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Abstmct 

ABSTRACT 

The simple gas turbine engine Operates on the basic Joule-Brayton cycle and it is 

notorious for its poor thermal efficiency. Several modifications have been made to 

the simple cycle in order to increase its thermal efficiency but, within the thermal and 

mechanical stress constrains, the efficiency still ranges between 28 and 35%. 

However, higher values of energy utilisation efficiency have been claimed in recent 

years by using low grade heat from the engine exhaust either for district heating or for 

raising low pressure steam for chemical processes. Both applications are not very 

attractive in hot countries. 

The concept of using the low grade thermal energy from the gas turbine exhaust to 

raise stearn in order to drive a steam turbine and generate additional electricity, i. e. 
the combined power and power or CPP plant would be more attractive in hot 

countries than the CHP plant. It was hypothesized that the operational parameters, 
hence the performance of the CPP plant, would depend on the allowable gas turbine 

entry temperature. Hence, the exhaust gas temperature could not be decided 

arbitrarily. 

This thesis deals with the performance of the gas turbine engine operating as a part of 

the combined power and power plant. In a CPP plant, the gas turbine does not only 

produce power but also the thermal energy that is required to operate the stearn 
turbine plant at achievable thermal efficiency. 
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Abstmct 

The combined gas turbine-steam turbine cycles are thermodynarnically analysed. A 

parametric study for different configurations of the combined gas-steam cycles has 

been carried out to show the influence of the main parameters on the CPP cycle 

performance. The parametric study was carried out using realistic values in view of 

the known constraints and taking into account any feasible future developments. 

The results of the parametric study show that the maxirnurn CPP cycle efficiency 

would be at a point for which the gas turbine cycle would have neither its maximum 

efficiency nor its maximum specific work output. It has been shown that 

supplementary heating or gas turbine reheating would decrease the CPP cycle 

efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also 

it has been shown that although gas turbine intercooling would enhance the 

performance of the gas turbine cycle, it would have only a slight effect on the CPP 

cycle performance. 

A graphical method for studying operational compatibility, i. e. matching, between gas 

turbine components has been developed for a steady state or equilibrium operation. 

The author would like to submit that the graphical method offers a novel and easy to 

understand approach to the complex problem of component matching. It has been 

shown that matching conditions between the compressor and the turbine could be 

satisfied by superimposing the turbine performance characteristics on the compressor 

performance characteristics providing the axes of both were normalised. This 

technique can serve as a valuable tool to determine the operating range and the engine 

running line. Furthermore, it would decide whether the gas turbine engine was 

operating in a region of adequate compressor and turbine efficiencies. 

A computer program capable of simulating the steady state off-design conditions of 

the gas turbine engine as part of the CPP plant has been developed. The program was 

written in Visual Basic. Also, another program was developed to simulate the steady 

state off-design operation of the steam turbine power plant. A combination of both 

programs was used to simulate the combined power plant. 
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Abstract 

Finally, it could be claimed that the computer simulation of the CPP plant makes 

significant contribution to the design of thermal power plants as it would help in 

investigating the effects of the performance characteristics of the components on the 

perfornmce of complete engines at the design and off-design conditions. This 

investigation of the CPP plat performance can be carried out at the design and 

engineering stages and thus help to reduce the cost of manufacturing and testing the 

expensive prototype engines. 
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NOMENCLATURE 

Symbol Meaning Unit 
CP Specific heat at constant pressure U/ kgK 

CV Specific heat at constant volume kJ / kgK 

y Ratio of specific heats ------ 
1h Mass flow rate kg /s 

- q, Q Heat supplied or rejected kJlkg, kl 

W, W Specific work output, work output kI / kg, U 

P Pressure NIM2 

T Temperature K, O C 

S Entropy kllkg 

r1 - Pressure ratio ------ 
17 Efficiency ------ 
0 Ratio of maximum to minimum temperature ------ 
x 

_Isentropic 
temperature ratio 

h Enthalpy kllkg 
LCV Lower calorific value kllkg 

T Torque N. m 
M Mach number 

function ------ 
F Fuel to air ratio ------ 
d Diameter M 
Subsciipts 

_ 1,2,3 State points in the cycles ------ 
_ 9t Gas turbine 
- st Steam turbine ------ 
s 1sentropic 
00 _ Polytropic 
0 _ Stagnation ------ 

L9 _ Gas ------ 

viii 



Nomenclature 

a Air 
c Compressor 
t Turbine 
cc Combustion chamber 
p Pump 
B Boiler 
con Condenser 
mec Mechanical 

carnot Carnot cycle 
CPP Combined power and power 
H Higher cycle 
L Lower cycle 
max maximum 
min mHurnum 

10 Overall 
Lýuperscript s 
I- I Rate 

ix 



Chapter 1 

CHAPTER 1 

INTRODUCTION 



Chapter I 

1.1 Energy Scenario 

Energy is one of the primary needs of human societies for their survival. It is needed 
for growing food, providing comfort and catering for a host of other application in 

all fields of activity such as agriculture, industry, transportation, etc. The main 
sources of energy are fossil fuels, solar radiation fall out, winds, tidal, and 
geothermal. The conversion, distribution and utilisation of energy are the domain of 
engineering. 

The demand for energy throughout the world is increasing sharply because of 

growing world population, rising living standards and emphasis on developing 

energy intensive industries in almost all newly emerging countries to boost their 

economies in order to combat poverty and hardship. 

Fossil fuels, coal, oil and gas, currently, provide more than 95% of the world's 

energy need. However, the reserves of fossil fuels on planet earth are finite and they 

are depleting rapidly. It should be noted also dW the use of fossil fuels through 

combustion pollutes the environmental with toxic gases and contributes to global 

warming. Hence the continuing use of fossil fuels is undesirable both for energy 

conservation as well as for environmental protection. 

Although sources of renewable energies appear to offer a promising alternative, 

their contribution to the world's total energy demand is still less than 5% and it is 

unlikely to change substantially in the near future. Hence, in order to conserve fossil 

fuels, increasing the efficiency of the current power generation systems is of 

paramount importance. This may be achieved either by modifying the dierrW plant 

configuration or by using advanced thermodynamic cycles for power generation. 
The main aim of the research reported in this thesis was to investigate the potential 
gains that might be made in the overall efficiency of electrical power generation by 

combining gas turbine and steam turbine driven plants. This thesis deals with the gas 
turbine plant and parallel research program covers the steam turbine plant. 
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Chapter I 

1.2 The Gas Turbine Engine 

The gas turbine is a rotodynamic internal combustion engine therefore its working 

cycle comprises four processes, rwnely: compression, beating, expansion and 
discharge. The performance of the engine, i. e. its thermal efficiency and specific 

work output, depends on the two principal operational variables: cycle pressure ratio 

and turbine entry temperature. The effect of these variables on the performance of a 

gas turbine engine can be shown, at least qualitatively, by sketching the cycle on the 

Temperature vs. Entropy (T-S) diagram as shown in Fig. 1.1 (a) and 1.1 (b), 

T03 
.......................................... .............. .. 

T03 
...... .......................... 

43 ....... r .... ........... 
2 

E 
........ ... 

.................... ................ 

Entropy (s) 

Fig. 1.1 (a). The effect of varying turbine entry temperature at constant pressure ratio 

For a fixed pressure ratio PoolPol as the turbine entry temperature To3 is increased the 

expansion work w, increases because of the divergence of the constant pressure lines 

but the compression work w, remains constant. Hence, specific work output, i. e. w" - 
w, increases. Furthermore, because the constant pressure lines curve rise gradually 
to the left with increasing entropy, Q,. increases relatively more than Q,, therefore 
thermal efficiency also increases with increasing temperature. 
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Chapter I 

Since permissible level of thermal stress determined by the construction materials 
limits the maximum value of the turbine entry temperature To3, at a given value of 
T03 the effect of increasing Po2, i. e. cycle pressure ratio P02IPol, on performance can 
be seen qualitatively from Fig. 1.1 (b). The values of both compression work and 

expansion work increase as Po2 is increased but the relative increase in this case is 

not as obvious as in the previous case. Both heat supplied Q, and heat rejected Q,. 

decrease with increasing Po2 at constant To3 but the changes in the ratio Q1Q, also 

are not that obvious. However, it is clear that the amount of recoverable heat that 

may be used for regenerative heating reduces sharply as pressure ratio is increased at 

constant turbine entry temperature. 

Fig. 1.1 (b). The effect of varying pressure ratio at constant turbine entry temperature 

Since the simple gas turbine engine is notorious for its poor thermal efficiency, 

numerous attempts have been made to raise thermal efficiency by modifying the 

principal cycle parameters. These modifications have included: (a) raising the 

turbine entry temperature; (b) designing for higher cycle pressure ratio and (c) 

exhaust heat recovery to heat the compressed air before it enters the combustion 
chamber i. e. re-generative heating. In spite of these changes, the thermal efficiency 
of gas turbine engines still remains between 28 to 38%. 

4 



Chapter I 

Concepts such as Total Energy and Combined Heat & Power, CH? for short, were 
intended to recover low-grade exhaust heat for such purposes as district heating or 

raising low-pressure steam for process industries. The efficiencies as high as 80% for 

total energy or CHIP plants have been claimed but care must be exercised when 

comparing one type of plant with another. 

At this juncture it would be pertinent to define efficiency more precisely. The 

ambiguity may be avoided by defining efficiency as follows: 

Energy utilisation efficiency = 
Work done + Exhaust heat re cov eredfor CHP 
Enery released by the fitel through combustion 

Power generation efficiency = 
Work done 

Enery released by thefiel through combwtion 

These definitions may help to understand thW 80% efficiency of a CH? plant is not 
the power generation efficiency. 

1.3 The Combined Power and Power Plant 

The latest concept for increasing the power generation efficiency as well the total 

power output of thermal plants is the combined power and power or CPP plant. A 
block diagram of the CPP plant is shown in Fig. 1.2 while the Temperature-Entropy 
diagram of the CPP plant is shown in Fig. 1.5. Low-grade heat recovered from the 

exhaust gas of the gas turbine plant is used to raise high-pressure steam. This steam 
is then expanded through a steam turbine to generate additional electricity. 

Preliminary estimate of the potential gains that might be made from the CPP plant, 
using typical values for the thermal efficiencies of the gas turbine and the stearn 
turbine plant, are given in the following. 

Gas turbine thermal efficiency = 30% 
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Chapter 1 

Hence, assuming that the expansion is adiabatic, 70% of the energy released from 

the combustion of fuel may be extracted from the exhaust gas. Assuming that the 

steam turbine produces thermal efficiency of 40%, its efficiency in the CPP plant 

would be: 

Steam tubine efficiency = 40% of 70% = 285% 

The overall power generation efficiency = (30 + 28) = 58 % 

This value is significantly higher than either the efficiency of the gas turbine or the 

efficiency of the steam turbine. This simple calculation provides ample justification 

to study the CPP plant with aim of exploring its ftdl potential for electrical power 

generation. 
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Fig. 1.2 Schematic diagram of a combined gas turbine-stearn turbine power plant 
with a waste heat recovery boiler 

For the sake of comparison, Table 1.1 is given below, which summarises different 

classes of application of gas turbine engines used for power generation, including 
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examples of actual engines used [381. Figures 1.3 and 1.4 present the thermal 

efficiency and utilisation hours, i. e. typical number of hours per year that the plant 

was fired. Some of these applications, e. g. CIHP plant are claimed to have yielded 

very high energy utilisation efficiency, however, it should be noted that data is not 

available to show that their power generation efficiency would exceed the efficiency 
that could accrue from the CPP plant. 

Ident. Planttype Exainples of Exam les of Power per 
No. applications engines engine 

(MW) 
I Small scale turbo -Aerospace -TG50 0.04-0.2 

generator sets applications (APU) -Garrett GTP85 
-Hybrid vehicles 

2 Standby generators, -Office block -Yanmar 0.25-1.5 
simple cycle gas -Hospital -AT36C, 60C 
turbine -Turbomeca 

Astazou 
3 Standby generators, -Office block -Caterpillar 0.25-1.5 

diesel engine -Hospital V12 
-Mirrlees 
Blackstone 

4 Small scale CHIP, gas -Hospital -EGT Tempest 0.5-10 
turbine combined -Small process -NP PGT2 
with steam turbine factory -Allison 501 

5 Large scale CHIP, gas -Electricity and -ABB STAL 10-50 
turbine combined district heating GTIO 
with steam turbine -Large process -GE LM2500 
plant factorv -Coberm 6000 

6 Peak load units, Supply to grid -ABB; GTIO 20-60 
simple cycle gas -RR RB211 
turbine 

7 Mid merit power Supply to grid -GE LM6000 30-60 
station, simple cycle -RR Trent 
gas turbine 

8 Base load power Supply to grid -WEC 501 F 50-450 
station, CPP plant -GE PG9331 

9 Base load power Supply to grid 200-800 
station, coal fired 
steam plant 

10 Base load power Supply to grid 800-2000 
station, nuclear 
powered steam plant 

ABB Asea. Brown Boveri EGT = European Gas Turbines NP = Nuovo pignone 
GE = General Electric WEC = Westinghouse Electric RR = Rolls-Royce 

Table 1.1 Classes of power generation plants 
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Fig. 1.4 Utilisation hours vs. plant power output for classes of power generation 
plants surnmarised in Table 1.1 

8 

Fig. 13 Thermal efficiency vs. plant power output for classes of power generation 
plants summarised in Table 1.1 
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The addition of an afterburner has been used in a number of retrofit cases in which a 

steam turbine already existed. The gas turbine and heat recovery steam generator 

were added to replace the boiler. The gas turbine generated extra electrical capacity 

and also provided hot exhaust gas to raise stearn. 

Not to scale 
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Fig. 1.5 Ternperature-Entropy diagrmn of the CPP plant 

1.4 Aims of Research 

The aims of this study can be stated as follows: 

To carry out a review of up to date published literature; 

To conduct a parametric study in order to explore the influence of 

design parameters of the gas turbine plant on its performance as part of 

the CPP plant; 
iii. To produce a computer model to simulate the gas turbine power plant 

as a part of the CPP Plant; 

iv. To design and construct experimental facility, including 

insb-umentation, in order to validate the parametric study and the 

simulation model by comparing the results with experimental data. 
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CHAPTER 2 

LITERATURE REVIEW 
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Chapter 2 

2.1 Introduction 

Gas turbine engines have been researched extensively during the last fifty years 

mainly because of their use in the aero industry. The aero engines must be 

lightweight, must have better power/weight ratio and must have a high thermal 

efficiency. To achieve these goals the aero engine development focused on raising 

the turbine entry temperature and cycle pressure ratio. High temperature materials 

and blade cooling techniques had to be developed to accept high turbine entry 
[6,81 temperature 

The experience of the aero engine industry was followed by the gas turbine power 

generation industry; consequently the use of high temperature and high cycle 

pressure rafio became a norm in the power generation industry. High turbine entry 

temperature lead to high exhaust temperature hence recovery of low grade thermal 

energy from the exhaust gas became very attractive and other thermodynamic cycles 

such as combined heat and power, i. e. CHIP, and combined Joule-Brayton/Rankine 

cycles started to gain popularity. 

Although combined cycle researches dates back to the early part of the 20th century, 

research and development work on the combined gas turbine and steam turbine 

power generating plants started only in the late 1960s 191 
. 

in this chapter a review of the studies relevant mainly to the gas turbine plants 

operating in the combined power and power cycle, CPP for short, are presented. A 

summary of the main observations from the literature is included in the last section. 

The stearn turbine plant is being studied as a part of another parallel research project. 

2.2 Review of Previous Work 

Reviewing previous work related to the gas turbine power plants as part of the 

combined power and power plant would entail the following areas: 
i. Gas turbine power plant thermodynamics and exergy analysis. 
ii. Optimisation and parametric studies of combined power plants. 

11 



Chapter 2 

iii. Simulation and performance prediction of the gas turbine plant as part 

of the combined power plant. 
iv. Off-design performance and control strategies of the gas turbine plant 

as a part of the combined power plant. 

21.1 Gas Turbine Thermodynatnics and Exergy Analysis 

The goal of thermodynamic optimisation of power plant processes is determination 

of the most favourable combination of the process parameters with regard to 

efficiency and work output. The investigation and optimisation of the processes can 

be performed by an energy or exergy analysis. 

In the energy analysis, energy-flows of various forms and qualities are used to 

determine the characteristic parameters of the process. Energy is a conserved 

quantity. When energy is converted from one form to another, a part of the ability to 

produce work is irreversibly lost, e. g. the energetic efficiency of the process is 

calculated from the ratio of the useful output to the energy input. 

in the exergy analysis, the exergy-flows, occurring in the process are used to 

calculate exergetic efficiencies and exergy losses. Exergy is a measure of the 

capacity of a fluid to perform work if it is reversibly brought into equilibrium with 

the surroundings. This can occur with interaction with the surroundings. Exergy has 

the character of a potential in a given environment. There is no low of conservation 

for exergy. Each irreversible state change represents the destruction of exergy. 

From the thermodynamics point of view, the purpose of analysing any cycle is to 

identify the parameters that might reduce the thermal efficiency of the gas turbine 

engine. 

Coh K h1h f, IU ood, So taJ2-5 en, e0 er yw nn I and others used the thermodynamic laws 

to evaluate the performance of the gas turbine plant and to determine the dominant 

parameters. They concluded that the efficiency of a gas turbine plant was a function 

of many parameters as described below: 

12 
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17,, = f(O, r, Cp I qc ý i7c, 5 qt 5 77mec) (2.1) 

They studied different gas turbine cycle configurations to determine the best 

performance conditions. Their main conclusions are listed in below: 

i. Heat exchange between the turbine exhaust and the compressor outlet, 
i. e. regenerative heating, will increase both the thermal efficiency and 
the specific work output of the gas turbine plant. 

ii. Reheating between the turbine stages will increase specific work 

output but it will be at the expense of some reduction in thermal 

efficiency. 
iii. Pre-cooling and inter-cooling the air will also increase the specific 

work output with some reduction in thermal efficiency. 

Only KehlhofWl studied gas turbine power plant as a part of the combined cycle 

power plant and concluded that raising the gas turbine efficiency would not 

necessarily produce the best overall efficiency of the combined power plant. 

El-Masri" 1-131 used the second law of thern odynamics and exergy analysis to locate 

and quantify the iffeversibilities that cause loss of work output and of thermal 

efficiency of the gas turbine operating as a part of the combined power plant. His 

main conclusions are given below: 

i. Compressor inter-cooling will lead to an increase in specific work 

output, but this will happen with some reduction in thermal efficiency. 

ii. The dominant influence on cycle efficiency as turbine inlet 

temperature is raised will be the trade off between decreased 

combustion exergy losses and increased turbine blade cooling losses. 

EI-Masri studied only the effect of the iffeversibilities in the system components on 

cycle performance. His investigations did not explore whether or not that heat 

generated by the irreversibilities could be used for generating steam as in CPP plant. 
His calculations assumed bleeding off as much as 24% of the compressed air for 

turbine blade cooling. Considering the size of the holes in turbine blades through 

which the cooling air flows, the figure of 24% seems to be unrealistic. 

13 



Chapter 2 

Kail[481 analysed and evaluated different trends in combined cycle gas turbine power 

plant configurations. The various configurations have been compared with the 

simple cycle combined gas turbine/steam turbine power plant. The studied 

configurations were as follows: 

i. A combined reheat gas turbine/simple steam turbine power plant. 
ii. A combined inter-cooled gas turbinelstearn turbine power plant. 

iii. A combined steam-cooled turbine blades gas turbine/steam turbine 

power plant. 
iv. A combined gas turbine/simple steam turbine power plant where the gas 

turbine has a closed-loop combustion chamber cooling system. 

In comparison with the'simple gas turbine, Kail concluded the followings: 

i. Reheat of the gas turbine cannot transform its efficiency and output 

advantages into a lower cost of electrical power. The additional 

investments and higher maintenance costs overwhelm the 

thermodynamic advantages. 
ii. inter-cooling improves the efficiency and power output of the combined 

power plant. 
iii. The concept of steam-cooled turbine blades places very stringent 

requirements on the blade materials, on the quality of the cooling steam 

and on the design of the closed cooling system. 
iv. The gas turbine with a closed combustion chamber cooling system is 

less problematic than the gas turbine with a closed blade cooling 

system. 

v. The simple combined gas turbine/steam turbine power plant achieves 
the lowest costs of electrical power and is therefore the best plant from 

an economic point of view. 

Kail studied only the proposed configurations of the combined power plants. His 

investigations did not explore whether improvements could be implemented to the 

proposed plant configurations. It was not clear how the costs of imposed 

configurations were calculated. 

14 
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2.2.2 Optimisation and Parametric Studies of Combined Power Plants 

Optimisation of the combined power and power cycle involves long and laborious 

calculations. Several methods were employed by various researchers to analyse the 

combined power and power (CPP) cycle. All these methods were based on 

thermodynamic analyses to provide overall performance of the CPP plants. The 

results of those studies were published in a series of papers, which are reviewed in 

the following paragraphs. 

Cerri'141 studied the CPP plant and proposed thermodynamic parameters or indices to 

quantify the plant performance. He varied the maximum gas turbine inlet 

temperature between 800' C and 14000 C, at the same time gas turbine pressure ratio 

was varied between 2 to 24. Afterburning was also taken into consideration. His 

calculations produced both the CPP plant thermal efficiency and the specific work 

output. Cerri summarised his findings in the form of the following conclusions. 

i. The thermal efficiency of the CPP plant is independent of the gas 

turbine pressure ratio but it would be influenced slightly by the stearn 

pressure if it was sufficiently high 

ii. The thermal efficiency of the CPP plant would be positively 

influenced by adding an afterburner only if the turbine inlet 

temperature was significantly low. 

it is worth mentioning that the use of the proposed indices involved more 

assumptions thus complicating the calculations unnecessarily. Moreover, there was 

no verification of the assumptions. 

Ruflil'51 analysed the CPP plant also by using the basic thermodynamic calculations 

for both the gas turbine and the steam turbine cycles. The maximum gas turbine inlet 

temperature was varied between 900 OC to 1350 T, at the same time the gas turbine 

pressure ratio was varied from 8 to 22. Afterburning was also taken into 

consideration. Rufli's calculations produced values of the CPP plant thermal 

efficiency and of the total heat transfer area of the heat recovery steam generator. 

These calculations were simple and straightforward. Rufli presented a simple method 

for selecting the optimum parameters for the steam operating in a combined power 

15 
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and power plant cycle at any given gas turbine operating conditions. However, in 

order to counteract the adverse effect of high temperature, he introduced blade 

cooling air as a percentage of the total mass flow of air as shown in Fig. 2.1. The 

assumed proportions of the cooling air, as can be seen from the figure, were 

overestimated. 

Bhinder and Mango [17] used thermodynamics analysis to study the CPP plant 

performance. Many assumptions were made to simplify the calculations of the cycle 

performance. Only a reheated gas turbine power plant configuration was used as the 
higher temperature plant. They concluded that the combined plant efficiency would 
be significantly higher than either the gas turbine efficiency or the steam turbine 

efficiency. The overaH efficiency value of 60% for the CPP plant was shown to be 

achievable. In addition the thermal load on the environment was reduced to 59% of 
the gas turbine load worldrig alone. The cycle calculations were simple and many of 
the losses were not included in the calculations. It would be difficult to achieve 60% 

thermal efficiency if all the losses were included in the calculations. 

