen days. Changes were noted in 

biodiesel and water bottom colour, and the presence of microbial growth for each 

sample.  

10ml of liquid from water at the bottom of each bottle were taken at fourteen days, 

twenty-eight days, and fourteen-two days, fifty-six days, seventy-days after 

inoculation. The samples were gently swirled prior to sampling ensuring a good mix 

of micro-flora (even if none were visible). 10ml samples were taken from the water 

bottom using a sterile 10ml graduated pipette, stored in sterile universal tubes, and 

were used for inoculating agar plates and for pH measuring. 

After extraction, using a sterile pipette, 100µl consortia of micro-organisms were 

spread on each YEA and MEA plates. Using serial dilutions, 100, 10-2, 10-4, colony 

forming unit (cfu) were calculated for each inoculated biodiesel sample. Counts of cfu 

were conducted after incubation at fourteen days, twenty-eight days, and forty-two 

days.  

The techniques for bacterial identification started with gram staining. Colonies of 

distinguished morphologies were sub-cultured onto fresh YEA plates, for 

identification. Colonies from plates exhibiting bacterial growth were Gram stained, 

and then further analysed to genus level [148]. The bacterial identification was 

performed using the API 20NE V7.0 kit (bioMerieux) according to manufactures 

instructions, for the identification of Gram-negative rods, combining eight 

conventional tests, twelve assimilation tests and a database. 
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The API 20 NE strip consists of API AUX Medium, and micro-tubes containing 

dehydrated substrates. Colonies of identical morphology extracted from the Petri plate 

are necessary for API 20NE test. Bacterial identification was performed following the 

manufacturer`s instructions. The reactions are read according to the Reading Table 

and the identification was obtained by using the APIWEB software.    

Supplementary tests for 42ºC incubation were suggested by APIWEB software. A 

colony from each plate was spread onto fresh YEA plates, for twenty-four hours 

incubation at 42ºC. The results were interpreted according with the specification 

suggested by APIWEB results. 

Measuring of the pH was done in line with extractions that were taken every fourteen 

days. pH was measured using an electronic pH meter which was calibrated towards 

the acidic pHs. The electrode was kept sterile using Industrial Methylated Spirits 

(IMS) and rinsed with distilled water (dH2O) to prevent dehydration to the electrode. 

The pH was measured at 25ºC. 

4.10. Results 

The results of experimental measurements of physical properties, CHNOS elemental 

analysis and microbial contamination of diesel and biodiesel fuel are presented. The 

measured physical properties of diesel and biodiesel are listed in Table 4-1.  

Table 4-1: Physical properties of diesel and biodiesel 

 
Diesel 

(B0) 

Bolton 

Biodiesel 

(B100) 

Sheffield 

Biodiesel 

(B100) 

VEPower 

 Biodiesel 

(B100) 

Specific gravity [g/cc] 0.834 0.852 0.862 0.882 

Viscosity at 40°C  [mm2/s] 3.5 4.45 4.43 4.47 

Lower calorific value [MJ/kg] 41098.325 332992.56 333996.28 33374.209 

Properties of diesel and biodiesel blend were calculated by using the formula:  

𝑝𝑏𝑙𝑒𝑛𝑑 = 𝑥𝑝𝑑 + (1 − 𝑥)𝑝𝑏 , where p is property, x fraction of diesel. 
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Elemental analyses of neat biodiesel and diesel samples were performed and the 

results are presented in Table 4-2. The elemental analyses was perform for VEPower 

biodiesel. The data were useful for the estimation of residence time of NOx emissions 

measured from a laminar premixed flame. 

Table 4-2: Biodiesel and Diesel elemental analyses from ITS Testing Laboratory 

Analysis Units VEPower 

Biodiesel 

Diesel 

Carbon content %wt/wt 76.0 86.9 

Hydrogen content %wt/wt 11.9 12.9 

Nitrogen content %wt/wt 0.02 0.02 

Oxygen content %wt/wt 11.7 0.07 

Sulphur content mg/kg 5.2 900 

Concentration of Silver mg/kg <1 <1 

Concentration of Aluminium mg/kg <1 <1 

Concentration of Boron mg/kg <1 <1 

Concentration of Barium mg/kg <1 <1 

Concentration of Calcium mg/kg 3 <1 

Concentration of Chromium mg/kg <1 <1 

Concentration of Copper mg/kg <1 <1 

Concentration of Iron mg/kg <1 <1 

Concentration of Potassium mg/kg 62 <7 

Concentration of Magnesium mg/kg <1 <1 

Concentration of Manganese mg/kg <1 <1 

Concentration of Sodium mg/kg <8 <8 

Concentration of Nickel mg/kg <1.5 <1.5 

Concentration of Phosphorous mg/kg <1.5 <1.5 

Concentration of Lead mg/kg <1.5 <1.5 

Concentration of Sulphur mg/kg <30 651 

Concentration of Silicon mg/kg <1 <1 

Concentration of Tin mg/kg <1 <1 

Concentration of Titanium mg/kg <1 <1 

Concentration of Vanadium mg/kg <1 <1 

Concentration of Zinc mg/kg 1 <1 
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4.10.1.  Biodiesel by Fourier Transform-Infrared Spectroscopy 

Results 

Fourier Transform-Infrared (FT-IR) is a method of infrared spectroscopy. Infrared 

radiation is passed through a sample, where some of it is absorbed by the sample and 

some passes through. The resulting spectrum represents the molecular absorption and 

transmission, creating a molecular fingerprint of the sample. An infrared spectrum can 

be divided into two regions for examination. The region from 4000 to 1500 cm-1 

provides information about the functional group and the region from 1500 to 600cm-1, 

also called the fingerprint region, provides a unique pattern for each organic 

compound.  

Samples of diesel (B0) and blends of diesel and biodiesel (B25, B50, B75 and B100) 

were prepared and analysed by FT-IR. Figure 4-5 shows FT-IR spectrum of diesel and 

biodiesel samples in the region from 3800 to 2800 cm-1.  

 

Figure 4-5: FT-IR spectrum of B0, B25, B50, B75 and B100 in the region from 

3800 to 2800 cm-1 
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The band presence in the region of 3009.4 cm-1 was observed only in the biodiesel 

samples. It is observed that with the increase in biodiesel blend in diesel, bands arise 

at 3009.4 cm-1. This represents –HC=CH–stretching and the increase in intensity 

represents the increase in unsaturation of biodiesel samples (149).   

Figure 4-6 show a comparison between diesel an biodiesel samples in the region 1740 

cm-1. The presence of band at 1740 cm-1 indicates the presence of carbonyl group 

(C=O) (149). It is observed that the carbonyl band evolution is proportional to an 

increase of biodiesel blend in diesel. The double bound denotes unsaturation.  

 
 

Figure 4-6: FT-IR spectrum of B0, B25, B50, B75 and B100 in the region from 1800 

to 1600 cm-1 
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Figure 4-7 shows a comparison between spectrum of diesel and biodiesel in the region 

from 1600 to 600 cm-1. The band in the region of 1462 cm-1 represents the C=C 

functional group. These unsaturated compounds may not have significant effect on 

cold flow properties of biodiesel and therefore additives or improvers should be added 

to biodiesel for better performance.  

 

 

Figure 4-7: FT-IR spectrum of B0, B25, B50, B75 and B100 in the region from 

1600 to 600 cm-1 
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The band in the region of 1196 cm-1 represents the C-N cyanide group detected with 

stretch mode of vibration, which may indicate the presence of undesirable 

contaminant at the point of purifying biodiesel.  

FT-RI spectrum of biodiesel shows a band in the region 1170 cm-1 and 1019 cm-1, 

corresponding to C-H and C-O single bonded functional group. Single bonds 

represent saturated compounds in the fuel. A high content of saturated compounds in a 

fuel can lead to pour cold flow properties during cold weather operations. However, 

the presence of double bounds (C=C, C=O) which are most abundant enhance the cold 

flow properties of the fuel, but may increase the biodiesel susceptibility to oxidation.  

 

4.10.2. Biodiesel Composition by GC-MS Results 

Tables 4-3 and 4-4 present the mass fraction compounds identified in diesel and 

respectively biodiesel fuel.  

Table 4-3: Results of NIST Libraries for Diesel Spectrum 

Compound Formulae 
Mol. 

Wt. 
Probability 

Cyclodecasiloxane, eicosamethyl- C20H60O10Si10 740 77.54 

9-Desoxo-9-x-acetoxy-3-desoxy-7.8.12-

tri-O-acetylingol-3-one 
C28H38O10 534 65.58 

3,9.beta.;14-15-Diepoxypregn-16-en-20-

one, 3,11.beta.,18-triace 
C27H34O9 502 60.97 

Penylalanine, 4-amino-N-t-

butyloxycarbonyl-, t-butyl ester 
C18H28N2O4 336 74.16 

N-Ethyl-4-propyl-4-octanamine C13H29N 199 68.80 

Naphthalene, 1,2,3,4-tetrahydro- C10H12 132 75.57 
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Table 4-4: Results of NIST Libraries for WCO Biodiesel Spectrum 

Compound Formulae 
Mol. 

Wt. 

Probabilit

y 

Hexacosanoic acid, methyl ester C27H54O2 410 80.93 

Methyl 22-methyl-tetracosanoate C26H52O2 396 68.39 

Tetracosanoate  acid, methyl ester C25H50O2 382 88.28 

Tricosanoic acid, methyl ester C24H48O2 368 74.65 

9-Desoxo-9-x-acetoxy-3-desoxy-7.8.12-

tri-O-acetylingol-3-one 
C28H38O10 534 68.75 

Methyl 20-methyl-heneicosanoate C23H46O2 354 78.99 

Eicosanoic acid, methyl ester C21H42O2 326 82.29 

Methyl 9.cis.,11.trans.t.13.trans.-

octadecatrienoate 
C19H32O2 292 69.53 

Cyclodecasiloxane, eicosamethyl- C20H60O10Si10 740 73.75 

Methyl 14-methylhexadecanoate C18H36O2 284 64.47 

Pentadecanoic acid, 14-methyl-, methyl 

ester 
 270 82.97 

Cyclodecasiloxane, eicosamethyl-  C20H60O10Si10 740 87.68 

Methyl 13-methyltetradecanoate C16H32O2 256 81.02 

Cyclononasiloxane, octadecamethyl-  C18H54O9Si9 666 96.93 

Tridecanoic acid, 12-methyl-,methyl ester C15H30O2 242 75.95 

Cyclooctasiloxane, hexadecamethyl- C16H48O8Si8 592 93.07 

Nonanedioic acid, dimethyl ester  C11H20O4 216 86.74 

Cycloheptasiloxane, tetradecamethyl- C14H42O7Si7 518 98.10 

Nonanoic acid, 9-oxo-, methyl ester C10H18O3 186 69.87 
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The analysis of the samples performed on FT-RI, GC-MS and CHNSO elemental 

analysis confirm the presence of oxygen in biodiesel molecule and C=C double 

bounds. Biodiesel is more oxidised compared with diesel which leads to a lower 

heating value for biodiesel. 

4.10.3. Diesel and Biodiesel Microbiological Degradation Results 

Samples of diesel (B0), biodiesel (B100) and blends ratio of 20% and 50% biodiesel 

in diesel were prepared in duplicates. The samples were inoculated with a consortia of 

microorganisms collected from a diesel tank sludge and soil and then incubated for a 

period of seventy days. In order to assess any microbial activity, every fortnight a 

series of measurement was taken: (a) visual observations of the samples were noted, 

(b) bacteria and fungi colony forming unit were counted and (c) the sample`s pH were 

measured. At the end of the incubation period of seventy days, the gram negative 

bacteria were identified and the dry mass of biodiesel was measured.  

Before incubation every sample was bright colour and translucent. After fourteen days 

from inoculation, diesel samples (B0) and Sheffield biodiesel (SB20) exhibited a 

change in fuel colour and water bottom presented opaque. At the bottom of the 

samples and at the fuel/water interface sand size particles were observed. The change 

in the fuel opacity and the presence of particles represent a visible sign of microbial 

activity. Bolton biodiesel (BB) samples presented a weak and slow microorganism 

growth compared with diesel samples. The water bottom of BB samples was still clear 

after fourteen days from incubation. 

After twenty-eight days from inoculation there were observed differences in 

microorganism growth for each sample. With the exception of BB100 samples, all 

others diesel and biodiesel samples became opaque, the fuel as well as the water 

bottom. The colour of the diesel samples became dark yellow. BB100 samples were 

more translucent than SB100 samples. The microbial growth in the water bottom of 

all BB samples has a sandy aspect, but the water bottom was still translucent. One of 

the two SB20 samples presented a microbial growth in the biodiesel. All SB samples 
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present microbial growth bigger in size than that of BB samples. This means that the 

microbial activity in SB samples is higher compared with that of BB samples. A 

higher microbial growth can be associated with a higher microbial activity and rate of 

fuel metabolization. These lead to changes in the chemical composition of the fuel, 

which can affect the physical properties of the fuel. BB20 samples showed formation 

of a bio-film which consisted of free-floating microorganisms at the water/fuel 

interface and adhering to the bottle surface.  

After forty-two days from inoculation, the microbial growth from SB20 sample 

stabilized at the water/biodiesel interface. The water bottom was opaque for all the 

samples, with the exception of BB100 which appeared translucent with less microbial 

growth compared with those from BB50 and B20 samples.  

After fifty-six days from inoculation, samples SB20 and SB50 exhibited a bio-film 

formation.  

After seventy days from inoculation, the water bottom of all SB samples became more 

translucent but displayed fine suspended particles in the water bottom layer. It was 

also observed that for the samples with a high biodiesel ratio in diesel, the presence of 

microbial growing was lower in comparison with high diesel contents. This is due to 

the fact that during the biodiesel manufacturing process, microbial inhibitors additives 

were added to the biodiesel, making biodiesel more resistant to microbial 

contamination compared with diesel. 

In the following the pH variation for diesel and biodiesel samples during a period of 

seventy days incubation are presented. 
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Figures 4-8 and 4-9 show the variation of pH measured in the twenty-eighth day, 

forty-second day, fifty-sixth day and seventy day from inoculation. The pH level 

presented an increase during the period of fifty-six days incubation, and then a drop in 

pH level was observed in the seventy day. During incubation period, the pH levels 

vary from pH 7.0, which is the Bushnell and Haas medium pH in initial week to pH 

6.72 (SB20) and 7.11 (BB50) in week ten. 

Figure 4-8 shows the variation of pH for diesel (B0) and Bolton biodiesel samples 

which are indicated as (BB). Bolton biodiesel blends were indicated as BB20 (20% 

biodiesel-80% diesel), BB50 (50% biodiesel-50% diesel) and BB100 (neat biodiesel). 

It was observed that the sample BB100 has the lowest pH between all the samples 

during the incubation period of seventy days, followed by the sample BB20. 

 

 

Figure 4-8: Cluster column graph shows the variation in pH over the weeks of 

incubations of the Bolton biodiesel samples. The pHs were measured in the 

sterile universal battles that were taken every fourteen days. 
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Figure 4-9 shows the pH variation for diesel (B0) and Sheffield biodiesel (SB) during 

seventy days incubation period. The Sheffield biodiesel samples were indicated as 

SB20 (20% biodiesel-80% diesel), SB50 (50% biodiesel-50% diesel) and SB100 (neat 

biodiesel). It was observed that with the decrease in biodiesel blend in diesel, the pH 

decreases. 

The results showed a decrease in pH after seventy days from incubation for all 

biodiesel samples, except diesel fuel pH which showed similar value compared with 

the initial week.  

 

Figure 4-9: Cluster column graph shows the variation in pH over the weeks of 

incubations of the Bolton biodiesel samples. The pHs were measured in the sterile 

universal battles that were taken every fourteen days. 
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Counts of colony forming units (cfu) were conducted after incubation for fourteen, 

twenty-eight, forty-two, fifty-six and seventy weeks, and are presented in Figures 4-10 

– 4-13. Consortia of microorganisms from inoculated biodiesel samples were spread 

on YEA and MEA from serial dilution of 100, 10-2 and 10-4.  

Figures 4-10 and 4-11 show the colony forming units (cfu) of bacteria growth on 

diesel, Bolton biodiesel and Sheffield biodiesel. Results show lower bacteria cfu for 

Bolton biodiesel compared with Sheffield biodiesel. 

Figure 4-10 shows the results for bacteria cfu for Bolton biodiesel. It was observed 

that during of 70 days of incubation diesel (B0) sample showed a constant increase in 

bacteria cfu. After forty-two days of incubation sample B20 showed the higher 

bacteria cfu between all samples, while B50 followed by B100 showed lower bacteria 

cfu compared with B0. 

 

Figure 4-10: Log of colony forming unit of bacteria per litre of diesel and Bolton 

biodiesel sample 
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Figure 4-11 shows the results for bacteria cfu for Sheffield biodiesel. Results show an 

increase in bacteria cfu during seventy days of incubation. The results of bacteria cfu 

from Bolton biodiesel and Sheffield biodiesel show a consistency in the dependency 

between the biodiesel blend and bacteria cfus. With the increase in Sheffield biodiesel 

blend in diesel it was observed a decrease in bacteria cfu. After fifty-six days from 

incubation SB50 was the only sample showing the higher bacteria growth.  

 

 

Figure 4-11: Log of colony forming unit of bacteria per litre of diesel and 

Sheffield biodiesel sample  
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Figures 4-12 and 4-13 show the colony forming units of fungi growth on diesel, 

Bolton biodiesel and Sheffield biodiesel.  

The results presented in Figure 4-12 show that Bolton biodiesel exhibited the lower 

fungi growth between all the samples. During seventy days of incubation it was 

observed a decrease in fungi cfu for most of the samples. After twenty-eight days no 

fungi cfu was detectable in BB100 sample. 

