
  

FITTING EQUATIONS TO DATA 

WITH THE 

PERFECT CORRELATION RELATIONSHIP 

 

CHRIS TOFALLIS 

 

Hertfordshire Business School Working Paper (2015) 

This version: 23 December 2015 

First version: September 2015 

 

The Working Paper Series is intended for rapid dissemination of research results, work-

in-progress, and innovative teaching methods, at the pre-publication stage. Comments 

are welcomed and should be addressed to the individual author(s). It should be noted 

that papers in this series are often provisional and comments and/or citations should 

take account of this. 

Hertfordshire Business School Working Papers are freely downloadable from 

https://uhra.herts.ac.uk/dspace/handle/2299/5549 and also from the British Library: 

www.mbsportal.bl.uk 

 

 

Hertfordshire Business School employs approximately 200 academic staff in a state-of-the-art 

environment located in Hatfield Business Park. It offers 17 undergraduate degree programmes 

and 21 postgraduate programmes; there are about 75 research students working at doctoral level. 

The University of Hertfordshire is the UK’s leading business-facing university and an exemplar in 

the sector. It is one of the region’s largest employers with over 2,600 staff and a turnover of almost 

£235 million. It ranks in the top 4% of all universities in the world according to the Times Higher 

Education World Rankings and is also one of the top 100 universities in the world under 50 years 

old.  

Copyright and all rights therein are retained by the authors. All persons copying this 

information are expected to adhere to the terms and conditions invoked by each 

author's copyright. These works may not be re-posted without the explicit permission 

of the copyright holders. 

https://uhra.herts.ac.uk/dspace/handle/2299/5549
http://www.mbsportal.bl.uk/


 
 

1 
 

 

 

FITTING EQUATIONS TO DATA WITH 

THE PERFECT CORRELATION RELATIONSHIP 

 

  

This version: 23 December 2015 

First version: September 2015 

 

Chris Tofallis 

Reader/Associate Professor of Decision Science 

Hertfordshire Business School 

University of Hertfordshire 

College Lane 

Hatfield 

AL10 9AB 

United Kingdom 

c.tofallis@herts.ac.uk 

 

 

ABSTRACT 

We present a simple method for estimating a single relationship between multiple variables, which 

are all treated symmetrically i.e. there is no distinction between dependent and independent 

variables. This is of interest when estimating a law from observations in the natural sciences, 

although workers in the social sciences may also find this of interest when fitting relationships to 

data. All variables are assumed to have error but no information about the error is assumed. Unlike 

other symmetric methods, the weights or coefficients can be obtained easily – indeed, these can be 

expressed in terms of least squares coefficients. The approach has the important properties of 

providing a functional relationship which is scale invariant and unique. 
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Background 

We are interested in summarising the relationship between a number of variables by means of a 

single equation. We wish to treat all variables on the same basis and so we make no distinction 

between dependent and independent variables. Furthermore, we assume no other knowledge 

about the data, such as error variances, which would enable more sophisticated methods to be 

applied, such as those described in Cheng and Van Ness, 1999. In addition, we prefer that the 

estimation process not be computationally intensive and that the weights or coefficients be directly 

expressible in simple terms (e.g. established statistics). 

We begin with a consideration of ordinary least squares (OLS) regression for the case of two 

variables, x and y. The linear regression of y on x leads to an equation of the form:  

y = r(sy /sx)x + c, where r is the correlation and s the standard deviation.  

For convenience we now assume that the data have been standardized by subtracting the mean and 

dividing by the standard deviation. This equation then simplifies to y = rx. Now consider the 

regression of x on y; this leads to the relationship x = ry, or y = x/r.  

These two lines do not agree with each other; the only point of agreement between them is where 

they intersect, which corresponds to the origin for standardized data, and which is the centroid, or 

point of means, for the original data. This centroid property is retained when fitting planes and 

hyperplanes in higher dimensions.  

If we are trying to describe the relationship in the data, OLS unfortunately provides two inconsistent 

relations. Suppose we wanted to estimate the slope, here defined as the rate of change of y with x. 