20 - 
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Fig. 2.1 Assumed overall cooling air requirement vs. the turbine inlet temperature"51 

Horloockl"fs-103 carried out an extensive study of combined power plants. The early 
history of combined plants was described. The recent developments and future 

16 
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prospects for the combined gas turbine/steam turbine plant were described. He 

identified two lines for combined power plants developments: the first line used the 

aircraft engines and its technology in the combined power plants, the second line 

involved thinking about the combined plant as an integrated design from the 

beginning. He adopted a graphical method of predicting the performance of the gas 

turbine cycle, developed by Hawthorne and Davis"81 where their results shown in 

Fig. 2.2, to determine the optimum pressure ratio of the gas turbine that would give 

maximum overall efficiency of the combined power and power plant. Horloock's 

main conclusions can be summarised as follows: 

i. In a combined power & power cycle the optimum pressure ratio for 

the gas turbine would be less than its pressure ratio for maximum 

efficiency in the conventional cycle but greater than the pressure ratio 
for the maximum specific work output of that cycle. 

ii. Introduction of reheat for the gas turbine cycle would increase the 

pressure ratio required for maximum efficiency of CPP plant. 
iii. Steam injection in the main stream of the gas turbine would increase 

both the gas turbine and the combined plant efficiencies. 
iv. Stearn cooling of high temperature gas turbine would decrease heat 

losses in the combined plant and therefore increase the combined plant 

efficiency. 

v. The combined power and power efficiency decreases as the stearn 

cycle efficiency is increased by the addition of feed heating. 

The graphical method adopted by Horloock to optimise the combined power and 

power plant had its own limitations mainly because of the assumptions used in the 

steam power plant calculations, e. g. the assumption for the steam turbine work did 

not adequately cover single, dual and triple pressure steam raising, the assumed 

empirical constant value for the heat supplied would not be accepted for different 

steam cycle configurations. 
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Bannister ad 19-201 considered the techniques required to achieve energy conversion 

efficiencies greater than 60%. Their recommendations were improvements in 

operating process parameters for both gas turbine power plant and steam power 

plant. They listed the following four recommendations for possible CPP cycle 

improvements: 
i. Raising the gas turbine inlet temperature to 14270 C. 

ii. Introducing advanced cooling techniques in the gas turbine. 

iii. Utilisation of both cycles heat losses through greater integration 

between the two plants. 

iv. Improving component efficiencies. 

It should be noted that component or process efficiencies have already reached their 

maximum values that could be achieved economically. Further increases would yield 

poor returns on investment and would not be acceptable to manufacturers who are 

working in a highly competitive energy market. Greater integration between the 

steam turbine and the gas turbine plants proposed by the authors involved using low 

pressure steam for reducing heat losses. They have not considered that in order to use 

this steam its pressure must be increased to the level of the gas stream pressure. The 
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work needed for this pressurisation would negate any gain that might be made by 

heat recovery. 

Sarabchi etaP91 examined the effect of key operating variables like compressor 

pressure ratio, turbine inlet temperature and heat recovery boiler pressure on the 

performance parameters of a simple combined cycle and comparison was made to a 

simple gas turbine cycle. Both thermal efficiency and specific net work output were 

examined as compressor pressure ratio and recovery boiler pressure were varied for 

each turbine inlet temperature. They concluded the followings: 
i. For any given gas turbine inlet temperature, combined cycle maximum 

efficiency occurred at pressure ratios which were considerably less than 

those suitable for corresponding simple gas turbine maximum 

efficiency. 
ii. The combined cycle optimum pressure ratio is almost equal to the 

simple gas turbine optimum pressure ratio for maximum work output. 
iii. The values of optimum pressure ratio and heat recovery boiler pressure 

for a combined cycle increased by increasing the gas turbine inlet 

temperature. 

The cycle calculations were simple and many of the losses were not included in the 

calculations. Furthermore, the authors have not presented any experimental 

verification for the conclusions. 

Bonzani ad"I described a method for technical and economical optimisation of a 
450 MW combined cycle power plant, consisting of two gas turbine V94.2 type 

associated with dual pressure heat recovery stemn generator and one steam turbine. 
The optimisation process was based on the comparison between the investment cost 

of several alternatives and the economic evaluation of the associated performance. 
improvements in gas turbine cycle efficiency have been achieved by raising the 

turbine inlet temperature to 1400 k as well as increasing the compressor pressure 

ratio to 15. 

Bonzani etal concluded that there is no single optinW solution because customer 

needs and/or environmenW requirements can give different results. They also 
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concluded that economically the heat recovery steam generator is the most important 

component in the optimisation process. 

The optimisation process did not consider the off-design conditions were the gas 
turbine performance would be highly affected. Although, they concluded that the 
heat recovery steam generator is the most important component in the optimisation 

process, the gas exhaust pressure drop was assumed a constant value. This pressure 
drop would affect the gas turbine performance. 

213 Modelling and Simulation of the Gas Turbine as Part of the CPP Plant 

Dhar eta t221 described the development of a simulation program used to predict the 

performance of a CPP plant from given performance characteristics of its main 

components. The simulation technique was applied to a typical combined cycle 

power plant. The strategy of system simulation was obtained by linking the 

information flow diagrams of various components. Although Dhar etal claimed 

excellent results by comparing the computer program results with a typical CPP 

plant, they did not introduce the performance characteristics of the main components 

needed for components modelling and simulation. It is clear from the study that the 

turbine performance characteristics presented as a single line was an approximation 

which reduced the accuracy of performance calculations. 

Bhinder and Ismail[241 described a procedure used to develop a computer program to 

simulate aircraft gas turbine engines. In this procedure both the analytical equations 
and the detailed performance characteristics of individual components were used to 

model the steady-state operation of the complete engine. Although they didn't 

compare the results obtained by calculations with test data, the trends of the results 
appeared to be acceptable. 

Bhinder etaPl described a procedure used to develop a computer program to 

simulate industrial gas turbine engines to aid in the design and application of fuel 

controllers. The program structure was explained and modelling of a simple two 

shaft industrial engine was given as an example. The program developed to simulate 
the gas turbine engines from the point of view of the fuel control system for the 
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steady state conditions. The work presented would not be helpftd in simulating or 

predicting the performance of the gas turbine engine. 

Roy-Aikins [261 analysed a computer program designed to simulate both the design 

point and off-design steady state performance. The program uses a computer- 

matching thermodynamic procedure to simulate any arbitrary Brayton, Rankine or 

combined cycle plants. Detailed performance characteristics of individual 

components should be used as input data for the computer program. Roy-Aikins 

presented a sample of calculations for a combined power plant without showing the 

performance characteristics of the individual components. 

perZ[271 described a computer program used to simulate any thermodynamic power 

cycle. 'Me modelling procedure involved algebraic equations to mathematically 

present the power cycles processes. The paper was an attempt to develop a generic 

program for modelling all thermal power cycles and did not appear to be relevant to 

the present study. Nevertheless, the methodology of approach was worthy of 

consideratiom 

EI_MaSri[281 described a programming code used to analyse the gas turbine systems. 

The program code performs exergy-balance analysis to break down and trace system 

inefficiencies to their source components and source processes within the 

components and the system optimisation trade-offs. Although, the results obtained 

by calculations have not been compared with test data, but the methodology of 

approach was different and worthy of consideration. 

Najjar etat 39,45461 described a procedure for modelling and simulation of gas turbine 

engines processes. The simulation program was used to predict the following: 

i. The relative effect of ambient conditions on the engine performance. 
ii. The part-load engine performance under different operating conditions. 
iii. The content of engine exhaust, e. g. the engine production of NO, 

A comparison of performance parameters for different gas turbine engines has been 

carried out to demonstrate the error percentages in predicting performance 

parameters by using the simulation program. Najjar etal claimed that the developed 
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computer programme was capable of accurately predicting the gas turbine engine 

performance at off-design and different operating conditions. His main conclusions 

can be summarised as follows: 

i. Of the ambient conditions, the ambient temperature is the single most 

influencing factor in engine performance. 
ii. The effect of relative humidity is insignificant on engine performance. 
iii. Part load operation lower than 75% causes significant reductions in the 

thermal efficiency of the engine. 
iv. Air extraction with any industrial process negatively affects engine 

performance. 

This way of comparison had some major effors mainly because the engines log 

sheets and manufacturing catalogues had been used as the results of the experimental 

work. Furthermore, the computational model for the gas turbine engine has been 

presented without showing the performance characteristics of the individual 

components. 

Erbes etaPol presented a gas turbine simulation code, named GATE (GAs Turbine 

Evaluation). The GATE has been developed to evaluate the design and off-design 

performance of existing and advanced gas-turbine based systems for power plant 

applications. GATE can model a variety of gas turbine configurations and cooling 

technologies, and users can also interactively design and analyse an associated steam 

bottoming cycle. Although, Sample cases demonstrating the simulation code and its 

capabilities have been presented, the results obtained have not been compared with 

test data. The authors admitted that GATE simulation program was not capable of 

analysing the steam cycle off-design conditions; hence the code is not a good tool for 

investigating the combined power plants. 

21A OfF-Design Performance and Control Strategies of the Gas Turbine as 
Part of CPP Plant 

The off-design performance of the combined power and power (CPP) plants has 

attracted more attention in recent studies due to the increased applications of these 

plants in power generation industry. The main concern remains that CPP plant, like 
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all gas turbine power plants, has a rapid and large reduction in its thermal efficiency 

at the part-load conditions. 

Dechamps etaPl described a method that can be used to evaluate the part-load 

performance of the CPP plants. This study agreed with the previous studies [30-311 on 

the importance of controlling the CPP plant using the variable inlet guide vanes 

(VIGV) before starting to reduce the fuel flow. It suggested that afterburning has a 

good efficiency advantage at part-load conditions despite its efficiency disadvantage 

at the design-point condition. However, the part-load effect on the gas turbine plant 

performance was not included in this study where it has a significant effect on the 

total off-design performance of the combined plant. 

KehlhofeP studied the response of the heat recovery steam generator (HRSG) and 

steam turbine plant to the load changes in the CPP plant. He suggested that the steam 

turbine power plant would be economically optin-ýised if it was kept without 

controlling. The exhausted gas temperature and mass flow are the only control 

variables for the steam power plant. The CPP plant control system would depend 

largely on the fuel flow control system of the gas turbine power plant. 

C 
jyarmth y [301 analysed a CPP plant consisting of a simple single pressure steam 

turbine plant (with preheating) and a simple gas turbine plant. The results indicated 

the merits of controlling the compressor mass flow by means of inlet guide vanes 
(IGV) adjustment. On the steam turbine side Gyarmthy agreed with Kehlhofer that 

no controls other than the regular steam turbine plant control would control the 

optimum efficiency. 

Frutschil"I analysed and compared different possible control techniques for the gas 

turbine plant operating in the CPP plant environment. The standard method was to 

control the fuel flow of the gas turbine plant for controlling the gas turbine inlet 

temperature, which would control the gas turbine exhaust temperature. Alternative 

methods involve recirculation of compressor air, intake throttling, inlet guide vanes 

control and compressor intake air control by heating the inlet air. Frutschi concluded 

that compressor throttling was not to be recommended and that inlet guide vanes 
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control, possibly coupled with inlet air preheating, was a useful control method for 

CPP plants. 

Since compressor work is directly proportional to the inlet air temperature, 

preheating the air would increase compression work, hence reduce the efficiency of 
the gas turbine engine. This is foregone conclusion and any study to prove this 

would merely be a waste of time. Similarly throttling the compressor intake would 
increase axial thrust on the bearings and inevitably there would be a risk of 

compressor impeller damage. This too is a foregone conclusion and no experimental 

or theoretical work can be justified to prove this point. 

Facchini[471 described a computer code to simulate the off-design operation of gas 

turbine power plants. This code is based on the simplified dimensionless model of 
different components (compressor, combustion chamber and turbine) and it allows 

simulation and comparison of several control system. The effects due to cooling in 

the first stages of the turbine are also taken into account in the model. Different 

control techniques have been applied during off-design simulation. These control 

systems included in the following: 

i. Flow throttling at the compressor inlet. 

ii. Variable flow guiding at the compressor inlet. 

iii. Bleeding of the compressoirs mass flow along the compression line. 

iv. Mass flow compressor outlet recirculation at the inlet. 

v. Variation of the fuel mass flow rate in the combustion chamber. 
Facchini studied the influence of the various control systems on the thermal power of 

exhaust gases and therefore on the combined power and power plants. 

Facchini concluded that variation of the fuel mass flow and the compressor inlet 

guide vanes are the most convenient control systems for gas turbine engines while 
the other systems will negatively affect the engine performance. These conclusions 
are forgone conclusions and no experimental or theoretical work can be justified to 

prove these points. Regarding the combined power and power plant, he admitted that 

more detailed simulation of global off-design performance should be made before a 
control system can be suggested. 
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2.3 Summary and Main Observations 

> The thermodynamic analysis can be an important tool for thermal design of 

the CPP plant but supplementary practical. data would always be needed to 

enhance its value. 

); ý The thermodynamic analysis of the gas turbine power plant revealed that 

increasing both the pressure ratio and the turbine inlet temperature would 
increase the thermal efficiency if there were not significant losses due to 
turbine cooling. In the CPP plant configuration, increasing the thermal 

efficiency of the gas turbine plant will not necessarily mean an increase in 

the CPP plant thennal efficiency. 

> The different combined cycle parametric studies, reviewed in the literature, 

gave different conclusions about the optimum conditions for the gas turbine 

cycle as part of the combined power and power cycle. Therefore, the choice 

of optimum parameters for the gas turbine plant operating in the CPP plant 

enviromnent appears to be a matter of personal preference. 

> The range of gas turbine power plant design parameters, particularly cycle 

pressure ratio, depends whether the plant is to be designed for maximum 
thermal efficiency or maximum specific work output. Therefore, the choice 

of optimum parameters between the maximum efficiency and the maximum 

specific work depends on the application. For the gas turbine engine 

operating in the CPP plant environment the range of design parameters 

reduces sharply. 

> Modelling the gas turbine plant requires the use of the performance 

characteristics of individual components, understanding the mechanical 

connections, and gas dynamics linkages within the plant as well as the 

thermodynamic analysis. 
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> The CPP plant, like all gas turbine power plants, has a rapid and large 

decrease in its thermal efficiency at the part-load conditions. Controlling of 

the CPP plant should be able to minimise the efficiency reduction, thus 

optimise the CPP plant performance. 
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CHAPTER 3 

PARAMETRIC STUDY AND OPTIMISATION 
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3.1 Introduction 

The gas turbine plant represents a complex system consisting of a number of 

rotational and stationary parts, each part is characterised by its own behaviour. The 

overall performance of the gas turbine plant depends on the performance of its 

individual components and component matching. A parametric study of the gas 

turbine cycle is an important tool for showing the influence of the principal design 

parameters on its performance. 

In a combined power and power (CPP) plant, the gas turbine power plant produces 

electricity as well as exhaust heat that can be used to produce high pressure steam to 

operate a steam turbine plant and thus generate more electricity. 'Iberefore, the design 

of a CPP plant will involve greater complexity especially because of the coupling 

between the two different types of power producing systems. Obviously the 

parametric study of the combined plant will be the first step in deciding the design 

criteria of both plants by understanding the influence of the min parameters on the 

CPP plant. 

In the present chapter the thermodynamics of a parametric analysis of the gas turbine 

cycle performance and the CPP cycle performance are presented. A set of sample 

calculations is given in appendix A. 

3.2 Theoretical Consideration of the CPP Cycle 

This section deals with the theoretical aspects of power and power combined cycles. 
It starts with introducing some fundamental aspects of the Camot cycle and 

subsequently presents some thermodynank aspects of the gas turbine cycle, steam 
turbine cycle and combined power and power cycle. The aim of studying the 
thermodynamics of power plants is to determine the maximum achievable efficiency, 
i. e. Carnot efficiency, and the maximum work obtained from those plants by using the 

same amount of fuel. 
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The thermal efficiency of any insulated power cycle j7,, can be calculated theoretically 

as follows 

17th (3.1) 

where W,., = the net work produced and Q, is the heat supplied to the plant. 

3.2.1 Carnot Power Plant Performance 

The efficiency of a thermal power plant operating on an ideal cycle i. e. Carnot cycle 

efficiency i7c.,,. t, represented on a temperature entropy (T-S) diagram as shown in 

Fig. 3.1 is the highest achievable efficiency of any thermal power cycle. It can be 

calculated as follows 

l7carmt -- -- 
Q, Q,, (3.2) 

Q Q, Q., 

II. Mot - 
T.. As-T. As 

(3.3) 
T. & 

T -T Icarnot _. . 6,, (3.4) 
T. 

Icaýt =1- nm (3.5) 

where Q, = the heat supplied at constant temperature 

the heat rejected at constant temperature T,. i.. 
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It is quite clear from Eqn. 3.2 that increasing T. or reducing T.. leads to higher 

efficiency, hence the Camot cycle efficiency can also be expressed as a function of the 

temperatures T. and T. 

ll.. t ý-- (T., i,, Tmx) (3.6) 

Real power producing cycles do not achieve Camot cycle efficiency for the following 

reasons: 
i. The actual heat supply rwy not take place at the temperature T.. 

ii. The actual heat rejection nay not take place at the temperature T. i,,. 
iii. 71be compression and expansion processes are not reversible. 

4QS 

W--ne cycfc wolk 

As 

4Qr 

Fig. 3.1 Temperature-Entropy diagrmn for Camot cycle power plant 

3.2.2 Gas Turbine Power Plant 

A simple gas turbine plant was depicted schematically in Fig. 3.2. This operates on 
the Joule/Brayton cycle and represented on the temperature entropy diagrarn as 

shown in Fig. 3.3. The gas turbine cycle thermal efficiency rl, can be expressed as 
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------- Isentropic 

T 
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01 

Fig. 3.3 Teniperature-Entropy diagram of the gas turbine cycle 

Net power output (3.7) 
Heat supplied 

719f 
Turbine power - Compressor power (3.8) 

Heat sup plied 

qgt = 

rhgCpg(To3 -To4)- 
*aCpa (To2 

-Tol) (3.9) 
lhgCpg(To3 -To2) 
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where A= the mass flow rate 

C, = the specific heat at constant pressure 

the stagnation temperature. 

To simplify the study of this cycle the following assumptions are made: 

i. The working fluid has the same composition throughout the cycle and 

is a perfect gas with constant specific heats. 

ii. The mass flow of the working fluid is constant throughout the cycle. 

hence 

llgt - 

(T. 
3 - 

To4 )- (To2 
- Tol 

(To3 
- 

To2) 

[( To4 TO 

)7gt 
To3 Tol 
TO 

o2 
-(T T., TO, 

(3.10) 

(3.11) 

but 
7. (Y- Wy 

T. 
4 

T. 
3 ý 

po4, 
ý 

p 

el 
11 'ý 

or 
Lo4 

=1_ 17t 1_p TO 
ýP04. 

ý 

T. 
2 

= 
(Pýýj 

Tol PC 
or 

To2 
= l+ 

1 
(r- ýy7 

-1 
T., 17ý 

where q., = the conq)ressor polytropic efficiency 

q., = the turbine polytropic efficiency 

rl = the isentropic efficiency 
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P =stagnation pressure and 

y= the ratio of specific heats 

hence 

0-1-qt 1- 1)1-11 
q9, =I- 

l(o - 1) - X, 17,1 

(3.12) 

where 
To3 

x 
(Y- ýyy 

and (5p,. 
') 

! YY 

For the condition of no pressure losses in the turbine's inlet, the exhaust duct and in 

the combustion chamber, the compression ratios of the compressor r, and the turbine 

r, are equal and can be expressed as r 

p2 pa3 

=r, = ýo' 
P., P. 

4 

The thermal efficiency of the gas turbine can be calculated as follows 

l7g, 
q, tg - q, - 

(x 
- 

(3.13) 

In the same way the specific woTk output of the gas tuTbine cycle can be calculated as 
follows 

CT 
("l7'0 - X)(X - 1) 

gt p 01 
17"X 

(3.14) 
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It is clear from Eqn. 3.13 and Eqn. 3.14 that the gas turbine efficiency and specific 

work output are functions of many parameters 

il�, = f(0, r, C� j, 9, il� 

w, t = f(O, r, Cp, Y7,17,17t, 17. ) 

where 17,, = the combustion chamber efficiency 

17,,., = the mechanical efficiency 

Hence the efficiency of the gas turbine can be increased by 

i. Increasing the temperature ratio 0. 

ii. Increasing the pressure ratio r. 

(3.15) 

(3.16) 

iii. Changing the cycle working fluid with a fluid of higher specific heat 

cp. 
iv. Increasing the components' efficiencies q, q, and 

Other mdifications to the cycle, for the purpose of increasing its efficiency, include 

reheating the working fluid in between the turbine stages and regenerative heating of 

the compressed gases prior to the entry to the combustion chamber using the turbine 

exhaust gases. 

3.2.3 Steam Turbine Power Plant 

The schematic diagram of a simple steam power plant operating on Rankine cycle is 

depicted in Fig. 3.4, and its corresponding cycle on the temperature entropy diagram 

is presented in Fig. 3.5. The thermal efficiency of the steam plant can be expressed as 

Netpower output 
17' - Heat supplied 

(3.17) 
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17si - 
Turbine power-Pump power 

Heat supplied 

r7st _ 
(h2 -h3)- 

(A-h4) 

(3.18) (h2 -'; ) 

where h represents the enthalpy at various stages of the stearn power plant cycle 

in real steam power plant, loss occurs in every component of the plant, therefore the 

process is irreversible. The thermal efficiency of the steam power plant can be 

expressed as 

q, tt 
(h2-h3s)- 

I 
(k., - 

h4) 

17st 
17P (3.19) (h2- h4) 

where q, = feed pump efficiency 

=steam turbine efficiency 

A LE; dmust gases 

SteamTuibine 
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Air 

Bofier 

4 
40 

Condenser 3 ]F 
ýjr-a 

Fuel 
Pump 

Fig. 3.4 Schematic diagram of a simple steam power plant 
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Fig. 3.5 Temperature-Entropy diagram of the simple steam turbine cycle 

From Eqn. 3.19 it can be seen that the stemn power plant efficiency is a function of 

steam turbine efficiency, pump efficiency, boiler pressure, condenser pressure and 

steam superheat temperature 

f('7stt 
. rlp . 

PB 
ý 
peon 

ý 
T2st) (3.20) 

introducing some modifications to the simple steam turbine cycle, such as reheating, 

regeneration or using an economiser, would increase the steam power plant thermal 

efficiency. 

3.2.4 Gas Turbine and Steam Turbine Plants in Series 

It has been shown that modifications and improvements to the gas turbine and steam 

turbine power plants individually would increase their efficiency. However, the cost of 

such modifications may be high because they invariably necessitate installation of new 

components. The alternative is to use the heat rejected by the gas turbine, hereafter 

named as the higher cycle, may be used to raise high pressure steani which is 

expanded in the steam turbine, hereafter known as the lower cycle. 

The combined power plants reduce the mean temperature at which the heat is rejected 
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to the atmosphere. This recovery of heat that would otherwise be wasted increases 

the overall thermal efficiency of the combined plant and decrease T.. in Eqn. 3.5 at 

which heat is rejected to the environment, thus reducing the thermal load on the 

environment and the consequential green house effect. 

The gas turbine-steam turbine combined power plant is the subject of this research- A 

block diagram of the simple combined power and power plant (CPP) is shown in Fig. 

3.6. The higher plant H receives an amount of heat Q, to produce work WH and 

rejects the exhaust heat QHL . The lower plant L absorbs some of the heat rejected 
from the upper plant and produces work WL. The thermal efficiency of the combined 

plant rlcpp can be calculated as follows 

)7cpp - 
WH +WL 

QA 

but 

(3.21) 
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TH -= qH QA WL = rILQHL and QHL =QA(1-17H) 
I 

hence 

WL ý QAqL (1 
- 17H) (3.22) 

Substituting the above expressions in Eqn. 3.21 wifl give 

77cpp - 
17H QA + QA 17L 17H (3.23) 

QA 

and finafly, 

17cpp ? 7H +W- ? 7H ? 7L (3.24) 

Considering a more realistic two combined plants in series where heat Qum lost to the 

environment through radiation and other effects before entering the lower plant. 
Further heat Qb may be added between the plants as shown in the block diagram in 

Fig. 3.7. The efficiency of such a plant can be defined as 

)7cpp - 
WH + WL 

QA + Qab 

but 

17H - 
WN 

and qL -"ý' 
WL 

QA QL 

and 

QL ý'- Qab + QHR - QUN ý QA (1 
- 17H )+ Qab - QLW 

(3.25) 

(3.26) 
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Substituting the above expressions in Eqn. 3.21 wiff give 

17H + 
WL 

17r-pp 
QA_ 

I+ 
Q. b 
QA 

but 

WL -= 17L QL = qL (Qab + QHR - QUA) 

hence 

(3.27) 

qH+qL 
QL+'-? 