 

Figure 4-12: Log of colony forming unit of fungi per litre of diesel and Bolton 

biodiesel sample   
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Figure 4-13 show the results of fungi cfu from Sheffield biodiesel. The lower fungi 

cfu was detected in SB100 sample. At fourteen days from incubation all SB samples 

shows similar fungi cfu, excepting SB100. As a general trend it was observed a slower 

decrease in fungi cfu during seventy days from incubation compared with Bolton 

biodiesel was observed.  

 

Figure 4-13: Log of colony forming unit of fungi per litre of diesel and Sheffield 

biodiesel sample 
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Figure 4-14 presents the result of dry biomass, measure in gram per litre, after seventy 

day from incubation. Sample SB50 show the highest dry biomass between all the 

samples followed by SB20 and BB100. Sample B0 measured one of the lowest dry 

biomass. The dry biomass is one of the indicators of fuel biodegradation.  The results 

showed that Bolton biodiesel was more prone to bacteria contamination compared 

with diesel.  

 

 

Figure 4-14: dry biomass measured after 70 days from incubation; where B0 

represents diesel, B20, B50 and B100 represent 20%, 50% and 100% biodiesel 

(SB and BB respectively) blend ratio in diesel 

 

Particularly interesting were the sample Bolton B100, which had the lower cfu 

average 2.46x103 ml-1. The higher cfu exhibited was counted for the samples from 

Sheffield.  
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Table 4-5 shows the gram stain results obtained from spread plates taken after fifty-

eight days of extractions.  

Table 4-5 - Gram stain results in week six of extractions 

Code Gram Size Shape 

B0 - 1µm Rod 

B0 - 1µm Rod 

BB20 - 1µm Rod 

BB20 - 1µm Rod 

BB50 - 1µm Rod 

BB50 - 1µm Rod 

BB100 - 1µm Rod 

BB100 + 1µm Coccus 

SB20 + 1µm Coccus 

SB20 + 1µm Coccus 

SB20 + 1µm Coccus 

SB20 - 1µm Rod 

SB20 - 1µm Rod 

SB50 + 1µm Coccus 

SB50 + 1µm Coccus 

SB50 - 1µm Rod 

SB50 - 1µm Rod 

SB100 - 1µm Rod 
Note: Microscope magnification= 1000x 

 

It was observed two different shapes of bacteria, rod and Coccus shape, all having 

approximately 1µm size. The majority of bacteria that were gram stained were being 

measured as gram negative rods and were identified using API 20NE V7.0 kit 

(bioMerieux) and the results are presented in Table 4-6. 
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Table 4-6 shows identification of microorganisms grow on inoculated petri dish from 

the extraction in the fifty-sixth day. 

Table 4-6 - Microorganisms that were identified on each petri dish 

Samples Description Bacteria Identification 

Diesel B0 

Fungi - white; red 

transparent  

Yeast - white; 

transparent 

P. aeruginosa1 

Bolton 

B100 Yeast-yellow 
Chaetomium2 

Pseudomonas aeruginosa3 

B50 
Yeast - white; yellow 

transparent 
Chaetomium4 

B20 
Fungi - white/red  

Yeast - white 

Burkholderia pseudomallei5/P. 

aeruginosa5 

P. aeruginosa6 

Sheffield 

B100 
Yeast - white and 

yellow transparent 
P. luteola 

B50 
Yeast - white; 

transparent 

Pseudomonas stutzeri7 

Ralstonia pickettii8  

P. aeruginosa/ 

P. alcaligenes 

B20 
Fungi  

Yeast 

P. aeruginosa9 

P. putida/Comamonas testosteroni/P. 

alcaligenes 
Note: 1. ID% – 99.9% P. aeruginosa; 2. Additional test; 3. ID% – 99.9% P. aeruginosa; 4. Additional 

test; 5. Additional test; 6. ID% – 99.9% P. aeruginosa; 7. Additional test; 8. ID% - 95.1% Ralstonia 

pickettii; 9. ID% - 89.2% P. aeruginosa; 

 

 

Identifying the fungi would confirm the predominant microorganisms that are capable 

of inhabiting biodiesel. Microscopy and fungal literature was used to identify the 

fungi. Particularly interesting growth was shown in the plates from Bolton B20 and 

Bolton B100. The growths on the plates were streaked onto YEA and MEA plates and 

incubated for a week. Growth exhibited from the Bolton B20 and B100 showed a 

definitive structure, and the closed genus was Chaetomium. The structure of 

Chaetomium was further clarified by test confirmation, using milk agar with cetyl 

trimethylammonium bromide.  
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4.11. Conclusions 

Biodiesel and diesel samples were prepared and the main physical properties of the 

fuel were measured. The difference in the physical properties between the WCO 

biodiesel from the three suppliers was small. Therefore, the emissions and engine 

performance for the other WCO`s biodiesel are expected to be similar with the results 

from WEPower biodiesel that was investigated.  

The test results from the elemental analyses of the fuel have shown up to 12% oxygen 

in biodiesel compared with diesel. The sulphur concentration in biodiesel was twenty-

two time less compared with the sulphur concentration of diesel, which makes 

biodiesel friendly to human health and environment. The test results show that 

biodiesel caloric value was lower compared with diesel due to the high content of 

oxygen and lower carbon to hydrogen ratio compared with diesel. 

The FT-IR spectra from diesel and biodiesel has shown peaks that do not overlap. TF-

IR analysis is a useful method to identify possible functional groups present in diesel 

and biodiesel. The functional groups can provide information on the stability of 

biodiesel fuel. The absorption corresponding to C-O stretches reveals that the 

molecule contains ester functional group. The carbonyl absorption peak shows a direct 

proportional evolution with the increase in biodiesel blend in diesel. 

Samples of biodiesel from two suppliers were assessed for microbial contamination 

and the results were compared with diesel. The test results have shown that once the 

biodiesel was treated with additives, the growth of bacteria and fungi was significantly 

reduced compared with the bacteria and fungi exhibited by diesel. Between biodiesel 

samples, Bolton biodiesel shown lower microbial growth compared with Sheffield 

biodiesel. These differences could be caused by the development of certain fungi, 

such as Chaetomium which can inhibit bacteria development. The genus Chaetomium 

fungi are considered to be a rich source of novel and bioactive secondary metabolites 

which is antibiotic and exhibit enzyme inhibitory [150]. 
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Chapter 5 -Evaluation of Biodiesel Combustion in a 

Continuous Combustion Rig (CCR) 

5.1.  Introduction  

In order to study the exhaust emissions from various diesel and biodiesel blends it was 

important to eliminate all the physical aspects that influence the combustion. Unlike in 

the diesel engine, by using CCR the combustion conditions could be controlled, 

consequently the physical phenomena that affect combustion could be reduced; thus 

enabling just the chemical aspect of combustion to be analysed. Therefore the purpose 

of the burner was to produce a laminar premixed flame, and to control the air flow 

rate, fuel flow rate and pressure. These variables allowed tests on diesel and biodiesel 

fuels under various test conditions. Since NO variations were dependent upon the 

operational condition, a minimum concentration of NO could be achieved. Hence 

operational conditions could be optimised according to the fuel type. Results provide 

theoretical basis for emission control of NOx and improve operation parameters when 

using biodiesel instead of diesel fuel. 

 

5.2.  Experimental Method and Instrumentation 

5.2.1. Experimental Setup 

The laboratory combustion rig used in this research was composed of a horizontal 

cylinder (12) and an evaporating chamber (7) separated by a porous disc (9), two fuel 

tanks (2), temperature reader (6 &11), gas analyser (13) and system acquisition (14). 

The combustion rig was made of stainless steel in order to protect against any 

catalytic reaction.  
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A schematic diagram of the experimental system is shown in Figure 5-1. 

 

Figure 5-1: Continuous combustion rig (CCR) 
1- Air line system for fuel pressure; 2- Fuel tanks; 3- Air flow meter; 4- Pressure gage; 5- Fuel line & 

air line; 6- Evaporating chamber thermocouple port S1; 7- Evaporating chamber; 8- Ignition port; 9- 

Sintered disc; 10- Temperature and exhaust gas sampling ports; 11- Thermocouples port S2, S3 and S4; 

12- Burner; 13- Gas analyser; 14- Data acquisition system. 

 

Four type-K thermocouples connected to a digital display reader were situated along 

the combustor. The first thermocouple embedded in the evaporating chamber was 

used to measure the temperature of the premixed fuel-air. The other three 

thermocouples measure the combustion gas temperature along the combustion tube at 

the sampling ports S2=0.425m, S3=0.84m and S4=1.121m.  

The evaporating chamber has the dimensions of 65mm internal diameter and 80mm 

length. The following combustion zone was separated from the evaporating chamber 

by the porous stainless steel sintered disc mesh size of 250 and diameter 65mm. Fuel 

and air enters the evaporating chamber which was preheated externally.  Therefore the 

fuel vaporised when it entered the chamber and mixed with air. The fuel-air mixture 

passed through a sintering disc and produced a laminar premixed flame in the 

combustion tube.   
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A sampling device was placed at the 0.425m away from the sintered disc for 

collecting samples of the exhaust gas in the combustion tube.  For analysing the 

combustion gases Sykes Pickavant SP9550 gas analyser was used. In order to 

facilitate the gas sampling and allow flue gas to cool down before reaching the 

analyser sensors, 10mm internal diameter stainless steel tube was designed and 

attached to the original probe of the gas analyser. 

The experiments were carried out using different blend ratios of diesel and biodiesel 

from VEPower supplier. The fuel blends investigated were neat diesel (B0), 25% 

biodiesel: 75% diesel (B25), 50% biodiesel: 50% diesel (B50), 75% biodiesel: 25% 

diesel (B75) and neat biodiesel (B100). Biodiesel was obtained from waste cooking 

oil. CHSO elemental analysis of diesel and neat biodiesel samples were performed 

and the results are shown in Table 5-1. 

 

Table 5-1: Fuel specifications from lab analyses for 100kg diesel  
Note: a) and b) test results from ITS Testing Service (UK) Ltd c) – estimative values of biodiesel blends from a) and b) 

Element 
Standard 

(UKAS) 

B0a) 

% by wt 

B25c) 

% by wt 

B50c) 

% by wt 

B75c) 

% by wt 

 B100b) 

% by wt 

Carbon 

MT/ELE/13 

86.9 84.18 81.45 78.73  76 

Hydrogen 12.9 12.65 12.4 12.15  11.9 

Nitrogen 0.02 0.02 0.02 0.02  0.02 

Oxygen MT/ELE/21 0.07 2.978 5.89 8.79  11.7 

Sulphur MT/MCR/12 0.09 0.068 0.045 0.023  0.00052 

H20  0.02 0.11 0.2 0.29  0.38 

 

The amount of air necessary for complete combustion depended on the main fuel 

constituent compounds: carbon, hydrogen, oxygen and sulphur. The air used as 

combustion oxidant consisted of 23.20% oxygen and 75.47% nitrogen by weight with 

traces of other elements.  

The oxygen contributes to the oxidation of the elements constituent of diesel fuel such 

as C, H, S, N and O. The volume of exhaust gas from diesel fuel was calculated at 

stoichiometric conditions. Assuming that the combustion was complete, the resulting 
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gas would consist of CO2, H2O, SO2, N2 and O2. The total combustion gas for diesel 

was calculated at normal temperature and pressure, (NTP), and stoichiometric 

conditions.  

5.2.2. Methodology 

The fuel was fed into the evaporating chamber from a stainless steel tank pressurised 

by compressed air. The air and fuel flow rate were controlled by calibrated rota-

meters. The air was allowed to mix with the fuel in the evaporating chamber. The 

mixture was heated up and forced out through a stainless steel sintered disc and the 

flame was produced outside the disc. In order for the system to stabilise and sustain 

combustion, the combustion rig was allowed to run for about one hour before any 

samples were taken. The stability of the system was established by checking the 

temperature along the tube. The temperature of the combustion gas was measured 

with four type K thermocouples of 2mm in diameter. Before each test, the 

thermocouples were inspected for cracks to assure minimal catalytic reaction at the 

surface of the thermocouple. For each set of tests, in order to decrease the errors that 

could occur during measurements, various temperature and combustion gas readings 

were recorded. The final value of the temperature and combustion gas represents an 

average of various measurements. After a set of measurements was finalised, and a 

new set of parameters were fixed (e.g. the air flow rate was increased), the system was 

allowed time between 15-20 minutes to stabilise before taking any reading. 

The temperature and the combustion gas were measured at the distance of 0.425m 

from the sintered disc. Samples of combustion gas were extracted through a stainless 

steel probe and passed into the gas analyser. The gas analyser measures the excess O2, 

CO, CO2, HC, and NO. SP9550 data-log software, allowed the data collected from the 

gas analyser to be to be recorded in an electronic format.  

In order to analyse NO variation with the residence time, samples of combustion gas 

were taken at fixed interval distance from the sintered disc. The excess O2, NO, CO, 
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CO2 and HC were the measured parameters, at fixed fuel and air flow rate, and 

constant pressure. 

 

5.2.3. Adiabatic Flame Temperature Calculations 

The adiabatic flame temperature was calculated applying the first law of 

thermodynamics to an adiabatic combustor burning B0, B25, B50, B75 and B100.  

Equation (50) presents the fuel-lean combustion of diesel fuel for stoichiometric 

conditions.  

 

CHm + αs (O2 + 3.78N2) → CO2 + m/2 H2O + αs O2 + 3.78αs N2 (50) 

  

Where αs = 1 + m/4. The equation for stoichiometric fuel-lean combustion of biodiesel 

fuel is shown in (51). 

 

CHmOn + βs (O2 + 3.78N2) → CO2 + m/2 H2O + βs O2 + 3.78βs N2 (51) 

  

Where αs = 1 + m/4. Applying the first law of thermodynamics; 

 

Σj,prod fj [hj (T) – hj (T0) + Δh°f,j (T0)] - Σj,in fj [hj (T) – hj (T0) + Δh°f,j (T0)] 

                  = Q – Wx = 0 
(52) 

 

Where T0 is the reference temperature, T0 = 298K and the pressure p0 = 1atm. 

The adiabatic flame temperature can be obtained using enthalpy and enthalpy of 

formation data for each of the species.  

The linear approximation for the temperature dependence of the specific heats is  

cpi = ai +biT, therefore, 

[hi(T) – hi(T0)] = ai (T-T0) + bi/2 (T2-T2
0) (53) 
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The calorific value of B0 and B100 was obtained experimentally. Based on B0 and 

B100 values, the higher heating value for B25, B50 and B75 was computed using 

formula given by equation (54) 

HHVBxx = HHVB0Dx + HHVB100Bx (54) 

Where HHVBxx is the higher heating value of the blends, HHVB0 and HHVB100 is 

higher heating value of diesel, respectively biodiesel, and Dx and Bx represents 

percentage of diesel respectively biodiesel in blend. 

 

5.3.  Results and Discussion 

The results of combustion of various blends of biodiesel at different fuel/air 

equivalence ratio are presented in the following section. The measurements were 

made to obtain the combustion gas temperature and the characteristics of the exhaust 

emissions. 

5.3.1. Adiabatic Flame Temperature 

Table 5-2 shows the main properties of diesel and biodiesel fuel used in the 

combustion experiment.  The fitted molecular formula for each blend and neat fuel 

was deduced from the elemental analyses of diesel and biodiesel supplied by 

VEPower ltd. 

Table 5-2: Main physicochemical properties of the fuel 
Note: c) – estimative values of biodiesel blends from a) and b). 

Properties Units B0a) B25c) B50c) B75c) B100b) 

Fitted molecular 

formula 
- C13H23 C19H34O2 C16H29O2 C31H57O2 C17H41O2 

High heating value MJ/kg 41.098 39.167 37.236 35.305 33.374 

Density at 20°C g/m3  0.834 0.846 0.858 0.87 0.882 

Kinematic viscosity mm2/s 3.5 3.74 3.985 4.228 4.47 
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Figure 5-2 shows the variation of adiabatic flame temperature with the increase in 

biodiesel blend ratio in diesel. The adiabatic flame temperature decreases from 2426K 

for B0 to 2003K for B100. This was mainly due to the low calorific value of biodiesel 

compared to diesel. 

 

 

Figure 5-2: Variation of adiabatic flame temperature with biodiesel blend 

ratio in diesel 
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5.3.2. Variation of Combustion Gas Temperature with Biodiesel Blends 

and Fuel/Air Equivalence Ratio 

 

Figure 5-3 presents the variation of combustion gas temperature for various biodiesel 

blends at fuel/air equivalence ratio of 0.29, 0.16, 0.14 and 0.11. The figure shows a 

slow increase in combustion gas temperature with the decrease in fuel/air equivalence 

ratio. Also, it was observed that the blend ratio diesel/biodiesel influences the 

combustion gas temperature. The increase in biodiesel blend ratio in diesel result in an 

increase in the combustion gas temperature 

 

 

Figure 5-3: Variation of combustion gas temperature from various biodiesel 

blends at fuel/air equivalence ratio of 0.29, 0.16, 0.14 and 0.11 
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Figure 5-4 presents the percentage change of combustion gas temperature from base 

line (B0) at different fuel/air equivalence ratio. For fuel/air equivalence ratio varying 

from 0.11 to 0.29 it was observed an increases between 12 to 20% in CGT for 

biodiesel blends compared with diesel. For fuel/air equivalence ratio varying from 

0.11 to 0.29 increases between 12 and 20% in CGT for biodiesel blends compared 

with diesel was observed.  

