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Despite evolutionary conserved mechanisms to silence transposable 

element (TE) activity, there are drastic differences in the abundance of TEs even 

among closely related plant species. We analysed the 375 Mb genome of the 

perennial model plant Arabis alpina and observed long-lasting as well as recent 

TE activity predominately driven by Gypsy long terminal repeat (LTR) 

retrotransposons. Their transposition extended the low-recombining peri-

centromeres and transformed large and formerly euchromatic clusters of genes 

into repeat-rich peri-centromeric regions. This apparently reduced capacity for 

LTR retrotransposon silencing and removal in A. alpina co-occurs with 

unexpectedly low levels of DNA methylation. Most remarkable is the absence of 

symmetrical CG and CHG methylation suggesting strikingly reduced levels of 

DNA methylation maintenance in comparison to the related plant Arabidopsis 

thaliana. Phylogenetic reconstructions of genes in the DNA methylation 

pathways revealed species-specific patterns of evolution of the methylation 

maintenance machinery, in contrast to conserved family-wide patterns for de 

novo DNA methylation genes. 

 

Whole-genome sequences of members of the Brassicaceae family1-10 (including 

the plant model A. thaliana) are greatly expanding the scope for comparative 

genomics among closely related plant species (e.g. 5,8). Despite their close 

phylogenetic relationship, Brassicaceae species have repeatedly evolved many 

differences in important life history traits, including the capacity for self-fertilization11, 

senescence12, as well as annual or perennial flowering behavior13.  

The reference accession of the perennial A. alpina Pajares was collected in the 

Cordillera Cantábrica mountains of Spain and was self-fertilized for six generations by 
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single-seed descent13. We generated a high quality 309 Mb genome assembly from a 

mixture of 454, Illumina and Sanger BAC end sequences with a scaffold N50 of 788 

and L50 of 160 kb (Supplementary Fig. 1, Supplementary Table 1, 2 and 

Supplementary Note). By integrating comparative chromosome painting, we 

arranged more than 85% of the large scaffolds (>50 kb) into eight pseudo-molecules 

representing the eight chromosomes of A. alpina (Supplementary Fig. 2-4 and 

Supplementary Note). During a manual annotation jamboree the structural annotation 

of 514 selected genes were curated from a total of 30,729 genes and 278,110 

repetitive elements (Supplementary Table 3, 4 and Supplementary Note). To 

resolve the phylogenetic placement of A. alpina, we calculated a whole genome-based 

phylogenetic consensus network for 10 Brassicaceae species with available reference 

assemblies (Fig. 1a). In addition to its topology, neutral variation and chromosome 

rearrangements specific to the karyotype of A. alpina argue for A. alpina being a 

member of a separate lineage, which diverged from the Arabidopsis lineage around 

27±16 mya (Fig. 1b, Supplementary Fig. 5-7 and Supplementary Note). 

Within current annotations of Brassicaceae genomes, genes and introns 

account for 58 to 81 Mb, whereas TE content is much more variable and accounts for 

up to 148 Mb in A. alpina (Fig. 1c). By far the most abundant TE superfamily in A. 

alpina is the LTR retrotransposons superfamilyTy3/Gypsy (or Gypsies) 

(Supplementary Table 5). An increasing number of plant genomes have pointed to 

recent bursts of LTR retrotransposon transposition as a common phenomenon2,14. A 

hallmark of such recent transpositions are large amounts of young copies9 (>95% 

sequence similarity). However, in A. alpina we found a large fraction of medium aged 

TEs (85% to 95% sequence similarity)15. The reduced amount of very young elements 

most likely indicates a recent reduction of Gypsy element activity as only small parts of 
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this results from inefficiencies in the short read assembly. Rather large parts of the 

non-assembled sequence relates to simple sequence repeats (Supplementary Fig. 8, 

9 and Supplementary Note). Intriguingly, only the Gypsies contribute to the high 

number of medium-aged TEs in A. alpina (Fig. 2a and Supplementary Fig. 10). This 

suggests that A. alpina Gypsy elements proliferated over an extended period of time 

and that a large amount of these elements were retained and removed at only slow 

rates16.  