IH-QUIV 

77cpp 
QA 

Qab 
QA 

(3.28) 
1+ 

QA 
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If Qum =o and Qb =0 then i7cpp will be the same as Eqn. 3.24 obtained previouOy. 

qCPP --ý 17H +qL -17H 17L 

From Eqn. 3.28 and with a constant higher cycle efficiency q, of 0.3, the values of 

the combined efficiency ijpp were calculated for a range of values of the lower cycle 

efficiency i7L at different values of supplementary heat ratios 
Qab 

. The results have 
QA 

been plotted in Fig. 3.8. 

Without supplementary heating, i. e. 
22t 

= 0, and by varying the higher cycle 
Q, 

efficiencies i7H , Eqn. 3.28 was used also to calculate the lower cycle efficiency rl, at 

two constant combined cycle efficiencies qpp of 0.5 and 0.6. The calculated results 

versus the higher cycle efficiency have been plotted in Fig. 3,9 at two constant values, 

0% and 10%, of percentage heat loss Qu" 
QA 

Figures 3.8 and Fig. 3.9 show that: 

i. Supplementary heating would decrease the overall combined cycle 

efficiency except when the supplementary heating results in a 

significant increase in the lower cycle efficiency. 

ii. To reach specified combined cycle efficiency, correct combination of 

the two cycle's efficiencies is necessary. 

iii. The heat lost between the two plants Q,, increases the importance of 

higher cycle efficiency in the combined plant. 
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A simple combined gas/steam power plant has been discussed previously, but there 

can be many different configurations such as reheat gas turbine cycle with dual 

pressure steam cycle, inter-cooled gas turbine cycle with single or dual pressure steam 
turbine cycle etc. In the current parametric study different configurations for the 

combined cycle were investigated. The combined simple gas turbine cycle with single 

pressure steam cycle was thermodynamically analysed. The same analysis procedure 

may be applied to any of the following configurations: 
i. Simple gas turbine cycle combined with simple steam cycle. 
ii. Simple gas turbine cycle combined with dual pressure steam cycle. 
iii. Reheat gas turbine cycle combined with simple steam cycle. 
iv. Reheat gas turbine cycle combined with dual pressure steam cycle. 

v. Gas turbine Inter-cooling cycle combined with simple steam cycle. 

vi. Gas turbine Inter-cooling cycle combined with dual pressure steam cycle. 

A schematic diagram of the combined plant consisting of a simple gas turbine and a 
single pressure steam turbine is shown in Fig. 3.10. The Temperature-Entropy 

diagram of the combined cycle is shown in Fig. 3.11. 
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Fig. 3.10 Schematic diagram of a CPP plant with a waste heat recovery boder 
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Fig. 3.11 Temperature-Entropy diagram of a combined gas-steam power cycle 

3.2.5 Thermodynamic Analysis of the Gas Turbine Cycle 

It has been shown previously that the gas turbine engine performance is a ftinction of 

many parameters. The thermodynamic analysis of the engine may be simplified by 

making the following assumptions: 
i. The air used by the gas turbine as well as the products of the 

combustion behave like perfect gas. 
ii. The specific heat capacities are fimction of average temperature 

through each process. 
iii. The loss of stagnation pressure in the compressor inlet is a 

constant percentage of the compressor inlet pressure. 
iv. The loss of stagnation pressure in the combustion chainber is a 

constant percentage of the combustion chamber inlet pressure. 

Within the framework of these assumptions, the engine performarice may be 

calculated by means of a step-by-step analysis for each component in the engine. The 

procedure for calculating the values of specific heats is given in the next section. 
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3.2.5.1 Specific Heats of Air and Combustion Gases 

The specific heats of air and combustion gases at various stages throughout the 

engine are calculated by considering variations of temperature but without 

dissociation. 

The specific heat during the combustion process at constant pressure is considered to 

be a ftmction of the temperature and the fuel/air ratio: 

Cp = f(T, F) (3.29) 

Also gas constant (R) is a ftmction of the fuel/air ratio: 

R= f(F) (3.30) 

However, the variations of R with fueVair ratio are negligible (5] ; therefore Pj, may be 

used in the calculations without the risk of serious error. 

The specific heat at constant volume is given by: 

Cv =Cp -R (3.31) 

The ratio of specific heats is given by: 

y= 
CP 

(3.32) 
cv 

Tables containing the values of the specific heats against temperature variation have 

been published in many references such as Chappel and Cockshutt I"). In the present 

work, to compute the values of specific heats at constant pressure and various 
temperatures for air and combustion gases, data from the tables were fitted with 

polynomial curves to obtain Equations 3.33 to 3.37. These equations provide the 
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details of the polynomials. Here T,, and Tg refer to the average temperatures during 

the compression and expansion processes in the compressor and turbine respectivOy. 

For air at low temperature range of 200 to 800 K 

2 Cp. =1.0189x10' -0.13784T. +I. 9843x10-4T 

10-10T4 4.2399 x1 0-'T. ' - 3.7632 xa 

(3.33) 

For air at high temperature range of 800 to 2200 K 

102 IOAT2 Cp. = 7.9865 x+0.5339T. - 2.2882 xa 

3.7421 x 10-8 T,, 3 (3.34) 

For specific heats of products of combustion 

Cpg = Cp,, + (F /(I + F))BT (3.35) 

where BTat low temperature range of 200 to 800 K 

102 10-3 T2 BT = -3.59494 x+4.5164Tg + 2.8116 xg-2.1709 x 10-'T. ' 

T4 2.8689 x 10-8 
g-1.2263 x 10-" Tg' (3.36) 

and BT at high temperature range of 800 to 2200 K 

g 
Br = 1.0888 x 103 

- 0.1416Tg + 1.916 x 10-3 Tg 2 
-1.2401 x 10-6T 3 

XIO-14T 
5 3.0669 x 10-10 Tg 4-2.6117 

g (3.37) 
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3.2.5.2 Air Intake 

The pressure loss in the compressor intake ýj,,,,. is assumed to be a percentage value 

of the atmospheric pressure therefore at the compressor inlet it can be expressed as: 

PW = 
(1 

- 
ýilak, A. 

(3.38) 

3.2.6.3 Air Compression 

The compression power W, is given be the fbHowing equation: 

To2 
Wc = 142aCPa 

(To2 
-Tol lkCPaTol 

( 
_1) 

This equation can be written as: 

Y. -Y 7, 

lh. CP. 7ý1 
(Po2 

7. 
- (3.39) 

17, Po, 

The compressor specific work output equals to: 

cp. 
T., Po2 

17, 

( 

pm 
(3.40) 

The final stagnation temperature in the compression process T., equals to: 

To2 ýT+ 
L"' po2)1" 

ol 17, 

( 

pol 
(3.41) 

As the air temperature rises through the compressor, its specific heat values would 
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change. Assuming constant specific heat for the whole range of pressure ratio could 

lead to significant errors in computing the compressor delivery temperature, 

compression work and isentropic efficiency of the compression process. For this 

reason in the current study variable specific heat and gama values were used. These 

values were computed, as has been described earlier, on the basis of the mean 

temperature across the compressor. 

Similarly the final stagnation temperature T, at the end of the compression process 

cannot be computed directly from Eqn. 3.41. This is because the air specific heat ratio 

,. 
is a fimetion of the mean stagnation temperature across the compression process. V 

Therefore, in order to compute T. 2 an iterative method was used. This method, 

named as AULPROP, has been developed in the form of a computer subroutine for 

the purpose of this research The flowchart of AIRPROP is shown in Fig. 3.12. 

3.2.5.4 Combustion 

Using the principles of mass and heat balance for the combustion process as shown in 

Fig. 3.13 and assuming cornplete combustion; Eqn. 3.42 was developed as follows: 

_ f)+thfAhf 
thgCPS 

(TO 
-To re 

? h. CPa 
(To2 

-To re Pf 

( 

of - T. (3.42) 
- ! f)+Mfc T 

where A. is net air rmss flow delivered by the compressor without compressor 

bleed. 

It is usual to assume that the fuel temperature T 
,, f 

is equal to the reference 

temperature T. 
,, f. 

Hence the result of the last term in Eqn. 3.42 approaches zero. 
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Subroutine 
ATRIPROP 

READ(p 
017AP. 2117, ) 

OIJ q1) 
I 

Starting value 
Cp, 1005 

Calculate (C,,,, y. ) using Eqn. 3.31 and Eqn. 3.32 

, 
1, 

Calculate (To2) using Eqn. 3.41 

To2 (To2new+ T,, )12 

T.,,. 
ge = (To2+ Tod12 

No Yes 
14 T,,, 

e,,, ge >800 

IF 

Calculate Cp,, using Calculate Cp,, using 
Eqn. 3.33 Eqn. 3.34 

Calculate (To2.,. ) using Eqn. 3.41 

.. =:::::: 
ýAbso1ute(T,, 

2, Toýd<0.01 
No 

Yes 

_T. 
2XPaý 

I 

RETURN 

C : 
DD 

Fig. 3.12 The flowchart for computing (T,, 2 ý 
CPa 

ý 
CVa 

i 7a ) 
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lh. 
ir 

? hfuel 

----------------- 

Cottrol Vbhum 

To2 Combustion To3 iffs gas - fflair -"" rrtfuel 

Fig. 3.13 Combustion chamber control volume 

The efficiency of the combustion pTocess may be expTessed as 

rICC = 
Actual heat released to the gas 

- (3.43) 
Theoretical heat available in the fiel 

Using Eqn. 3.42 and Eqn. 3.43, the fuel/air ratio F in the combustion chamber can 

be calculated from Eqn. 3.44. 

1�(Lcv) 
CPS (T. 

3 _T. 2) 

(3.44) 

The pressure loss in the combustion chamber ý,, is a constant percentage value of the 

compressor defivery pressure Pa, therefore: 

0 PO = 
(1 

- ýcc ý 
o2 (3.45) 

Due to a considerable rise of the gas temperature through the combustion chamber, 

an assumption of constant specific heat ratio for the whole range of combustion 

temperatures could lead to appreciable errors in computing the combustion chamber 
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pressure and temperature. For this reason an average specific heat ratio computed by 

using an average combustion chamber temperature was used in the current work. 

For the same reason the fuel/air ratio F cannot be computed directly by using Eqn. 

3.44 because the specific heat at constant pressure C P9 of the combustion gases is a 

function of the mean stagnation temperature across the combustion chamber. An 

iterative method was used to compute fuel/air ratio F. The method was developed 

for the purpose of this study in the form of a computer subroutine named FARATIO. 

The flowchart of the subroutine FARATIO is shown in Fig. 3.14. 

3.2.5.5 Gas Expansion 

The turbine power output W, can be calculated from Eqn. 3.46 given below: 

W, = 
(I + F)*,, Cpg (To3 

-To4) = (I + Fýh. Cpg T,, 
3 

(1 

-TO4 To 
3 

4 W, = 
(I+ F)? h. Cpg '7tTo3 

(L. 
4 

)r "9 

(3.46) P. 
3 

The exhaust stagnation temperature T. 4 in the expansion process was calculated by 

using Eqn. 3.47. 

r (Po4 

To4 ý T,, 
3 t 

TO - (3.47) 
Po3 
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Subroutine 
FARATIO 

T,, 2Jo35t7,, LCV 

Starting value I 
Cpg = 1155 

1 

11 Cpg = (Cpg,,,,, Cpd12 I 

I Calculate F using Eqn. 3.44 1 

Taverage ý (To3 + T,, 2 . 
)12 

L! ý<ýýýT. 
rage >800ý'ý 

Calculate Cpg,.,, using 

Eqn. 3.33, Eqn. 3.35 
and Eqn. 3.36 

1 

No 

Calculate Cpg,,,. using 

Eqn. 3.34, Eqn. 3.35 
and Eqn. 3.37 

1 

Absolute(Cpg,.., Cpd<o. l 
Yes 

CP9 = Cp9-- 

Calculate F using Eqn. 3.44 

RETURN 

END 

Fig. 3.14 The flowchart for computing fuel to air ratio F 
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The thermal efficiency of the gas turbine cycle q.., can be calculated from Eqn. 3.48. 

w -W, )7gt t 
Frh,, (LCV) (3.48) 

The work output W,.,, and specific work output of the gas turbine cycle w. can be 

calculated from EqrL 3.49 and Eqn. 3.50. 

W9, = W, - W, (3.49) 

wgt - 
w9t 

(3.50) 
"' 

a 

For the reasons explained earlier in this section, the values of the variable specific heat 

ratio were computed by using the mean temperature across the turbine. A computer 

subroutine named GASPROP was developed to calculate mean specific heat. The 

flowchart of subroutine GASPROP is shown in Fig. 3.15. 

3.2.5.6 Electiical Altemators 

Alternator efficiency is defined as the electrical power output divided by the shaft 
power input from the prime mover as follows: 

lAlt - 

WAII 

_EMFxIxPF (3.51) 
W9, W9, 

wheTe EMF = the electToniotive fOTce in Volts 
I= the current in Amps 

PF = the power factor (PF=l for electrical resistive load) 
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Subroutine 
GASPROP 

P'EAD (po3 
3 

TO 
ý q, F) 

Calculate (Cg, yg ) using Eqn. 3.31 and Eqn 3.32 

Calculate ff,, 4) using Eqn. 3.47 

i 
T. 

rage ý ffo3 + Todl: 2] 

T. 
rage 

0 >-80 

Calculate Cpg using Calculate Cp, using 
Eqn. 3.33, Eqn. Eqn. 3.34, Eqn. 3.35 

3.35 and Eqn. 3.36 and Eqn. 3.37 

44 

II cps, cvg, Y, I 

I RETURN I 

END 

Fig. 3.15 The flowchart for computing (Cpg, Cvg, yg) 

3.2.6 Thermodynamic Calculations of the Steam Turbine Cycle 

A schematic diagram of a simple stemn power plant operating on Rankine cycle and 
its corresponding temperature entropy diagram were shown in Fig. 3.4 and Fig. 3.5 

respectively. The governing equations for the components are developed in the 

foRowing section. 
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3.2.6.1 Thermodynamic Calculations of the Heat Recovery Steam Generator 

The energy balance in the steam generator may be expressed as follows: 

M. (I + F)Cpg 
(To4(gf) 

- 
To6(gt) 

ýB 
lkt 

02(st) 
- 

k(st) (3.52) 

The gas stack temperature T. 6(g, ) should be kept as low as possible, but at the same 

time condensation must be avoided to prevent corrosion. The lowest stack 
temperature is determined by the fuel type used, for instance sulphuric fuels should 
have a higher stack temperature. 

The temperature-heat diagram of the heat recovery steam generator is shown in Fig. 

3.16. Ile heat added to the water or the steam was supplied in three steps: 

i. The economizing step where the temperature of water rises from T, (,, ) to the 

saturation liquid temperature at that boiler pressure. 
ii. The evaporation step where water evaporates to steam by absorbing heat at a 

constant temperature. 

iii. The superheating step where the temperature of steam increases from the 

saturation temperature to the desired maximum superheated temperature T, (,, ). 

T2(st) ý esw 
(To 

4- 
T2(st)SW )+ T2(st)=t (3.53) 

where 
T2(st)sat is the saturated temperature at the P2(, 

) 

The enthalpy of the steam at the exit of the boiler h2(st) was given by Eqn. 3.54. 

h2(st) ý f(T2(st) 
I 

P2(st) ) 
(3.54) 

T =PP+T (3.55) O(-v) 2(st)s« 
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where T, (,, ) is the gas temperature at the exit of the evaporator 

AL 

T 
To4 

Gas side 
TO(SUP) T2(st) 

Superheating 

PP 
To(evp 

T2(st)sat 

To6 Evaporation Steam side 

Economizing 

Tl(, t) 

0 100 I 

Fig. 3.16 Temperature variation in the heat recovery boiler 

Finally, 

A. (I + FýIBCpg (To4 
- T. (. V)) 

h2(st) 
- 

h2(lq)sat 

where h2(lq)sat is the saturated fiquid enthalpy at P2(ýt) 

(3.56) 

The enthalpy of the water at the pump e)dt /; (,, ) was calculated from Eqn. 3.57. 

(, t) 
ý I(sg)7S4(st)) 

Ap 
(3.57) 
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T. 
6 ý To(evp) 

- 

? ftg(h2(st)satjq 
-1; (st)) 

A. (I 
+ F)Cpg 

(3.58) 

The enthalpy of the steam at the exit of the steam turbine h, (,, ) was calculated by 

using Eqn. 3.59. 

h3(st) ý f(PI(st) 
1 

S3(st)) (3.59) 

The enthalpy of the water at the exit of the condenser h, (,,, ) was calculated as a 

function of Pl(,, ) as shown in Eqn. 3.60. 

h4(st) = 
APRIJ 

(3.60) 

The heat exchange process in a counter flow heat recovery stearn generator must 

satisfy the Mowing conditions: 

i. The gas stack temperature T., (,, ) must be greater than the inlet water 

temperature T, (.,, ) at least by 10 T. 

ii. The gas temperature at the outlet of the evaporator TP 
,, ( ) must be 

greater than the liquid saturation temperature of the steam T2(, ),, by a 

minimum value (pinch point temperature difference PP). 

iii. The superheated steam temperature T2(, ) must be less than the gas 

turbine exhaust temperature To4(gt) 
* 

The gas pressure loss in the heat recovery steam generator 4HRsG is a percentage value 

from the atmospheric pressure where the heat recovery steam generator inlet could be 

expressed as a function of the atmospheric pressure as shown in Eqn. 3.61. 

P, 
A ý 

(1 
- ýhRMAM (3.61) 
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3.2.6.2 Water Pump Power 

The water pump power Wp can be calculated as follows. 

W, = 
T' (, 

(, t) - 
h4(st) 

17P 

where the entropy at state I equals the entropy at state 4 (S4(, 
) = Sl(, 

)). 

3.2.6.3 Steam Expansion 

(3.62) 

The steam turbine power W, (,, ) can be calculated in terms of the turbine efficiency and 

the steam enthalpy drop across the turbine. 

(, t) ýAh (3.63) Wt tl7t(, t) 
(h2(st) 

- 3(st) 
) 

where the entropy at state 2 equals the entropy at state 3( S2(st) = S3(st) )' 

The efficiency of the steam turbine cycle j7,, can now be calculated from Eqn. 3.64. 

ww -W 
17, t - st f(st) p (3.64) W. -(l + F)Cpg ( 

o4 -T QB TD 

3.2.7 The Combined Cycle Performance 

The combined cycle total power W, is given as: 

rw ý cpp 
wg, + W, (3.65) 

The combined cycle efficiency ( qcpp ) can then be calculwed from Eqn. 3.66. 
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qcpp - 
WCIIP 

- 
th. F(LCF) 

(3.66) 

Finally, the specific work output of the combined cycle wcpp can be calculated from 

Eqn. 3.67. 

WC7lP -WCPP (3.67) 
? h, 

ý 

3.2.8 Precautions for Using the Parametric Analysis 

Equations 3.38 to 3.67 can be solved for every set parameters used in EqnL 3.68 and 

Eqn. 3.69. One set of parameters and its numerical calculations is shown as an 

exwnple in appendix A- 

j7, (3.68) 
ý, p =f(t9, r, Cpýi7c5)7cci'71(gt)ý17nwlpcon9T2st2pB9l7t(st)3? 7pýqHRSG) 

w, =f (0, r, Cp ý 17c v qcc 9 
'7t(gt) 

I 
? Imec 

I 
Pcon 

lT2st I 
PB 

ý '7t(st)'qp'? 7HPSG) (3.69) 

The pararneters can be varied within the following themio&ynarnic, technological and 

physical constraints: 
i. The temperature ratio 0 can have any value starting from the value of 

the ratio T. 2 
IT,,, to a ffwdmum value limited by the metallurgical 

considerations. 
ii. The pressure ratio r can have any value starting from one to a 

maximum value determined by mechanical and aerodynamic factors 

such as stress and Mach number. 
iii. The steam temperature can have any value starting from the saturation 

temperature at that pressure to a maximum value dependent on several 
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other factors such as thermal stresses, rotational stresses, etc, and 

economic factors. 

iv. The stearn pressure in the boiler and the condenser pressure are related 

to the wetness of the steam at the exit of the steam turbine, which 

should he between 0.9 and 1.0. This is because wet steam can have 

detrimental effect on turbine blades. 

v. The exhaust gas temperature in the boiler should be higher than the 

temperature of the steam by a mininium value where this value is 

dependent on the econotnic and the design parameters. 

vi. The stack exhaust temperature should be higher than the condensation 
temperature of water vapour in exhaust gas in order to prevent 

corrosive condensation. 

In the present parametric study the aforementioned precautions were taken into 

consideration. Table 3.1 displays the assumed values for the combined cycle 

parameters. 

Paranxter Assumed value Panwicter Assumed value 
T. t. 288.15 K 0.98 
P. 101.325 kPa 0.88 

To3(gt) (1100 - 1700) K 17tot) 0.87 

r 4-32 17B 0.85 
P2$9 10 

- 100 bar 17P 0.85 
pi 1 

0.2 bar q. 0.98 
T30(mox) 950 K 5% 

PP. 25 K 0.9 

D. 0.88 LCV 43150 kJ/kg 

11 1 0.86 

Table (3.1) Assumed parameters' values used in the parametric study 
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3.3 Gas Turbine Cycle Performance 

The gas turbine cycle performance is determined by thermal efficiency and the specific 

work output. "Me efficiency and the specific work output are ftinctions of many 

parameters as shown in Eqn. 3.15 and Eqn. 3.16. Hence a solution of Eqn. 3.38 to 

Eqn. 3.50 can be found for each set of values of T,,, and r. 

i&, = C,, 71,17,,,, q, t7., ) 

f(O, r, C,, q, q, q, 17,,,,, ) 

3.4 Combined Gas Turbine/Steam Turbine Cycle Performance 

The thermal efficiency and the specific work output cari be used also to describe the 

combined gas turbine/steam turbine cycle performance. The efficiency and the specific 

work output are functions of many parameters as described by Eqn. 3.68 and Eqn. 

3.69 where for each set of values of the parameters in Eqn. 3.68 or Eqn. 3.69 there is 

one solution for the combined efficiency and one for the specific work output. 

i7c7, p = f(qý,, q.. 
) 

=f 
(0, 

r, Cp, 17,, tl,,,? It(gi), 77., P., T2, 
t, 

PB, qt(., t), qp,? hmyG) 

wcpp 

There are many gas turbinelstearn turbine cycle configurations, therefore studying the 

effect of each parameter on each configuration performance will be very difficult and 

tedious to achieve. In the present investigation only the following configurations were 

considered: 
i. Simple gas turbine cycle combined with simple stearn turbine cycle. 

ii. Simple gas turbine cycle combined with dual pressure steam turbine 

cycle. 

iii. Reheat gas turbine cycle combined with simple stearn turbine cycle. 
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iv. Reheat gas turbine cycle combined with dual pressure steam turbine 

cycle. 

v. Gas turbine pre-cooling cycle combined with simple steam turbine cycle. 

vi. Gas turbine pre-cooling cycle combined with dual pressure steam turbine 

cycle. 

Simultaneous variations of the main parameters in both cycles would show the effect 

of theses parameters on the combined cycle (CPP) performance. Calculations were 

made by varying some parameters and holding others constant. The assumed 

parameters for the calculations are shown in Table 3.1. 