 

 

Figure 5-4: % change in CGT from B0 for various fuel/air equivalence ratio 

and diesel and biodiesel blend 
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5.3.3. Variation of Specific Nitrogen Oxide with Biodiesel Blends and 

Fuel/Air Equivalence Ratio 

Figure 5-5 shows the variation of specific nitrogen oxide (SNO) from various 

biodiesel blends at different fuel/air equivalence ratio.  

For fuel/air equivalence ratio decreasing from 0.29 to 0.11 it was observed an increase 

in SNO. It was observed that with the increase in biodiesel blend ration in diesel, SNO 

increased. This was due to a higher combustion gas temperature compared with that 

from diesel. 

 

Figure 5-5: Variation of SNO from various biodiesel blends at fuel/air 

equivalence ratio of 0.29, 0.16, 0.14 and 0.11 
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Figure 5-6 shows the percentage change in SNO from base line for biodiesel blends at 

various fuel/air equivalence ratios. The results showed an increase in SNO between 20 

to 60% from base line. The lower increase in SNO was recorded for B25 for fuel/air 

equivalence ratio of 0.14, whereas for B50 and B75 the lower SNO was at the 

combustion condition of fuel/air equivalence ratio of 0.29. B100 shown the lower 

SNO at fuel/air equivalence ratio of 0.11. 

 

 

 

Figure 5-6: % change in SNO from B0 for various fuel/air equivalence 

ratio and diesel and biodiesel blend 
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5.3.4. Variation of Specific Carbon Dioxide with Biodiesel Blends and 

Fuel/Air Equivalence Ratio 

Figure 5-7 presents the variation of specific carbon dioxide from biodiesel blends at 

various equivalence ratios. The results show an increase in SCO2 with the decrease in 

fuel/air equivalence ratio. The increase in biodiesel blend in diesel resulted in an 

increse in SCO2 compared with diesel. This meant that the addition of biodiesl into 

diesel would result in an increse in combustion efficency. 

 

Figure 5-7: Variation of SCO2 from various biodiesel blends at fuel/air 

equivalence ratio of 0.29, 0.16, 0.14 and 0.11 
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Figure 5-8 shows the percentage change in SCO2 emissions from biodiesel blends at 

different fuel/air equivalence ratios. For fuel/air equivalence ratio varying between 

0.29 to 0.11, the SCO2 shown an increse from the base line between 2 to 11%. B25 

and B100 show the higher SCO2 emissions, therefore a better combustion at the 

fuel/air equivalence ratio of 0.14. For B50 and B75 the higher SCO2 was recoded at 

the fuel/air equivalence ratio of 0.11. 

 

 

Figure 5-8: % change in SCO2 from B0 for various fuel/air equivalence 

ratio and diesel and biodiesel blend 

 

 

 

 

0

2

4

6

8

10

12

B25 B50 B75 B100

S
C

O
2

%
 c

h
a
n

g
e 

fr
o
m

 B
0

Fuel type

Φ=0.29

Φ=0.16

Φ=0.14

Φ=0.11



 

110 

 

5.3.5. Variation of Specific Carbon Monoxide with Biodiesel Blends and 

Fuel/Air Equivalence Ratio 

 

Figure 5-9 presents the variation of specific carbon monoxide from different biodiesel 

blends at various fuel/air equivalence ratios. The results shown that for fuel/air 

equivalence ratios varying from 0.29 to 0.11, the SCO emissions decreases. It was 

also, observed that by increasing the biodiesel blend ratio in diesel, the SCO emissions 

decreased compared with diesel.  

 

 

Figure 5-9: Variation of SCO from various biodiesel blends at fuel/air 

equivalence ratio of 0.29, 0.16, 0.14 and 0.11 
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Figure 5-10 presents the percentage change in SCO emissions from various diesel and 

biodiesel blends at different fuel/air equivalence ratio. For combustion at fuel/air 

equivalence ratio varying between 0.29 and 0.11, a reduction from baseline between 

15 to 60% in SCO was observed. B25 shows a decrease in SCO of 30% from baseline 

when combustion conditions are at fuel/air equivalence ratio of 0.29. B50 and B75 

show the higher decrease in SCO at fuel/air equivalence ratio of 0.16, whereas for 

B100 shows the higher reduction in SCO at fuel/air equivalence ratio of 0.11. 

 

 

Figure 5-10: % change in SCO from B0 for various fuel/air equivalence ratio 

and diesel and biodiesel blend 
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5.3.6. Variation of Specific Hydrocarbon with Biodiesel Blends and 

Fuel/Air Equivalence Ratio 

 

Figure 5-11 presents the variation of unburned specific hydrocarbon emissions from 

various diesel and biodiesel blends at various fuel/air equivalence ratios. The results 

show a decrease in SHC emissions with the increase in biodiesel blend ratio in diesel.   

 

 

 

Figure 5-11: Variation of SHC emissions from various biodiesel blends at 

fuel/air equivalence ratio of 0.29, 0.16, 0.14 and 0.11 
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Figure 5-12 shows the percentage change in SHC emissions from base line for various 

blends of diesel and biodiesel at different fuel/air equivalence ratios. The results show 

that with the decrease in fuel/air equivalence ratio form 0.29 to 0.11, the SHC 

emissions decrease between 25 to 80% from base line. The higher decrease in SHC 

emissions resulted at fuel/air equivalence ratio of 0.11 for all biodiesel blends.  

 

 

Figure 5-12: % change in HC from B0 for various fuel/air equivalence ratio and 

diesel and biodiesel blend 
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combustion gas. The increase in the CG temperature for biodiesel blends with higher 

concentration of biodiesel in diesel blend can be due to the oxygen content in the 

biodiesel molecule, resulting in a more intense combustion compared with diesel. The 

blend ratio of biodiesel in diesel influenced the formation of pollutant emissions. An 

increased in NO and CO2 with the increase in biodiesel blend ratio in diesel It was 

observed. The increase in CO2 emissions when using biodiesel was a result of better 

combustion compared with diesel fuel, due to the fact that the molecule of biodiesel 

contains up to 12% oxygen. The effect of diesel-biodiesel blend on formation of HC 

emissions became more obvious when the combustion become leaner. The test results 

showed that HC emissions decreased with the increase in biodiesel ratio in diesel for 

all biodiesel blends compared with diesel. The oxygen content in biodiesel molecules 

leads to a more intense and complete combustion, resulting in lower HC emissions 

compared with diesel fuel. The optimum combustion conditions were found at fuel/air 

equivalence ratio of 0.11. At this fuel/air equivalence ratio it was obtained the highest 

decrease in HC and CO with the lower increase in NO for most biodiesel blends was 

obtained. 
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5.3.7. Variation of Combustion Gas from Diesel and Biodiesel with 

Residence Time 

 

Figure 5-13 presents the SNO variation with residence time at equivalence ratio of 

0.06. The results show higher SNO emissions from WCO biodiesel (B100) compared 

with diesel (B0). A sharp decrease in SNO emissions from diesel, decreasing from 90 

to 68ppm for the residence times between 0.03 – 0.1s, then NO stabilises to 62ppm 

between 0.1 and 0.4s was observed. Compared with diesel, SNO emissions of WCO 

biodiesel (B100) show a constant decrease from 120ppm to 98ppm for residence time 

between 0.04 and 0.5s. 

 

 

Figure 5-13: Specific nitric oxide emissions variation with equivalence ratio of 

0.06 for diesel and biodiesel 
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Figures 5-14 and 5-15 present the variation of exhaust emissions from B0, B25, B50, 

B75 and B100 at equivalence ratio of 0.01 and residence time of 0.22s. Figure 5-14 

show the variation of specific carbon monoxide (SCO) from diesel, biodiesel and 

various blends of diesel and biodiesel. Results show that for all biodiesel blends, SCO 

emissions are lower compared with diesel fuel. It was observed that with the increase 

in biodiesel blend in diesel, the SCO emissions decreased.  

 

 

Figure 5-14: Evaluation of specific carbon monoxide emissions variations 

from diesel and biodiesel burned in CCR at equivalence ratio 0.01 and  

residence time of 0.22s  
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Figure 5-15 shows the variation of specific carbon dioxide (SCO2) from diesel and 

biodiesel blends. It was observed that with the addition of biodiesel in diesel, CO2 

emissions increased. A high CO2 emission means a better combustion. Thus, the 

addition of biodiesel to diesel blend in diesel will improve the combustion.  

 

 

Figure 5-15: Evaluation of specific carbon dioxide emissions variations from 

diesel and biodiesel burned in CCR at equivalence ratio 0.01 and  

residence time of 0.22s 
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The results presented in Figures 5-16 and 5-17 show the relation between unburned 

specific hydrocarbon (SHC) and the temperature of the combustion gas. The lower the 

unburned HC emissions, the higher was the temperature of the combustion gas and the 

more efficient the combustion.  

 

 
Figure 5-16: Evaluation of unburned specific hydrocarbon emissions variations 

from diesel and biodiesel burned in CCR at equivalence ratio 0.01 and  

residence time of 0.22s 

 

 
Figure 5-17: Evaluation of combustion gas temperature from diesel and 

biodiesel burned in CCR at equivalence ratio 0.01 and residence time of 0.22s  
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The test results show a direct relation between the biodiesel blend and the SHC 

emissions and CGT. High decrease in SHC emission with the increase in biodiesel 

blend in diesel, it was observed, this leading to a cleaner combustion of the fuel 

compared with the combustion of a neat diesel. 

Figure 5-18 shows the variation of nitric oxide from diesel and biodiesel at fixed 

combustion conditions. The results show an increase in SNO emissions compared 

with diesel. The biodiesel blend radio in diesel seems to have a significant influence 

on SNO formation.   

 

 

Figure 5-18: Evaluation of nitric oxide emissions from diesel and biodiesel 

burned in CCR at equivalence ratio 0.01 and residence time of 0.22s 
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SNO formation compared with diesel. The thermal and prompt are the main 

mechanisms for the nitrogen oxides formation [151]. The prompt NO formation can 

be due to the high presence of CH in the reaction zone. The FT-IR results have shown 

that biodiesel contained higher CH bonds in its molecule compared with diesel. C-N 

elemental group was also observed in the biodiesel molecule, whereas C-N groups 

were not identified in diesel spectrum. The oxygen content in biodiesel molecule and 

the content of unsaturated compounds lead to more heat release during the combustion 

process. This results in a more intense combustion compared with diesel, leading to 

high combustion gas temperatures. The combustion reaction rate for biodiesel was 

higher compared with diesel, leading to a faster brakeage of the hydrocarbon chain 

which release more heat.     

The increase in biodiesel blend ratio in diesel shows a decrease in SHC and SCO 

emissions compared with diesel. This was attributed to the complete combustion of 

biodiesel. The completeness of the combustion was also observed in the increase in 

CO2 with the increase in biodiesel ratio in diesel. 
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Chapter 6 - Evaluation of Biodiesel in a Land Rover Diesel 

Engine 

 

6.1.  Introduction 

In this chapter details of experimental methodology, engine instrumentations and the 

results of the experiments conducted on a direct injection diesel engine are presented. 

The engine was fuelled with neat Waste Cooking Oil (WCO) biodiesel and WCO 

biodiesel-diesel blends. The results are compared with that of baseline diesel. These 

test results would be useful for engines fuelled with WCO biodiesel working under 

similar operating conditions, and for imminent research work in development of 

biodiesel. 

6.2.  Experimental Method and Instrumentation 

A thorough investigation has been performed in order to understand the engine 

performance with neat biodiesel and various blends of WCO biodiesel-diesel under 

various engine operating conditions. The engine used for this study was a 

turbocharged four stroke, direct injection (DI) Land Rover VM Motori engine.  

Neat WCO biodiesel and WCO biodiesel-diesel blends were tested in a Land Rover 

VM 2400 diesel engine under steady state conditions. A turbocharged engine is more 

sensitive to fuel quality. The VM 2400 water cooled diesel engine with the 

specifications given in Table 6-1 was connected to a dynamometer and used as testing 

platform. 
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Table 6-1: Engine Specifications 

Manufacturer VM Motori, Iri-Finmeccanica group 

Engine type  4 cylinders, direct injection, water cooled, 

compression ignition engine 

Bore/Stroke 92 mm/90 mm 

Approximate engine capacity 2393 cm3 

Compression ratio 21:1 

Compression pressure 235.3 to 255 N/cm2 

System pressure at 2000 rpm 44 to 49 N/cm2  

Oil pressure at 2000 rpm 4.1 to  45 N/cm2 

Idle speed 800 to 830 rpm 

Injector open pressure 155 bar 

Injector nozzle diameter 0.87 mm 

Firing order 1, 3, 4, 2, 

Dynamometer controlling  

type 

Electromagnetic brake 

 

A schematic and illustrative layout of the engine test rig are presented in Figures 6-2 

– 6-5.  

 

Figure 6-1: Schematic diagram of experimental test rig 
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Figure 6-2: Diesel engine test rig 

 

 

Figure 6-3: SP9550 exhaust gas analyser 
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Figure 6-4:Load bank 

 
Figure 6-5: Dynamometer control panel 

 

The test rig was instrumented to measure and control the engines basic parameters 

such as engine torque, speed, load, volumetric fuel flow rate and exhaust emissions. 

Several thermocouples installed at strategic points in the engine were used to measure 

the temperature of water coolant and the exhaust manifold. The coolant was achieved 

by electrically driven pumps, with the temperatures controlled by water fed heat 

exchangers. The thermocouples used were type K from Omega Engineering Inc. The 

temperatures were shown on a multi-point electronic temperature display unit. The 

thermocouples were accurate within ±2.2 °C. 

A graduated sight glass made by Plint & Partners Ltd., mounted on the test rig was 

used to measure the volumetric fuel flow rate. External conditions for each test have 

been recorded in every aspect. The test rig installation is shown in Figures 6-2 – 6-5. 

A 5 litre detachable aluminium fuel tank was attached to the engines rig in order to 

facilitate easy evacuation of the remaining fuel after each test. Before taking any 

records for a new fuel, the engine was run for 1 hour under various conditions. The 
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engine was water-cooled, and the water circulated through the engine was controlled 

to maintain a constant outlet water temperature. 

The engine was run first with diesel in order to generate baseline data. Blend ratio of 

75/25 (B25), 50/50 (B50), 25/75 (B75) and 0/100 (B100) were tested to analyse the 

impact of biodiesel concentration on engine performance and emissions. Torque, 

brake specific fuel consumption (BSFC), brake power (BP), brake thermal efficiency 

(BTE) and exhaust emissions were observed. 

Neat diesel was also tested before and after using WCO biodiesel blends as a baseline. 

The series of tests were conducted using each fuel with the engine working at the 

conditions presented in Table 6-2.  

Table 6-2: Engine conditions 

Engine Speed [rpm] 

2000 2500 3000 3500 

Engine load [%] 

15 25 50 75 100 15 25 50 75 100 15 25 50 75 100 15 25 50 75 100 

 

The engine speed was fixed at 2000, 2500, 3000 and 3500rpm. For each fixed speed 

the engine was tested under 15, 25, 50, 75 and respectively 100% load respectively. 

After each set up of engine conditions the engine was run and allowed to stabilize for 

approximately 25 minutes before any measurements were taken. In order to minimize 

the errors, each engine parameter was measured seven times and the data for each 

operating condition was averaged.  
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Neat diesel and blends of diesel and biodiesel with the properties presented in Table 

6-3 were tested under various engine cycles.  

Table 6-3: Fuel properties 

Fuel type Density 

[g/cm3] 

Kinematic viscosity 

[mm2/s] 

Lower calorific value 

[kJ/kg] 

B0 0.834 3.5 41098.33 

B25 0.846 3.74 39167.3 

B50 0.858 3.99 37236.27 

B75 0.87 4.23 35305.24 

B100 0.882 4.47 33374.21 

 

Table 6-4: Resolution of measurements  

Measurements Accuracy 

NO ±1 ppm 

CO ±0.01 % 

CO2 ±0.1 % 

HC ±1 ppm 

O2 ±0.01 % 

Speed ±2 rpm 

Torque ±0.1 Nm 

Time ±5 % 

Sample flow rate 5 l/min.  

Computed results Resolution 

Fuel volumetric rate ±1% 

Power ±1% 

Brake specific fuel consumption ±1.5% 

Efficiency ±1.5% 

 

In each test, volumetric fuel consumption, engine speed, torque and exhaust 

emissions, such as nitrogen oxides (NO), carbon monoxide (CO), total unburned 

hydrocarbon (HC), carbon dioxide (CO2) and excess oxygen (O2) in the exhaust gas 

were measured.  
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6.3.   Results  

6.3.1. Effect of WCO Biodiesel-Diesel Blending on Engine Torque  

The torque percentage differences from baseline for a range of biodiesel and diesel 

blends are shown in Figures 6-6 – 6-9. Torque measurements were recorded at 2000, 

2500, 3000 and 3500 rpm and the engine load was varied from 15% to 100% load. 

The results showed a reduction in engine torque with the increase in biodiesel blend 

ratio in diesel. As the engine load increased, a decrease in torque was observed for all 

biodiesel blend ratios. 

Figure 6-6  shows the variation of torque with load and biodiesel blend for engine set 

at 2000 rpm. The test results showed up to 9% decrease in torque for neat biodiesel 

(B100) compared to base line.  

Figure 6-7, as the engine speed was increased to 2500 rpm, the torque difference 

between biodiesel blends and baseline decreases substantially. The results showed a 

reduction in torque for B100 of up to 4% compared to baseline. 