One application would be to predict the extent of a change: in this case the change in y for a given 

change in x.  The first regression estimates the slope as being equal to r, whereas the second 

regression estimates this as 1/r (using the same axes). Thus if the correlation were 0.71 one slope 

estimate would be twice as large as the other! Secondly, we would prefer that the level of noise in 

the data would not affect our estimation of the underlying relationship. Sadly this is not the case: 

any measurement error associated with the x-variable will cause the y on x regression slope to be 

biased downward in magnitude, i.e. closer to zero (Hausman, 2001). This effect is known as 

regression dilution, or regression attenuation.The slope estimate keeps falling as the noise increases. 

By contrast, we notice that the reverse OLS slope estimate will increase in magnitude as the noise in 

y rises.  

In seeking a single equation to summarise the data we are faced with a situation where we have two 

lines, neither of which is acceptable. Clearly the ‘true line’, however defined, lies somewhere in 

between and we need to develop an argument for estimating it. Suppose that the data are affected 

by noise (measurement error) in the data, and that there is a true underlying linear relationship, 

possibly due to a physical law or other law of nature. Now imagine turning down the noise (more 

accurate instruments) so that the scatter is reduced and the correlation rises. The remarkable thing 

is that the above two OLS lines will gradually converge, and eventually coincide when the correlation 

is perfect (zero noise). The equation of the resulting unique line will take the form:  

y = ±x (the sign is given by the correlation).  
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In terms of the original unstandardized data the slope is the ratio of standard deviations: 

±(sy /sx ). 

Because of the way we have arrived at this line, we shall refer to it as the perfect correlation line. 

We choose this name because it provides the key to unlocking the fitting process in higher 

dimensions. 

This line is also known as the geometric mean functional relationship, because the slope is the 

geometric mean of the two OLS slopes. Notice that by taking the geometric mean of the slopes the 

presence of the correlation in the slope formulae is removed. This would seem to be appropriate for 

a situation where it is believed that a genuine functional relationship exists. In such cases the 

correlation would be less than perfect as a consequence of noise or measurement error in the data. 

But in general we would not expect this to affect the slope or underlying relationship in a systematic 

way. 

Looked at in another way, any researcher who regresses y on x and is later able to obtain more 

accurate (less noisy) data will always conclude that their previous slope estimate was too low. 

Whereas any researcher who regresses x on y will later find that their original slope estimate was 

too high, and that more accurate data provided a lower estimate. It is therefore natural to follow the 

path of taking some form of mean of these two estimators, which is what the perfect correlation line 

provides. 

This line has a number of attractive properties. Greenall (1949) proved that for a large class of 

distributions, including the bivariate normal, this line pairs of X and Y values such that the proportion 

of x-values below X is the same as the proportion of y-values below Y. In other words, it pairs of 

values with equal percentiles. One application for this is when matching scores on two tests which 

are designed to measure the same aspect of performance. Another application is to relate 

measurements from two different instruments which measure the same quantity. 

By definition, the OLS line has the least sum of squared residuals in the y-direction. Similarly, no 

other line has a lower sum of squares in the x-direction than the reverse OLS line. In general, no line 

can simultaneously achieve both of these optimal properties. Greenall (1949) proved that what we 

are calling the perfect correlation line increases both sums of squares by the same factor or 

percentage. This implies symmetry in the errors of estimation.  

Treating variables in the same way 

When measurement error affects both variables it is possible to derive a maximum likelihood 

estimate of the slope under the assumption of a bivariate normal distribution. Unfortunately this 

requires knowledge regarding the variance of the errors. Such information can be obtained if one 

has the luxury of replicated observations, which is not usually the case. Nevertheless, we can now 

pose the question: under what circumstance does the above perfect correlation line arise? 

Assuming the measurement errors (ex) are uncorrelated with the observed values (x), then 

x = xtrue + ex 

leads to var(x) = var(xtrue) + var(ex) 
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Note that since the mean error is zero, var(ex) is simply the mean square error, and the square root 

of this is the standard error. 

The reliability (coefficient) for x is defined as var(xtrue)/(var(x), i.e. [var(x) – var(ex)]/var(x)  

or 1– [var(ex)/var(x)] 

So that as the error variance tends to zero, the reliability tends to unity.  