In order to analyse the degree to which these TEs may be epigenetically 

silenced we assayed four distinct chromatin marks in A. alpina, A. thaliana and A. 

lyrata including histone modifications H3K4me3, H3K27me3 and H3K27me1 assayed 

by ChIP-seq, and DNA methylation assayed by immunoprecipitation of methylated 

DNA coupled with high-throughput sequencing17 (Supplementary Note). H3K27me1 

and DNA methylation mark epigenetically silenced TEs, whereas H3K27me3 is a 

repressive mark specifically associated with genes and H3K4me3 is associated with 

regions that are actively transcribed18. As in A. thaliana18, DNA methylation and 

H3K27me1 modification were mostly associated with TEs in A. alpina and A. lyrata, 

whereas H3K4me3 and H3K27me3 were preferentially associated with genes (Fig. 2b 

and Supplementary Fig. 11). In A. alpina, however, we found a three times larger 

proportion of TEs marked with H3K4me3 as in the other two species. Gypsies showed 

by far the largest fraction of elements marked with H3K4me3, whereas all other 

superfamilies did not show such a pronounced increase (Fig. 2b and Supplementary 

Fig. 10, 11).  

Even though Gypsies within genes were more likely to be marked with 

H3K4me3 and were consistently older in all three species (Fig. 2c), A. alpina showed 

only a slightly increased fraction (7.8%) of Gypsies in genes as compared to A. 
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thaliana (5.7%) and much less as compared to A. lyrata (15.1%) implying that elevated 

levels of H3K4me3 marking among Gypsies were not dominated by epigenetic states 

of genes. Moreover, H3K4me3-marked Gypsy elements outside of genes were 

drastically younger than those without this mark in A. thaliana and A. lyrata but not in A. 

alpina suggesting that many of these elements might have retained the ability to be 

transcribed over time. In fact, when analyzing the 1.5% of the RNA-seq reads that 

were not assigned to genes9,19, we found that the Gypsy superfamily was more 

expressed than any of the other superfamilies in A. alpina, in contrast to A. thaliana in 

which Copias showed the highest fraction of RNA-seq reads (Fig. 2d, Supplementary 

Fig. 12 and Supplementary Note). Moreover, TEs with H3K4me3 mark were 

significantly enriched for expressed TEs as compared to TEs without this mark across 

all large superfamilies, even though this effect was less pronounced for Gypsies (Fig. 

2e). 

Two Gypsy families, ATGPI and ATLANTYS2, accounted for more than a fifth 

of all Gypsy elements in A. alpina (Fig. 2f and Supplementary Note). These two 

families showed an even more drastic increase in elements marked with H3K4me3, 

which was not apparent in any of the other A. alpina TE families and together with their 

increased copy number and age-distribution this suggests that the observed burst of 

transposition was mostly driven by this small group of TEs.   

In A. alpina, A. thaliana and A. lyrata, TE density increases towards the 

centromeres1,2 (Fig. 3a and Supplementary Fig. 13, 14). Typically these repeat-rich 

regions overlap with heterochromatic peri-centromeres. Here we defined peri-

centromeres as regions with high amounts of H3K27me1 surrounding the centromeres 

(Supplementary Table 6 and Supplementary Note). Peri-centromeres in A. alpina 

were drastically larger (average length: 14.9 Mb in A. alpina, 3.9 Mb in A. thaliana1, 
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10.3 Mb in A. lyrata2) and included many more genes than the other two species (Fig. 

3b). Gypsy elements are significantly enriched among the repeats in peri-centromeres 

(U-Test, p-value < 2e-16) and account for large parts of the size differences of peri-

centromeres (Fig. 3c). In A. thaliana and A. lyrata H3K4me3 markings are strongly 

correlated with gene density throughout the chromosomes. In A. alpina, however, this 

correlation was weak and even entirely missing in peri-centromeres, where H3K4me3 

was slightly correlated with Gypsy element density instead, suggesting that Gypsies 

are epigenetically active even in the heterochromatic peri-centromere in A. alpina (Fig. 

3a and Supplementary Fig. 15-17).  

Genome-size differences between Brassicaceae species have previously been 

attributed to peri-centromere expansion6,20, but the causes and functional 

consequences have remained unclear. Centromeres in many species suppress 

crossover (CO) recombination during meiosis, a phenomenon that usually extends into 

heterochromatic regions near the centromere21. CO frequencies along seven 

investigated chromosomes of A. alpina revealed for each chromosome a region with 

suppressed COs (Supplementary Table 7, 8 and Supplementary Note). These 

regions co-localize with large parts of the peri-centromeres implying that the extent of 

non-recombining DNA in A. alpina is greatly increased compared to A. thaliana and A. 

lyrata.  