Figures 6-8 – 6-9, at 3000 and 3500 rpm and at low and medium load, biodiesel 

blends showed similar variation in the torque values. The test results showed a 

decrease in torque of up to 5.5% and 4% respectively, from the baseline. Maximum 

decrease in torque for WCO biodiesel compared with diesel fuel was 9% and was 

observed at 2000 rpm. This was attributed to the lower calorific value of biodiesel 

compared with that of diesel. 
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Figure 6-6: Variation of torque with WCO biodiesel-blend at 2000 rpm and various 

load conditions 

 

 

Figure 6-7: Variation of torque with WCO biodiesel-blend at 2500 rpm and various 

load conditions 
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Figure 6-8: Variation of torque with WCO biodiesel-blend at 3000 rpm and various 

load conditions  

 

 

 

 

Figure 6-9: Variation of torque with WCO biodiesel-blend at 3500 rpm and various 

load conditions 
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6.3.2. Effect of Diesel and WCO Biodiesel Blend on Engine Brake 

Specific Fuel Consumption (BSFC) 

The brake specific fuel consumption is defined as the fuel flow rate per unit power 

output. It is a measure of the efficiency of the engine in using the fuel supplied to 

produce work. It is desirable to obtain a lower value of BSFC, meaning that the engine 

uses less fuel to produce the same amount of work. This is one of the most important 

parameters to compare when testing various fuels.  

 

BSFC= mf/BP [kg/kW h] 

 

Where mf is the mass flow rate of fuel and BP is engine brake power. The fuel flow 

rate is determined by using a graduated sight glass and a chronometer watch. 

 
mf = vf ×ρf×3600/t [kg/h] 

Where vf is volume of fuel measure, which was 50 cc, ρf is fuel density and t is the 

time measured until 50 cc of fuel is consumed, measured in seconds. The BP was 

calculated using the formula: 

 

BP=2πNT/ (60×1000) [kW] 

 

Where N is engine speed, measured in rpm and T is the engine torque, measured in 

Nm. In order to determine accurately the BSFC accurately, seven measurements of the 

mass fuel flow rate were recorded.  

The effect of WCO biodiesel-diesel blend on BSFC for fixed engine conditions is 

presented in Figures 6-10 – 6-13. The BSFC was observed to decrease with the 

increase in engine load. As expected, the test results showed higher fuel consumption 

when biodiesel blend ratio was increased compared with the baseline.  

Neat WCO biodiesel has high density and viscosity, but lower heating value when 

compared with diesel (Table 6-3). The higher density of WCO biodiesel caused 
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greater mass of fuel injection at a given injection pressure. These result in an increase 

in BSFC with the increase of WCO biodiesel blend ratio in diesel fuel. For most 

biodiesel blends, an increase in BSFC with respect to decreasing engine load was 

observed.  

 
Figure 6-10: Variation of BSFC with WCO biodiesel-blend at 2000 rpm and 

various load conditions 

 

Figure 6-11: Variation of BSFC with WCO biodiesel-blend at 2500 rpm and 

various load conditions 
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Figure 6-12: Variation of BSFC with WCO biodiesel-blend at 3000 rpm and 

various load conditions 

 

 

Figure 6-13: Variation of BSFC with WCO biodiesel-blend at 3500 rpm and 

various load conditions 
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6.3.3. Effect of Diesel and WCO Biodiesel Blend on Engine Brake 

Thermal Efficiency (BTE) 

Brake thermal efficiency (BTE) is the ratio of the thermal power available in the fuel 

to the power the engine delivers to the crankshaft. This depends greatly on the manner 

in which energy is converted since the efficiency is normalised with the heating value 

of the fuel. The heating value of red diesel and WCO biodiesel blends are presented in 

Table 6-3. Considering these values the BTE was determined using the formula: 

 

BTE=BP/ (vf×QHV) [%] 

 

Where BP is the rate of energy output, engine brake power, vf is the volume of fuel 

consumed per hour, and QHV is the fuel heating value of the fuel. Figures 6-14 – 6-17 

show the variation of brake thermal efficiency with biodiesel blend for various speed 

and engine load conditions. 

At 2000 rpm, reduction in BTE was observed for all biodiesel blends at low engine 

load conditions. For high biodiesel blend ratios i.e.  B75 to B100, BTE increased for 

50 to 100% engine load. B75 and B100 showed 4% increase in BTE   compared with 

the baseline (Figure 6-14). 

As shown in Figure 6-15, at 15% and 25% engine load conditions, BTE was close to 

that of the baseline. At engine load of 50, 75 and 100% all biodiesel blends showed an 

increase in BTE when compared with the baseline. The high increase in BTE (up to 

10%) was observed for B100 at 100% engine load.    

 

 In Figures 6-16 – 6-17, variation in BTE at 3000 and 3500 rpm for various blend 

ratios is shown. B25, B50 and B75 showed a decrease in BTE for low engine load. 

B50 showed a reduction in BTE of 5% and 3% compared with the baseline at 3000 

rpm and 3500 rpm respectively. B75 and B100 showed an increase in BTE at a high 

engine load. 
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Figure 6-14: Variation of BTE with WCO biodiesel-blend at 2000 rpm and various 

load conditions 

 

 

Figure 6-15: Variation of BTE with WCO biodiesel-blend at 2500 rpm and various 

load conditions 
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Figure 6-16: Variation of BTE with WCO biodiesel-blend at 3000 rpm and various 

load conditions 

 

 

 

Figure 6-17: Variation of BTE with WCO biodiesel-blend at 3500 rpm and various 

load conditions 
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The test results showed an increase in brake thermal efficiency for engine tested under 

75% and 100% engine load for most biodiesel blends. At 2500 rpm and 50, 75 and 

100% engine load, an increased in BTE for all biodiesel blends was observed. The 

highest increase in BTE for biodiesel was observed at engine speed 2500 rpm, with an 

increase of up to 10% from baseline. At a low load and high engine speed the BTE of 

biodiesel was close to that of diesel. The lowest BTE among all biodiesel blends was 

recorded for B50. 

 

6.3.4. Effect of Diesel and WCO Biodiesel Blend on Exhaust Emissions 

a) Variation of brake specific carbon monoxide (BSCO) Emissions with 

Load Percentage 

 

Figures 6-18 – 6-21 show the variation of BSCO emissions with respect to variable 

engine load. It is clear that as the ratio of biodiesel increased in the blend, BSCO 

decreased compared with diesel.  B100 showed the lowest value of BSCO between all 

biodiesel blends samples. At 2000 rpm, a reduction about 60% in BSCO for biodiesel 

compared with the baseline was observed, as showed in Figure 6-18. 

At 2500 and 3000 rpm, B100 showed the lowest BSCO emission. Figures 6-19 and 6-

20 show reduction up to 90% in BSCO for engine set at 2500 rpm and up to 70% for 

engine set at 3000 rpm. 

At 3500 rpm, a reduction in BSCO emissions of up to 75% for neat biodiesel was 

observed, as shown in Figure 6-21. 

The results showed a reduction in BSCO emissions for most biodiesel blends with the 

increase in engine load. When the engine tests were performed with biodiesel blends 

the results showed high reductions in BSCO compared with diesel. This was due to a 

more intense combustion of biodiesel, resulting in a complete combustion compared 

with diesel. All fuel samples showed similar behaviour, as the load increases BSCO 
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emissions decreased. High biodiesel blend ratio, B75 and B100, showed a higher 

reduction in BSCO emissions compared with lower biodiesel blends.  

 

Figure 6-18: Variation of BSCO with WCO biodiesel-blend at 2000 rpm and 

various load conditions  

 

Figure 6-19: Variation of BSCO with WCO biodiesel-blend at 2500 rpm and 

various load conditions  
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Figure 6-20: Variation of BSCO with WCO biodiesel-blend at 3000 rpm and 

various load conditions  

 

 

Figure 6-21: Variation of BSCO with WCO biodiesel-blend at 3500 rpm and 

various load conditions  
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b) Variation of brake specific un-burnt hydrocarbons (BSHC) Emissions 

with Load Percentage 

Variation of BSHC with the engine load is shown in Figures 6-22 – 6-25.  It was 

observed that BSHC emissions decreased with an increase of engine speed for all 

biodiesel blends, compared with the baseline. 

At 2000 rpm, B50 and B75 showed the highest reduction in BSHC emissions, of up to 

27% for engine load of 100% and 15% respectively, compared with the baseline. As 

the engine speed increases from 2500 to 3000 rpm, B25 and B75 showed a reduction 

in BSHC emissions of up to 45% compared with the baseline.  

 

 

Figure 6-22: Variation of unburned BSHC with WCO biodiesel-blend at 2000 rpm 

and various load conditions 
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Figure 6-23: Variation of unburned BSHC with WCO biodiesel-blend at 2500 rpm 

and various load conditions 

 

 

Figure 6-24: Variation of unburned BSHC with WCO biodiesel-blend at 3000 rpm 

and various load conditions 
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As shown in Figure 6-25, at 3500 rpm, BSHC emissions decrease with the increase in 

engine load for blend ratios of B25 and B50. With the increase in biodiesel blend and 

engine load up to 100% it was observed an increase in BSHC emissions compared 

with the baseline. At 100% engine load, B50 showed a decrease of up to 30% in 

BSHC, while B100 showed the highest increase in BSHC emissions of up to 55% 

from baseline.  

 

Figure 6-25: Variation of unburned BSHC with WCO biodiesel-blend at 3500 rpm 

and various load conditions 
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c) Variation of BSCO2 Emissions with Load Percentage 

Figures 6-26 – 6-29 show the variation of BSCO2 with engine load for various 

biodiesel blends. An increase in BSCO2 emissions for all biodiesel blends compared 

with the baseline can be observed.  

At 2000 rpm, the results showed an increase in BSCO2 emissions with increase in 

biodiesel blend ratio of up to 75%, (B75). Neat biodiesel showed lower BSCO2 

compared with B75. With an increase in engine load, BSCO2 emissions showed an 

increase for all biodiesel blends. The trend is similar for 2500 to 3500 rpm as shown 

in Figures 6-27 – 6-29.  

 

 

Figure 6-26: Variation of BSCO2 with WCO biodiesel-blend at 2000 rpm and 

various load conditions 
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Figure 6-27: Variation of BSCO2 with WCO biodiesel-blend at 2500 rpm and 

various load conditions 

 

 

 

Figure 6-28: Variation of BSCO2 with WCO biodiesel-blend at 3000 rpm and 

various load conditions 

 

0

2

4

6

8

10

12

14

16

25 50 75 100%
 D

if
fe

re
n

ce
 f

ro
m

 b
a

se
li

n
e

Biodiesel blend [%]

Engine conditions: 2500 rpm

BSCO2 variation with biodiesel blend 

15% load

25% load

50% load

75% load

100% load

0

5

10

15

20

25

25 50 75 100%
 D

if
fe

re
n

ce
 f

ro
m

 b
a
se

li
n

e

Biodiesel blend [%]

Engine conditions: 3000 rpm

BSCO2 variation with biodiesel blend 

15% load

25% load

50% load

75% load

100% load



 

144 

 

 

 

Figure 6-29: Variation of CO2 with WCO biodiesel-blend at 3500 rpm and various 

load conditions 
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d) Variation of brake specific Nitrogen oxide (BSNOx) Emissions with 

Load Percentage 

Figures 6-30 – 6-33 show the variation in BSNOx emissions with the engine load 

percentage for different WCO biodiesel blends. It can be seen that at all engine 

operating conditions and for all biodiesel blends BSNOx emissions increase. Most 

biodiesel blends showed an increase in BSNOx emissions with the increase in engine 

load. 

At 2000rpm, the test results showed an increase of 8%, 28%, 35% and 53% compared 

with the baseline in BSNOx for B25, B50, B75 and B100 respectively.  

  

 

Figure 6-30: Variation of BSNOx with WCO biodiesel-blend at 2000 rpm and 

various load conditions 
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Figure 6-31 shows that at 2500rpm, the increase in BSNOx emissions for B25, B50, 

B75 and B100 was 9%, 18%, 25% and 31% respectively compared with the baseline.  

 
Figure 6-31: Variation of BSNOx with WCO biodiesel-blend at 2500 rpm 

and various load conditions 

At 3000 rpm, B25, B50, B75 and B100 show an increase in the BSNOx emissions of 

up to 11%, 27%, 41%, and 50% respectively compared with the baseline as shown in 

Figure 6-32. 

 
Figure 6-32: Variation of BSNOx with WCO biodiesel-blend at 3000 rpm 

and various load conditions 
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Similar trend can be seen at 3500 rpm for all blend ratios in Figure 6-33.  Increase in 

the BSNOx emissions up to 20%, 31%, 41%, and 45% were observed for B25, B50, 

B75 and B100 respectively.   

 

Figure 6-33: Variation of BSNOx with WCO biodiesel-blend at 3500 rpm and 

various load conditions 
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e) Effect of Diesel and WCO Biodiesel Blend on Exhaust Gas 

Temperature (EGT) 

Exhaust gases of an internal combustion engine contain significant enthalpy and may 

contain unburned combustion products (hydrocarbons). When the air-fuel ratio is 

high, the amount of incomplete combustion products is likely to be low and when the 

air/fuel ratio is low, there is an insufficient amount of oxygen to complete combustion. 

The exhaust gas temperature is related to the determination of system efficiency.  

The exhaust gas temperatures for WCO biodiesel-diesel blends are shown in Figure 

6-34 – 6-37. The test results showed an increase in EGT for biodiesel blends 

compared with diesel. At 2000 rpm, B75 shown an increase of 2.5% in EGT, whereas 

for B100 it was observed an increase of up to 2%, at full engine load. 

 

 

Figure 6-34: Variation of EGT with WCO biodiesel-blend at 2000 rpm and various 

load conditions 
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At 2500 rpm, B75, Figure 6-35 shows an increase of up to 3.8% increase in EGT at 

full engine load and up to 2.4% at low engine load. The EGT increase for B100 was of 

up to 2.53% for full engine load and up to 1% for a low engine load. 

 
Figure 6-35: Variation of EGT with WCO biodiesel-blend at 2500 rpm 

and various load conditions 

Figure 6-36 shows at 3000 rpm, B75 shows an increase of up to 2.11% in EGT at full 

engine load and up to 1.5% at low engine load. The EGT increase for B100 was of up 

to 1.7% for full engine load and up to 0.5% for low engine load. 

 

Figure 6-36: Variation of EGT with WCO biodiesel-blend at 3000 rpm 

and various load conditions 
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Figure 6-37 shows EGT variation at 3500 rpm. An increase of up to 1.6% in EGT at 

full engine load and up to 1.5% at low engine load can be seen for B75. The EGT 

increase for B100 was of up to 1.1% for full engine load and up to 0.4% for low 

engine load. 

 

Figure 6-37: Variation of EGT with WCO biodiesel-blend at 3500 rpm and various 

load conditions 
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tests were conducted at 2000, 2500, 3000 and 3500 rpm. At each speed, various 

measurements were taken at 15%, 25%, 50%, 75% and 100% engine load. 

The experimental results showed a decrease in engine torque with up to 9% when 

WCO biodiesel was used. WCO biodiesel has a lower calorific value compared with 

diesel. This results in a decrease in engine torque, and respectively on engine power. 

The brake specific fuel consumption increases with an increase in biodiesel blend 

ratio in diesel. The higher density of WCO biodiesel results in a greater mass of fuel 

being injected at a given injection pressure. This together with the lower energy 

content of biodiesel causes an increase in BSFC compared with diesel. 

The thermal efficiency of the engine using WCO biodiesel, at 2000 rpm and 15% and 

25% engine load conditions, was observed to decrease up to 3% from the baseline as 

the biodiesel blend ratio in diesel was increased. At 50%, 75% and 100% engine load, 

B75 and B100 shown an increase with up to 4% in BTE. The highest increase in BTE 

for biodiesel was observed at engine set at 2500 rpm, with an increase of up to 9% 

from baseline. At low load and high engine speed the engine BTE using biodiesel 

seems to be similar to that of diesel. The engine BTE using WCO biodiesel was seen 

to increase with the increase in load and engine speed. 

The exhaust emissions from engine using WCO biodiesel blends and diesel were 

measured. The BSHC, BSCO, BSCO2 and BSNOx emissions were obtained and 

compared with the baseline, (B0). The test results shown a reduction in BSHC and CO 

emissions for all biodiesel blends compared with the baseline. The lower BSHC was 

observed at B75. As the biodiesel blend ratio in diesel was increased farther, the 

decrease in BSHC was reduced compared with B75. This can be caused by the high 

biodiesel viscosity compared with that of diesel. The viscosity can alter the fuel spray 

atomization leading to an incomplete combustion. The BSCO2 emissions were higher 

for the engine using WCO biodiesel compared with diesel. This was expected since an 

improvement in combustion was achieved with the addition of biodiesel in diesel. The 

test results showed an increase in EGT for all biodiesel blends. The EGT was 
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observed to increase with the increase in biodiesel blend ratio in diesel, up to B75. A 

further increase in biodiesel blend ratio up to B100 shown a reduction in EGT 

compared with that of B75. This is due to the fact that for high biodiesel blend the 

torque had shown a decrease. The higher increase in EGT for WCO biodiesel was 

observed at 2500rpm, with up to 3.5% increase from baseline. Higher BSNOx were 

observed for all biodiesel blends compared with the baseline due to the higher exhaust 

gas temperature and the higher (up to 12%) oxygen content in biodiesel.   

The content of oxygen in biodiesel and the high cetane number of biodiesel is 

believed to lead to high combustion temperature which results in increased NOx 

formation compared to diesel. 
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Chapter 7 -Discussion 

 

The use of waste cooking oil biodiesel was investigated as a possible alternative to 

petroleum petro-diesel. Waste oils are available worldwide and a greener way to 

recycle them is for them to be used as biomass in biodiesel production. In present 

research three main aspects were considered for investigation in order to assess the 

suitability of biodiesel as a replacement for petro-diesel. Firstly, samples of net diesel, 

biodiesel, and blends of 25%, 50 and 75% biodiesel and diesel were prepared and the 

fuel properties and susceptibility of microbial contamination of the biodiesel samples 

were measured and analysed related to diesel. Secondly, diesel and biodiesel samples 

were tested in a CCR and the exhaust emissions were recorded and analysed, 

focussing more on NO formation. And lastly diesel and biodiesel samples were tested 

in a Land Rover VM Motori diesel engine and the efficiency and exhaust emissions 

were measured and analysed. 