Now the maximum likelihood estimator for the slope corresponds to the perfect correlation 

(geometric mean) slope when the ratio of the error variances is equal to the ratio of the total 

variances (see for example McArdle, 2003): 

var(ey)/var(ex) = var(y)/var(x) 

i.e. var(ex)/var(x) = var(ey)/var(y) 

It then becomes clear that the perfect correlation slope is the maximum likelihood slope when both 

variables are measured with equal reliability.  

McArdle (2003) gives practical advice for dealing with the situation when we have no information 

about error variances. The two OLS lines provide the extreme limits and arise from attaching all the 

uncertainty to just one of the variables. If the correlation in the data is high then these limits will be 

close to each other and the uncertainty in the line position will be low. Conversely, if there is much 

noise in the data then, as expected the range of uncertainty in the slope will be high. How the 

uncertainty associated with the location of each data point is decomposed between x and y 

determines how close to these limits the true line is located. If there is no reason to suppose that 

one variable is measured more reliably than the other, then it would seem reasonable to use the 

approach we have been discussing.  

Aims 

The main contribution of this paper will be to extend the perfect correlation or geometric mean 

approach to multiple variables. Previous attempts have focused on a geometric property of the 

geometric mean functional relationship in two dimensions. Namely, the fact that the resulting line 

minimizes the sum of triangular areas formed by the data points and the line (when each point is 

connected to the line by vertical and horizontal segments). Draper and Yang (1997) generalized this 

aspect in a particular way. They considered the geometric mean of the distances to the (hyper)plane 

in each dimension and applied least squares to that quantity. The resulting optimization problem is 

nonlinear and no expression is available for the coefficients. They proved that in the space of 

coefficients the result lies in the simplex defined by all the least squares solutions (taking each 

variable in turn as the dependent variable. 

A different generalization was developed by Tofallis (2002a, 2003) which was to view the least areas 

in the two dimensional case as a minimization of the sum of products of distances to the line in each 

dimension. Thus in three dimensions the problem becomes one of minimizing the sum of volumes of 

the tetrahedra created by each data point and the plane. Once again this involved nonlinear 

optimization. Another variation was the least sum of geometric mean deviations (Tofallis, 2002b). 
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This leads to a linear objective function with all constraints linear apart from one which sets the 

product of coefficients to unity. 

In the following sections we shall show how to fit a functional relationship without having to solve 

any nonlinear optimization problems. We assume that no knowledge is available regarding the 

errors in each of the variables. 

Extension to three variables: Fitting a plane 

We now describe how to fit a plane to data on three variables, x, y, z in a symmetric fashion. To 

begin with, imagine the data points are scattered about but still lying perfectly on a plane. If we view 

a scatterplot of all data points showing just two variables (x,y) we will not see a straight line because 

the points have different values of z. Hence we cannot impose conditions saying that the bivariate 

correlations should be perfect, as we did before. 

However, if we only plot points with the same z-value we will see evidence of a straight line. This is 

because we have taken a cross-section through the plane. The way forward is thus to impose the 

condition that the correlation between x and y for fixed z, be perfect. We denote this partial 

correlation by rxy.z . Naturally, the perfect correlation condition also applies to the other two partial 

correlations, and this will permit us to deduce the equation of the plane being fitted to the data. 

The theory of partial correlation was initially developed by Yule (1907) where he defines this 

quantity as rxy.z = (bxy byx)
½                               (1) 

where byx is the OLS coefficient of x when y is regressed on x, keeping z constant, and bxy is the 

coefficient of y when x is regressed on y, keeping z constant. Yule used the notation bxy.z to 

emphasize that it was a partial coefficient i.e. keeping z constant, but we shall follow modern 

notation where OLS coefficients are always taken to be partials.  

In one regression the rate of change of y with x for fixed z is estimated by byx, whereas in the other it 

is estimated by 1/bxy. Since we seek a single estimate we require these two estimates to agree with 

each other. So we set  

byx = 1/bxy       (2) 

If we substitute this into (1) it leads to rxy.z = 1½ = ±1. Thus equation (1) demonstrates that the OLS 

slopes will only agree when there is perfect partial correlation. This provides support for our perfect 

correlation approach. 