A computer program was written in Visual Basic language to solve Eqn. 3.38 to Eqn. 

3.67 incorporating AIRPROP, FARATIO and GASPROP subroutines. The 

flowchart of the computer program is shown in Fig. 3.17(a) to Fig. 3.17(c). Figure 

3.17(a) shows the solution of the gas turbine cycle and Fig. 3.17(b) shows the solution 

of the steam turbine cycle while Fig. 3.17(c) shows the solution of the combined gas 

steam cycle. The results of the analysis are presented in chapter 6 that deals with 

results and discussion. 
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READ the atmospheric conditions 
or press ENTER to use the ISO sea 

level atmospheric conditions 

= 
,Ft 

coniponents efficiencies and 
I 

! 
ýe 

S_ sure drop percentage values 
4 

For T, 4 from 1100 K to < 

1700 K step 300 K 

For r from 4 to 32 step 4 

CALL subroutine AIRPROP to 
calculate the air properties 

Calculate W. and T,, 2 using Eqn. 3.40 and Eqn. 3.41 where 
r =P,, -, 

IP,,, and A. =I kg/s 

I 

CALL subroutine FARATIO to calculate 
fuel to air ratio (F) and gas properties 

I 

Calculate P,, 3 and P,, 4 using Eqn. 3.45 and Eqn. 3.61 
4 

Calculate W, and Wg, using Eqn. 3.46 and Eqn. 3.49 

Calculate Ta, rl,,, wg,, and q,,, using Eqn. 

3.47, Eqn. 3.48, Eqn. 3.50 and Eqn. 3.51 

Fig. 3.17(a) Flowchart of gas turbine cycle calculations 
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READ steam components efficiencies (q), 

effectiveness (e), pinch point temperature 
difference (PP) and condenser pressure (P, (,,, )) 

CALL saturated steam properties at Pl(, t) to get 
saturated liquid enthalpy (h4(,, )) and entropy (S4(, t)) 

I SI(st) ý S4(st) I 

For steam pressure (P2(, 
t)) 

from 10 

bar to 100 bar step 10 bar 

CALL compressed water properties at II 
P2(,, ) and Sl(.,, ) to get h I(, ) 

II 

I Calculate T2(, v and T,, (,, P) using Eqn. 3.53 and Eqn. 3.55 1 

CALL superheated stearn properties at I 
P2(, t) and T2(, t) to get superheated stemn 

II 

enthalpy (h2(, t)) and entrOPY (S2(st)) 

I 

I Calculate steam mass flow (Aj using Eqn. 3.56 1 

I S3(st) ý S2(st) I 

CALL saturated steam properties at Pz(,, ) 
and S3(,, ) to get saturated steam enthalpy 

II 

(h3(.,, )) at the exit of the steam turbine 

II 

Calculate water pump power (WP), steam turbine 
power (W,, ) and steam cycle thermal efficiency (i7j 

II 

using Eqn. 3.62, Eqn. 3.63 and Eqn. 3.64 

1 

C 2 

Fig. 3.17(b) Flowchart of steam turbine cycle calculations 
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I 

Calculate combined cycle power (Wcpp), 

combined cycle thermal efficiency (qcpp) 

and combined cycle specific work (wcpp) 

Fig. 3.17(c) Flowchart of combined cycle calculations 
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CHAPTER 4 

MODELLING AND SIMULATION 



Chapter 4 

4.1 Introduction 

The gas turbine engine is a complex assembly of a variety of components that are 
designed on the basis of aero-thermodynamic laws. The design and operation 

theories of these individual components are complicated. The complexity of aero- 

thermodynamic analysis makes it impossible to mathematically solve the 

optimisation equations involved in various gas turbine cycles. 

When gas turbine engines were designed during the last century, the need to evaluate 

the engines performance at both design point and off design conditions became 

apparent. Manufacturers and designers of gas turbine engines became aware that 

some tools were needed to predict the performance of gas turbine engines especially 

at off design conditions where its performance was significantly affected by the load 

and the operating conditions. Also it was expected that these tools would help in 

predicting the performance of individual components such as compressors, turbines, 

combustion chambers, etc. 

At the early stage of developments, experimental tests of prototypes of either the 

whole engine or its main components were the only method available to determine 

the performance of either the engine or of the components. However, this procedure 

was not only costly, but also time consuming. Iberefore, mathematical modelling 

using computational techniques were considered to be the most economical solution. 

The first part of this chapter presents a discussion about the gas turbine modelling 

approach; the second part includes the gas turbine component matching while the 
last part includes the gas turbine computer simulation program and its philosophy. 

4.2 ModeHing of Gas Turbine Components 

The aero derivative and industrial gas turbine engines are used for a variety of 
applications such as electrical power generation, driving pumps and compressors on 
gas and liquid fuels, etc. The engine configuration may vary to suit the application. 
The common configurations are: a single, twin or triple spool construction or a 

66 



Chapter 4 

single stage or multi stage construction. In this study only the gas turbines used for 

electrical power generation are considered. 

A gas turbine engine essentially consists of the following component parts: 

i. Intake 
ii. Compressor(s) 

iii. Combusfion Chamber(s) 

iv. Turbine(s) 

v. Engine auxiliaries such as ftiel pump, lubrication pump, electrical 

power supply, starting gear and control system. 

A block diagram of the gas turbine engine showing theses components is given in 

Fig. 4.1. 

The main components that determine the overall performance of the complete engine 

are i, ii, iii and iv. The mathematical model for each component was created using 

physical laws or input data when available. 

There is an air intake prior to the compressor but it can be realistically considered 

that there is small change to the air conditions (pressure drop) through the air intake 

in case of gas turbine units used for electricity generation. 
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41.1 Compressor Modelling and Analysis 

The performance of a compressor is fully described by a number of either 
dimensionless or normalized parameters. The dimensionless parameters would be the 

same for every system of units, e. g. Sl system, FPS system or CGS system, but 

normalisation may be different depending on national practices. The dimensionless 

parameters and normalised parameters are shown in Table 4.1. 

Parameters Meaning 

*.. "0 Compressor dimensionless and normalised. mass flow 
d 2p 15 

2' "1 parameters 

d2N N Compressor dimensionless and normalised speed ( ) 

parameters 
( 

TC Tý ( ) ) Compressor dimensionless and normalised torque 
13j7 ' 

2 01 45 parameters 

Po2 ( 
Compressor dimensionless pressure ratio parameter 

P., 

02 
(P 

POI 
m ressor efficienc I t i c co p y sen rop To2 

T. 1 

0= 
To, 

Normalised temperature parameter TO 
I. - If 

= ; 
p- 
OI Normalised. pressure parameter ý 

O - e 

Table 4.1 Dunensionless and Normahsed Compressor Parameters 

Compressor performance, sometimes called compressor map, is usually represented 

by overall performance characteristics. These maps are in general, obtained 

experimentally but sometimes they can be predicted with reasonable accuracy using 
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geometric properties of the components, i. e. intake, impeller, diffuser and the 
2,40,411 

casinj 

Figure 4.2(a) is the compressor pressure ratio vs. mass flow parameter and Fig. 

4.2(b) is the compressor efficiency vs. mass flow parameter. Theses figures can be 

cross-plotted to obtain a general compressor performance map shown in Fig. 4.3. 

Mathematically the compressor performance is described using the dimensionless or 

the normalised. parameters as given below: 

.2 
- !ý 

Ya Xy. 

, r, 11 d2N th�ýCP. TOI 
02 

j1 

(4.1) 2p d'P�, 2; r ilý Vi, 
01 

p 
.T oý 

d 
.T2 01 oý 

1 

r, 
=f ; 7" 

N tha ýo Po2 
(4.2) 

voe 9 3p 
45 01 

Equation 4.1 is in complete dimensionless form and Eqn. 4.2 is the normalised 

general form. 

The compression power W, is given by 

2p 
fila ýCP. T. 

l 
I (Lo2 )r 

W, =d ol 
r1 (4.3) 

2 -XPI-To 2p d2 
ol ? 7, P. I 

Using the compressor characteristics, if any two dimensionless parameters are 
known then the rest of the parameters can be determined easily. 

The final stagnation temperature in the compression process T., can be calculated 

from the following equation: 
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To2 =Tj +T' 
(Po2 

0 q, Pol 
(4.4) 

Po2 

P. 
ý 

Surge Lino 

d2 N 

41, 
Constant s 

d2'P, 
l 

Fig. 4.2(a) Typical Compressor Pressure ratio vs. Mass Flow Parameter 

P. ý 
Pý, 

Constant speed Lines 
dN 

_Incr 
sing 

Speed 

Mass Flow Parameter 

Fig. 4.2(b) Typical Compressor Efficiency vs. Pressure ratio 
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2.3 
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17 
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CY 
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th 
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Fig. 4.3 General Compressor Characteristics (Map) 

In order to solve Eqn. 4.1 to Eqn. 4.4 for any point in the compressor map, the input 

data needed can be obtained from the compressor performance map. This may 

require interpolation but this aspect will be dealt with in the section dealing with 

computer simulation. 

4.2.2 Combustion Chamber Modelling and Analysis 

As discussed in chapter 3, the combustion chamber performance is normally given in 

terms of combustion efficiency rl,, and the factor for the loss of stagnation pressure 

ý,,. Using theses parameters the fuel/air F ratio and the stagnation pressure at the 

exit of the combustion chamber P03 can be determined from Eqn. 4.5 and Eqn. 4.6 

respectively. 

F -- 
I 

i7,, (LCV 
CPg (TO 

- 
TJ 

(4.5) 
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PO -": 
(1 

- 
ýcc A2 

(4.6) 

4.2.3 Turbine Modelling and Analysis 

71be performance characteristics of a turbine, like those of a compressor, are fully 

described by a number of dimensionless or normalized parameters. These parameters 

and their corresponding meanings are tabulated in Table 4.2. 

The Turbine performance like the compressor performance is represented by overall 

performance characteristics, also known as turbine map. This map is in general 

obtained experimentally but it can also be predicted with reasonable accuracy by 
1,40,411 

using geometric properties and on the basis of previous experiencel 

Figure 4.4 shows typical turbine performance characteristics: 4.4(a) is a plot of 

turbine pressure ratio vs. mass flow pararneter and 4.4(b) gives a plot of turbine 

efficiency vs. pressure ratio. The complete map can be drawn from these figures by 

cross plotting as shown in Fig. 4.5. 

Using the turbine characteristics, if any two dimensionless parameters are known 

then the rest of the parameters can be determined easily. 

Mathematically the turbine performance is described using the dimensionless or the 

normalised parameters as given below: 

dNA Fc T 
3t ? 7t 

2gN2 Pg o3 
(Lo4 

(4.7) 
d2p. 

3 2; r d Po3 po3 TCI. T. 
3 2 

rt Ihg VO P�, 
'p (4.8) 

.4 
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Equation 4.7 is in complete dimensionless form and Eqn. 4.8 is the normalised 

general form. 

Parameters Meaning 

Turbine dimensionless and normalised mass flow 
d2 

2 
Po3 

parameters 

d2N N Turbine dimensionless and normalised speed 
FCT V-0 

lpg ,3 parameters 

) Tt ) ( Turbine dimensionless and normalised torque 
, d38 2 

PO 
parameters 

Po3 ( 

Turbine dimensionless pressure ratio parameter Po4 

03 
rg P 

Po4 

T. Isentropic; turbine efficiency 
To 

4 

0= 
TO 

Normalised temperature parameter T. 

8= 
PO 

Normalised pressure parameter P'. 
- Ile 

Table 4.2 Dimensionless and Normalised Turbine Parameters 

The expansion power W, and the final stagnation temperature T. 4 in the expansion 

process are calculated using Eqn. 4.9 and Eqn. 4.10 respectively. 

ph 
g IFCPg 

To3 ýLo4 rs 
2 W, =d2 Pa 3 

ýjPgT. 
3 -2 it (4.9) 

d2 po3 P. 
3 
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T. 
4 ý To3 

-To3l7t 1- 
P-Iý 

Xy, (po3 

(4.10) 

P. I P., 

.0 
dN 

ines c Constant Speed L 
w 
(D 

IL 

d2Pý, 

Mass Flow Parameter 

Fig. 4.4(a) Typical Turbine Pressure ratio vs. Mass Flow Parameter 
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Fig. 4.4(b) Typical Turbine Efficiency vs. Pressure ratio 

74 



Chapter 4 

Fig. 4.5 Turbine Characteristics (Map) 

In order to solve Eqn. 4.7 to Eqn. 4.10 for any point on the turbine characteristics, 

the input data needed can be obtained from the turbine performance map. This may 

require interpolation but this aspect will be dealt with in the section dealing with 

computer simulation. 

4.3 Gas Turbine Components Matching 

Gas turbines are often required to operate at different power levels and under varying 

environmental conditions. But by the nature of the thermodynamic processes in the 

engine, it is not possible to obtain the same level of efficiency within the entire range 

of operation. Therefore, depending on the particular application, for example for 

power generation, the rotational speed would be constant and dictated by the 

electrical generating machine. The gas turbine may be designed for optimised 

operation at given power level and specified conditions. The power level and 

expected thermal efficiency are chosen to correspond to those conditions under 

which the engine operates for most of its life. The values of the characteristic 

parameters at that point are termed as the design point. 
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Usually, a set of independent variables discussed in chapter 3 and previous sections, 

which exclusively determine the performance of the engine, will be associated with 
this region (envelope). For a fixed geometry engine, these may be chosen as pressure 

ratio, turbine inlet temperature, rotational speed and air mass flow rate. This set is 

complete but not unique. 

It has already been explained that the gas turbine engine consists of various 

components which are linked together in such a way that there exists a mechanical 

and thermodynamic interdependence among some components. This means that 

some operational compatibility (matching) between components will be required for 

a steady state or equilibrium operation. This requirement reduces the range of the 

operating conditions for the components. But it is possible to define a subset of the 

engine's operating envelope such that every point in this sub-region is an 

equilibrium working point. These working points can be mapped on the respective 

components characteristics. The design point values are elements of this region 

which yield the best thermal efficiency. Any point in the region other than the design 

point represents an off-design condition. 

The off-design problem may therefore be stated as the determination of a point in 

this region that corresponds to some specified conditions at which the equilibrium 

criteria would be satisfied but at reduced value of thermal efficiency. Since the 

operating points of the individual components can be determined by using the given 

values of some characteristic parameters, the off-design problem reduces to 

computing the values of these parameters which would satisfy the equilibrium 

criteria This procedure is demonstrated in the analysis given below. 

Considering a simple gas turbine consisting of three main components as an example 

used for electrical power generation application schematically shown in Fig. 4.1, and 

assuming that the performance of each component is completely known by its 

characteristics map shown in Fig. 4.3 and Fig. 4.5. In this gas turbine engine, the 

components matching should meet the following conditions: 

i. The compressor speed is always the same as the turbine speed. 
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N, = N, 

ii. The gas mass flow through turbine is the sum of the air mass flow 

through compressor and the ftiel mass flow. 
thg = th, +A 

iii. Assuming that the pressure loss in the combustion chamber is a 
constant small percentage (ý) of the combustion chamber inlet 

pressure. 
P,, 

3 ý (1 
- 

ýcc )po2 

iv. Inlet and exhaust pressure losses are too small and can be ignored. 

p =p o4 ol 

The second condition is subject to modification in that it is common practice to bleed 

air from the compressor at various stations to provide cooling air for bearings and 
turbine blade cooling. Quiet often it is sufficiently accurate to assume that the bleed 

air equals the fuel flow and therefore the mass flow is the same throughout the 

compressor and the turbine. 

The steady state or equilibrium operation of this gas turbine engine can be achieved 
by the matching of its compressor and turbine. Matching the compressor and the 

turbine can be done by superimposing the turbine performance map on the 

compressor map while meeting the components matching conditions. This matching 

procedure is schematically shown in Fig. 4.6. 

Superimposing the turbine map on the compressor map can not be totally accepted 

until both maps axes (the abscissa and the ordinate) are identical. The main difficulty 

here is that of temperatures: T,,, for the compressor and T,,, for the turbine. The 

procedure to overcome this problem was developed as part of investigation and it is 
described hereafter. 
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Compressor map Turbine map 

Impose 
---Efficiency 4 

Uli 

Impose 
01 iency 
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Mass Flow Parameter Mass Flow Parameter 

Matching map 

7, 

Mass Flow Parameter 

Fig. 4.5 Compressor turbine matching procedure 

THE COMPRESSOR 

The abscissa of the compressor characteristics i. e. the mass flow parameter 

th. VCXT., 

, matching was obtained by multiplying this parameter with the 
d'lýý 2 

dimensionless speed parameter 
d2N 

as follows: 777, 

d 2p 

d2N 
th,, N 

2 ýj 

VCP. d2pol 

The output term th,,, 
is referred to as the mass flow matching parameter. d2pol 

78 



Chapter 4 

The ordinate i. e. the pressure ratio parameter 
1ý2 

, remains unchanged. Once these 1ý1 

transformations had been made, the compressor characteristics map was plotted 

again in terms of these new parameters as shown in Fig. 4.7. The characteristics map 

does not change much because the speed N and temperature T,,, are constant for each 

dimensionless speed line. 

2.1 
ýP S l o 2z t'r, - ip - '1', 4, 

o4* 

1.9 - P., 
I 

%, 
com ressor Efficien 

1.7 4, 

1.5 

1.3 41 

d 2j 
0.9 

0 0.01 0.02 0.03 0.04 
Mass Flow Parameter x Speed Paramete 

0.05 

Fig. 4.7 Compressor map after transformation 

THE TURBINE 

The abscissa of the turbine characteristics i. e. the mass flow parameter 
th 

g 

ýC-pg 'ý3 

2 d2 Po3 

matching was obtained by multiplying this parameter with the dimensionless speed 

parameter and the pressure ratio as follows: 

2 

]x[ d2N 
X 

[pý3 ]=[ 
thN ] 

P, d d2 Po3 ýCpgTo3 
2po4 
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To satisfy the compressor-turbine matching conditions, i. e. thg = 1h, and P. 
4 = Pol' 

Then the mass flow matching parameter of the turbine 
*9N 

is equal to the mass d2Fý4 

th N 
flow matching parameter of the compressor a 

d2P ol 

For the pressure ratio parameter, the ordinate axis of the turbine characteristics for 

matching is developed into 

[2ýo3 

o4 

]= [po2 - 1x[ ]X[p 

Po 
4, - 

ýCC p 
01 

pýII 

- 

Note that PA (1 ýcc )po2 

and Po4 Pol 

Once these transformations had been made, the turbine characteristics map was 

plotted again in terms of these new parameters as shown in Fig. 4.8. 
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1.4 
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1.2 
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d2po4 

0.03 0.035 

Fig. 4.8 Turbine map after transformation 

it can be seen from the graphical plot of compressor and turbine performance maps 

that the abscissa and the ordinate of these maps are identical. Therefore, it is clear 
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that the turbine map could be superimposed on the compressor map to produce a 

complete compressor-turbine matching map as shown in Fig. 4.9. 

2.1 - 
- 
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4v 

3 1.5 
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IO N 
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0 0.01 0.02 0.03 0.04 0.05 

Mass Flow Parameter x Speed Parameter 

Fig. 4.9 Complete compressor-turbine matching map 

The matching map shown in Fig. 4.9 is a very useful tool in predicting the overall 

performance of matched components, i. e. the gas turbine design and off-design 

performance. Using the compressor-turbine dimensionless speed intersection points, 

where the speed is the same (N, = N, ), the turbine inlet temperatures T., can be 

easily calculated. The constant turbine inlet temperatures are then plotted in the 

compressor-turbine matching map as shown in Fig. 4.10. 
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From Fig. 4.9 and Fig. 4.10, the following can be determined: 

i. The operating range (envelope) and running line of the matched 

components. 
ii. The proximity of the operating points to the compressor surge line (how 

close the operating points to the surge line). 

iii. The maximum operating point at the maximum turbine inlet temperature 

( To3 )* 

iv. And most important it can be concluded from the figures whether the gas 
turbine engine is operating in a region of adequate compressor and turbine 

efficiencies. 

4.4 Gas Turbine Computer Simulation 

A computer program for simulating a gas turbine engine would basically satisfy 

matching conditions analytically between the various components to produce the 

equilibrium running line. Representing this line either in the form of lookup tables or 

an equation is known as modelling and solving that equation with the help of a 

computer is computer simulation such that all energy and mass balances, all 

equations of state of working substances, and the performance characteristics of all 

components are satisfied. 

Testing of the gas turbine engine is expensive and time consurning. Therefore, its 

simulation can be an economic and fast tool for predicting its performance. The 

purpose of the simulation of the gas turbine engine can be one of the following: 

i. Simulation of gas turbine engine at the design stage where no real gas 
turbine engine to meet the design specifications yet exists. 

ii. Simulation of gas turbine engine at the application stage where engine is 

already constructed and could be tested instead of simulation. 
iii. Simulation of gas turbine engine for performance extrapolation of 

existing plant to meet ligher output requirements. 
The aim of this study was to concentrate on the second purpose. 
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The performance or control of the gas turbine plant at off-design conditions would 

always be of interest, so the gas turbine simulation program is run. That simulation 

run may pin-point the cause of operating problems or shows how the effectiveness of 

the gas turbine plant may be improved. 

Essentially, the simulation of the transient operation of a gas turbine plant is more 

difficult than the simulation of the steady-state gas turbine plant. But unsteady 

operation of gas turbines is important for certain apphcations such as turbochargers. 
That field of study was considered to be outside the scope of present research. 

4.4.1 Information-Flow Diagrams 

For system simulation, fluid-flow and energy-flow diagrams are standard 

engineering tools. An equally useful tool is the information-flow diagram, for 

example, a block diagram of a control system is an information-flow diagram 

wherein a block signifies that an output can be calculated when the input is known. 

A centrifugal pump might appear in a fluid-flow diagram such as shown in Fig. 

4.11 (a), while in the information-flow diagram the blocks shown in Fig. 4.1 I(b). 

These figures represent functions or expressions that permit calculation of the outlet 

pressure for one block and the flow rate for the other. A block, as in Fig. 4.11 (b), is 

called a transition function and may be an equation or may be tabular data to which 
interpolation would be applicable. 

P2- 
Pi 

m 

Constant speed 

(a) (b) 

Fig. 4.11 (a) Centrifugal pump in fluid-flow diagram (b) Possible information-flow 

blocks representing pump 

A Pump 20. 
Pi op 

Pi 10 p UMP 
P2 

83 



Chapter 4 

Figure 4.11 shows only one component. To illustrate how these individual blocks 

can build the information-flow diagram for a gas turbine plant, consider the simple 

gas turbine cycle in Fig. 4.1 shown earlier. The components in this cycle are the 

compressor, the combustion chamber and the turbine. 

The information-flow diagram is arranged in Fig. 4.12 in a manner that might be 

used if the net power output W,,,, was to be calculated for the system with a given 

rate of fuel mass flow rate i. e. heat input at the combustion chamber. Further input 

information includes the ambient conditions T,,,, P,,, and rotational speed N. 

The compressor block diagram signifies that when the rotational speed N, inlet 

pressure P,,,, inlet temperature T,,, and air flow rate th. are specified, the outlet 

pressure P., and the compressor efficiency ij, can be determined from the 

compressor characteristics map as shown previously in Fig. 4.3. Furthermore, power 
W, required by the compressor and outlet temperature T. 2 can be calculated from 

Eqn 4.3 and Eqn 4.4 respectively. 

The combustion chamber block diagram signifies that when the fuel flow rate thf 9 
inlet temperature T,, 2 and inlet pressurep,, 2 are specified, the outlet pressurepo3 

and the outlet temperature To, can be calculated from Eqn 4.5 and Eqn 4.6 

respectively. 