7.1.  Fuel Property Measurements  

Physicochemical properties of diesel and biodiesel were measured and analysed to 

compare the performance of the two fuel types in an internal combustion engine. In 

conformity with previous research it was found that biodiesel is an oxidised fuel, 

containing 11% oxygen in its composition. This is consistent with the results obtained 

by FT-RI, GC-MS and bomb calorimeter. The FT-IR spectra from diesel and biodiesel 

have shown the peaks that do not overlap. FT-IR spectrum of biodiesel has also shown 

the presence of –HC=CH–stretching, of which increase in intensity represents an 

increase in unsaturation of biodiesel samples. Also, the presence of double bounds 

(C=C, C=O) which was found more abundant may enhance the cold flow properties of 

the fuel, but could increase the biodiesel susceptibility to oxidation.  
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Results show that with the increase in oxygen content in fuel, the calorific value of the 

fuel decreases. The test results from the elemental analyses of the fuel showed up to 

12% oxygen in biodiesel compared with 0.07% in diesel.  Carbon content for 

biodiesel was 76% compared with 86.9% for diesel.   The sulphur concentration was 

5.2 mg/kg in biodiesel whereas in diesel the sulphur concentration was 900mg/kg.  

The lower sulphur concentration makes biodiesel less harmful to human health and 

environment. These differences in physicochemical properties between biodiesel and 

diesel lead to differences in combustion and exhaust emissions between diesel and 

biodiesel.  Several types of microbes are able to use hydrocarbon as source of energy. 

The degradation of hydrocarbons depends on the metabolism of the microorganism 

and the environmental conditions. Biodiesel contains nutrients and oxygen which can 

create favourable conditions for the microorganisms to survive and grow by 

metabolising the biodiesel. The degradation rate of the fuel increases with the   growth 

rate of the microorganism.  

This is one of the very few investigations that aimed to look at the growth of 

microorganism in biodiesel, the microbial community formed and the effect on 

physical properties of the diesel. 

Diesel samples B0, SB50, SB20, BB50 and BB20 had grater microbial growth than 

SB100, BB100. All Bolton biodiesel bottles presented bubbles at the water bottom 

interface. Bio-film growth in week four was observed in BB100. Whereas sample 

SB20 was the only sample who presents a suspended growth in the biodiesel layer. By 

week six, SB20 and SB20 present a bio-film at the bottom interface with water.  

For Bolton biodiesel, a change in pH over ten weeks incubation was observed as the 

water bottom became more acidic.  

One interesting observation that was noticed was that the biodiesel samples became 

more opaque during the incubation period. The only exceptions for this were BB100 

for which the samples were translucent. The change in fuel opacity could be a result 

of microbial activity. The microorganisms metabolised the hydrocarbon fuel and as a 
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result of this process by-products were formed. These particles could be suspended 

which might have affected the fuel opacity, or could be found either floating at the 

fuel-water interface or settled at the bottom.  

Over seventy days of inoculation, it was observed that for all samples the microbial 

growth rose ten to thirty times more than that of the original value. BB20, BB50 

sample presents a high bacteria cfu/ml. An interesting observation was for Sheffield 

biodiesel, SB100 samples which presented a high microbial growth compared with 

SB20. Microbial population varied depending on fuel composition. 

Chaetomium fungal genus was identified in the bottle BB100. Chaetomium is 

predominantly found in diesel tank biodegradation. Biodiesel does not go through the 

same stages of refinery as diesel does, but still has to undergo transport, packing and 

any other affiliated processes. During these procedures potential contamination could 

occur. Chaetomium is particularly noted for degrading organic substances such as 

cellulose and crude oil [17]. 

Each pigmented and/or fluorescent colony was sub cultured onto milk agar with a 

cetyl trimethylammonium bromide and streaked so as to obtain single colonies. 

Colonies which were 2-4 mm in diameter, show typical pigment production and 

possess a “halo of clearing” around the colony where the casein had been hydrolysed, 

these were confirmed Pseudomonas aeruginosa. The API 20NE test confirmed the 

presence of Pseudomonas aeruginosa in isolates Diesel B0, BB20, BB100, SB20 and 

SB50. 

P. fluorescens was identified in the samples BB20 and was a common Gram-negative, 

rod-shaped bacterium [153]. It had an extremely versatile metabolism, which could be 

found in the soil and in water. It was an obligate aerobe but certain strains are capable 

of using nitrate instead of oxygen as a final electron acceptor during cellular 

respiration.  



 

156 

 

Optimal temperature for growth of P. fluorescens is 25-30 degree Celsius. It tested 

positive for the oxidative test. Some P. fluorescens strains presented bio-control 

properties, protecting roots of some plant species against parasitic fungi [154]. The 

presence of P. fluorescens in biodiesel samples, could explain the reduced fungi 

presence in Bolton biodiesel samples, compared with Sheffield biodiesel.  

Sample SB20 presented Pseudomonas putida, which was a gram-negative, rod-

shaped, saprotrophic soil bacterium [155]. It demonstrated very diverse metabolism, 

including the ability to degrade organic solvents such as toluene [156]. This ability 

had been put to use in bioremediation, or the use of microorganisms to biodegrade oil. 

Use of P. putida is preferable to some other Pseudomonas species capable of such 

degradation as it is a safe strain of bacteria, unlike P. aeruginosa for example, which 

is an opportunistic human pathogen. 

For SB50 the preliminary identification suggested the presence of Comamonas 

testosteroni or P. alcaligenes (API 65.2% confidence). However, it might be 

potentially be P. stutzeri (API 26.7% confidence). A further test for growth at 42ºC 

was performed. This isolate did not grow at 42ºC, therefore the test result eliminates 

the P. stutzeri, and casts doubt over Comamonas testosteroni, resulting in a tentative 

identification in P. alcaligenes. Pseudomonas alcaligenes is a gram-negative aerobic 

bacterium used as soil inoculants for bioremediation purposes, as it could degrade 

polycyclic aromatic hydrocarbons [157].  

For BB20 API test suggested P. fluorescens 86.4% confidence. However, growth was 

found at 42ºC which was unusual for P. fluorescens and suggested that it might be 

Burkholderia pseudomallei (API 8.6% confidence) or P. aeruginosa (API 2.6% 

confidence).  

This highlighted limitations of API for the identification of environmental isolates as 

it is based on biochemical testes, which could be variable for isolates and the database 

is limited for environmental bacterial isolates.   
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Pseudomonas had the ability to metabolize a variety of diverse nutrients. Combined 

with the ability to form bio-films, they could thus survive in a variety of unexpected 

places. A simple carbon source, such as soap residue or cap liner-adhesives could be a 

suitable place for the Pseudomonas to thrive. 

Microbiological growth was one of the consequences of the biodegradability of 

biodiesel. The described ways of degradation as described were enforced under the 

presence of microorganisms which found good growth conditions in the barrier 

between water and fuel. Microorganism population composed of strains of 

Pseudomonas and Micrococcus proved to be especially effective in degrading 

hydrocarbons.  

The chemical composition within the fuel samples were an important factor for the 

specificity of microbial growth. The chemical composition could be anything subtle, 

such as grade of diesel used, e.g. low or normal sulphur volume or volume of medium 

used. Another factor taken into consideration is the inoculums added to the biodiesel 

samples. Samples of biodiesel from two suppliers were assessed for microbial 

contamination and the results showed that once the biodiesel was treated with 

additives, the growth of bacteria and fungi was significantly reduced compared with 

the bacteria and fungi exhibited by diesel. The specificity of fungi developed in the 

fuel affected the microbial growth. The presence of Chaetomium and Pseudomonas 

fluorescens identified in Bolton biodiesel inhibited the bacteria development, due to 

their bio-control properties. During 70 days of incubation, it was observed a variation 

of pH value for most fuel samples including diesel fuel. The pH value can be altered 

by the microbial activity. As a result of the fuel being metabolized, some bacteria 

could produce acid as by-product which leads to a decrease in the fuel pH. The results 

of Sheffield biodiesel showed that the biodiesel blend ratio in diesel influenced the pH 

value. It was observed a decrease in the pH with the decrease in biodiesel blend ratio. 

On the other hand, the pH measured from Bolton biodiesel samples, showed the lower 

value for BB100, followed by BB20. B50 showed the highest pH value between 

Bolton biodiesel samples. Compared with biodiesel samples, diesel showed less 
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variation in the pH during the incubation period. At the end of the incubation period, 

the fuel samples had been filtered and the dry mass resulted was measured. The results 

shown higher dry mass for biodiesel samples compared with diesel fuel. Sheffield 

biodiesel showed the highest dry mass for SB20, followed by SB50 and SB100. The 

test results from Bolton biodiesel showed an increase in dry biomass with the increase 

in biodiesel blend ratio in diesel. Bolton biodiesel shown lower dry biomass compared 

with diesel and Sheffield biodiesel.  

Although the test results shown higher bacteria and fungi cfu growth for diesel, 

compared with Sheffield and Bolton biodiesel, the dry biomass was lower. This could 

be due to the fact that fungi increased in size rather than number, resulting in higher 

biomass and lower pH for biodiesel compared with diesel. In case of biodiesel 

contamination, this could lead to a greater risk for engine fuel filter to get blocked. 

Before being placed on the market, the biodiesel has been treated with additive 

inhibitors against bio-fouling. The test results shown a reduction in bacteria and fungi 

cfu for biodiesel, compared with diesel. Bolton biodiesel shown the lowest cfu 

between all fuel samples. Chaetomium and Pseudomonas fluorescens were identified 

in Bolton samples, which is believed to act as bacteria inhibitor and have bio-control 

properties. However, the dry mass for biodiesel was observed to be higher compared 

with that from diesel.  

7.2. Evaluation of Biodiesel Combustion in Continuous 

Combustion Rig (CCR) 

In order to study the exhaust emissions from various diesel and biodiesel blends it is 

important to eliminate all the physical aspects that influence the combustion. 

Therefore combustion tests were conducted in CCR which allowed full control of the 

combustion conditions in order to observe only the chemical aspect of combustion. 

The physical phenomena that affect combustion were reduced.  The combustion in 

CCR produced a laminar premixed flame and the emissions from the combustion of 

samples of diesel and biodiesel blend were observed. The influence of fuel/air 
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equivalence ratio and biodiesel blend ratio on pollutant emission from B25, B50, B75 

and B100 were investigated experimentally. The adiabatic flame temperature and 

combustion gas temperature decreased with the increase in biodiesel blend ratio in 

diesel. The fuel/air equivalence ratio and diesel-biodiesel blend ratio in fuel 

influenced the formation of pollutant emissions. The test results showed an increase in 

SNO at biodiesel blend over 50% in diesel. At fuel/air equivalence ratio of 0.16, B75 

had the higher increase in SNOx between all fuels, up to 72% higher compared with 

B0. The lower HC emissions were recorded for B50 with up to 6.4% reduction 

compared with diesel. The data from CCR suggested that using neat WCO biodiesel 

or as a blend in diesel fuel could improve the combustion and have a significant 

benefit for the environment and human health by reducing the pollutant emissions. At 

different excess oxygen measured in the combustion gas, B25, B75, B50 and B100 

shown an increase in SNOx emissions compared with diesel fuel. Combustion gas 

temperature showed a drop as biodiesel blend ratio in diesel was increased. SHC 

emissions from B50 were significantly lower compared to those from diesel fuel. 

Overall, experimental results have shown that the oxygen concentration and the gas 

flow residence time are important parameter that affects SNO formation. At longer 

residence time and low oxygen concentration a reduction in NO was observed.   

With the increase in biodiesel blend ratio in diesel, the combustion gas temperature 

increases, resulting in higher SNOx formation compared with diesel. The prompt NO 

formation can be due to the abundance of HC=CH in the reaction zone. The FT-IR 

results have shown that biodiesel contain higher CH bonds in its molecule compared 

with diesel. C-N elemental group was also observed in the biodiesel molecule, 

whereas C-N groups were not identified in diesel spectrum. The oxygen content in 

biodiesel molecule and the content of unsaturated compounds lead to more heat 

release during the combustion process. This results in a more intense combustion 

compared with diesel, leading to high combustion gas temperature. The combustion 

reaction rate for biodiesel is higher compared with diesel, leading to a faster brakeage 

of the hydrocarbon chain which release more heat.     
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7.3.  Evaluation of Biodiesel in a Land Rover Diesel Engine 

Diesel, biodiesel and various blends of diesel and biodiesel were tested in a Land 

Rover VM Motori diesel engine. The results showed that blends of diesel and 

biodiesel could be considered for use in diesel engine. The density and viscosity of the 

three WCO biodiesel procured from different sources within the UK were measured 

and the result showed higher density and viscosity for WCO biodiesel compared with 

that for diesel. This was in agreement with observation of other researchers [66; 158; 

159].  It was also observed that there is a correlation between density and viscosity of 

biodiesel [158]. The differences in biodiesel physicochemical properties were 

reflected on the engine efficiency and performance.  

Engine Efficiency  

The experimental results showed the best engine efficiency for engine speed of 2500 

rpm. At 50, 75 and 100% engine load, all biodiesel blends had an increase in BTE. 

B75 and B100 shown an increase in BTE with up to 10% compared with diesel. B50 

blend had the lowest BTE among all biodiesel blends tested. It was observed a 

reduction of up to 6% in BTE for B50blend compared with diesel. B25 blend shown 

similar BTE with diesel fuel with ± 2% at 15% and 25% engine load respectively. 

However, at the medium and high load it was observed an increase in BTE between 

3.5% and 6.5% compared with diesel. Similar results were obtained by Murillo et al. 

[104] who tested diesel and different blends of used cooking oil biodiesel in a marine 

3-cylinder naturally aspired engine. His results for blends of 10%, 30% and 50% 

biodiesel showed lower efficiency compared to highest efficiency obtained for neat 

biodiesel. An increase in brake thermal efficiency was observed by Ramadhas who 

tested rubber seed oil blends in a compression ignition engine for performance and 

emissions [160]. Kaplan et al. (80), also found an increase in brake thermal efficiency.  

The results for BTE for neat WCO biodiesel at medium to high load were in 

agreement to observation using various biodiesel types reported in literature.  This can 
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be justified by improved combustion for biodiesel due to higher oxygen content 

compared to diesel. 

The lower calorific value together with the higher density of WCO biodiesel 

compared with diesel resulted in an increase in brake specific fuel consumption. With 

the increase in biodiesel blend ratio in diesel, brake specific fuel consumption 

increases. An increase in BSFC with the increase in biodiesel blend ratio in diesel, 

was stated by the majority of the researchers [66; 97; 160; 161] Rahmen, Lakshmi. 

The test results show a decrease in engine torque and consequently in the engine brake 

power. This reduction in power output is due to the biodiesel’s low heating value. 

Many authors also found that the loss of power is lower than expected. Kaplan et al. 

[80] tested the performance of a diesel engine using sunflower-oil biodiesel and diesel 

fuels at full and partial loads and at various engine speeds. He observed a decrease in 

torque and power between 5% and 10% with the increase in engine speed. Merve et. 

Al [81] compared the waste-oil biodiesel and diesel fuels at full-load engine 

conditions. He observed a slight decrease in torque between 3% and 5% with 

biodiesel. A similar result was obtained by Lin et al. [82] when he tested ultra-low 

sulphur diesel, pure palm-oil biodiesel and a 20% palm biodiesel blend, the loss of 

power at full load was only 3.5% with pure biodiesel and 1% with the blend.  

Exhaust Emissions 

The engine test results have shown a decrease in BSCO emissions with the reduction 

in biodiesel blends ratio in diesel and with the increase in engine load. It was observed 

a reduction between 5 and 70% in BSCO emissions for biodiesel blends compared 

with diesel. This is due to a more intense combustion of biodiesel, resulting in a 

complete combustion compared with diesel. EPA [66] considers as a general trend a 

reduction of almost 50% of CO when biodiesel is used, compared to conventional 

diesel fuel. Krahl et al. [73] compared biodiesel from rapeseed oil with both low and 

ultra-low sulphur diesel and obtained approximately a 50% decrease of CO when 

biodiesel was used. Similar results obtained Graboski, Rao, [74; 161; 160]. 
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It was observed an increase in CO2 emissions for all biodiesel blends, compared with 

diesel. This is due to the combustion improvement when biodiesel is used as additive 

in diesel. The high oxygen content in biodiesel lead to a more intense combustion, 

which resulted in a higher rate of NOx formation compared with diesel. The increase 

in BSNOx was observed to be related to the biodiesel blend ratio in diesel. With the 

increase in biodiesel blend ratio in diesel, BSNOx emissions showed an increasing 

trend, compared with diesel. At high engine load it was observed an increase in 

BSNOx with up to 50% for B100. An increase in NOx with up to 15% was observed 

by Schumacher et al. [125], who tested a 6-cylinder diesel engine under different 

loads with 10%, 20%, 30% and 40% soybean biodiesel blends. Graboski [74] tested 

the engine with neat biodiesel under steady conditions and he observed a 16% 

increase with respect to diesel fuel NOx emissions.  

The test results shown a reduction in BSHC emissions for biodiesel blend ratio less 

than 75% in diesel. At low medium engine speed it was observed a reduction of 32 

and 37 % respectively in BSHC emissions compared with diesel. It was observed a 

decrease in BSHC emissions with the decrease in engine load. This could be due to 

the fact that when the load increases, more fuel is injected in the combustion chamber. 