If we multiply through (2) by byx we get b2
yx = byx/bxy     (3) 

Denoting the resulting estimate of the ‘perfect slope’ in the x-y plane by b*yx  gives us 

b*yx   = (byx/bxy)
½           (4) 

The sign of this square root should be taken as the sign of either byx or bxy , which will always be the 

same sign because the left side of (3) is positive.  



 
 

6 
 

Note that the reciprocal of bxy refers to the rate of change of y with x. Thus (4) shows that our 

perfect correlation ‘slope’ is the geometric mean of the two OLS slopes. Fortunately, and very 

conveniently, this is the same connection as in the two dimensional case. 

We next show that these ‘perfect’ regression coefficients can be expressed in terms of simple 

correlations. Spiegel (1972, p.270) shows that OLS regression coefficients can be written as follows:  

byx = (ryx – ryz rxz)/(1 – r2
xz) 

bxy = (ryx – rxz ryz)/(1 – r2
yz) 

Substituting these into (4) gives: 

b*yx   = [(1 – r2
yz)/(1 – r2

xz)]
½   

When taking the square root, the sign of this partial coefficient should match the sign of the 

associated partial correlation, ryx.z 

Similarly, the rate of change of y with z is estimated by 

b*yz   = [(1 – r2
yx)/(1 – r2

xz)]
½   

Thus, in terms of standardized variables, the equation of the fitted plane can be written very simply 

as 

x(1 – r2
yz)

½ ± y(1 – r2
xz)

½  ± z(1 – r2
yx)

½  = 0 

 

The general case with multiple variables 

When there are multiple (p) variables Yule (1907) gives the general relationship between partial 

correlations and OLS coefficients (b): 

r12.3…p = (b12 b21)
½         

where the left hand side is the correlation between variables x1 and x2 when the remaining variables 

are held constant . 

Once again, since we are seeking a single relationship, we require the partial slopes to agree when 

we regress x1 on x2 , and x2 on x1 . Thus the rate of change of x1 with x2, (b12 ), will be equal to 1/b21 . 

Notice that this makes the above partial correlation perfect, just as with the two and three 

dimensional cases. 

Using the same argument which led to (4), we can deduce an expression for this rate of change in 

terms of OLS coefficients: 

b*
12 

 = (b12/b21)
½    

 

Once again we obtain the geometric mean of the two associated OLS rates of change. The other b* 

coefficients can be found similarly:  

b*
ij 

 = (bij/bji)
½         (5) 
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This shows that the (partial) rate of change of xi with xj is the geometric mean of the estimates of this 

quantity from the OLS regressions using xi and xj as dependent variables. In this sense the property 

which gives the name to the geometric functional relationship in two dimensions is now seen to 

persist in higher dimensions. 

It is now clear that we can easily fit a single symmetric equation to the data if we have the separate 

OLS equations. This will often be the most practical route. This development will hopefully allow 

more widespread application of symmetric fitting to estimate functional relationships. 

The fact that the required coefficients are directly expressible in terms of OLS coefficients brings 

with it the valuable property of uniqueness: provided we have more observations than parameters 

and assuming there is no degeneracy in the data, then the fitted relationship will be unique. 

Coefficients expressed in terms of conditional standard deviations 

Kendall and Stuart (1973, p.338) show that an OLS regression coefficient can be expressed as the 

ratio of a conditional covariance to a conditional variance: 

bij = sij.k / s2
j.k 

where the suffix notation indicates that all variables apart from those on the left of the point are 

held fixed. 

Applying this to (5) we obtain: 

b*
ij 

 =  ± (si.k / sj.k) 

Note that this is a generalization from the bivariate case where we the slope was ±(sy /sx ). The only 

difference is that in three or more dimensions we have to use conditional standard deviations. 

Thus in the fitted equation Σb*
j xj = 0 the coefficients are reciprocals of conditional standard 

deviations. 

Scale invariance 

If we re-scale by changing the measurement units of a variable we would expect the associated 

coefficient to adjust accordingly. For example, if we switch a variable from metres to kilometres then 

the coefficient of that variable should become a thousand times larger, so that their product stays 

the same. This valuable feature is present in OLS regression. Since the coefficients in the proposed 

method can be directly obtained from those in OLS by (5), it follows that the equation relating all the 

variables will be scale invariant, as required. 