Earlier analyses reported differences in gene content in peri-centromeres of 

Brassicaceae20, but were complicated by the lack of whole-genome sequences. 

Reconstruction of ancestral chromosomal rearrangements of A. alpina revealed a 

single homeologous paleocentromere (chromosome 2) with A. lyrata2 

(Supplementary Fig. 2, 3). The assembly of the long arm of chromosome 2 shows a 

clear transition between gene- and repeat-rich regions in both species (Fig. 3d). Near 
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the transition zone, there are 207 orthologs that reside in the repeat-dense regions in 

A. alpina, but outside the peri-centromere in gene-rich regions in A. lyrata. Comparing 

two sparse genetic maps of these species suggested that the repeat-rich region in A. 

alpina shows more strongly suppressed recombination than the orthologous regions in 

A. lyrata (Fig. 3d and Supplementary Note)22. This implies that upon expansion of 

the repeat-rich peri-centromeric regions in A. alpina, genes in formerly gene-rich 

regions became incorporated into the peri-centromere, with the consequence that 

large clusters of genes experience very little meiotic recombination in A. alpina. 

Although we cannot fully exclude the possibility of accelerated loss of TEs and peri-

centromere shrinkage in A. lyrata, we found no evidence for large numbers of solo-

LTRs that would indicate on-going loss through unequal homologous deletions in this 

particular genomic region (Fig. 3d and Supplementary Note).  

Increased TE activity as well as gain of H3K4me3 has been linked to reduction 

in DNA methylation at TEs in A. thaliana23. To further examine DNA methylation in A. 

alpina, we performed whole-genome bisulfite sequencing24 using leaf material and 

compared it to analogous data previously generated for A. thaliana25 (Supplementary 

Note). Though this revealed similar amounts of methylated cytosines in A. alpina 

(19%) and A. thaliana (16%)25 and similar methylation profiles along genes and TEs in 

both species24 (Supplementary Fig. 18), the position-wise frequency of CG 

methylation was strikingly different. Whereas most methylated CGs showed 80-100% 

methylation in A. thaliana, these levels tended to be much lower in A. alpina 

irrespective of sequence annotation (Fig. 4a, b and Supplementary Fig. 19). In 

contrast, the distribution of methylation levels at CHGs was only slightly shifted 

towards lower values in A. alpina, and was very similar for CHH sites. In A. thaliana, 

CG and CHG methylation typically occurs on both Cs of the opposite strands of these 



TRANSNET consortium 2014 The genome of Arabis alpina 

 11 

palindromes, indicative of methylation copying via the maintenance machinery during 

replication24,26. Surprisingly, the two strands are essentially uncorrelated in their 

methylation levels at CG sites, and much more weakly correlated at CHG sites in A. 

alpina throughout the entire genome suggesting that methylation maintenance is much 

less pervasive (Fig. 4c and Supplementary Fig. 20).  

Given these fundamental differences, we suspected that the DNA methylation 

maintenance machinery might function differently in A. alpina. To explore this 

possibility, we examined the Brassicaceae genomes for intact homologs of the five 

major gene families involved in DNA methylation26 (Fig. 4d). At least one homolog of 

each family was found and showed expression in A. alpina (Supplementary Table 9). 

The phylogenies of DDM1, required for CG methylation maintenance, CMT3, required 

for CHG methylation maintenance, and DRM2, involved in de novo methylation in all 

contexts, broadly recapitulated the family phylogeny (Fig. 4e, f, g). In contrast, the 

homologs of MET1 and VIM1, which in addition to DDM1 are essential for CG 

methylation maintenance in A. thaliana26, clustered in a species- and lineage-specific 

manner (Fig. 4h, i). This implies that all species outside of the Arabidopsis lineage, 

lacked clear orthologs for MET1 and VIM1 genes, which was also apparent from the 

lack of synteny of these genes with any of their homologs outside of this lineage. 

Moreover, dN/dS calculated for each gene family revealed values highly similar to a 

genome-wide background distribution, except for MET1 family members with 

consistently enriched values suggesting that less purifying selection pressure acts on 

MET1 (Fig. 4j).  