As the biodiesel has a higher viscosity compared with diesel, these will lead to an 

incomplete combustion, resulting in high BSHC emissions.  

Many authors also observed a decrease in total hydrocarbon (THC) emissions when 

tested biodiesel compared to diesel [101; 105-109]. Also, there are few studies in the 

literature which stated no significant differences [67-69; 70] or increases [72] in THC 

emissions when biodiesel was tested comparing with diesel. Nwafor [111] tested a 

single-cylinder indirect injection engine with diesel and several blends of rapeseed 

biodiesel. He observed up to 60% lower THC emissions from pure biodiesel 

compared with those from petro-diesel. Peterson and Reece [112] and Krahl et al. 

[73], both testing biodiesel from rapeseed oil, found higher than 50% THC reductions 

with their biodiesel. 
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With the increase in biodiesel blend ratio in diesel of up to 100%, the BSHC 

emissions increased. The increase in fuel viscosity could affect the efficiency of the 

combustion. Biodiesel has a higher viscosity compared with diesel. The effect of high 

viscosity of biodiesel on the diesel engine could result in a poor spray atomization, 

due to the larger droplet size. The larger the droplets are the more time it takes for the 

droplet to evaporate. Therefore, at high biodiesel blends, where the viscosity is high, 

this could result in an increase in BSHC emissions compared with diesel. For neat 

WCO biodiesel or higher biodiesel blend ratio in diesel, over B75, changes in diesel 

engine parameters, such as fuel injectors, injection pressure and start of combustion 

could be considered in order to reduce the NOx and HC emissions. Due to the 

laboratory technical limitations, further investigation on diesel engine combustion 

characteristics could not be performed.  
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Chapter 8 -Conclusions 

Based on the previous discussions, the following concluding remarks from the three 

main aspects of biodiesel investigated have been drawn: 

 Fuel Physicochemical Properties  

o Physical properties of WCO biodiesel obtained from three different suppliers 

were measured and the results showed little differences between the samples 

of biodiesel.  

o WCO showed higher viscosity and specific gravity compared with diesel. 

o Elemental analysis of biodiesel showed almost 10% lower carbon content, 

almost no sulphur content for biodiesel and up to 12% more oxygen content 

compared with diesel. 

o The test results showed up to 18% lower caloric value for WCO biodiesel 

compared with diesel, due to the high content of oxygen and lower carbon to 

hydrogen ratio compared with diesel.  

o The FT-IR diesel and biodiesel spectrum showed peaks that do not overlap. 

The differences between the functional groups found in diesel and biodiesel 

resulted in differences between diesel and biodiesel combustion and emissions.  

The abundance in double bounds in WCO biodiesel may enhance its cold flow 

properties, but also the susceptibility to oxidation.  

o Samples of biodiesel from two suppliers were assessed for microbial 

contamination and the results showed that once the biodiesel was treated with 

additives, the growth of bacteria and fungi was significantly reduced compared 

with the bacteria and fungi exhibited by diesel. The specificity of fungi 

developed in the fuel affected the microbial growth. The presence of 

Chaetomium and Pseudomonas fluorescens identified in Bolton biodiesel 

inhibited the bacteria development, due to their bio-control properties. 
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 Continuous Combustion Test  

o The CCR test results showed that with the increase in biodiesel blend ratio in 

diesel, the combustion gas temperature increases, resulting in higher SNOx 

formation compared with diesel. The elemental groups such as HC=CH and C-

N which were identified in biodiesel spectrum together with the oxygen 

content in biodiesel molecule and the content of unsaturated compounds lead 

to more heat release during the combustion process compared with diesel. 

These resulted in a more intense combustion compared with diesel. The 

combustion reaction rate for biodiesel was higher than that of diesel leading to 

a faster brakeage of the hydrocarbon chain which released more heat.     

o The SHC and SCO emissions from WCO biodiesel were reduced with the 

increase in biodiesel blend ratio in diesel, due to the complete combustion of 

biodiesel. The completeness of the combustion was also observed in the 

increase of CO2 with the increase in biodiesel ratio in diesel. 

 Engine Emissions and Performance Test 

o The tests results performed on VM Motori engine shown a decrease in engine 

torque with up to 9% when WCO biodiesel was used, which is due to the 

lower calorific value of biodiesel compared with that of diesel. 

o The BSFC increased with the increase in biodiesel blend ratio in diesel, due to 

the higher density of biodiesel, which resulted in a greater mass of fuel being 

injected at a given injection pressure, compared with diesel. 

o At 2000 rpm and 15 and 25% engine load, BTE of the engine using B25, B50 

and B75 was lower with up to 3% compared with the baseline. At 50, 75 and 

100% engine load, B75 and B100 showed an increase with up to 4% in BTE. 

The highest increase in BTE for biodiesel was observed at engine set at 2500 

rpm, with an increase of up to 9% from baseline. At low load and high engine 

speed the engine BTE using biodiesel appeared similar to that of diesel. The 

engine BTE using WCO biodiesel increased with the increase in load and 

engine speed. 
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o The exhaust emissions test results from engine using WCO biodiesel showed a 

reduction in BSHC for biodiesel blend ratio under 75%, and an increase for 

higher blend ratio in diesel. 

o BSCO emissions for all biodiesel blends compared well with diesel. 

o BSHC emissions decreased for biodiesel blend ratio under 75% in diesel. As 

the biodiesel blend ratio in diesel was increased farther up to 100%, BSHC 

showed an increase, which was more accentuated at high engine load.  

o The BSCO2 emissions were higher for biodiesel due to the completeness of 

combustion achieved with the addition of biodiesel in diesel.  

o The EGT was observed to increase with the increase in biodiesel blend ratio in 

diesel, up to B75. A further increase in biodiesel blend ratio up to B100 

showed a reduction in EGT compared with that of B75. This was due to the 

fact that for high biodiesel blend the torque showed a decrease. The higher 

increase in EGT for WCO biodiesel was observed at 2500 rpm, with up to 

3.5% increase from baseline.  

o As an effect of the higher EGT and the content of up to 12% of oxygen in 

biodiesel, BSNOx increased compared with diesel.  

 

Based on the results of the experimental work carried out during this research on 

WCO biodiesel available in the market and already treated with additives to enhance 

the stability to microbial contamination showed a better resistance to microbial 

growth, compared with petro-diesel. Using WCO blends ratio up to 75% in diesel 

showed a reduction in exhaust emission compared with diesel, at the cost of an 

increase in fuel consumption. A common conclusion can be drawn in favour of the 

WCO biodiesel as being a greener alternative to petro-diesel when used in blend with 

diesel. 
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Chapter 9 -Future work 

 

In present work waste cooking oil biodiesel was tested on a Land Rover VM Motori 

diesel engine. The differences in physical and chemical properties of diesel and 

biodiesel led to major differences in performance and emissions when tests were 

performed on an unmodified diesel engine. The test results show a decrease in 

pollutant emissions when biodiesel blend with diesel was used. The high biodiesel 

viscosity is believed to alter the combustion at high biodiesel blend ratio.  

For an efficient use of biodiesel, two issues should be considered in the future 

research work: engine adaptation to the new fuel as well as the improvement of the 

biodiesel quality and lowering the biodiesel viscosity, the development of fuel 

additives in order to decrease both NOx and PM, and cetane improvers.     

Biodiesel is an oxidised fuel since it contains up to 12% oxygen in its composition 

compared with petroleum diesel which contains 0.07%.  More research also needs to 

be undertaken on biodiesel production. The use of oxidation inhibitors and removal of 

oxygen content could decrease the combustion temperature and consequently NOx 

formation. Hydro-treating and hydrogenation process could improve biodiesel quality. 

The variation in the biomass used for biodiesel production could lead to variations in 

physical and chemical properties not only between diesel and biodiesel but also 

between biodiesel produced from different biomasses. Therefore more stringent 

standards need to be imposed for biodiesel quality in order to diminish the effect of 

variation in physicochemical properties on engine performance and emissions. The 

future work in developing standard test procedures for establishing fuel properties and 

limits/targets would be beneficial in using a large amount of waste cooking oil in the 

production of biodiesel, thus contributing to reduction in CO2 and waste minimisation.  
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Appendix B – Diesel and Biodiesel Microbial Contamination 

 

Table 0-1: Variation of bacteria, fungi and pH for diesel samples (B0 1/2 and B0 2/2) 

during of ten weeks of incubation 

cfu B0 1/2 cfu B0 2/2 AVG cfu B0 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 5.36 7 6.18 5.06 7 6.18 5.21 7.00 

4 6.48 6.7 7.18 6.48 6.4 7.09 6.48 6.55 7.14 

6 7.36 3.84 7.52 7.36 4.02 7.26 7.36 3.93 7.39 

8 7.45 4.28 7.27 7.45 3.21 7.32 7.45 3.75 7.30 

10 7.58 4.69 7 7.58 4.7 7.01 7.58 4.70 7.01 

 

Table 0-2: Variation of bacteria, fungi and pH for Sheffield biodiesel samples (SB100 

1/2 and SB100 2/2) during of ten weeks of incubation 

cfu SB100 1/2 cfu SB100 2/2 AVG cfu SB100 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 1.18 7 4.98 1 7 5.58 1.09 7.00 

4 5.42 5.17 7.11 4.92 4.54 7.23 5.17 4.86 7.17 

6 6.90 ND 7.24 6.81 ND 7.19 6.86 0.00 7.22 

8 6.35 1 7.37 6.02 ND 7.42 6.19 0.50 7.40 

10 5.95 ND 7.1 7.35 ND 7.05 6.65 0.00 7.08 
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Table 0-3: Variation of bacteria, fungi and pH for Sheffield biodiesel samples (SB50 

1/2 and SB50 2/2) during of ten weeks of incubation 

cfu SB50 1/2 cfu SB50 2/2 AVG cfu SB50 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 5.99 7 6.18 4.49 7 6.18 5.24 7.00 

4 6.48 4.65 7.05 6.48 4.53 7.16 6.48 4.59 7.11 

6 6.60 3.27 7.09 7.06 ND 7.27 6.83 1.64 7.18 

8 7.76 4.88 7.13 7.76 5.3 7.45 7.76 5.09 7.29 

10 6.96 4.83 6.59 7.47 0.52 7.1 7.22 2.68 6.85 

  

Table 0-4: Variation of bacteria, fungi and pH for Sheffield biodiesel samples (SB20 

1/2 and SB20 2/2) during of ten weeks of incubation 

cfu SB20 1/2 cfu SB20 2/2 AVG cfu SB20 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 4.98 7 6.18 5.45 7 6.18 5.22 7.00 

4 6.48 4.46 7.05 6.48 4.79 7.08 6.48 4.63 7.07 

6 7.01 3.5 7.06 7.16 5.16 7.03 7.09 4.33 7.05 

8 6.95 4.56 7.03 7.30 4.93 7.21 7.13 4.75 7.12 

10 7.54 2.77 6.58 7.31 ND 6.85 7.43 1.39 6.72 

 

Table 0-5: Variation of bacteria, fungi and pH for Bolton biodiesel samples (BB100 

1/2 and BB100 2/2) during of ten weeks of incubation 

cfu BB100 1/2 cfu BB100 2/2 AVG cfu BB100 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 3.83 ND 7 2.7 ND 7 3.265 ND 7 

4 4.97 3.78 6.86 3.60 3 6.81 4.285 3.39 6.835 

6 2.36 ND 6.9 ND ND 6.9 1.18 ND 6.9 

8 ND ND 7.11 2.70 ND 7.1 1.35 ND 7.105 

10 ND ND 6.78 5.00 ND 6.76 2.5 ND 6.77 
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Table 0-6: Variation of bacteria, fungi and pH for Bolton biodiesel samples (BB50 1/2 

and BB50 2/2) during of ten weeks of incubation 

cfu BB50 1/2 cfu BB50 2/2 AVG cfu BB50 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 3.01 7 6.18 0.4 7 6.18 1.71 7.00 

4 6.06 5.21 7.29 5.47 5.13 7.38 5.77 5.17 7.34 

6 6.80 0.52 7.26 6.70 ND 7.21 6.75 0.26 7.24 

8 5.78 ND 7.34 6.01 5 7.42 5.90 2.50 7.38 

10 6.22 ND 7.07 6.72 3.3 7.14 6.47 1.65 7.11 

 

Table 0-7: Variation of bacteria, fungi and pH for Bolton biodiesel samples (BB20 1/2 

and BB20 2/2) during of ten weeks of incubation 

cfu BB20 1/2 cfu BB20 2/2 AVG cfu BB20 

week bacteria fungi pH bacteria fungi pH bacteria fungi pH 

2 6.18 4.36 7 6.18 4.17 7 6.18 4.27 7.00 

4 6.48 6.47 7 6.48 6.34 7.01 6.48 6.41 7.01 

6 7.70 0 6.99 7.59 1.75 6.96 7.65 0.88 6.98 

8 7.55 0 7.26 7.68 1.9 7.12 7.62 0.95 7.19 

10 7.74 0 6.96 7.83 2.92 6.57 7.79 1.46 6.77 

 

Table 0-8: Dry biomass average of diesel, Sheffield biodiesel (SB) and Bolton 

biodiesel (BB)  

Sample B0 SB20 SB50 SB100 BB20 BB50 B100 

AVG 

dry biomass 

[g/l] 

2.044 2.611 2.061 1.798 0.864 2.373 2.323 
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Appendix C – Evaluation of Biodiesel Combustion in 

Continuous Combustion Rig (CCR) 

 

Table 0-1: CO2, CO, HC, NO emissions measured at equivalence ratio 0.29, at 0.425m 

from the ignition point 

 Sample 
T2 

[°C] 

CO2 

[%vol] 

ex. O2 

[%vol] 

NO 

[ppm] 

τ0.425m 

[s] 

HC 

[ppm] 

CO 

[%vol] 

B0 622.33 8.97 2.70 41.33 0.08 26.00 0.06 

B25 632.33 9.26 2.45 51.52 0.10 19.46 0.04 

B50 676.14 9.58 2.54 55.88 0.10 9.96 0.04 

B75 678.29 9.67 2.28 57.56 0.11 10.79 0.03 

B100 779.80 9.77 2.54 64.95 0.11 11.92 0.03 

B25 %  

change from B0 
101.61 3.20   24.63   -25.17 -30.00 

B50 % 

change from B0 
108.65 6.82   35.20   -61.71 -36.67 

B75 %  

change from B0 
108.99 7.74   39.26   -58.51 -43.33 

B100 %  

change from B0 
125.30 8.91   57.15   -54.14 -43.33 
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Table 0-2: CO2, CO, HC, NO emissions measured at equivalence ratio 0.16, at 0.425m 

from the ignition point 

  Sample 
T2 

[°C] 

CO2 

[%vol] 

ex. O2 

[%vol] 

NO 

[ppm] 

τ0.425m 

[s] 

HC 

[ppm] 

CO 

[%vol] 

B0 635.50 9.66 5.44 45.14 0.05 23.64 0.05 

B25 637.67 9.90 5.69 55.02 0.05 17.02 0.04 

B50 672.17 10.49 5.81 65.51 0.05 6.40 0.03 

B75 679.50 10.50 4.71 70.53 0.06 9.03 0.03 

B100 781.20 10.62 5.15 73.48 0.06 9.17 0.03 

B25 %  

change from B0 
0.34 2.48   21.88   -28.01 -16.98 

B50 %  

change from B0 
5.77 8.54   45.13   -72.93 -39.62 

B75 %  

change from B0 
6.92 8.70   56.25   -61.79 -50.94 

B100 %  

change from B0 
22.93 9.94   62.79   -61.21 -50.94 

 

 

Table 0-3: CO2, CO, HC, NO emissions measured at equivalence ratio 0.14, at 0.425m 

from the ignition point 

 Sample 
T2 

[°C] 

CO2 

[%vol] 

ex. O2 

[%vol] 

NO 

[ppm] 

τ0.425m 

[s] 

HC 

[ppm] 

CO 

[%vol] 

B0 636.67 10.20 6.40 48.78 0.04 21.22 0.04 

B25 639.67 10.95 6.37 58.98 0.05 9.92 0.03 

B50 676.17 11.03 6.38 70.50 0.05 6.75 0.02 

B75 691.90 11.2 5.74 74.32 0.05 9.46 0.02 

B100 783.50 11.32 6.45 76.43 0.05 7.92 0.02 

B25 %  

change from B0 
0.47 7.36   20.91   -53.27 -28.57 

B50 %  

change from B0 
6.20 8.14   44.53   -68.20 -31.43 

B75 %  

change from B0 
8.68 9.80   52.36   -55.40 -37.14 

B100 %  

change from B0 
23.06 10.98   56.69   

-61.21 -85.94 
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Table 0-4: CO2, CO, HC, NO emissions measured at equivalence ratio 0.11, at 0.425m 

from the ignition point 

 Sample 
T2 

[°C] 

CO2 

[%vol] 

ex. O2 

[%vol] 

NO 

[ppm] 

τ0.425m 

[s] 

HC 

[ppm] 

CO 

[%vol] 

B0 636.80 10.32 8.57 51.52 0.03 19.200 0.020 

B25 641.57 10.98 7.63 65.51 0.04 4.878 0.015 

B50 679.14 11.28 8.40 72.19 0.04 4.571 0.013 

B75 690.33 11.38 7.28 79.28 0.04 4.480 0.013 

B100 786.80 11.39 7.60 78.46 0.05 3.444 0.008 

B25 %  

change from B0 
0.75 6.40   27.17   -74.59 -25.00 

B50 %  

change from B0 
6.65 9.30   40.14   -76.19 -35.00 

B75 %  

change from B0 
8.41 10.30   53.90   -76.67 -33.67 

B100 %  

change from B0 
23.56 10.37   52.30   -82.06 -60.00 

 

 

Table 0-5: Emission variations from diesel and biodiesel sample at residence time of 

0.22seconds. 