The turbine block diagram signifies that when the rotational speed Nt, inlet pressure 

P. 3 2 inlet temperature TO and gas flow rate thg are specified, the outlet pressure Po4 

and the turbine efficiency q, can be determined from the tuurbine characteristics 

map as shown previously in Fig. 4.5. Furthermore, power W, delivered by the 

turbine and outlet temperature TA can be calculated from Eqn 4.9 and Eqn 4.10 

respectively. 
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Input Information 

fild T,,, Pýj N, 
=P 

Po4 
01 

FFFIF 

Compressor 

W, TPA, Po2 

IFIF 
Combustion 

Chamber 

Tol Po 
3 

Turbine 

Mg Ma + Mf 

VI To 
4 

L 

W, 

Energy Balance 

IF 
WIIII 

F outputInformation 

Fig. 4.12 Information-flow diagram of a simple gas turbine engine 

Sometimes the arrangement of the system permits a direct numerical calculation for 

the first component of the system using input information. The output information 

for this first component is all that is needed to calculate the output information of the 
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next component and so on to the final component of the system whose output is the 

output information of the system. Such a system simulation consists of sequential 

calculations. 

Before starting the design of the computer program for simulation purposes, it was 

necessary to identify its main features. Those features are summarised as follows: 

i. The computer simulation should allow the user to simulate the 

components individually or as a complete plant. 
ii. The simulation program should be modelled for the linking with 

another program to finally simulate the CPP plant. The outputs of 
this computer program should contain the needed parameters to start 

simulating the steam power plant, the other part of the CPP plant 

which is being studied as a part of parallel research. 

iii. The simulation program should be modular so that various modules 
may be assembled to represent different gas turbine plant 

configurations. 
iv. The simulation program should be user friendly and written in such 

manner that data can be transferred from one module to another easily 

and efficiently. 

To produce running line analytically, the computer simulation program will use the 

components mathematical models as will as the components characteristics. That 

running line will be essential to compute the various gas turbine performance 

parameters. 

in order to use these maps in a computer program it was necessary to have them in a 

special format. This format can take one of the following forms: 

i. Deriving an equation to describe the performance of the component 

and solving this equation to calculate the performance parameters for 

any selected point on the performance map. 
ii. Store the compressor characteristics in look-up tables and then use an 

interpolation or extrapolation technique to deterrnine the values of the 
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performance parameters for any selected point on the performance 

map. 
iii. Use a neural network technique to teach the computer the pattern of 

the component characteristics then compute the performance 

parameters for any selected point on the performance map. 

In the present work, the second option was chosen as it produced a more reliable 
estimate of the parameters at any point on the component characteristics map. 

4A. 2 Representing Compressor and Turbine Maps in the Computer Program 

The compressor or turbine characteristics in the standard format as shown in Fig. 4.3 

and Fig. 4.5 cannot be used directly in the computer program; they require some 

processing to convert the maps into a good numerical representation. There are many 

problems and difficulties associated with the numerical representation process. 

4.4.2.1 Representing Compressor Maps in the Computer Program 

it is not possible to read the compressor map parameters with given speed N,,,. and 

pressure ratio P. 2 IPOI 
. as there might be two values for the mass flow parameter 

rhDi. at given pressure ratio (see point A in Fig. 4.13). It is also not possible to 

determine the efficiency j7, from the compressor map with given speed NDi. and 

mass flow parameter *Di,., because at some parts of the compressor map the speed 

lines can be verticaL Hence, there might be two values for the pressure ratio P., 1P., 

at a single value of mass flow parameter thD,. (see point B in Fig. 4.13). 

introducing a new coordinates, here called the BETA (p) lines, was the solution for 

this problern. This allowed an independent map reading using the shape of the 

parameter lines with the P line and speed parmneter NDj.. 
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The auxiliary coordinates (, 8 lines) can be selected arbitrarily with only two 

conditions. First, there are no intersections between the fl lines within the range of 

interest, and second the 0 lines are equally spaced. The jO lines will have any 

numbers of lines with each line has a parameter number starting from 1. The 6 lines 

can be a parabolic lines or straight lines (straight lines are special parabolic lines). 

Three-dimensional look-up tables, Tables 43(a), 4.3(b) and 4.3(c), were created to 

represent the compressor characteristics. These tables represented the mass flow 

parameter )hDim vs. rotational speed parameter NDim 
ý the pressure ratio Po2 1pol VS* 

rotational speed parameter NDj. and the compressor efficiency q, vs. rotational 

speed parameter NDi.. 

if the values of any parameter with 8 line parameter are specified, the program 

searches and picks the other two parameters from these look-up tables. 
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Table 43(a) mass flow parameter *Dh, 
vs. rotational speed parameter ND,. 
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Table 4.3(b) pressure ratio Po2 1pol vs. rotational speed parameter N. 
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Table 4.3(c) compressor efficiency q, vs. rotational speed parameter N, 
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The other problem with the numerical representation of the compressor map is the 

surge line. One or both of the following can achieve the solution to this problem: 
i. Deriving an equation to describe surge line and solving this equation to check 

if the points are beyond the surge line. 

ii. Store the surge line in look-up table and then use an interpolation or 
extrapolation technique to check if the points are beyond the surge line. 

Either one of the two solutions can be efficient. In this program the second method 

was used for maintaining the consistency of the whole program. Table 4.4 shows the 

pressure ratio P. 2 
1P. 

1 vs. mass flow pararneter rhDj. of the surge line. 

Pressure Ratio Mass Flow Parameter 
po2 1pol 

I 

? hDim 

m M 
13 c 

_0 w 3. - CD 

0 
2) CD 3 ýu a CD 

co 
CD 

U) 

Table 4.4 Pressure ratio vs. mass flow parameter of the compressor surge line 

Through the computer processing of all tables, linear interpolation technique was 
used to estimate the parameters values lying at intermediate points. This method of 
interpolation is followed in most books of numerical analysis. 

4A. 2.2 Representing Turbine Maps in the Computer Program 

As in the compressor case, the 6 lines must be introduced to the turbine maps to 

solve the problem of converting the maps into tabulated data This can be seen clear 
in Fig. 4.5, where at the chocking condition and same speed parameter, more than 

one pressure ratio results from the same dimensionless mass flow parameter. 
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Three-dimensional look-up tables, as in the compressor case, have been developed 

and used to represent the turbine characteristics. These tables have the same forms as 

those of the compressor characteristics shown in Tables 43(a), 43(b) and 43(c). In 

these tables, linear interpolation technique was also used to compute the values lying 

at intermediate points. 

4A. 3 Computer Simulation Program 

The computer simulation program uses the components models based on either 

mathematical equations or performance characteristics to achieve matching between 

the various components in the gas turbine plant. This matching produces the engine 

equilibrium running line. The equilibrium running line can be used to calculate the 

different gas turbine performance parameters. 

The principal advantages of gas turbine simulation program would be: 

i. The computer simulation program can help in investigating the effects 

of the components performance characteristics on the performance of 

the complete engine. This investigation can be carried out at the design 

stage without bearing the cost of manufacturing and testing an 

expensive prototype. 
ii. The conceptual designs of the engine can be studied and the choice of 

particular concept can be made to suit the specified operational 

requirements. 

iii. The matching of the components can be explored for the design, off- 
design and transient conditions. 

iv. The simulation program can serve as a valuable tool for investigating 

the performance of the gas turbine at off-design conditions. This 

investigation can help in designing an efficient control system for the 

gas turbine engine at that particular application such as being a part of 

the CPP plant. 

The information flow diagram for the simple gas turbine cycle shown in Fig. 4.12 

was used to create a computer simulation program. 'Me flow chart for the program 
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logic is shown in Fig. 4.14. The program is suitable also for dealing with the 

simulation of other configurations discussed in Chapter 3. But for the sake of brevity 

the flow charts for each configuration have been omitted. 
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START I 
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Fig. 4.13 Computer simulation flowchart 
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CHAPTER 5 

DESIGN OF EXPERIMENTS AND 

EXPERIMENTAL FACILITY 
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5.1 Introduction 

The preceding chapters concentrated on (a) the influence of the main parameters of 

the gas turbine cycle on the performance of the combined power and power cycle, 
(b) the performance of CPP design point calculations, and (c) the method for 

predicting the steady state off-design conditions of the gas turbine engine as part of 

the CPP plant. In order to verify the results of these studies, it was necessary to 

compare the predicted performance with the actual performance of the gas turbine 

engine measured experimentally. 

Ideally the experimental work should be carried out on a gas turbine engine that has 

been either designed or selected for electrical power generation in the CPP plant. In 

order to get optimum performance, this design or selection of the engine must be 

based on the results of the parametric studies, modelling and simulatiorL However it 

was neither practically possible nor economically feasible to either design and 

manufacture or procure a real gas turbine engine. Therefore an alternative solution 
had to be found. It was decided to use an aircraft auxiliary power unit incorporating a 

small gas turbine. It was known that the results of the experiments would not 
demonstrate the full potential of the gas turbine for the CPP plant. Nevertheless, the 

test facility would provide a very good opportunity to design a high speed gearbox to 

couple the engine with the alternator, selection and calibration of instruments and 
finally system design as well as the setting up of the data acquisition equipment. 

An experimental facility was build to run an electrical power generator. The 

generator was driven by an aircraft auxiliary power unit incorporating a small gas 
turbine engine. This chapter will have three main parts: the first will describe the 
details of the test facility; the second will describe the instruments and their 

calibration and the last part will describe the cornputerised data acquisition system. 

5.2 Design of Experimental Facility 

A schematic diagram of the test facility is shown in Fig. 5.1 showing the quantities 
to be measured and the locations of the measurement stations. The test facility was 
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designed according to the following minimum requirements: 
i. The test facility should have the capability of measuring pressures, 

temperatures, mass flow rates, rotational speed, torque or thrust, etc at 

various stations shown in Fig. 5.1. 

ii. The cost of the experimental facility should be as low as possible-, 

therefore it was necessary to use, wherever possible, the available 

equipment within the Royal Jordanian Air Force (RJAF) facilities. 

iii. Building the test facility should provide a valuable experience for 

developing a digital to analogue instrumentation for jet engine test 

facilities at present used by the RJAF. 
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E 
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I 

Fig. 5.1 Schematic diagram of the experimental test facility 

The Garret aircraft auxiliary power unit of model JTCP-60A, shown in Fig. 5.2, was 

originally used to supply pressurised air and electrical power for jet engine starting 

and maintenance purposes of various airplanes used in the RJAF. in the current work 

the gas turbine plant should produce only electrical power output and not pressurised 

air. Therefore, some modifications and coupling of a new electrical alternator was 

necessary for the purpose of present research. 

The modifications to the auxiliary power unit (APU) included the following: 

i. Designing and manufacturing a new reduction gearbox to drive a larger 

electrical power generator than that provided with the APU. 

ii. Modifying the APU stand for the adaptation of the reduction gearbox 

and the electrical generator. 

iii. Modifying the components'casings for instrumentation. 
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The following sections will describe those modifications in detail. 

Fig. 5.2 Garret aircraft auxiliary po-wer urut of model JTCP-60A 

5.2.1 Reduction Gearbox Design and Manufacturing 

Gears are used in many applications to transmit motion from one shaft to another 

with constant angular velocity ratio. In some cases, the desired reduction in angular 

velocity is too great to achieve using only two gears. When this occurs, several gears 

must be connected together to give what is known as a gear train. 

There are many types of gears including spur, helical, crossed-helical, herringbone, 

internal, bevel and worm gears. Spur gears are the simplest forms of gears. The tooth 

form is basic involute, the pressure angle is constant and the tooth dimensions are 
identical in all planes of rotation. The spur mesh doesn't have axial end thrust. They 

are applicable to all types of gear trains and a wide range of velocity ratios. 

Helical gears are equivalent to the spur gears except for the added complication of 
the helix angle. They are appropriate to use if the gear train is high load and/or high 

speed. The helical mesh produces an axial thrust, which must be accommodated. 
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Crossed-helical gears give an advantage of skewed shafting but the sliding of a point 

contact limit the crossed helical gear mesh to a light load low speed applications. 

Herringbone gears are double helical gears with opposite hand direction. The 
herringbone gears have the same advantages as the helical gears with an extra 

advantage of eliminating the axial thrust produced by each helical gear. 

Bevel gears offer convenient angular drive but bevel gears have complicated tooth 
form that yields to difficulties in manufacturing. Worm gears offer right-angle skew 

shafts with high velocity ratio and high loads. On the other hand, the worm gear has 

a complicated noninvolute tooth form. 

Table 5.1 summarises the main features of major types of gears, including the 

applications where the gears are used. 

5.2.1.1 Gear Standards 

Functional requirements can be used to determine tooth proportions, but this is not 

practical because it will produce various designs. Therefore it is better to use a 
limited number of standard tooth proportion designs and obtain the benefits of 
interchange ability, economy of common tooling, fewer design calculations and 
repeated use of the same designs. 

The fundamental parameters of gears, such as basic tooth form, pressure angle, 
addendum and worldng depth have been standardised by many national institutions 

and associations. The British standards institution (BS) and the American gear 
manufacturers association (AGMA) produced standardised gear systems (e. g. BS436 

and AGMA 170.01) as well as the necessary formulae needed to calculate the data 

required on a gear detail drawing for both manufacturing and inspection purposes. In 

the present work AGMA standardised gear systems are used for designing and 
manufacturing the reduction gearbox. 
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Gear type Features AppUcations Comments 

Recommended for all 

-Parallel shafting Applicable to all gear meshes, except 
where very high speeds 

Spur -High loads types of trains 
and loads or special 

-High speeds and a wide range features of other types, 
-High efficiency of velocity ratios such as right-angle drive, 

cannot be avoided. 
Complications due to 

Most applicable helix angle. 
-Parallel shafting to high speeds Recommended for all 

Helical -Very high loads 
and loads; also high-speed and high-load 

-Very high speeds used wherever meshes. Axial thrust 
-High efficiency spurs are used component must be 

accommodated. 

Crossed- -Skewed shafting Relatively low Point contact limits 
capacity. Suitable for 

helical -Low loads velocity ratio; right angle drives if light 
-Low speeds low speeds and Good lubrication load 
-High sliding light loads only . 

essential. 

Applicable to 
Equivalent quality to 

-Parallel shafting high speeds and 
helical gears with the 
advantage of eliminating 

Herringbone -Very high loads loads; also used the axial thrust. 
-Very high speeds wherever spurs Recommended for all 
-High efficiency or helical are high-speed and high-load 

used meshes. 

-Parallel shafting 
Requires high 
speeds and loads; Not recommended 

Internal -High loads 
offers high stress 

because of the design and 
-High speeds loading; long life fabrication limitations. 

Suitable for 1: 1 Good choice for right- and higher 
angle drive, particularly 

Bevel -Intersecting shafts velocity ratios 
low raius. Complicated 

-High loads and for right- tooth form and fabrication 
-High speeds angle meshes limits the precision of (and other bevel gears. angles) 
-Skewed shafting Best choice for 

-High velocity Suitable for high combination high velocity 
ratio velocity ratios; ratio and right-angle Worm 
-High loads angular meshes; drive. High sliding 
-High speeds high loads requires excellent 
-Low efficiency lubrication. 

Table 5.1 Summary and evaluation of gear types 
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In design and inspection of gear system, several special features must be known. 

These features will include the following: 

i. The pitch diameter D. 

ii. Metric Module M 

Ill. Addendum a. 
iv. Dedendum b. 

v. Outside diameter D, 

vi. Face width L. 

vii. Centre distance c. 

viii. Pressure angle 0. 

ix. Velocity ratio VR. 

x. Number of teeth n. 

xi. Train value TV. 

xii. Helix angle V/. 

xiii. Quality value, which determine the dimension tolerances. 

Figure 5.3 identifies some of these features. 
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When two gears mesh, the smaller is called pinion and the larger is the gear. in this 

section the subscript P will be used to refer to the pinion while the subscript G will 
be used to refer to the gear. 

Gears generally fail because the actual loads applied to the teeth are greater than the 

allowable loads based upon either the bearn strength of the tooth (tooth fracture) or 
its wear strength (surface failure). Therefore, the stress analysis and the surface 
durability analysis of the gear teeth could be used to calculate the allowable stresses 

of the meshed gears. The stress values are usefid in designing the appropriate gears. 
Equations 5.1 and 5.2, empirically modified by AGMA from Lewis equation, will be 

used to calculate the bending strength stress and surface wear stress, respectively. 

The stress at the root of gear tooth is given as: 

F K,, K. 
at =. t (5.1) 

K, MLJ 

where a, = Calculated stress at root of tooth, MPa 

E= Transmitted tangential force, N t 
L= Face widdi, mm 
M= Metric module 
J= Geometry factor 

K. = Application factor 

K,, = Dynamic factor 

K,. = Load distribution factor 

Detailed derivation of Eqn. 5.1 is presented in Appendix D. 

The gear wear stress can be expressed as: 

.c 
IS. S. F, 

oh =O 
'* ý S, LDI 

(5.2) 
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where a,, = Calculated wear stress, MPa 

E Transmitted tangential force, N 
t 

L Face width, mm 

D Pitch diameter, mm 

I Geometry factor 

S,, = Application factor 

S, = Dynamic factor 

S. = Load distribution factor 

All K and S factors are empirical values provided by AGMA t33-541 in forms of tables 

and figures. Extracted figures and tables are included in Appendix D. 

5.2.1.2 Gearbox Design 

i. Factors Affecting the Design 

Designing gears presents an extremely difficult problem because it is primarily a trial 

and error procedure. However, there are several methods that can be used to develop 

a design. In a design involving gear drives, it is required to know the following 

parameters, that is, rotational speed of the pinion, rotational speed of the gear and the 

amount of power that the drive must transmit. These parameters are determined by 

the application under consideration. Furthermore, the environment and the operating 

conditions to which the drive will be subjected must be understood so that the right 

empirical factors, provided by BS or AGMA, involved in the design can be correctly 

chosen. 

ii. Design Specifications 

In general, the design specifications of a gearbox should include the followings: 

i. The type of gears. 
ii. Their arrangements on the shafts. 
iii. 'Me gears material including their heat treatment. 
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iv. The geometry of the gears, which are the number of teetk metric 

modules, pitch diameters, tooth form, faces width and quality numbers. 

Furthermore, the design should account for the bending fatigue strength of the gear 
teeth and the wear resistance sometimes called surface durability. 

There is no one best solution to a gear design problern; several good designs are 
possible. The creativity and the specific requirements of the application will greatly 
influence the selection of the final design. In the present work, the design procedure 
to be followed is to provide a mean of approaching the problem in order to have a 

reasonable design. 

The final design of the gearbox should have the following characteristics: 
i. Compact, safe and low in cost. 
ii. Operate smoothly and quietly. 
iii. Easy to manufacture and has a long life. 

iv. Compatible with the other elements in the machine such as bearings, 

shafts, housing and the driven machine. 

iii. Design Procedure 

The design procedure is a trial and error methodology and it should have the 
following sequence order: 

i. A proposed geometry that satisfies the required velocity ratio and 

application limitations such as centre distance and physical size. 
ii. Selection of the type of material to be used (steel, cast iron etc). 
iii. Choice of metric module. 
iv. Determination of the loads and faces width. 

V. Calculation of the bending stress. It should be noted here that if the 

output results satisfy the design requirements, the procedure continues, 

otherwise a new metric module is selected and the procedure is repeated 

starting from point iii. 

vi. Computations of the contact wear stress on the surface of the teeth. If the 

output results satisfy the design requirements, the procedure continues, 
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otherwise a new material is selected and the procedure is repeated 

starting from point ii. 

The sequence of the above design procedure can be illustrated in the flowchart 

depicted in Fig. 5.4. 

Proposing a satisfactory geometry 
d 

I 

Material choice 
T 

Choice of metric modulo 
L 

Calculating loads, faces width 
and design parameters 

I 

Compute the bending stress fro 

The bending stress 
value accepted 

Yes 

Compute the surface contact 
(wear) stress from Eqn. 5.2 

No The wear value 
accepted 

Yes 

Satisfactory design parameters 
io gr for pinion a: nd gear 

Fig. 5.4 Primary parts of gearbox design procedure 
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iv. Design Calculations 

The requirements of the designed gearbox are: 

A. Reducing the angular velocity at the output of the gas turbine engine from 

42000 rpm to 1500 rpm which is the speed required by the electrical 

altemator. 
B. The direction of rotation of the gas turbine engine is counter clock wise 

while the electrical alternator must rotate in clock wise direction. 

C. The power that gearbox must transmit is 330 M 

The design calculations will include the following: 

A. The design calculations of the pinion and the gearbox. 

B. The design calculations of the shaft. 

C. The selection of the bearings. 

A. The design calculations of the pinion and the gearbox. 

The design calculation is a trial and error method and can be divided into the 
following steps: 

1. Co! pputing velogiiy ratio and rotational speed direction 

The velocity ratio was calculated as follows 

VR - 
wp (5.3) 
WG 

42000= 28 
1500 

where w =Angular velocity, rpm 

Velocity ratio of 28 is difficult to achieve in one stage reduction gearbox, using two 

parallel shafts, due to the size of the produced gearbox Therefore a gear train can be 

the solution to this problem. At the same time, the direction of rotation must be 

accounted for which should be opposite to the main shafft, see Fig. 5.5. 
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In order to produce a different rotational direction using a gear train, an even number 

of parallel shafts should be chosen. The suitable choice of the number of parallel 

shafts is selected to be four because increasing the number of parallel shafts will 

reduce the power transmission efficiency, increasing the cost and time of 

manufacturing. A schematic diagram of proposed four parallel shafts (triple 

reduction gearbox) is shown schematically in Fig. 5.5 

The gear train proposed will consist of three meshed gears and any combination of 
these three gear stages that produces a velocity ratio of 28 can be acceptable. in the 

present work the selected combination is listed in Table 5.2. 

2. Specifying the WomgM of the gm 

Each stage of the gearbox will be designed using the same trial procedure, but for the 

sake of brevity, the design calculations of the first stage will be shown as an example 
to the next two stages. 

Start by specifying the geometry of the pinion, which include: the type of gear, the 

normal metric module M, and the number of teeth nP - The gear type is chosen to be 

a herringbone (refer to Table 5.1) with a helix angle V of 30' and normal pressure 
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angle 0 of 20', the metric module and the number of teeth are chosen to be 4 and 12, 

respectively. 

Gear Pinion Speed w, (rpm) Gear Speed w. (rpm) Velocity Ratio 

First stage 42000 21000 2 

Second stage 21000 5250 4 

Third stage 5250 1500 3.5 

Gear train 42000 1500 2x4x3.5 = 28 

Table 5.2 Reduction gearbox stages 

The pitch diameter Dp can be calculated from the definitions of the module in Eqn. 

5.4 as follows: 

Dp = 
np X Mnonnal 

Cos Y/ 

= 
12x4 

= 55.43 mm 
cos30 

(5.4) 

Addendum a, dedendurn b and outside diameter D,, p are calculated from Eqn. 5.5 to 

EqrL 5.7. 

a=1. OOxM (5.5) 

= 1.00 x4=4.00 mm 

b=1.25xM (5.6) 

- 1.25 xM=5.00 mm 

D. p =D, +2a (5.7) 

= 55.43 +2x4.00 = 63.43 mm 

By knowing the velocity ratio and the geometry of the pinion, the pitch diameter, the 

number of teeth and the outside diameter of the meshed gear can be calculated as 
follows: 
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Da =Dp xVR (5.8) 

= 55.43 x2= 110.86 mm 

nG np x VR (5.9) 

12 x2= 24 

D, 
2G =D, +2a 

= 110.86+2 x 4.00 = 118.86 mm 

The centre distance is computed from Eqn. 5.11 below. 

Dp +DG (5.11) 
2 

= 
55.43+110.86 

= 83.145 mm 2 

3. Computing the pitch line velocity 

The pitch line speed Vp in meters per second can be computed from Eqn. 5.12 

below. 