Although MET1 and VIM1 homologs are present in A. alpina, it remains 

possible that the lineage-specific evolution of these genes might relate to the 

differences in CG methylation maintenance, as homologs of the main methylation 
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genes are present in other species with strong differences in DNA methylation27. 

However more complex changes in other methylation pathways might need to be 

considered to reveal the basis of DNA methylation differences between A. alpina and 

A. thaliana. As the absence of symmetrical CG methylation levels did not correlate 

with an overall lower amount of at least partially methylated cytosines, de novo DNA 

methylation probably compensates for the lack of DNA methylation maintenance28 

underlining the high importance of de novo DNA methylation in A. alpina.  

Even though co-occurrence of expanded TE content and DNA methylation 

maintenance deficiency in A. alpina does not necessarily imply a causal relationship, it 

nevertheless remains an attractive possibility, that apparent methylation deficiency 

may have contributed to the elevated numbers of Gypsy elements, possibly due to 

reduced silencing of specific TE families, as was shown for DNA methylation 

maintenance deficient mutants in A. thaliana29,30.   
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Online Methods 

Materials and methods are described in detail in the supplementary material. 
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Figure legends 

Fig. 1 | Phylogenetic reconstruction and karyotype evolution support a distinct 

phylogenetic placement of A. alpina. (a) Consensus network of the Brassicaceae 

phylogeny based on 1,787 single-copy COGs. Its topology did not unambiguously 

place the Arabis species with Lineage II as proposed earlier. (Lineage I species (red); 

Lineage II species (blue); Arabis species (green)). (b) Karyotype evolution at the base 

of Brassicaceae evolution. Reconstruction of the chromosome evolution from the 

Ancestral Crucifer Karyotype (ACK) to the A. alpina karyotype (KAA) suggested nine 

chromosomal rearrangements, which are different from the rearrangements that 

occurred in the evolution from the ACK to the Proto-Calepineae Karyotype (PCK), 

which is ancestral to Lineage II. (c) Brassicaceae genome compositions. 

 

Fig. 2 | Genome size variation and differences in transposable element content. 

(a) TE-age spectra based on similarity between TE copies and consensus sequence. 

A. alpina shows an unique increase of medium-aged Gypsy elements. (b) Fraction of 

genes and TEs marked with H3K4me3. The three largest superfamilies are shown 

separately. (c) Age distribution of Gypsies inside and outside of genes separated by 

their different H3K4me3 markings. (e) TE superfamily expression estimated by the 

amount of non-genic RNA-seq reads. (f) Fraction of expressed TEs with and without 

H3K4me3 markings. (g) Size of the ten largest TE families in A. alpina along with their 

family-wide fraction of H3K4me3 marks within all three species. 

 

Fig. 3 | Differences in the distribution of genes, TEs and chromatin marks 

between A. thaliana, A. lyrata and A. alpina. (a) Gene, TE and histone mark density, 

along orthologous chromosomes (missing sequence marked in grey). (b) Genomic 
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fraction and gene space in chromosome arms and peri-centromeres. (c) Genome 

coverage of the three largest TE superfamilies. (d) Comparison of A. alpina and A. 

lyrata chromosome 2 sharing the same ancestral centromere. Grey lines connect 

single-gene orthologs. Orthologs that reside in peri-centromeric regions in A. alpina, 

but are outside these regions in A. lyrata, are indicated by dark grey lines. Locations of 

solo-LTRs indicated by grey crosses. (Gene and TE densities as in (a), CO frequency 

(red), peri-centromeres (dark brown)). 

  

Fig. 4 | Species-specific differences in DNA methylation. (a) Position-wise DNA 

methylation frequencies. (b) DNA methylation frequencies in A. alpina separated by 

genomic regions. (c) Correlation of methylation frequency on Watson and Crick strand 

at symmetrical CG and CHG sites (Aa, A. alpina; At, A. thaliana). (d) Gene family 

sizes of DNA methylation genes. (e) – (i) Gene family phylogenies (Aa, A. alpina; Al, A. 

lyrata, At, A. thaliana; Br, B. rapa; Cp, C. papaya, Cr, C. rubella; Es, E. salsugineum, 

Sp, S. parvula). (j) dN/dS values for orthologous genes pairs between A. alpina and A. 

thaliana (light blue) and dN/dS values of each methylation gene family (coloured dots).  
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