 Sample 
CGT 

[°C] 

CO2 

[%vol] 

CO 

[%vol] 

HC 

[ppm] 

ex. O2 

[%vol] 

NO 

[ppm] 

τ0.425m 

[s] 
Φ 

B0 564.83 9.33 3.47 61.00 4.46 66.93 0.22 0.01 

B25 578.18 11.49 1.20 32.70 4.29 86.67 0.22 0.01 

B50 592.50 10.97 1.01 24.85 5.02 85.96 0.22 0.01 

B75 592.67 14.09 0.74 8.80 0.83 114.80 0.22 0.07 

B100 595.00 11.71 0.92 10.32 4.36 139.17 0.22 0.01 
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Combustion products from red diesel test on CCA & residence time of 

combustion gases 

Fuel Type: B0 

Fuel Flow Rate: 25cc/min 

D0 =0m 

Port sample D2 = 0.425m (distance from the ignition point)  

Nr. 

Crt. 

T2 

[dgr C] 

CO2 

[%vol] 

O2 

[%vol] 

NO 

[ppm] 

1 711.85 10.214 0.345 29.696 

2 779.80 13.870 1.651 61.517 

3 779.80 13.144 2.703 60.000 

4 779.80 12.600 3.400 58.000 

5 779.80 11.898 4.716 52.767 

6 781.20 10.933 5.441 48.778 

7 781.20 10.022 6.401 45.139 

9 781.20 9.667 8.567 41.333 

10 781.20 8.733 9.197 38.000 

 

Calculation of residence time of combustion gas 

I.  Calculation of Stoichiometric Air 

Fuel specifications from lab analyses for 100kg diesel: 

Constituents % by wt 

Carbon 86.9 

Hydrogen 12.9 

Oxygen 0.07 

Nitrogen 0.02 

Sulphur 0.09 

H20 0.02 

Diesel calorific value: 41098.325 KJ/kg 
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Calculation for Requirement of Theoretical Amount of Air 

Consider a sample of 100kg of diesel. The chemical reactions are: 

Element 
Molecular weight 

[Kg/kg mole] 

C 12.011 

O2 31.998 

H2 2.0158 

S 32.065 

N2 28.014 

CO2 44.009 

SO2 64.063 

H2O 18.0148 

 

C + O2 → CO2 

H2 + ½ O2 → H2O 

S + O2 → SO2 

Constituents of fuel: 

C + O2 → CO2  

12.011 + 31.998 → 44.009 

 12.011kg of C requires 31.998kg of O2 to form 44.009kg of CO2, therefore 1kg of 

C requires: 

31.998 
kg =2.664 kg of O2 

12.011 

86.9 C + 86.9 × 2.664 O2 → 318.407  CO2 
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2 H2 + O2 → 2H2O 

2 × 2.0158 + 31.998 → 36.0296 

4.0316 kg of H2 requires 31.998kg of O2 to form 36.0296kg of H2O, therefore 1kg 

of H2 requires:  

31.998 
kg =7.9368 kg of O2 

4.0316 

12.9 H2 + 12.9 × 7.9368 O2 → 115.285 H2O 

 

S + O2 → SO2 

31.998 + 32.065 → 64.063  

31.998kg of S requires 32.065kg of O2 to form 64.063kg of SO2, therefore 1kg of S 

requires: 

31.998 
kg =0.9979 kg of O2 

32.065 

0.09 + 0.09 × 0.9979 O2 → 0.180 SO2 

 

Gas Density 

N2    = 1.165 kg/m3 

O2    = 1.331 kg/m3 

CO2 = 1.842 kg/m3 

H2O = 0.804 kg/m3 

SO2 = 2.279 kg/m3 

Air = 1.205 kg/m3 

 

Total O2 required for 100 kg diesel = 231.507 + 102.3847 + 0.0898 = 

Total O2 required for 100 kg diesel is 333.981 kg of O2 

Flue gases without excess air = CO2 + H2O + SO2 [kg] 



 

198 

 

 

CO2 [kg] = 318.41 [kg] → CO2 = 172.86 m3 

density of CO2 = 1.842 [kg/m3]         

              

H2O [kg] = 115.2847108 [kg] → H2O = 143.39 m3 

density of H2O = 0.804 [kg/m3]         

              

SO2 [kg] = 0.179811944 [kg] → SO2 = 0.08 m3 

density of SO2 = 2.279 [kg/m3]         

 

O2 required for 100kg diesel= 333.981 - 0.07 = 333.911 kg 

O2 required = 333.911 kg 

Oxygen required for 100kg diesel: 

O2 [kg] = 333.911 [kg] → O2 = 250.87 m3 

density of O2 = 1.331 [kg/m3]         

 

Air contains 21% by volume O2. 

Therefore, the quantity of air required = 1194.63 m3 for 100kg diesel 

N2 [kg] = 1194.63 - 250.87 m3 → 

N2 [kg] = 943.76 m3 

      

Air [kg] = 1194.63 m3 

 

Total combustion gases: 

CO2 + H2O + SO2 + N2 = 172.86 + 143.39 + 0.08 + 943.76 [m3] 

Total c.g. = 1260.09 m3 at NTP from 1kg diesel 

Total combustion gases from 1kg diesel = 12.60 [m3] 

Air required for 1kg diesel = 11.95 [m3] 

Rate of diesel flow = 25 cc/min  
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Density of diesel = 0.834 g/cm3 

Mass of diesel = 0.834 × 25 [kg] = 20.85 [g] 

Volume of diesel = 0.000025 [m3] 

Therefore, combustion gases produced at NTP = 12.60 × 0.000025 [m3/min] 

Total C.G. at NTP from 0.000025 [m3] diesel is 0.000315 [m3/min] 

Theoretical combustion Air required for burning 0.000025 m3 diesel at 

NTP=0.000299 m3 air; with excess air: 

 

Crt. No. 
ex. O2 

[%vol] 

1)Th. Comb 

Air with ex. air 

[m3/kg fuel] 

2)Actual ex. 

air 

[m3] 

3)Total CG at 

ex air   

[m3/kg diesel] 

1 0.35 0.000402 0.000103 0.000418 

2 1.65 0.000792 0.000493 0.000808 

3 2.70 0.001106 0.000807 0.001122 

4 3.40 0.001314 0.001015 0.001330 

5 4.72 0.001707 0.001408 0.001723 

6 5.44 0.001924 0.001625 0.001940 

7 6.40 0.002210 0.001912 0.002227 

9 8.57 0.002857 0.002559 0.002874 

10 9.20 0.003045 0.002747 0.003062 
1) For excess air calculation consider O2 measured and the fact that 21% by vol is air: 

2) Actual excess air at NTP conditions is presented in table above: 

3) Total Volume of Combustion Gases using Excess Air is presented above 

 

Calculation of Volume of Combustion Gases at the Temperature measured: 

Normal temperature: T1 = 273 K 

Sample temperature: Ti, where i = 1..5 [K] 
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  P1V1 
= 

P2V2 
& P1=P2 

  T1 T2 

  
V2 = 

T2 
x V1 

    

  T1     

            

Volume of air at temperature Ti 
4)Vti = 

Ti 
×  3)VNTP_real [m

3/min] 
273 

 

Table below presents the Volume of Combustion Temperature at the measured 

Temperature:         

Crt. No. 
T2 

[K] 

4) Vol_C.GT2 

[m3/min] 

5) vT2 

[m/s] 
τ0.425m 

[s] 
NO 

[ppm] 

1 984.85 0.420 1.93 0.22 29.70 

2 1052.80 0.860 3.95 0.11 61.52 

3 1052.80 1.191 5.46 0.08 60.00 

4 1052.80 1.410 6.47 0.07 58.00 

5 1052.80 1.824 8.37 0.05 52.77 

6 1054.20 2.054 9.43 0.05 48.78 

7 1054.20 2.357 10.81 0.04 45.14 

9 1054.20 3.038 13.94 0.03 41.33 

10 1054.20 3.237 14.85 0.03 38.00 

 

Cross sectional area of the combustion tube At: 

 

Tube i.d = 68 mm         

At = 
πd2 

= 
π 

× 682 x 10-6 = 

  

 0.0036 [m2] 

 4 4 

Cross section area At = 0.0036 m2 
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Velocity of combustion gases at the temperature measured (vT2): 

vT2 = 
Vol_C.GT2 

[m/sec] the values are presented in 5) table above. 
At*60 

   

τ0.425m = 
D2 

The values are presented in 6) table above. 
vT2 

 

D2 = 

 

0.425[m] 
 

 

Calculations to determine equivalence ratio, Φ: 

The equivalence ratio is defined as the fuel/air ratio normalized with respect to the 

stoichiometric fuel/air ratio. 

Φ = 
mf/ma 

[wt/wt] 
(mf/ma)st 

      

mf = 0.000025 [m3/min] 
 

ma_st = 0.000299 [m3] 
 

 

Nr crt. 
ex. O2 

[%vol] 

1)Th. Comb Air with ex. air 

[m3/kg fuel] 
Φ  

1 0.35 0.000402 0.74 

2 1.65 0.000792 0.38 

3 2.70 0.001106 0.27 

4 3.40 0.001314 0.23 

5 4.72 0.001707 0.17 

6 5.44 0.001924 0.16 

7 6.40 0.002210 0.14 

9 8.57 0.002857 0.10 

10 9.20 0.003045 0.10 
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Appendix C – Evaluation of Biodiesel in Land Rover 

VM2400 Diesel Engine 

 

Appendix C presents the results of the experimental work performed on Land Rover 

VM2400 diesel engine. 
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Table 0-1: Engine performance and exhaust emissions from B0, B25, B50, B75 and 

B100 fuel at 2000rpm 

 

Fuel
Load

[%]

AVG 

Torque

[Nm]

AVG 

Engine 

speed

[rpm]

AVG 

BSFC

[g/kw-h]

AVG 

Power

[kW]

BMEP

[bar]

BTE

[%]

Water 

OUT 

Temp.

[dgr C]

Exhaust 

Manifold 

Temp,

[dgr C]

BSCO

[% vol]

BSHC

[ppm]

BSCO2

[% vol]

O2

[%]

BSNOx

[ppm]

AVG 

SFC

[L/h]

15 27.4 1996.40 409.75 5.72 143.36 21.38 65.40 185.20 0.19 11.89 3.05 16.09 175.61 2.81

25 45.6 1997.75 317.75 9.54 238.89 27.57 67.80 225.00 0.16 10.57 3.94 14.96 203.60 3.64

50 91.3 1999.60 255.92 19.12 478.15 34.23 72.80 357.00 0.15 9.09 6.18 12.13 301.73 5.87

75 136.8 2000.00 251.81 28.64 716.02 34.79 78.20 509.60 0.15 8.14 8.54 9.18 361.37 8.65

100 182.1 2001.33 250.65 38.16 953.47 34.95 83.60 666.60 0.14 7.47 10.74 6.32 403.24 11.47

15 26.9 1994.50 444.12 5.61 140.66 21.10 64.40 186.52 0.09 10.28 3.16 16.19 187.46 2.89

25 44.7 1995.33 336.67 9.34 234.05 27.35 68.00 226.28 0.08 9.99 3.98 15.11 224.58 3.71

50 88.9 1997.50 268.07 18.59 465.35 34.29 74.00 360.25 0.07 8.32 6.29 12.03 328.04 5.89

75 133.2 2000.00 263.24 27.90 697.43 33.80 81.80 514.72 0.07 7.62 8.62 8.91 384.72 8.97

100 176.8 2001.00 262.86 37.05 925.72 34.62 85.25 675.25 0.07 6.61 10.98 6.22 428.05 11.63

15 27.4 1996.40 409.75 5.72 143.36 21.30 68.40 186.00 0.19 11.69 3.08 16.14 175.69 2.82

25 45.6 1997.75 317.75 9.54 238.89 27.29 73.00 224.40 0.15 10.38 3.99 14.99 203.56 3.67

50 91.3 1999.60 255.92 19.12 478.15 34.26 76.80 358.20 0.15 8.88 6.23 12.10 301.80 5.86

75 136.8 2000.00 251.81 28.64 716.02 34.66 78.60 510.40 0.14 7.73 8.58 9.05 362.90 8.68

100 182.1 2001.33 250.65 38.16 953.47 34.98 84.00 667.02 0.13 7.17 10.76 6.23 403.20 11.46

15 26.5 1997.00 472.57 5.55 138.98 20.71 65.40 188.40 0.09 9.87 3.22 16.29 212.83 3.02

25 44.0 1999.00 360.61 9.22 230.56 26.81 67.40 227.08 0.07 8.53 4.06 15.09 257.03 3.87

50 87.6 1998.33 290.47 18.34 458.88 33.54 71.80 364.16 0.07 7.59 6.38 11.99 374.68 6.16

75 130.9 2001.00 285.06 27.43 685.39 34.18 79.80 518.28 0.06 6.43 8.71 8.67 445.96 9.04

100 172.9 2002.00 284.89 36.24 905.11 34.06 82.20 679.60 0.06 5.20 11.08 5.52 518.38 11.99

15 27.4 1996.40 409.75 5.72 143.36 21.29 66.20 185.60 0.19 11.72 3.08 16.11 175.60 2.82

25 45.6 1997.75 317.75 9.54 238.89 27.44 68.80 224.70 0.16 10.54 3.96 14.97 204.00 3.65

50 91.3 1999.60 255.92 19.12 478.15 34.27 71.50 357.86 0.15 8.99 6.21 12.11 301.64 5.86

75 136.8 2000.00 251.81 28.64 716.02 34.72 76.50 509.44 0.14 8.16 8.56 9.12 361.42 8.66

100 182.1 2001.33 250.65 38.16 953.47 34.99 81.33 667.42 0.14 7.57 10.75 6.27 403.30 11.46

15 26.1 1997.67 488.48 5.47 136.82 20.74 63.40 189.26 0.08 8.42 3.24 16.26 234.66 3.09

25 43.4 1999.33 376.79 9.08 227.07 27.13 66.20 228.42 0.07 9.03 4.07 15.14 277.03 3.92

50 86.7 2000.00 298.85 18.16 453.96 34.01 71.20 366.10 0.06 8.26 6.42 12.04 420.82 6.26

75 129.2 2000.00 290.52 27.07 676.70 34.79 79.25 520.68 0.06 8.02 8.79 8.80 502.22 9.12

100 170.3 2001.00 290.23 35.68 891.51 35.13 81.80 683.96 0.06 8.08 11.21 5.63 578.85 11.90

15 27.4 1996.40 409.75 5.72 143.36 21.38 66.80 185.40 0.19 11.80 3.06 16.10 175.66 2.81

25 45.6 1997.75 317.75 9.54 238.89 27.57 70.20 224.85 0.16 10.56 3.95 14.96 203.86 3.64

50 91.3 1999.60 255.92 19.12 478.15 34.23 73.80 357.80 0.15 9.04 6.19 12.12 301.50 5.87

75 136.8 2000.00 251.81 28.64 716.02 34.79 77.80 510.30 0.15 8.02 8.55 9.15 361.38 8.65

100 182.1 2001.33 250.65 38.16 953.47 34.98 83.20 667.38 0.15 7.41 10.75 6.30 403.44 11.46

15 25.1 1995.67 539.98 5.24 131.25 19.98 57.50 190.06 0.08 8.88 3.26 16.26 252.87 3.21

25 42.0 1996.00 396.72 8.77 219.74 27.19 60.40 230.54 0.07 9.18 4.09 15.02 306.24 3.95

50 83.4 1998.67 309.80 17.46 436.86 34.82 73.00 367.44 0.06 9.44 6.46 11.94 456.97 6.13

75 124.5 1999.67 297.17 26.08 652.06 36.30 75.40 523.68 0.06 8.51 8.88 8.77 558.31 8.79

100 165.1 2001.00 296.07 34.60 864.46 36.43 81.67 686.36 0.06 8.44 11.29 5.63 618.03 11.61

T4-B0

B100

T1-B0

B25

T2-B0

B50

T3-B0

B75

2000 rpm
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Table 0-2: Performance and exhaust emissions % difference from baseline for engine 

at 2000rpm 
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Table 0-3: Engine performance and exhaust emissions from B0, B25, B50, B75 and 

B100 fuel at 2500rpm 

 

 

Fuel
Load

[%]

AVG 

Torque

[Nm]

AVG 

Engine 

speed

[rpm]

AVG 

BSFC

[g/kw-h]

AVG 

Power

[kW]

BMEP

[bar]

BTE

[%]

Water 

OUT 

Temp.