Mention should perhaps also be made of orthogonal regression. This is the approach of minimizing 

the sum of squares of perpendicular distances to the fitted plane. While this can produce a single 

equation relating all variables, and appears not to treat any variable preferentially, it is well-known 

that it is not scale invariant (Kermack and Haldane, 1950), and so does not satisfy the above 

property. It is therefore not an attractive approach unless all variables happen to be measured in the 

same units. It is also more difficult computationally compared to the method presented here. 
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Discussion 

When fitting equations by treating all variables on the same basis, the name ‘symmetric regression’ 

is sometimes used, thus OLS is considered asymmetric. Let us review some of the arguments for 

using symmetric models. In their chapter on this topic, Von Eye and Schuster (1998) state that “One 

of the most striking and counterintuitive results from employing two asymmetric regression lines for 

prediction and inverse prediction is that back-prediction does not carry one back to the point where 

the predictions originated.” (p.214). They provide a numerical example showing predicted values of 

Performance with IQ as the predictor. These Performance values are then used as the predictor of 

IQ. The resulting IQ values differ from the starting values. Moreover, they differ systematically: they 

increase with distance from the mean. The differences also rise with falling correlation. 

In his book ‘Making social sciences more scientific’ (2008), Taagepera includes a chapter entitled 

‘Why we should shift to symmetric regression’. He argues that OLS models “cannot form a system of 

interlocking models, because they are not unique, cannot be reversed, and lack transitivity. Scale-

independent symmetric regression avoids these problems by offering a single, reversible, and 

transitive equation.” Reversibility requires that if y = f(x) then x = f-1(y), that is, we should be able to 

rearrange the resulting relationship just as we do with any algebraic equation or scientific law. By 

contrast OLS models are unidirectional. 

He points out that if one were testing a well-established linear law, the OLS slope would always be 

shallower than the true slope. Moreover, this unwanted artefact would arise whichever variable one 

plotted on the horizontal axis!  

Transitivity is the property where calculating z from x directly gives the same result as the indirect 

calculation of z from y, and y from x. “This requirement is indispensable if one wants to construct a 

knowledge system consisting of equations that interlock”. “As long as social sciences depend heavily 

on standard OLS and related unidirectional regression methods, they are bound to face 

disconnected bits and pieces of relationships, because with OLS, x→y→z is NOT the same as x→z” 

(p.167). 

He too proposes the geometric mean functional relationship as the ‘only scale-independent 

symmetric regression’ that avoids all of the above difficulties of OLS. As we have seen, this line has 

slope sy/sx, whilst for OLS it is rsy/sx which is unfortunately a mixed measure of (lack of) noise and 

slope. Taagepera illustrates the difficulty by considering the question: How much does weight 

increase with height? With OLS the answer depends on how accurate the measuring instruments 

are; not in a random way, but in a systematic way: as the accuracy rises so does the rate of increase! 

This is obviously not a real effect, but an artefact of conventional least squares models. 

He attempts to extend the geometric mean functional relationship beyond two dimensions 

(Taagepera, 2008, p.165 and 174) proposing that the fitted expression will still only require simple 

standard deviations as in the two dimensional case:  

Σ (± xj /si) = constant, but this has turned out not be correct (personal communication from 

Taagepera). 

We do not claim that the method discussed in this paper should replace OLS in all situations. 

However, it is hoped that we have provided a way forward in overcoming the issues raised above by 
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showing how to fit a compact formula to data on multiple variables, when one wishes to treat each 

variable in the same way. Moreover, this symmetric functional relationship is both unique and scale-

invariant. The parameters in the formula can be estimated directly, notably by making use of OLS 

formulae. The key result is that the (partial) rates of change (‘slopes’ in each xi-xj plane) are the 

geometric means of this quantity as estimated by the two OLS regressions using xi and xj as 

dependent variables. 

There are many aspects of the method that need exploring. For example, the associated inference 

theory is yet to be developed, but the bootstrap method can certainly be used as a means of 

obtaining confidence intervals for the coefficients. 

 In concluding their paper Draper and Yang (1997) stated that their work “provides a practical 

solution to a difficult problem”. We hope that we have progressed sufficiently to claim to offer both 

a simple and practical solution to a difficult problem. 
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