VP zDco, (5.12) 
60000 

ir x 55.43 x 42000 
60000 

121.9 mls 

4. Computing the transmission force 

The transmission force F, in Newton can be calculated as follows 

VP 
(5.13) 
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330000 
= 2707.2 N 

121.9 

where P is the transmitted power in kW 

5. Calculations of the bendinit stress 

For the pinion, taking the face width L for the herringbone gear as 80 mm. The 

bending stress a, can be calculated using Eqn. 5.1 with the AGMA empirical 

values as follows: 

utp - 
F, 
K, MW 

2707.2 x 1.25 1.6 
x-= 88.125MPa 

0.48 4x 80 x 0.4 

Sinfflarly for the Gear, the bending stress aG can be calculated using Eqn. 5.1 with 

the AGMA empirical values as follows: 

oriG 
FKa Km (5.1) 
K, MU 

2707.2 x 1.25 
x 

1.6 
80.1 lAffla 

0.48 4x 80 x 0.44 

Values of empirical factors K., K., K,, and J are selected based on figures and tables 

provided by AGMA given in Appendix D. 

According to the availability of the material in the local market, AISI 4140 was 

chosen. This satisfies the calculated bending stresses condition for the pinion and the 

gear, respectively. 

6. Calculations of the wear stress 
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The wear stress for the pinion ahp can be calculated using Eqn. 5.2 using the 

AGMA empirical values as follows: 

ahp 
IS. S. F, (5.2) 
S, LDI 

f- -1.25xl. 6x2707.2 
191 xý0.48 

x 80 x 55.43 x 0.085 
1045 MP 

Similarly for the Gear, the wear stress uhG can be calculated using Eqn. 5.2 as 

follows: 

Q 
S. S F, 

UhP 'pý SLDI 
(5.2) 

= 191 xr1.25 
x -1.6x 2707.2 

681.17 MPa ý0.48x80x110.86x0.1 

The material was chosen before satisfies the calculated wear stresses for the pinion 

and the gear. Refer to figures and Tables in Appendix D. 

B. The design calculations of the gearbox shafts 

The diameter of the shaft can be calculated using Eqn. 5.14. Detail derivation of Eqn. 
5.14 is shown in Appendix C. 

d= (SF (64ý 
-p)(-I 

)] Y3 

where: 
d= The diameter of the shaft, m 
P ='Ibe power developed by the shaft Watt. 

co = Angular velocity, radls . 
6shear =Allowable shear stress, Nlm 2 

(5.14) 
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SF= Safety factor. 

Note that =1 
1551 

3 

The selected material that was available in the local market is AISI 4140 and its 

yield strength is 1460 AVa. 

'N - 
Y3 

(1.5) (64 330000 x 60 
1()6 = 0.0212 

ý 

42000 x2x ir 

) 

(x)( 
1460 x 

3 

- 21.2 mm 

The calculated value of the shaft diameter showed that 21.2 mm is the minimum 

value that satisfies the material specifications regarding stress values. 

C. The selection of the beaAngs 

The selection of bearings is based on three criteria: - (a) the type of load and its value 
(b) the rotational speed and (c) life cycle. Calculations of shaft diameter d showed 
that the most suitable bearing size for this design is equal to 25 mm. This size was 
selected because it was available in the local market and satisfies the load and the 

rotational speed of the shaft. The design load calculations of the bearings are outside 
the scope of this research work and can be found in any text or technical book. 

Furthermore, it is important to specify the type of the bearing for the application 

used in this research work. However, it should be noted that there are several types 

of bearings that can satisfies the design specification of this application but the 

selection was based on the availability and cost wise. It was found that a deep groove 
bearing satisfies the selection criteri& 
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5.2.1.3 Complete Design Data 

Similar procedure was carried out to calculate the remaining gears and shafts. The 

complete design data of the gearbox is listed in Table 5.3. Table 5.3(a) lists the 

design data of the gears and Table 5.3(b) lists the design data of the shafts and the 

selected bearings. 

# 

Pu& 

lUmmter 

(Mm) 

Number 

of Teegh 

n 

Prý c 

iNee 
0 

Niodde 

Nember 
m 

Heft 

Ande 

v 

0uNd" 

Dim»ter 

(Mm) 

Gew 

Sp»d 

(nm) 

Toogh 

vmth 

(ý) 

Type of 
Muterigd 

«EI) 

1 55.43 12 20 4 30 63.43 42000 2x 40 4140 

2 110.86 24 20 4 30 118.86 21000 2x 40 4140 

3 69.28 12 20 5 30 1 79.28 21000 2x45 4140 

4 277.14 48 20 5 30 287.14 5250 2x45 4140 

5 83.14 12 20 6 30 95.14 5250 2x 50 4140 

6 290.98 42 20 6 30 302.98 1500 2x 50 4337 

Table 5.3(a) Complete design data of the gears 

Shaft Type of Bearing Bearing Bearing Bearing Shaft 
Shaft 

Diameter Material Commercial 
Inner 

Diuseler 
Ckder 

Dianeftr Thicknew Speed 
# 

(MM) (AISI) Number 

1 25 4140 6205 25 52 15 
1 

42000 

2 25 4140 6205 25 52 15 21000 

3 40 4140 6308 40 90 23 5250 

4 65 4140 6213 65 120 23 1500 

Table 5.3(b) Complete design data of the gearbox shafts and bearings 

Various solid model views of the complete gearbox are shown in Figs. 5.6 to 5.9 
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Fig. 5.6 Isometric view 

Fig. 5.7 Top view of the gearbox 
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Fig. 5.8 Front N leNN of the gearbox 

Fig. 5.8 Side view of the gearbox 
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5.2.1.4 Manufacturing of Reduction Gearbox 

The manufacture of the reduction gearbox was carried out at the workshops of 

Jordan University of Science and Technology. Detail drawings of the various parts 

of the reduction gearbox are shown in Figs. 5.10 to 5.2 1. 
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5.10 First and second shaft bearing casing detailed drawing 
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Fig. 5.11 Third shaft bearing casing detailed drawing 

116 



Chapter 5 

7, 7 
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Fig. 5.12 Output shaft bearing casing detailed drawing 
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Fig. 5.21 Tbird shaft detailed drawing 

The assembly procedure for the various parts of the reduction gearbox is shown in 

Fig. 5.22 and the complete machined reduction gearbox Is depicted in Fig. 5.23. 
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Fig. 5.22 Assembly procedure for the various parts of the reduction gearbox 

Fig. 5.23 The complete machined reduction gearbox 
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5.2.2 Modifying the AIPU Stand for the Adaptation of the Reduction Gearbox 

and the Electrical Generator 

The connection between the APU stand and the gearbox was a straightforward 

procedure. The reason for that, the output shaft of the APU was a female spline shaft 

and this was considered in the early design of the input shaft of the gearbox to be a 

male spline so that direct coupling can be achieved. 

The connection between the alternator side and the output shaft of the gearbox was 
another problem. The problem was that the alternator was taken out from a diesel 

engine generator set and this alternator has a single bearing. This means that a new 

support for another bearing is needed. The support was manufactured and the 
bearing housing (pillow) was selected to fit the shaft. The complete structure is 

shown in Fig. 5.24. A coupling component between the gearbox and the alternator 
has to be designed and manufactured but it was found that it was more economic to 
buy a ready made one. This coupling component is shown in Fig. 5.25. 
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Fig. 5.24 Complete structure of support and bearing housing for the electrical 
alternator 
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Fig. 5.25 Main shaft Coupling 

5.3 Instrumenting the Test Facility 

The measurements needed to determine experimentally the performance of the gas 

turbine engine are usually pressures, temperatures, mass flow rates and rotational 

speed at various locations as shown on the test rig, Fig. 5.1. The quantities to be 

measured were not likely to change with time therefore only steady state 

measurements would be needed. For this purpose standard instruments may be used 
but if the outputs were electrical signals it would very convenient for recording the 

measurements. Tberefore, the choice depended on the availability of the instruments 

rather than any other considerations. The details of all the instruments and their 

calibrations are described in the following sections. 

5.3.1 Calibration of Instruments 

5.3.1.1 Pressure Gauges 

Pressure measurement of gauge pressure type was considered in this experimental 

work. Their calibration was camed out using a highly pressurised air bottle 

connected to a calibrated mercury-filled U-tube manometer and a calibrated pressure 
standard indicator. The calibrated pressure standard indicator is a calibrated pressure 
transducer uses a 4-digit digital display. The justification for using two calibrated 
pressure instrument to provide more accuracy to the calibrated process. 
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The inlet pressure port of the pressure gauge was connected to the inlet of both the 

calibrated pressure standard indicator and the calibrated mercury-filled U-tube 

manometer via an X-connection (Fig. 5.26). A regulated valve provided between the 

pressurised air bottle and the rest of the calibration set. This was used to regulate the 

air pressure going to the calibration set and to facilitate data reading at intermediate 

stations (mercury column height versus pressure gauge output). The whole 
calibration set up is depicted in Fig. 5.26. 

The air pressure was changed using the regulator valve and the pressure readings of 
the three instruments when air pressure stabilized were recorded. Since the pressure 

gauge readings were in pounds per square inch (PSI) and the manometer readings 

were in millimetre mercury (mmHg), the manometer readings were converted to PSI 

using the following equation: 

AP = PgL (5.15) 

where AP is the pressure difference in Pascal 

p is the mercury density in kglm3 

g is the gravitational acceleration in m1s2 

L is the length of the mercury column in the manometer in m 

and I Pascal= 1.45xlO-4psi 

The pressure gauge was calibrated by adjusting the gauge pointer referenced 

according to both the manometer readings and the calibrated pressure standard 
indicator readings. However, the three instruments calibration process was repeated 

again for all pressure gauges to make sure that pressure gauges give the same 
outputs. 
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Pressure 
Regulator gauge 

valve 

T 

U 

U-tube mercury 
manometer Calibrated pressure 

indicator 

Pressurised air 
bottle 

Fig. 5.26 Calibration equipment set for the pressure gauges 

53.1.2 Temperature Transducers (Thermocouples) 

A thermocouple is a temperature-measuring device made of two dissimilar wires. 
When those pair of wires is joined together at one end, a temperature difference 

between this end and the other end of the wires produces a voltage between the wires 
(Fig 5.27). The magnitude of this voltage depends on the materials used for the 

wires and the amount of temperature difference between the joined ends and the 

other ends. 

Reference 
temperature junction 

Metal #I -_7 

Temperature v being measured 

Metal #2 

Fig. 5.27 Schematic representation of a therniocouple assembly 

1he thermocouples used in the experimental work are of 'W' type thermocouples 

(Fig. 5.27). This type of thermocouples are made of chromel/Alumel alloy that has a 

working range from -200* C to 137r C'443 
- 
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The calibration process was carried out using an electrical heat source and a standard 

calibrated resistance temperature detector (RTD), which is considered an accurate 

temperature-measuring device. Both the thermocouple and the calibrated RTD were 
inserted in the same electrical heat source well. The calibrated RTD was connected 

to its equivalent temperature indicator while the thermocouple leads were connected 

to a calibrated 4-digit digital voltmeter. The equipment set up is depicted in Fig. 

5.28. The electrical heat source temperature was controlled by the calibrated RTD in 

order to stabilise the required heat source well temperature and to facilitate the data 

reading of instruments. 

Thermocouple R'FD 

RID temperature Digital voltmeter 
indicator 

n 

Electrical heat source 

Fig. 5.28 Thermocouple calibration equipment set up 
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The process of calibration was carried as follows, the electrical heat source was 

switched on and set at a temperature of 500 C, when the heat source reached the 

desired stabilized temperature then the calibrated RTD temperature (in 'Q was 

recorded against the thermocouple output (in mV). This process was repeated in 

steps of 500 C until reaching the upper limit of the electrical heat source of 8000 C. 

The recorded results have been tabulated in Table 5.4 and used to plot the 

thermocouple calibration curve as shown in Fig. 5.29. 

Temp. ('C) 50 100 150 200 250 300 350 400 

Volt (MV) 0.9865 3.043 5.094 7.096 9.1 11.14 13.24 15.337 

Temp. ('C) 450 500 550 600 650 700 750 800 

volt (mv) 17.325 19.385 21.418 23.456 25.486 27.528 29.575 31.634 

Table 5.4 Recorded results for thermocouple calibration 
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Fig. 5.29 Thermocouple calibration curve 

5.3.1.3 Fuel Flow Transducers 

A flow transducer of the turbine type has been used in the experimental work to 

measure the fuel flow. The flow transducer mounted directly in the fuel flow line and 

consists of cylindrically bored housing, flow straightners and a ferromagnetic turbine 
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assembly, and a magnetic pickoff. The components of fuel flow transducer are 

shown in Fig. 5.30(a) and ftiel flow transducer is shown in Fig. 5.30(b). 

rtAup__ 

C ON CT 

Flow S71AIGHTEN 

Ir ROTOR 

3ýw ING SPING 

Fig. 5.30(a) Main components of turbine fuel flow transducer 

Fluid passing through the turbine causes it to revolve at a speed directly proportional 
to the fluid velocity. As each feffomagnetic rotor passes the magnetic pickoff, it 

varies the magnetic pickoff reluctance, producing an ac signal. Since turbine speed is 
directly proportional to the fluid velocity, which produces ac signal, i. e. signal 
frequency, therefore, frequency is proportional to the rate of the flow th. f * The output 
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signal can be fed into various types of instruments, to indicate the rate of flow, such 

as a frequency counter, a frequency converter or a voltmeter. 

The fuel flow transducer calibration set up consists of a fuel pump, a calibrated 
frequency counter, timer, regulating valve and a calibrated digital mass scale. The 

fuel pump output port was connected to the input of the regulator valve where the 

other port of the regulator valve was connected to the fuel flow transducer. The 

output of the fuel flow transducer was connected to 2-way switch valve directed 

towards an empty fuel container or the main fuel tank as shown in Fig. 5.31. The 

magnetic pickoff lines connected to a calibrated digital frequency counter. The 

calibration equipment set up for the fuel transducer is shown in Fig. 5.3 1. 

Frequency 
counter 

Regulator 
Fuel pump valve 2-Way 

Flow tran-Aucer valve 

Fuel 
container 

Main fuel Calibrated 
tank mass scale 

Fig. 5.31 The equipment set up for the fuel flow transducer 

The process of calibration was carried out as follows: the fuel pump started while the 

regulator valve was fully opened and the 2-Way valve directed towards the fuel main 
tank. Time was given to the flow to stabilise then the flow directed towards the 

empty container as the timer started. During the next 20 seconds the frequency 

counter reading recorded then as the pump switched off the timer stopped and the 
fuel collected during the process weighed using the calibrated scale. The same 

process has been repeated every time the regulating valve partially closed. The 

measured frequencies, weight of fuel and time recorded have been tabulated, using 
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the tabulated data the flow rate calculated and added to the tabulated data at Table 

5.5. 

Measured Calculated 
Frequency (Hertz) Weight (kg) Time (seconds) Flow rate (kfZs) 

1500 2.835 19.25 0.147273 
1200 2.268 19.25 0.117818 
900 1.701 19.25 0.088364 
600 1.134 19.2 0.059063 
480 0.907 19.21 0.047215 
360 0.68 19.26 0.035306 
240 0.454 19.32 0.023499 
180 0.34 19.32 0.017598 
120 0.227 19.31 0.011756 
90 0.17 19.22 0.008845 
73 0.138 19.19 0.007191 
Table 5.5 Recorded and calculated data for fuel flow transducer 

The data measured and calculated has been used to plot the calibration curve that 
shown in Fig. 5.32. 
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53.1.4 Gas Flow Pitot Tube 

A Pitot tube was chosen to measure the gas flow rate in the current experimental 

work for the following reasons: 
i. The Pitot tube can be easily manufactued and installed in the test rig. 
ii. The Pitot tube produces no appreciable pressure loss. 

iii. The Pitot tube can be inserted through comparatively small hole into 

the main gas stream without the necessity for shutting off the system. 
iv. The Pitot tube can be used to measure local velocities at different 

points in the test rig. 

The Pitot tube consists essentially of a tube with an open end placed in a direction to 

face a stream of fluid. The stream of fluid will produce an impact pressure in the 

tube derived from the loss of the fluid Idnetic energy. This tube will give the sum of 
impact (dynamic) and static pressure; a Pitot tube must work in conjunction with a 

means of measuring the static pressure. This might be incorporated in the Pitot tube 

itself or in a simple connection in the wall of the main stream. 

The Pitot tube that has been designed, manufactured and used for calculating the gas 
flow according to the British standard 1042, where a separate Pitot and static tubes 

are used as shown in Fig. 5.33(a) and Fig. 5.33(b). 
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Fig. 5.33(b) Static tubes -with separate total pressure tubes 

If the two pressures are connected across a U-tube manometer, the difference 

between the total (static and dynamic) pressure head and the static pressure head at 
that local point can be measured. This pressure difference will be equal to the 

velocity head or pressure head produced by the loss of kietic energy at that local 

point. 

12 
AP =2 pg, 

' 1". 1 (5.15) 

VW. 
l (5.16) 

in case of using a mercury manometer 

AP = pý, ý,, gL 

where p.,, is the density of mercury in kg/M3 

g is the acceleration due to gravity In IIVS2 
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L is the manometer pressure head in rn 

132 mm 

102 mm 
68mm 

45 mm 
29 mm 
16 mm 

5 mm 

30 

Diameter 200 mm 

1! 155 m m: 

:: 171 mm: 

25 - E 
E 

20 
C 

15 

10 

5 CL 

Laverage= ý5.7 

0ýti 

0 50 100 150 200 

Fig. 5.34 Methods of making traverses at the Pitot tube 

515.8 
V1.1 = -ýý P pg,. 

gm 

(5.18) 
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The gas turbine exhaust has been used to measure the gas flow rate using the Pitot 

tube because of the difficulty of inserting the Pitot tube in the compressor inlet. The 

gas turbine used in this experimental work is of a radial type, which produces a high 

swirling velocity at the exit. Introducing a flow straightners in front of the Pitot tube 

has reduced this swirling effect. 

Since the gas velocity is not uniforn-Ay distributed over the normal section of the gas 
stream, the velocity must be determined at enough points of the section to give a fair 

average. Since the gas flow was measured at a circular duct, the Pitot tube is moved 
from one side of the duct to other by equal increments. The pressure head is recorded 

at each incremental point and the square root of the pressure head values plotted on a 
graph against the incremental points positions as shown in Fig. 5.34. Then the square 

root of the pressure head values averaged over the duct diameter and the average 

velocity is calculated using the following equation: 

515.8 V-1-V = lp- -9. g (5,19) 

515*8 V. 
rne V il. 1-7 7 

fO. 0157 = 59.57 mls 

After having made the traverse of the circular duct, the gas velocity at the duct centre 
has been calculated and the ratio between the centre, velocity and the average 
velocity obtained. 

V.. 
V. 

-g. (5.20) 
V. I. 

59.57 
V.. 

79.56 = 0.74875 

Finally the Pitot tube is fixed at the duct centre and the velocity ratio used to obtain 
the average velocity from the centre reading according to the following equation: 
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v=V. X Vtr, 
awrage rafto 

v=0.74875 x V�. 
��, 

(5.22) 
average 

The gas mass flow then calculated as follows: 

Mg,. = pg,. A V.,,,.. 
g, 

(5.23) 

where A is the cross sectional area of the flow in m' 

rh g_ ý pg_A (5.24) 

IT 2 515.8 
-DV,.,, ý 

'hgas pgas 
4 ýP- (5.25) 

if the cross sectional diarneter is 200 mm 

Agas = 12.133ýp-g,,., 

5.3.1.5 Pressum Transducen 

(5.26) 

Pressure transducers of both gauge and absolute pressure type were considered in 

this experimental work. 

The calibration of the absolute pressure type transducer (ranges from 0 to 15 psia), 

shown in Fig. 5.35, was carried out using a vacuum pump connected to a mercury- 
filled U-tube manometer. The inlet pressure port of the transducer was connected to 

the same side of the manometer via a T-connection (Fig. 5.36), while the output of 
the transducer was measured on a calibrated digital voltmeter accurate to 4 

significant figures in the design range of the transducer output (1 -6 volts). A shut-off 

valve was provided between the vacuum pump and the manometer (after the 

transducer connection point). This was used to re-pressurise, the system gradually 
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and facilitate data reading at intermediate stations (mercury column height versus 

transducer output). The whole calibration set up is depicted in Fig. 5.36. 

0 

Fig. 5.3 5 Absolute pressure transducer (0- 15 psia) 

Shut-off U-tube mercury 
valve manometer 

CU 

Vacuum pump Pressure 
transducer 

Calibrated Voltmeter 

Fig. 5.36 Calibration equipment set for the absolute pressure transducer 

The vacuum pump was started while the shut-off valve Was Open, and Was run for a 

sufficient time until the difference in the mercury columns was at the maximum 

achievable (after a 30-minute run the difference in mercury height was hardly 

changing). The shut-off valve was then closed and the vacuum pump stopped. 
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The mercury height reached (in mm. Hg) was recorded against the transducer voltage 

output (in volts), then the shut-off valve was slightly opened and closed very quickly 

and the new mercury height and transducer reading were recorded. The process of 

opening and closing the shut-off valve was repeated several times until zero mercury 
height difference between the two sides of the U-tube manometer was restored. 

Height readings were subtracted from the value of the atmospheric pressure (which 

was equivalent to 748mm Hg, on the day of day of calibration), the results which 

represent the absolute pressure value tabulated against the equivalent pressure 
transducer voltage output in Table 5.6. 

Manometer reading (mmHg) 6 53 96 160 210 295 
Transducer output (Volts) 1.0339 1.3347 1.6099 2.0195 2.3395 2.8835 
Manometer reading (mmHg) 350 414 504 580 690 740 
Transducer output (Volts) 3.2355 3.6451 4.2211 4.7075 5.4115 5.7315 

Table 5.6 Recorded results for the absolute pressure transducer 

The data measured and calculated has been used to plot the calibration curve that 
shown in Fig. 5.37. 
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Fig. 5.37 Absolute pressure transducer calibration curve 
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The calibration of the gauge pressure transducer (ranges from 0 to 100 psig), shown 
in Fig. 5.38, was carried out using the same procedure and equipment set of the 

pressure gauges described in section 5.3.1.1. The only difference of the equipment 

set was that the output of the pressure transducer was measured on a calibrated 
digital voltmeter accurate to 4 significant figures in the design range of the 

transducer output (0-10 volts). The measured voltage and the equivalent manometer 

readings have been tabulated in Table 5.7. The data measured and calculated has 

been used to plot the calibration curve that shown in Fig. 5.39. 

Manometer reading (mniHg) 5 112 252 362 443 567 
Transducer output (Volts) 0.00967 0.2166 0.4873 0.6999 0.8566 1.0964 
Manometer reading (mmHg) 642 728 819 894 962 984 
Transducer output (Volts) 1.2414 1.4077 1.5837 1.7287 1.8602 1.9027 

Table 5.7 Recorded results for the gauge pressure transducer 

064 141% 

Fig. 5.38 Gauge pressure transducer (0- 100 psig) 
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Fig. 5.39 Gauge pressure transducer calibration curve 

5.4 PC Based Gas turbine Plant Data Acquisition System 

The gas turbine power plant instrumentation was extended by the digitisation of 
building a personal computer based data acquisition system. The various parameters 

of the gas turbine plant performance such as temperature, pressure etc. which 
considered as physical quantities can be converted to an analogue electrical signal 

using active or passive transducers as shown in Fig. 5.40. The next step is to 

condition the analogue signals to a specified direct current voltage (± 10 V DC) and 

converted to digital signal by DAQ card. The Final acquired data can be processed 

using a personal computer and a print out can be extracted. Figure 5.40 illustrates the 

gas turbine plant data acquisition system. 