[dgr C]

Exhaust 

Manifold 

Temp,

[dgr C]

BSCO

[% vol]

BSHC

[ppm]

BSCO2

[% vol]

O2

[%]

BSNOx

[ppm]

AVG 

SFC

[L/h]

15 28.26 2498 422.91 7.39 147.97 20.62 75.20 202.52 0.17 9.48 3.26 15.94 206.37 3.77

25 46.30 2498 337.38 12.11 242.43 26.15 75.40 234.60 0.17 8.75 3.92 14.81 242.06 4.86

50 90.68 2499 282.23 23.73 474.80 30.74 78.40 338.88 0.1699 7.63 5.72 12.15 339.77 8.11

75 136.90 2500 265.24 35.84 716.81 33.04 82.40 476.65 0.16 6.28 7.98 9.67 418.16 11.39

100 176.87 2500 252.13 46.30 926.09 32.96 87.20 598.98 0.16 5.94 9.56 7.45 476.36 14.75

15 27.80 2498 455.82 7.27 145.56 20.88 74.80 202.92 0.11 8.20 3.28 16.06 225.54 3.78

25 45.48 2498 345.17 11.90 238.13 26.46 75.20 236.24 0.10 7.23 3.98 14.99 258.66 4.88

50 89.02 2499 276.08 23.30 466.09 32.69 78.80 340.08 0.10 6.67 5.76 12.34 362.10 7.74

75 133.76 2500 261.94 35.02 700.37 34.94 81.80 478.24 0.09 5.59 8.08 9.76 442.91 10.89

100 173.22 2500 265.96 45.35 906.98 34.14 85.25 603.18 0.09 4.03 9.92 7.46 516.33 14.43

15 28.24 2497 422.91 7.38 147.86 20.60 76.20 202.76 0.18 9.57 3.25 16.05 207.17 3.77

25 46.00 2497 337.38 12.03 240.86 26.06 76.60 234.90 0.17 8.75 3.94 14.92 241.04 4.85

50 90.77 2496 282.23 23.73 475.27 30.73 79.60 338.54 0.17 7.63 5.79 12.24 339.90 8.11

75 136.87 2499 265.24 35.82 716.63 33.03 82.60 476.86 0.16 6.28 7.90 9.69 417.35 11.39

100 177.24 2500 250.34 46.40 928.04 33.05 87.00 597.88 0.16 5.94 9.58 7.26 475.53 14.75

15 27.56 2498 486.85 7.21 144.30 20.45 77.00 206.04 0.08 6.65 3.43 16.23 234.45 3.97

25 44.84 2499 374.29 11.73 234.78 25.85 76.40 239.16 0.07 5.73 4.20 15.09 276.77 5.11

50 88.22 2499 292.98 23.09 461.92 32.73 78.40 342.36 0.07 4.74 6.18 12.47 400.96 7.95

75 132.40 2499 278.53 34.65 693.24 34.45 83.80 484.14 0.07 4.19 8.52 10.03 490.78 11.33

100 171.22 2500 271.19 44.82 896.49 34.92 85.80 610.28 0.06 4.03 10.42 7.56 562.16 14.47

15 28.30 2499 414.66 7.40 148.18 20.64 74.00 202.14 0.18 9.48 3.26 15.99 206.77 3.77

25 45.85 2497 330.97 11.99 240.07 25.97 74.00 235.20 0.17 8.75 3.93 14.86 241.55 4.85

50 90.87 2497 263.11 23.76 475.78 30.72 77.67 339.12 0.17 7.63 5.76 12.19 339.83 8.12

75 136.46 2499 251.51 35.71 714.50 32.95 82.75 476.72 0.16 6.28 7.94 9.68 417.75 11.38

100 177.46 2500 249.80 46.46 929.20 33.12 86.33 598.93 0.16 5.94 9.57 7.35 475.95 14.73

15 27.38 2498 514.50 7.16 143.36 20.40 76.40 206.82 0.07 8.83 3.55 16.26 244.95 4.11

25 44.46 2498 392.64 11.63 232.80 25.91 76.80 243.64 0.06 8.49 4.28 15.21 292.00 5.26

50 87.86 2499 304.11 22.99 460.03 33.29 79.20 348.12 0.06 8.24 6.34 12.60 418.91 8.10

75 131.46 2502 291.85 34.44 688.32 34.57 84.60 491.32 0.05 6.95 8.87 10.37 518.38 11.68

100 170.54 2502 290.19 44.68 892.95 34.32 86.20 621.60 0.05 7.06 10.72 7.76 598.95 15.26

15 28.22 2496 416.23 7.38 147.76 20.56 75.40 203.12 0.18 9.35 3.24 16.15 207.03 3.77

25 45.98 2497 333.82 12.02 240.75 26.00 75.20 234.82 0.17 8.70 3.90 15.03 242.02 4.86

50 90.83 2497 263.21 23.75 475.60 30.62 78.80 338.96 0.17 7.46 5.86 12.33 339.80 8.15

75 136.20 2499 251.81 35.65 713.14 32.84 82.60 476.54 0.16 6.28 7.98 9.71 418.10 11.40

100 177.82 2500 250.45 46.55 931.06 33.15 86.80 598.90 0.16 5.94 9.58 7.07 476.32 14.75

15 27.18 2496 540.84 7.10 142.31 20.48 73.20 211.64 0.03 9.54 3.58 16.15 250.95 4.24

25 44.20 2497 407.76 11.56 231.43 26.31 74.50 246.02 0.02 9.23 4.30 15.04 302.67 5.37

50 87.20 2498 314.73 22.81 456.60 33.78 74.00 352.10 0.02 8.42 6.52 12.50 438.10 8.26

75 130.64 2500 299.06 34.21 684.03 35.59 82.60 498.62 0.02 8.39 8.96 10.02 542.72 11.75

100 170.28 2501 298.55 44.59 891.58 34.38 83.40 627.80 0.01 8.15 10.89 7.35 626.16 15.86

T4-B0

B100

B50

T3-B0

B75

T2-B0

2500 rpm

T1-B0

B25
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Table 0-4: Performance and exhaust emissions % difference from baseline for engine 

at 2500rpm 
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Table 0-5: Engine performance and exhaust emissions from B0, B25, B50, B75 and 

B100 fuel at 3000rpm 

 

Fuel
Load

[%]

AVG 

Torque

[Nm]

AVG 

Engine 

speed

[rpm]

AVG 

BSFC

[g/kw-h]

AVG 

Power

[kW]

BMEP

[bar]

BTE

[%]

Water 

OUT 

Temp.

[dgr C]

Exhaust 

Manifold 

Temp,

[dgr C]

BSCO

[% vol]

BSHC

[ppm]

BSCO2

[% vol]

O2

[%]

BSNOx

[ppm]

AVG 

SFC

[L/h]

15 26.87 3002 468.98 8.45 140.67 18.68 69.40 226.20 0.07 8.93 3.34 15.93 288.47 4.75

25 43.93 3003 361.35 13.82 230.03 24.24 70.20 265.40 0.06 7.14 4.01 14.87 316.26 5.99

50 88.10 3004 275.75 27.72 461.29 32.13 74.40 371.60 0.06 6.57 5.59 12.80 453.72 9.06

75 129.47 3006 260.41 40.75 677.89 33.64 80.40 489.00 0.06 5.32 7.14 10.81 497.68 12.72

100 175.12 3007 259.80 55.14 916.93 35.22 85.20 629.60 0.06 4.82 9.33 7.97 502.36 16.44

15 26.42 2996 504.53 8.29 138.34 18.42 68.20 226.90 0.06 5.86 3.42 15.89 296.01 4.89

25 43.20 2997 377.03 13.56 226.19 24.38 70.00 265.84 0.05 5.29 4.10 14.93 319.56 6.04

50 86.88 3000 285.55 27.29 454.90 32.40 76.00 372.23 0.04 3.58 5.64 12.77 481.07 9.15

75 127.03 3002 266.85 39.93 665.14 33.91 80.40 490.44 0.04 4.73 7.57 10.92 565.81 12.79

100 171.23 3002 262.02 53.84 896.58 35.29 84.00 632.25 0.04 4.02 10.13 8.03 561.48 16.57

15 26.90 3002 477.26 8.46 140.85 18.74 69.40 226.52 0.06 8.78 3.34 16.38 288.50 4.74

25 44.03 3003 366.25 13.85 230.56 24.24 71.80 266.04 0.06 7.07 4.01 15.32 316.66 6.00

50 88.02 3004 285.22 27.69 460.87 32.03 75.40 372.18 0.06 6.57 5.59 13.02 453.82 9.08

75 130.20 3004 268.31 40.96 681.73 33.88 80.00 489.62 0.05 5.57 7.14 10.98 498.04 12.70

100 178.97 3007 259.65 56.36 937.08 36.05 85.20 630.02 0.04 5.07 9.33 7.89 502.44 16.42

15 26.02 2998 544.41 8.17 136.26 17.75 70.00 228.68 0.04 7.22 3.55 15.84 324.37 5.19

25 42.64 2999 403.10 13.39 223.28 24.10 71.80 268.64 0.04 6.24 4.22 14.86 368.67 6.26

50 85.68 3000 308.46 26.91 448.62 31.13 75.50 375.66 0.04 5.24 6.06 12.78 548.01 9.74

75 125.87 3000 287.24 39.54 659.04 33.39 78.20 495.75 0.03 4.84 7.82 10.73 638.33 13.34

100 171.96 3000 284.83 54.02 900.40 34.20 83.25 638.54 0.02 4.45 10.42 8.26 642.32 17.80

15 26.90 3001 468.51 8.45 140.85 18.70 66.00 226.34 0.06 8.93 3.34 15.77 286.48 4.75

25 44.00 3002 357.63 13.83 230.38 24.27 67.25 266.10 0.06 7.19 4.01 14.74 316.84 5.99

50 88.10 3003 286.86 27.70 461.29 32.11 72.50 372.26 0.05 6.63 5.59 12.75 453.78 9.06

75 130.43 3006 265.72 41.05 682.95 33.89 78.50 490.25 0.05 5.74 7.14 10.64 496.76 12.72

100 179.88 3007 258.84 56.64 941.85 36.18 83.75 629.98 0.05 5.44 9.33 7.56 500.98 16.44

15 25.86 2996 560.63 8.11 135.39 17.88 71.25 230.02 0.04 8.48 3.58 16.11 364.63 5.32

25 42.20 2997 428.89 13.24 220.96 23.78 71.00 269.98 0.04 7.22 4.38 15.10 420.30 6.53

50 85.22 2997 321.43 26.75 446.21 31.40 76.50 378.74 0.03 7.03 6.24 13.05 614.18 9.98

75 124.46 2999 303.17 39.08 651.67 33.16 80.25 499.32 0.03 6.27 8.12 10.96 687.50 13.81

100 171.23 3000 294.01 53.79 896.58 34.74 83.25 643.25 0.03 6.15 11.02 8.13 709.88 18.15

15 26.73 3000 471.53 8.40 139.98 18.58 68.80 226.68 0.07 8.94 3.34 16.03 286.52 4.75

25 43.73 3002 363.08 13.75 228.99 24.13 70.40 266.08 0.06 7.17 4.01 14.97 316.54 5.99

50 88.02 3003 279.65 27.68 460.87 32.08 72.40 372.48 0.06 6.68 5.59 12.86 453.74 9.06

75 129.57 3004 260.32 40.76 678.41 33.65 79.80 490.16 0.06 6.02 7.14 10.81 496.88 12.72

100 178.60 3007 258.87 56.24 935.15 35.92 84.80 630.10 0.06 5.57 9.33 7.81 502.26 16.44

15 25.57 2999 582.70 8.03 133.87 18.51 70.80 231.54 0.03 8.94 3.56 16.13 406.48 5.30

25 41.68 2998 441.47 13.09 218.24 24.36 72.20 270.46 0.02 7.80 4.24 15.10 466.41 6.57

50 84.62 2998 320.65 26.57 443.07 33.37 79.60 380.08 0.02 7.49 6.23 12.96 704.19 9.73

75 122.68 2998 303.88 38.52 642.35 34.59 81.50 502.04 0.02 6.93 8.25 10.89 754.35 13.62

100 168.63 3000 293.77 52.98 882.96 36.24 84.25 646.25 0.02 6.76 11.20 8.01 750.58 17.88

T4-B0

B100

T3-B0

B75

T2-B0

B50

B25

3000 rpm

T1-B0
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Table 0-6: Performance and exhaust emissions % difference from baseline for engine 

at 2500rpm 
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Table 0-7: Engine performance and exhaust emissions from B0, B25, B50, B75 and 

B100 fuel at 3500rpm 

 

Fuel
Load

[%]

AVG 

Torque

[Nm]

AVG 

Engine 

speed

[rpm]

AVG 

BSFC

[g/kw-h]

AVG 

Power

[kW]

BMEP

[bar]

BTE

[%]

Water 

OUT 

Temp.

[dgr C]

Exhaust 

Manifold 

Temp,

[dgr C]

BSCO

[% vol]

BSHC

[ppm]

BSCO2

[% vol]

O2

[%]

BSNOx

[ppm]

AVG 

SFC

[L/h]

15 24.87 3492 545.86 9.09 130.20 16.05 78.80 262.20 0.08 10.01 3.23 15.66 368.55 5.95

25 40.73 3497 409.04 14.92 213.28 21.41 76.40 294.80 0.08 9.95 4.10 14.84 394.43 7.32

50 80.85 3501 306.45 29.64 423.33 28.58 80.40 392.20 0.07 9.09 5.43 13.13 418.47 10.89

75 121.00 3501 277.58 44.37 633.55 31.56 84.20 507.60 0.07 8.34 7.00 11.03 436.62 14.77

100 159.60 3502 265.08 58.52 835.66 33.04 87.20 643.20 0.07 6.46 9.02 8.37 446.63 18.60

15 24.80 3498 586.04 9.08 129.85 16.07 75.80 262.46 0.07 9.02 3.44 15.69 412.16 6.14

25 40.56 3498 430.54 14.86 212.40 21.40 77.20 295.32 0.07 8.98 4.31 14.81 452.50 7.54

50 79.90 3500 316.40 29.28 418.36 28.78 80.00 392.96 0.06 7.77 5.69 13.06 480.68 11.06

75 120.17 3502 277.78 44.07 629.19 32.03 83.00 510.04 0.06 6.41 7.35 11.05 506.92 14.95

100 158.24 3500 267.26 58.00 828.56 33.73 86.67 644.36 0.06 4.99 9.78 8.64 536.24 18.68

15 24.87 3492 545.86 9.09 130.20 16.02 76.40 262.64 0.08 9.88 3.26 16.09 368.20 5.96

25 40.73 3497 409.04 14.92 213.28 21.34 76.60 295.40 0.08 9.99 4.12 15.21 394.70 7.34

50 80.85 3501 306.45 29.64 423.33 28.56 81.40 392.98 0.08 9.02 5.48 13.34 418.47 10.90

75 121.04 3501 277.58 44.38 633.76 31.62 83.20 507.82 0.08 8.25 7.28 10.95 436.72 14.74

100 159.60 3502 265.08 58.52 835.66 33.05 87.80 643.58 0.07 6.91 9.04 8.09 446.82 18.60

15 24.37 3497 629.27 8.92 127.58 15.49 78.80 264.06 0.07 8.51 3.54 15.74 454.82 6.49

25 39.80 3498 461.08 14.58 208.40 20.71 76.40 297.48 0.06 8.62 4.44 14.85 504.78 7.93

50 78.94 3498 338.76 28.92 413.33 28.09 80.40 395.84 0.06 7.55 5.96 13.02 548.69 11.60

75 118.33 3497 305.95 43.33 619.55 31.20 84.20 511.56 0.06 6.31 7.88 10.87 572.91 15.65

100 156.00 3498 288.22 57.14 816.81 32.72 87.20 648.62 0.05 4.74 10.12 8.27 586.02 19.68

15 24.87 3492 545.86 9.09 130.20 16.08 75.75 263.10 0.08 9.94 3.23 15.54 367.65 5.94

25 40.73 3497 409.04 14.92 213.28 21.34 75.25 295.62 0.08 10.05 4.10 14.73 394.04 7.34

50 80.85 3501 306.45 29.64 423.33 28.62 78.75 393.52 0.08 9.01 5.46 12.91 418.46 10.88

75 121.00 3501 277.58 44.37 633.55 31.57 83.50 508.16 0.08 8.26 7.21 10.53 436.84 14.76

100 159.60 3502 265.08 58.52 835.66 33.04 86.25 644.18 0.07 6.46 9.02 7.65 466.78 18.60

15 24.00 3496 657.61 8.79 125.66 15.57 79.50 266.76 0.06 9.88 3.58 15.91 474.12 6.61

25 39.44 3496 479.40 14.44 206.51 21.10 77.75 299.84 0.05 9.98 4.46 15.00 528.22 8.02

50 78.26 3500 350.99 28.68 409.77 28.56 80.25 399.02 0.05 9.59 6.10 13.10 586.66 11.77

75 117.23 3500 310.02 42.97 613.83 31.73 84.75 515.48 0.05 9.82 8.02 11.06 604.51 15.87

100 154.16 3499 300.43 56.49 807.18 33.39 83.00 654.56 0.05 8.65 10.43 8.44 658.52 19.83

15 24.87 3492 545.86 9.09 130.20 16.05 77.20 263.08 0.08 10.00 3.24 15.76 358.15 5.95

25 40.73 3497 409.04 14.92 213.28 21.41 76.40 295.38 0.08 10.30 4.11 14.92 384.04 7.32

50 80.85 3501 306.45 29.64 423.33 28.58 80.60 394.04 0.08 8.95 5.46 13.13 418.46 10.89

75 121.00 3501 277.58 44.37 633.55 31.56 83.60 508.32 0.07 8.25 7.26 10.84 436.62 14.77

100 159.60 3502 265.08 58.52 835.66 33.01 87.00 644.42 0.07 6.45 9.02 8.04 466.84 18.62

15 23.86 3432 663.77 8.57 124.93 16.29 76.25 268.16 0.03 11.35 3.60 15.87 482.66 6.44

25 39.10 3499 502.86 14.33 204.73 21.54 79.20 302.04 0.03 10.85 4.46 15.07 528.89 8.13

50 77.60 3502 357.53 28.46 406.31 29.69 82.80 402.62 0.02 9.79 6.03 13.18 606.72 11.72

75 116.04 3499 327.04 42.52 607.60 32.80 85.00 518.98 0.02 10.97 8.11 10.80 624.10 15.85

100 153.64 3501 312.43 56.33 804.47 34.76 83.60 659.08 0.02 10.05 10.46 8.02 678.57 19.82

B100

B75

T4-B0

B50

T3-B0

B25

T2-B0

3500 rpm

T1-B0
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Table 0-8: Performance and exhaust emissions % difference from baseline for engine 

at 3500rpm 
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