This acquired data has to be processed again. Tberefore, a computer software 
program was developed to carry out the following functions: 

i. Converting the digital values of the acquired data into readable values of 
the physical quantities such as pressure, temperature, etc. 

ii. The program has the ability to use the acquired converted data to calculate 
various performance parameters such as power output, thermal efficiency, 
torque and specific fuel consumption. 
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iii. The program has the ability to ftinction as an alarming system in case of 

exceeding limits of the physical quantities such as over speed, low oil 

pressure and high turbine mlet temperature, etc. 
iv. The ability to display, save and printout the results. 

Physical 
Phenomena 

E- 

Transducers 
& Sensors 

HIH ffl 

Signal 
Conditioning 

-10t()OVdc 

Eii> <. 
ucôôô6ôá 

El 
E] 

"M Ll- 
Printer 

Personal Computer 

DAQ 
PCI Card 

Fig. 5.40 Illustration of gas turbine plant data acquisition system 

This program was written using Data Translation Measure Foundry software. A 
flow chart of this program is shown in Fig. 5.41. The main window of the developed 

program is depicted in Fig. 5.42. 
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Start 

Input the buffer size and the speed of sampling 

Read the digital values as dc 
voltage from data acquisition card 
according to the speed of sampling 

Store data in buffer 

Calculate the average of 
buffer stored values 

Calculate the physical values by converting 
average values of buffer and using the 
calibration charts for each transducer 

Display calculated values ý! L<, ýUpdate 
as digital numbers 

Store data on disk 

stop I 

Fig. 5.41 Flowchart of computer data acquisition software program 
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CHAPTER 6 

RESULTS AND DISCUSSION 
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6.1 Introduction 

The results of the research prograrnme reported in this thesis have been divided 

broadly into two categories, namely: (a) Results of parametric study of the gas turbine 

cycles and the combined power and power (CPP) cycles and (b) Results of rwdelling 

and simulation. 

The primary purpose of the parametric study was to show the influence of either the 

principal design variables and cycle configurations or the operating conditions on the 

performance of the gas turbine engine working in series with a steam turbine engine as 

a part of the combined power and power or CPP plant. It was hypothesised that a 

combination of a particular set of the design parameters, cycle configuration or the 

operating conditions that might produce the optirnwn performance when the gas 

turbine engine was used of its own for electrical power generation, night not be 

optimum if the same engine worked in series with a steam turbine in a CPP plant. The 

reason which gave rise to this twwthesis was that in the CPP plant environment, the 

factor that must be taken into consideration would be the grade of the thermal energy 

of gas turbine exhaust indicated by its temperature. The theory of the parametric study 

was developed in chapter 3; the results obtained by applying that theory are given in 

this chapter. 

Parametric study is a very powerfid tool for the initial stages of optimisation but it 

would be restricted only to design point performance. In order to investigate off 
design perfommce of gas turbine engines, it would be necessary to either run the 

engines and measure actual performance or use modelling techniques to obtain 

performance through computer simWatiorL Various modelling techniques have been 

developed by researchers and designers of gas turbine engines. Almost all such 
techniques rely on real experimental data, but they depart only in the method of using 
these data for matching the components and the load. There are two most widely used 
techniques; in one the data would be used to produce equations with the help of the 

available curve fitting techniques and in the other Lookup Tables would be produced 
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on which the matching criteria would be satisfied by using interpolation or 

extrapolation methods. 

Alternatively, matching conditions between the compressor and the turbine, for 

example, might be met by superimposing the turbine performance characteristics on 

the compressor performance characteristics. This graphical approach, if computerised, 

can be very useful tool for simulating gas turbine engines. The procedure used for 

developing this technique was explained in chapter 4; the results of simulation are 
discussed in this chapter. 

6.2 Discussion of Results of Parametric Study 

Theoretical investigations, which included parametric studies, were carried out on the 

computer using the sirnulation computer program and the assumed parameters' values 

tabulated in Table 3.1 of chapter 3. The outputs of the computer programs developed 

for the parametric study were used to generate Fig. 6.1 to Fig. 6.6 for the performance 

of the gas turbine cycles and Fig. 6.8 to Fig. 6.23 for the performance of the combined 

power and power cycles. 

6.2.1 Results of Parametric Study of the Gas Turbine Cycles 

The relationship between the gas turbine efficiency qg, and specific work w., at 

constant pressure ratio r and turbine inlet temperature T. 3 are shown in Fig. 6.1. It can 

be seen that the maximum efficiency points and the maximum specific work output 

points at different values of constant temperature or pressure ratio are not coincident. 

The design choice can be either to opt for maximum efficiency (industrial applications 

with low operating cost) or maximum specific work output (rnilitary applications with 
high power/weight ratio) or any other point that may represent the optirmun choice for 

a particular application. 

Figure 6.2 depicts the relationship between the pressure ratio r and the gas turbine 

exhaust temperature T, 4 at constant turbine Wet tenVeratUreT. 3 . It can be sew that 
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raising the turbine inlet temperature T,, 3 as well as lowering the compressor pressure 

ratio r can increase the gas turbine exhaust temperatureT,, It is worth noting that the 

maximum specific work output points have a higher turbine exhaust temperatures than 

the maximum efficiency points. Furtherniore, the higher the pressure ratio the greater 

would be the difference between the points of maximum thermal efficiency and 

maximum specific work output. This is because of the increasing divergence between 

the maximum thermal efficiency and maximum specific work output lines with 
increasing cycle pressure ratio. 

Reheating the gas turbine cycle increases the specific work output with sorne 

reduction of thermal efficiency. This is because reheating of exhaust gas after the first 

expansion does not contribute in any way to the cycle pressure ratio, as shown in the 

T-S diagram, Fig. 6.7, consequently the thermal efficiency reduces. Reheating also 

tends to reduce the difference between the maximurn efficiency points and the 

maximum specific work points. Hence, for the reheated gas turbine cycle at constant 
turbine inlet temperature there is only one point for both maximum thermal efficiency 

and maximum specific work output at each cycle pressure ratio as illustrated in Fig. 

6.3. 

The exhaust gas temperature of the reheat gas turbine cycle can also be plotted against 

pressure ratio, Fig. 6.4. An increase in the exhaust temperature is expected due to 

reheating but the change in exhaust temperature with the pressure ratio is totafly 

different dm that for the simple gas turbine cycle especially at lower values of T., 

The effect of cooling the air before it enters the compressor on the gas turbine exhaust 
gas temperature is shown in Fig. 6.5. As would be expected, at a constant value of the 
turbine entry temperature the exhaust gas temperature decreases as the cycle pressure 
ratio is increased. From the point of view of the combined power and power cycle this 
is an undesirable feature. However, both the specific work output and the thermal 
efficiency iticrease with increasing cycle pressure ratio. This can be seen in Fig. 6.6 

which gives a comparison between the simple gas turbine cycle, reheat cycle and the 

pre-cooling cycle. 
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Fig 6.7 Temperature-Entropy diagram of reheat gas turbine cycle 

6.2.2 Results of Parameftic Study of the CPP Plant Cycles 

Several configurations of the gas turbine plant and the steam turbine plant that 

comprise the CPP plant were studied. These configurations are: 

i. Simple gas turbine cycle combined with simple steam cycle. 

ii. Simple gas turbine cycle combined with dual pressure steam cycle. 

iii. Reheat gas turbine cycle combined with simple steam cycle. 

iv. Reheat gas turbine cycle combined with dual pressure steam cycle. 

v. Gas turbine Inter-cooling cycle combined with simple steam cycle. 

vi. Gas turbine Inter-cooling cycle combined with dual pressure steam cycle. 

The first set of results, which covers the simple gas turbine cycle combined with 

simple steam turbine cycle, is given in Figs. 6.8 to 6.12. The conditions for calculating 
the relevant data are shown on each figure. 
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Figure 6.8 shows the relationship between the CPP thermal efficiency ; 7, and the 

pressure ratio r at constant turbine inlet temperature To3 *It can be seen that increasing 

the gas turbine inlet temperature will increase the combined cycle efficiency and for 

each turbine inlet temperature T,, 3 . there is an optimum pressure ratio value. 

60 

- 55 

50 
c 4) 

45 

w 40 
Fu 
E 35 

30 

0 25 

20 

T. 3 1700K 

--------- 
-- 

--------------- 
T. 

3 
1400K 

T., =I IOOK 

r 
-P -Mbar bar Pst-20 

-PDst--50 bar 

Dst_ _90 ----- Pst-90 bar] 

59 13 17 21 25 29 33 
PresSUre Rato 

Fig. 6.8 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures and boiler pressures (simple combined cycle) 

Figure 6.9 depicts the relationship between the CPP specific work output wcpp and 

the pressure ratio r at constant turbine inlet temperature T,, 3 . 
It can be seen that 

increasing the gas turbine inlet temperature will increase the specific work output. The 

maximum specific work output at each turbine inlet temperature will be at low 

pressure ratio values. This is due to the fact at these values of pressure ratio, the gas 

turbine cycle will have a higher exhaust temperatures; hence the steam cycle will 

produce more power output. Consequently the CPP specific work output increases. 

Figure 6.10 is a combination of Fig. 6.8 and Fig. 6.9, which shows the relationship 

between the CPP thermal efficiency il, and the CPP specific work output wcp at 

various turbine inlet temperature T, 
)3, 

It is noticeable that the maximum efficiency 

points and the nmmmurn specific work output points do not coincide. 
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Fig. 6.10 Combined specific work output versus combined efficiency at constant 
turbine inlet temperatures and boiler pressures (simple combined cycle) 
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Figure 6.11 shows again the relationship between the CPP thermal efficiency ? 7cpp and 

the pressure ratio r at constant turbine inlet temperature T. 3. Furthermore, it shows 

the maximum CPP efficiency lines at different boiler pressure values of 50 bar and 90 
bar. It can be seen that increasing the turbine inlet temperature should be accompanied 

with an increasing in gas turbine cycle pressure ratio in order to achieve the maximum 

combined efficiency. 
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Fig. 6.11 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures with maximum efficiency lines (simple combined cycle) 

Figure 6.12 shows the relationship between the CPP thermal efficiency qcPP and the 

heat recovery boiler pressure P2,, at various cycle pressure ratios r and a constant 

turbine inlet temperature TO of 1400 K- It can be noted that the heat recovery boiler 

pressure can be selected from a wide range. Furthermore, it is worth noting that 

decreasing the heat recovery boiler pressure will have an economic advantage of 

lowering the combined plant total cost. In particular, the capital cost of building the 

heat recovery stearn generator. 
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Fig. 6.12 Combined efficiency versus steam boder pressure at different gas turbine 
pressure ratios 

The second set of results, which covers the reheat gas turbine cycle combined with 

simple stearn turbine cycle, is given in Figs. 6.13 to 6.15. The conditions for 

calculating the relevant data are shown on each figure. 

Reheating the gas turbine cycle reduces the CPP thermal efficiency, see Fig. 6.13 and 

increases the CPP specific work output, see Fig. 6.14. The reason for that, reheating 

of gas turbine exhaust after the first gas expansion lower the gas turbine cycle 

efficiency, as explained in the previous section. On the other hand, reheating will 

increase the gas turbine cycle specific work output and the exhaust gas temperature. 

Consequently, higher gas turbine exhaust temperature will increase both the steam 

turbine thermal efficiency and specific work output. Hence, the CPP specific work 

output increases. However, the increase in the steam turbine efficiency will not 

compensate for the reduction of gas turbine efficiency, consequently the CPP thermal 

efficiency reduces, refer to Fig. 6.15. 
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Fig. 6.13 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures and steam boiler pressures (gas reheat combined cycle) 
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Fig. 6.14 Combined specific work versus pressure ratio at constant turbine inlet 
temperatures and steam boiler pressures (gas reheat combined cycle) 
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Fig. 6.15 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures for simple combined cycle and gas reheat combined cycle 

The third set of results, which covers the simple gas turbine cycle combined with dual 

pressure stearn turbine cycle, is given in Figs. 6.16 to 6.18. The conditions for 

calculating the relevant data are shown on each figure. 

Figures 6.16 and 6.17 show that the dual pressure steam cycle will increase both the 

CPP thermal efficiency and CPP specific work output. It can be also noted that raising 

the turbine inlet temperature will also increase both the CPP thermal efficiency and 

CPP specific work output. Furthermore, the effect of higher values of pressure ratio 

on CPP thermal efficiency IS fairly small at constant T, 6 higher than 1400 K, while the 

CPP specific work output showed similar trends at all temperatures of TO' 

Figure 6.18 shows the comparison of various cycles; (a) Simple gas turbine cycle 

combined with simple steam cycle; (b) Simple gas turbine cycle combined with dual 

pressure steam cycle; and (c) Reheat gas turbine cycle combined with simple stearn 
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cycle. The trends of CPP thermal efficiency lines for theses cycles are similar. It also 

shows that Simple gas turbine cycle combined with simple steam cycle has the highest 

thermal efficiency. 
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Fig. 6.16 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures (simple gas and dual pressure steam combined cycle) 
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Fig. 6.17 Combined specific work output versus pressure ratio at constant turbine inlet 
temperatures (simple gas and dual pressure steam combined cycle) 
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Fig. 6.18 Combined efficiency versus pressure ratio for simple combined cycle, simple 
gas combined with dual pressure stearn cycle and gas reheat combined cycle 

The fourth set of results, which covers the pre-cooling gas turbine cycle combined 

with dual pressure steam turbine cycle, is given in Figs. 6.19 and 6.2 1. The conditions 
for calculating the relevant data are shown on each figure. 

Figures 6,19 and 6.21 show that the pre-cooling gas turbine cycle combined with dual 

pressure stearn turbine cycle will have a slight increase on both the CPP thermal 

efficiency and CPP specific work output. The trends of CPP efficiency and CPP 

specific work output are similar to the other combined cycles, i. e. increasing T, 3 Will 

increase both the CPP thermal efficiency and CPP specific work output. 
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Fig. 6.19 Combined efficiency versus pressure ratio at constant turbine inlet 
temperatures (gas turbine pre-cooling combined with dual pressure steam cycle) 
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Fig. 6.20 Combined specific work versus pressure ratio at constant turbine inlet 
temperatures (gas turbine pre-cooling combined with dual pressure steam cycle) 
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Fig. 6.21 Combined efficiency versus pressure ratio for simple combined cycle, gas 
pre-cooling combined with dual pressure stearn cycle and gas reheat cycle 

For comparison purposes of various studied cycles, Fig. 6.22 was drawn at T,, 3 of 

1400 K and steam boiler pressure P2,, of 50 bar. It shows that the maximum 

efficiency can be attained with the gas turbine pre-cooling cycle combined with dual 

pressure steam cycle. However, it is worth mentioning that pre-cooling cycles require 

the addition of new component, this means adding complexity to the system as well as 

increasing the capital cost of the plant. Therefore, the selection of such a cycle might 

incur a heavy econon-fic penalty. 
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6.3 Results of Modelling and Simulation 

It was shown previously in chapter 4a new methodology for matching and simulation 

of simple gas turbine engine used for power generation application. The output results 

of methodology are illustrated graphically in Figs 6.23 to 6.32. 

Figures 6.23 and 6.24 show complete typical performance characteristics of a 

centrifugal compressor and complete typical performance characteristics of a radial 

turbine [42] 
, respectively. 

In order to match the turbine with the compressor Figs. 6.23 and 6.24 have to be 

reproduced by introducing the matching parameter, refer to chapter 4 section 4.3, The 

outcomes of this transformation are shown in Figs. 6.25 and 6.26. For the compressor 

it is worth noticing that the constant speed lines were shifted apart, nevertheless the 

trends stay, the same. For the turbine, the trend of the constant speed Imes has 

changed. The reason is due to the fact that the turbine inlet temperature TO is not 
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Fig. 6.24 Complete performance characteristics of a radial turbine [42] 
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Superimposing Fig. 6.26 on Fig. 6.25 produces the complete matching characteristics 
of the gas turbine performance as depicted in Fig. 6.27. At any point within the 

matching range the following parameters can be computed: 

i. Turbine inlet temperature T. 3' ii. Turbine torque rt 

iii. Compressor power W, 

v. Turbine power W, 

vii. Net power output 

ix. Compressor torque r,. 

iv. Net output torque 

vi. Gas turbine thermal efficiency r7g,. 

viii. Specific fuel consumption SFC. 

The turbine inlet temperature TO lines of 650 K and 1400 K were computed and 

drawn in Fig. 6.27. It can be seen that the changes of constant T., lines at various 

pressure ratios are linear and showed divergence at higher values of speed and 

pressure ratios. The area between these two lines represents the accepted working 

range for the gas turbine engine. 
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Fig. 6.27 Complete matching characteristics of the gas turbine performance 
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For a power generation driven by gas turbine engine, let's consider any running line for 

example a speed of 42000 rpm as shown in Fig. 6.28. Based on the graphical analysis, 

the above parameters can be calculated within the specified working range. The output 

results are given in Table 6.1. 

4 
Matching 
Parameter r 

Turbine 
Speed 17, )7t To2 TO T., W, 

1 0.0413 3.483 0.242 83 82 436.82 651.97 508.69 268.24 
2 0.0387 3.558 0.2132 83.2 84.5 439.48 840 647.02 255.85 
3 0.0359 3.585 0.1954 81.8 84.5 

. 
443.17 1000 769.1 

. 
243.12 

4 0.0331 3.597 0.1776 80.8 82.8 445.58 1210.52 936.02 227.64 
5 0.03 3.61 0.1599 79.5 80 448.7 1493.34 1165.4 210.4 

# 
I W, W.. Fuel/Air 

Ratio 
thf ? 7gt SFC T, Tt 1-,. t 

1 1 296.79 28.55 0.00611 . 0.01095 6,37 0.7699 , 203.39 225.04 21.65 
2 374.59 118.74 0.01143 0.01921 15.1 0.4264 194 284.04 90.04 
3 415.78 172.66 0.01596 0.02488 16.95 0.3327 184.35 315.27 130.92 
4 455.72 228.08 0.02205 0.03169 17.57 0.3281 172.61 345.55 172.94 
5 493.48 283.08 0.03036 0.03955 1 17.48 1 0.3861 159.54 1 374.19 

. 
214.65_j 

Table 6.1 Calculated parameters within the specified working range of 42000 rpm 
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Fig. 6.28 Matching characteristics at running line of 42000 rpm 

Using the results in Table 6.1, the relationship between thermal efficiency and specific 

ftiel consumption with the net power output are drawn in Fig. 6.29. It shows that the 
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maximum thermal efficiency of 17.57% is attained, which corresponds to a net power 

output of 228 M and minimum specific fuel consumption of 0.3327 kg/kW. hr. 

Figure 6.30 shows that the gas mass flow rate is decreasing with increasing the net 

power output. At the same time the gas exhaust temperature is increasing under the 

same condition. This can be explained due to the fact that the turbine is considered a 

constant volumetric flow component, i. e. the turbine will passes the same amount of 

volume turbine flow rate. Increasing the turbine work output at constant speed can be 

achieved by raising the turbine inlet temperature TO In order to accommodate the 

same amount of volumetric mass flow at this higher To3 ý the mass flow rate must 

decrease. Consequently the gas exhaust temperature increases. 

In combined power and power cycles, the input conditions of the steam power plant 

are based on the two parameters, which are the gas mass flow rate and the gas exhaust 

temperature. These parameters can be extracted from Fig. 6.30. 
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Fig. 6.30 Variation of exhaust mass flow and temperature at 42000 rpm 

Figure 6.31 shows the variation of temperatures T, 2, T,, 3 and TA with the net power 

output. It can be seen that the variation of T. 2 is fairly small because T. 2 depends on 

the compressor pressure ratio and within the working range of the constant speed of 
42000, the pressure ratio variation is small (see Fig. 6.28). 

Figure 6.32 shows the relationship between the turbine and compressor torque with 

net power output of the gas turbine engine at constant speed of 42000 rprn. It can be 

noticed that the variation of torque and net power output is linear and increases at a 

constant rate. 
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7.1 Conclusions 

The gas turbine plant represents a complex system where its performance depends on 
many parameters. A parametric study of the gas turbine cycle was carried out to 

assess the influence of each parameter on engine performance in order to identify the 
design point. The design point in this case is defined as that point, which would give 
the optimum performance. Achieving the design point parameters depends on factors 

such as econonic, technological, operational and environrnental, etc. The design of 
gas turbine plants often requires a trade off between these factors. 

The gas turbine engine operating as part of the combined power and power plant does 

not only produce power but also the necessary thermal energy to operate the steam 
turbine plant. Therefore, what might be considered as the optimum performance for 

the gas turbine plant may not necessardy be the optimum performance of the 

combined power and power or the CPP plant. The results of the parametric study 

confirm this hypothesis. 

Gas turbine engine consists of various components that are linked together in such a 

way that there exists a mechanical and thermodynamic interdependence among these 

components. This means that some operational compatibility (matching) between the 

components is necessary for steady state operation. This requirement reduces the 

range of the operating conditions for these components. But it is possible to define a 

subset of the engine's operating envelope such that every point in this sub-region is at 

an equilibrium working point. These working points can be rnapped on the respective 

components' characteristics. The design point values are elements of this region 

which yield the best thermal efficiency within the range of the specified operating 

conditions. Arry point in the region other than the design point would represent an 

off-design condition. 

The off-design problem may therefore be stated as the determination of a point in this 

region that corresponds to some specified conditions at which the equilibrium criteria 

would be satisfied but at reduced value of thermal efficiency. Since the operating 
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points of the individual components can be deterniined by using a set of values of 

some characteristic parameters, the off-design problem reduces to computing the 

values of these parameters that would satisfy the equilibrium criteria, 

A computer program for simulating a gas turbine engine has been developed that can 

satisfy the necessary matching conditions analytically and thus achieve matching 
between the various components in order to produce the equilibrium running fine, 

Representing the data for this fine either in the form of lookup tables or an equation is 

known as modelling; solving that equation with the help of a computer is computer 

simulation. Thus modelling and simulation together satisfy all energy and mass 

balances, all equations of state of the working fluids, and the performance 

characteristics of all components. 

'Me sub ect of this thesis "Design criteria and performance of gas turbines in a j 

combined power and power (CPP) plant for electrical power generation" was an 

ambitious programme as the intention origin* was to adopt a full scale aircraft gas 

engine for the experimental work. As the work progressed, it became clear that using 

a fiffl scale engine was not practical option for the following reasons: 

(a) A matching alternator and a suitable gearbox to couple it to the engine 

were not available and purchasing these items especially for the purpose 

of this research was far beyond the research funds allocated originally. 

(b) A suitable boiler and a steam turbine to absorb the waste heat from the 

gas turbine exhaust could not be found. 

In view of these limitations, this research programme had to be modified without 

significantly altering its overall objective or scope. The emphasis then shifted to 

theoretical work and the development of computer programs to verify the hypothesis, 

which simply states that a different philosophy would be required to design a gas 

turbine specifically for CPP plant than that used for designing either industrial or aero 

gas turbine engines. 

The results of the work, presented in this thesis, led to the following conclusions: 
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For a simple gas turbine cycle, the maximum efficiency and the 

maximum specific work depend on different performance parameters, 

such as cycle pressure ratio or the dimensionless mass flow and speed 

parameters, while for a reheat gas turbine cycle, the maximum efficiency 

and the maximum specific work depend on identical performance 

parameters. 

Supplementary heating will always decrease the combined cycle 

efficiency except in the case that the supplementary heating significantly 
increases the stearn turbine cycle efficiency. 

iii. Increasing the gas turbine inlet temperature at constant cycle pressure 

ratio will increase the combined cycle efficiency and the combined 

specific work. 

iv. The higher the gas turbine inlet temperature the greater the influence of 

the pressure ratio difference on the combined cycle efficiency of any 

combined cycle configurations. 

V. Gas turbine reheating can be justified only if the turbine inlet 

temperature is low (low gas exhaust temperatures) and/or higher 

combined specific work output. 

vi. Although gas turbine pre-cooling improves the gas turbine perfonnance, 
it has a slight effect on the combined cycle efficiency and the combined 

specific work output. 

vii. In the combined power and power cycle, the combined cycle maximum 

efficiency depends on neither the gas turbine nuximm efficiency 

parameters nor the gas turbine nxuirnum specific work parameters, bit 

on new parameters that are closer to the gas turbine maximum specific 

work parameters. 

viii. Matching conditions between the compressor and the turbine may be 

met by superimposing the turbine performance characteristics on the 

compressor performance characteristics with suitable transformation of 
the co-ordinales. 

ix The computer simulation prograrn can help in investigating the effects of 

the components performance characteristics on the performance of the 

complete engine. This investigation can be carried out at the design 

178 



Chapter 7 

stage without bearing the cost of manufacturing and testing an expensive 

prototype. 

X- The computer simulation program can also serve as a valuable tool for 

investigating the performance of the gas turbine at off-design conditions. 
This investigation can help in designing an efficient control system for 

the gas turbine engine of a particular application including being an 
identical of the CPP plant. 

7.2 Recommendations for Further Work 

The results of the theoretical studies have demonstrated the interactions between the 

gas turbine and the steam turbine do limit the freedom of choice of the principal 
design parameter to a narrow range for optirmun performance of the CPP plant. 
However, solid experimental evidence is needed to convince the potential users that 

the overall efficiency of CPP plant can be raised. Further work is needed to put 

together a ftill scale plant to provide the all important evidence that based on 

experimental data. 

The present study has not considered the control problems in sufficient detail. 

Therefore, it is felt that ftirther research is needed to study the problems of controlling 

the CPP plant to achieve optimum performance. The potential user of the CPP plant 

would be interested to know whether it would be more profitable to dedicate the 

steam turbine to handle the base load and use the gas turbine to deal with load 

variations or vice versa. The initial studies of the various control strategies may be 

carried out by using the simulation program developed for present research and 

described in this thesis. 

Finally, further work would also be valuable to investigate, by means of experimental 

work, the validity of the matching concept that has been developed in this thesis. 
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A set of the following parameters will be used to give a sample for the numerical 

calculations of combined gas/steam cycle: 

Pressure ratio (r) =8 

p 50 bar 2(st) 

T.. 293 

T -21400 K ýA 

P�ý» = 0.2 bar 

P. e = 101.3 kPa 

llc 0.86 

1- o. 98 

llt(st) = 0.87 

ý=0.07 

qt(g, ) = 0.88 

91 = 0.85 

IIB 
= 0.85 

LCV = 42400 kJAkg 

17mec = 0.98 Ppnun 
= 20 K 

PP = 20 K -'-w = 0.9 

i. Gas turbine cycle ILerfornmnce calculations 

For 'ha =I kgls and from equation (3.2) 

Using subroutine AIRPROP the Mowing has been calcLdated: 

Cp. = 10 18.24 kJlkgK 

C. =7 18.0 kJlkgK 

y. = 1.4182 

Using Eqn. 3.41, 

T02 = 293 + 
293 8) 

1.4182-X. 
4182 

_1 581.3 K 
0.86[(l 
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Using Eqn. 3.39 

103X 293 1.4182-1 

_ W, =I xl. 0184x -x 
[(8) 

1.4182 1 277.84 kW -0ý. 81 
1= 

Using subroutine FARATIO, the following has been calculated: 

Cpg = 1159 kJlkgK 

From Eqn. 3.44 

F= 
103 = 0.02336 

0.98 x 42400 xI 
1.159 x 103 (1400-581.3) 

From Eqn. 3.45 

=(1-0.07)x8xl0l. 3=753.672 kPa 

Using subroutine GASPROP, the following has been calculated: 

Cpý = 1147 kJlkgK 

Cvg = 860 kllkgK 

yg = 1.334 

If P,,, = 109.3 kPa then 

From Eqn. 3.46 
L334-1 

W, = (I + 0.02336) xIx1.147 X 103 x 0.88x 140 1 109.3 
-) 

1,334 

753.672 

557.5 kW 
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From EqrL 3.47 

1 334-11 

T. 
4 ::::: 1400 - 0.88 x 1400 x1 

109.3 ) 
1.334 

= 928.27 K 
753.672 

From Eqn. 3.48 

qgt = 
(557.5 - 277.84)x 103 

= 0.2838 
0.02336 xIx 42400 x 103 

From Eqn. 3.50 

wgt = 
(557.5 - 277.84) 

= 279.66 kJ/kg 
I 

I Heat recovery steam P-enerator Derfonnance calculations 

From Eqn. 3.5 3 and at P2,,, ) = 50 bar 

T2(st) ý 0.9 x (928.27 - 537.05) + 537.05 = 889.148 K 

From the steam tables and using Eqn. 3.54 

h2(st) = 3703 kJ/kg 

From EqrL 

189 



Appendix A 

T, (, v) = 20 + 537.05 = 557.05 K 

From Eqn. 3.56 

1x (1 +F) x 0.85 x 1.140 x j& x (928.27 
- 557.05) 

= mst = (3703-1147)x 1()3 - 0.14636 kg/s 

From the compressed water tables and using Eqn. 3.57 

1; (ý,, ) = 25 8 kJ/kg 

From Eqn. 3.58 

T= 557.05 - 
0.14636x (1140- 258)x 103 

= 445.97 K o6 Ix (I + 0.02336)x 1.140 x 103 

From the steam tables and using Eqn. 3.59 

h3(st) 
ý 2407.79 kJ/kg 

From the steam tables and using Eqn. 3.60 

h (. ) ý 251 kJ/kg 

iii. Steam turbine cvcie iDerformance cakulations 

From the stearn tables and using Eqn. 3.62 

w 0.14636 1()3 

�p --x 
(258-251)x 1.205 kW 

0.85 

From the steam tables and using Eqn. 3.63 
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W=0.14636 x 0.87 x (3703 
- 2407.79) x 1()3 

t(st) = 164.92 kW 

From Eqn. 3.64 

rI., t = 
(164.92-1.205)x 103 

-=0 2872 
1x (I + 0.02324) x 1.155 X 103 x (928.27 

- 445.97) 

iv. Combined c-vcle Derformance calculations 

From the calculated values and using Eqn. 3.66 

J7cpp '= 
(279.66+163.715)x103 

= 0.45 
1x0.02324 x 42400 x 103 

From the calculated values and using Eqn. 3.67 

wcpp = 
(279.66+163.715)x 103 

= 443.375 kJ/kgof air I 
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At the instant when the mass 6h reaches the boundary of the open system , let the 
fluid within the open system possess a quantity of internal energy U. This internal 

energy U includes the kinetic and potential energy of the fluid element within the 
boundary of the open system 

if the element is moving With a velocity el at a height z, above some reference level 

as shown in Fig. B. 1, it possesses an internal energy U, kinetic energy &hcl'12 and 

potential energy SMgz,. 

ul +I Jthc, 2+ mgzl 
2 

1) 

If it is assumed that the element is small enough for the thermodynamic properties 

to be uniform throughout its extent, the equation C. I becomes equal: 

Ilie total energy of the mass = M(u, +IC, 2+ gz, ) (B. 2) 2 
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The total energy at inlet condition I=U+ 6h(u, +IC, 2+ gZI) (B. 3) 2 

The total energy at outlet condition 2=U+ &h(U2 +I C2 
2+ 

gz2) (B. 4) 2 

Assume heat transferred to the system ..................... = -5Q 

Assume work transferred from the system ................. = 45W 

The work done by the surrounding on the system ......... = PIV, 

The work done by the system on the surrounding ......... =P2V2 

The net work done by the system = &V + &h(p2v2 + Avl) (B. 5) 

Apply the energy equation to the imaginary closed system would give: 

46Q - 16W + 15KAV2 + PIVI) I= (B. 6) 

U+ 45*(U2 +I C2 
2+ 

9z2) 1-1 U+ t5*(Ul +IC, 2+ 
gZI) 

22 

The quantity U cancels , and by writing the entIWpy h=u+ pv, the Eqn. B. 6 

reducesto 

6W = M02 +I C2 2+ 9z2) +IC, 2+ gzl) (B. 7) 
22 

For the total mass of fluid * per unit time with heat and work associated with this 

flow M of mass , the energy steady-flow equation B. 7 can be rearranged and written 

as follows: 

(h2-'h)+ 
I 

(C2 2+ 
cl 

2)+ 
9(Z2 + ZI (B. 8) 

2 

where 0 and W describe the heat and work transfers per unit mass flovOng through 

the system. 

194 



Appendix B 

The assumptions upon which equation B. 8 is based on, may be summarized as 
follows: 

i. The mass flow at inlet is constant with respect to time, and equal to the 

mass flow at outlet. 
ii. The properties at any point within the open system do not vary with time. 
iii. Any work or heat crossing the boundary does so at a uniform rate. 

For turbomachinery flow where the process is adiabatic and there is no change in the 

potential energy term, then equation B. 8 can be reduces to 

W =(h2-4)+ 
1 

(C2 2+ 
ci 

2) 
= H02 - Höl (B. 9) 
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TORSION OF A SOLID CIRCULAR SHAFT 
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The solid circular shaft of Fig. C. 1, has a length L and radius a in the cross-section. 
When equal torques z7 are applied at each end about a longitudinal axis, one can 
assume the follovAng: - 

i. The twisting is uniform along the shaft. 

ii. Cross-section remains plane during twisting. 

iii. Radii remain straight during twisting. 

Torque (r) 
"shear 

Torque (r) 

I'shear 

Fig C. I Torsion of a solid circular shaft 

If 0 is the relative angle of twist of the two ends of the shafts, then the shearing 

strain y of an elemental tube of thickness & and at radius r is: 

rO 
L 1) 

If the material is elastic, and has a shearing modulus G, then the circumferential 

shearing stress on this elemental tube is : 

Gy = 
GrO 

L (C. 2) 
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It can be seen that ah,,, increases linearly from zero at the Center of the shaft to 

GrO 
at the circumference. Along any radius of the cross-section, the shearing L 

stresses are normal to the radius and in the plane of the cross section as shown in 

Fig. CA. 

GrO 
TI L ýhear 

---- ------------- ------------- ---- 

r, 9 

Torque (r) 

Fig. C. 2 Variation of shearing stresses over the cross-section for elastic torsion of a 

solid shaft 

The thickness of the elemental tube is &, so the total torque on this tube is : 

er., h,,, r(2; zr&)r -"ý ashear2Rr2& 

The total torque on the solid shaft is then: 

a 

2 'Ir 2dr 

Substituting equation C. 2 into equation C. 3 gives : 

(C. 3) 
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GO a )f 
rdr ; r( L0 

2z 
GO)(a 4 (L 

4) 

=(GO 

ý=4 

L4 
(C. 4) 

Where na 4 
is the polar second moment of area of the cross-section about an axis 2 

through the centre, and is usually denoted by J. Then equation CA may be written 

as : 

GJO 
T, h. ft =- (C. 5) 

L 

Combining equations C. 2 and C. 5 would give: 

T,, W - 
a";.., 

= 
GO 

(C. 6) 
irL 

Power developed of a rotational shaft is given by 

P=rxw (C. 7) 

From equation C. 6, the torsion of a solid shaft is equal to 

T-ho -, ý 
ah., 

(C. 8) 
r 

.; d ,, 
4 

where J is the second polar of moment and for a solid shaft and is equal to - 32 
Therefore, equation C. 8 becomes 
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x ; zd' 
64 (C. 9) 

Tberefore, comboning equations C. 7 and C. 8 and re-arranging for the solid diameter 

of the shaft d would give: 

d= 
[(64ý-pf 1 

)] 
Y3 

10) 

By considering the safety factor SF and apply it to equation C-10, an expression 

above would become equal to 

d=(SF (64ýp)( (C. 11) 

Note that (cF. =I (a". ) 
3 
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APPENDIX D 

DERIVATION OF BEAM STRENGTH OF SPUR GEAR 

201 



Appendix D 

Referring to Fig. D. I and by considering the tooth as a cantilever beam having its 

fixed end at BD, the stress can be expressed as follows: 

Mc FtL(tl2) 6FtL 
a=-=- -- (D. 1) 

I bt 3 /12 bt2 

Ft - 
obt2 (D. 2) 
6L 

Ix 

Fig. D. I The geometric factors that are used to determine the Lewis form factor. 

In a well-designed beam, the stress should be uniform in every section of the beam. 

in other words, in a gear tooth of uniform strength the stress is a constant, and since 
the gear width and gear load are also constants, Eqn. D. 2 can be written as 

L= 
Ob 

t2= constant x t2 (D. 3) 
6F, 

Clearly this is the equation of a parabola. Referring to Fig. D. 1, the weakest section 

of the tooth, BED, can be determined by inscribing the parabola through point A, 

and locating the points at which the parabola is tangent to the tooth profile, B and D. 

Equation. D. 2 was therefore derived for the section having the maximum stress. 

Triangle ABE is similar to triangle BCE and thus 
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x (t / 2) 
or Lt (D. 4) 

t/2 L 4x 

F, = 
obt3 

4x = ob 
4x (D. 5) 

6t 26 

Multiplying and dividing by the circular pitch P, gives 

F, =ob 
4x 

xp (D. 6) 
6P 

Since x and P are geometric properties depending upon the size and shape of the 

tooth, it is possible to define a factor 

2x 
Y=- 3p 

(D. 7) 

is the so-called Lewis form factor and therefore pennits us to write the Lewis 

equation as 

F= obyp t (D. 8) 

Because the diametral pitch, rather than circular pitch, is usually used to designate 

gears, the following substitution may be made: p= n1p and Y= ny 

Ft =ob 
Yri 

= ob 
y 

np p 
(D. 9) 

Values for the Lewis form factor have been computed for standard gear systems and 

are found in Deutschman et. J551. A sample of Lewis form factor is given in Table 

D. 1. 
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Load at Tips Load Near MIddle 

lio. of 
Tollb 14% dog FD 20 dsg FD 20degStub 25 deg WS deS FD 

-10 deg FI) 

y YI r Y 
IY Y Y Y Y 

10 0.176 O. OS6 0.201 0.064 0.261 0.093 0.238 0.076 

11 0.192 0.061 0.226 0.072 0.289 0.092 0.259 0.082 

12 0.210 0.067 0.245 0.078 0.311 0.099 0177 0.088 0.35S 0.113 0.415 0.133 

13 0.223 0.071 0.264 0.083 0.324 0.103 0.293 0.093 0,377 0.120 0.443 0.141 

14 0.236 0.07S 0.276 0.098 0.339 0.108 0.307 0.098 0.399 0.127 0.468 0.149 

15 0.245 0.078 0.289 0.092 0.349 0.111 0.320 0.102 0.415 0.133 0.490 0.1% 

16 0.2S5 0.081 0.295 0.094 0.360 0.115 0.332 0.106 0.430 0.137 0.303 0.160 

17 0.264 0.084 0.302 0.096 0.368 0.117 0.342 0.109 0.446 0.142 0.512 0.16.1 

Is 0.270 0.096 0.308 0.098 0.377 0.120 0352 0.112 OAS9 0.146 0.522 0.167 

19 0.277 0.088 0.314 0.100 0.386 0.12-3 0.361 0.115 0.471 0.150 0.534 0.170 

1 .0 
0.293 0.090 0.320 0.102 0.393 0.125 0.369 0.119 0.481 0.153 0344 0.173 

21 0.299 0.092 0.326 0.104 0.399 0.127 0.377 0.120 0.490 0.156 0.553 a. 177 

22 0.292 0.093 0.330 0.103 0.404 0.11-9 0.384 0.12Z 0.496 0.158 0.559 0.178 

23 0.296 0.094 0.333 0.106 OAOS 0.130 0.502 0.160 0.565 0.180 

24 0.302 0.0% 0.337 0.107 0.411 1.032 0.396 0.126 0.509 1.062 0.572 0.183 

Table D. I Sample of Lewis form factor 

An examination of equation D. 9 shows that the maximum allowable tangential or 

ansmitted load can now be determined if the allowable stress for the gear material 
is used. in order to avoid confusion, the usual procedure is to designate the allowable 
load based on bending as F,,. Tberefore, we will write the Lewis equation as 

E= Sbyp = Sb y 
(D. 10) bp 

At this point it would be well to consider the effect of another assumption made in 
denvmg the Lewis equation. It was assumed that the ftdl transmitted load Ft acted at 
the tip of the tooth. Because most gears are designed with a contact ratio of 1.2 and 
1.6, it is clear that when the load acts on the tip of one tooth is still in contact and 
the fidl load does not act on the number one tooth 

In Fig. D. 2, the load has been moved away from the tooth tip to point near the 
middle of the tooth (the second tooth has gone out of contact, and the full load does 
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act on the tooth shown). As can be seen from the diagram, the derivation of the 

Lewis equation would follow exactly as the previous one. The only difference would 

be in the values for the Lewis form factor. 

r 

E 

L 

Fig. D. 2 The load acts near the center of the tooth 

At this point in our discussion, it is possible to design a gear, by using equation D. 10 

that will have the required strength, providing the proper allowable stress for the gear 

material is used. The allowable stresses presented in Table D. 2 are based upon 
investigations of the performance of gears in actual use. Therefore, gears to be used 

for ordinary applications will give satisfactory service. However, a much better 

design is to use Eqn. D. 10 and Table D. 2 to come up with a preliminary design and 

then to check the gear for the items to be discussed in succeeding paragraphs. 

AGMA Equation 

The final strengdi equation to be presented is the AGMA modification of the Lewis 

equation. This equation is particularly useful to the designer because it applies 

correction factors to the original Lewis equation that compensate for some of the 

erroneous assumptions made in the derivation as well as for important factors not 

originally considered. Furthermore, since most of the factors are obtained 

empirically, the equation can be kept up to date by merely changing the values of the 
factors as more information about the gear behavior is obtained. 
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MATOUAL 
DESMNATION 

(AISr Number) 
CONDffWK 

T 
SM 

Kii 

MORE 
NM 

Adpa 

Y 

SIR 

Ksi 

MLm 

ENG&H 

MPa 

DUCTILrry 
(PCM#W 

Ekngadon 
in 2 In) 

BUNILL 
HARDHM 

(NO) 

1020 Hotrolled 55 379 30 207 25 
1020 Cold drawn 61 420 51 352 15 122 
1020 Annealed 60 414 43 296 38 121 
1040 Hot rolled 72 496 42 290 Is I" 
1040 Cold drawn 90 552 71 490 12 160 
1040 OQT 13M as 607 61 421 33 183 
1040 OQT 400 113 779 87 600 19 262 
1050 Hot rolled 90 620 49 339 15 ISO 
1050 Cold drawn too 690 94 579 10 200 
loso OQT 1300 96 662 61 421 30 192 
1050 OQT 400 143 986 110 758 10 321 
1117 Hot rolled 62 427 34 234 33 124 
1117 Cold drawn 69 476 51 352 20 138 
1117 WQT 350 89 614 50 345 22 178 
1137 Hot rolled 38 607 48 331 15 176 
1137 Cold drawn go 676 92 565 to 196 
1137 OQT 1300 v 600 60 414 28 174 
1137 OQT 400 157 1083 136 938 5 352 
1144 Hot rolled 94 648 51 3S2 15 198 
1144 Cold drawn 100 690 90 621 to 200 
1144 OQT 1300 96 662 68 469 25 200 
1144 OQT 400 127 976 91 627 16 277 
1213 Hot rolled 55 379 33 228 25 110 
1213 Cold drawn 75 S17 58 340 to 150 
121.13 Hot rolled 57 393 34 234 22 114 
121.13 Cold drawn 70 483 60 414 10 140 
1340 Annealed 102 703 63 434 26 207 
1340 OQT4W 285 1960 234 1610 8 578 
1340 OQT 700 221 1520 197 1360 10 444 
1340 OQT 1000 144 M 132 910 17 363 
1340 OQT 1300 100 690 75 517 25 235 
3140 Annealed 95 65S 67 462 25 187 
3140 OQT 400 29D 1930 248 1710 11 535 
3140 OQT 700 22D 152D 200 1380 13 461 
3140 OQT 1000 152 1050 133 920 17 311 
3140 OQT 1300 115 m 94 648 23 233 
4130 Annealed of "ll 52 359 28 156 
4130 WQT 400 234 1610 197 1360 12 461 
4130 WQT 7W 209 1430 180 1240 13 415 
4130 WQT 1000 143 986 132 910 16 302 
4130 WQT 1300 98 676 89 614 28 202 
4140 Annealed 95 W 60 414 26 197 
4140 OQT 400 290 2000 231 1730 11 578 
4140 OQT 700 231 1390 212 1460 13 461 
4140 OQT 1000 168 1160 152 L 050 17 341 
4140 OQT 13W 117 807 100 690 23 235 

Table D. 2 Safe stresses and hardness numbers used in the Lewis equation 

The equation is written as follows: 

(7t = 
FtK. PK,, 

K, bJ 
(D. 13) 
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Where 

at= calculated stress at root of tooth, psi. 

F, = transmitted load, lb. 

Ký = overload correction factor (application factor). 

K, = load distribution correction 

K,, = dynamic factor 

b= face width, in. 

J= geometry factor 

P= diametral pitch 

As an aid in understanding and using the equation, the following discussion of the 

correction factors is presented. 

The overload correction factor, K., accounts for the fact 04 while F, is an average 

value for the transmitted load, the actual maximum load may be as much as two 

times as great due to shock loading in either the driven or the driving systern. Table 

D. 3 gives some suggested values for K, 

Power 
Source 

Load on Driven Machine 

Moderate 
Uniform Shock 

Heavy 
Shock 

Uniform 1.00 1.25 1.75 or 
higher 

Light shock 1.25 ). 50 2.00 or 
higher 

Medium shock 1.50 1.75 2.25 or 
higher 

Vot Wood increaiingilrims of spur and bewl Scatsibut mi helical and himi"Shomes"n), 
add 0.01 (nGlm, )2 to the factois in Table 104. WhM %M= innnber of teelb in pinion; 
A*,, = number of let th in pinion: 

SOURCE: AGMA 

Table D. 3 Overload correction factor 

The load distribution factor K. depends upon the combined effects of misaligment 

of wces of rotation due to machining error and bearing clearances; load deviations; 
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elastic deflection of shafts, bearing, and housing due to load. The AGMA 

information sheet presents tables and figures dw give values for K. when 

misalignment information is available. However, when estimated or actual 

misalignment is not known, the K. factor for spur, hefical, and herringbone gears as 

given in table DA may be used. 

Few Width - 

an 
2-in. Faoe 

64n. 9*iln, 16-in. face 
Condition of Support and and 

under Face Face Over 

spur 
I 

tiaboal SpwTH*Iicsi Spwý Helial Splar Hatlical 

Accurate mounting. low hearing 
clearances. minimum elastic 
detlection, precision gears 

Len rigid mountings. less 
accurate gears, contact across 
full face 

Accuracy and mounting such 
that Lea than full We 

contact exists 

SOURCIEt AGMA 

1.3 1 1.2 1 1.4 1 1.3 1 1.5 1 1.4 1 1.8 1 1.7 

1.6 1 1.5 1 1.7 1 1.6 1 1.8 1 1.7 1 2.0 1 2.0 

Over 2.0 

Table DA Load distribution factor 

The dynamic factor, K, depends on the effect of tooth spacing and profde errors; 

effect of pitch line speed and revolution per minute; inertia and stiffness of all 

rotating elements; transmitted load per inch of face; tooth stiffness. K, can be 

calculated from the following equations: 

K, =( 
A 

)B 

A+-x FV, 
Where 

A= 50 + 56(l - B) 

B= 
(12 (? 

V 
)0.667 

4 

Transmission accuracy level number 

(D. 14) 
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The geometry factor J accounts for the effect of the shape of the tooth, the position at 

which the most damaging load is applied, the stress concentration, and the sharing of 
load between one or more pairs of teeth 

Tooth shape depends upon the geometry of the tooth system. In other words, such 
factors as pressure angle, number of teeth, whether fidl depth, stubbed, and so on. 
The position at which the most damaging load is applied depends upon how 

accurately the gears have been cut. For accurately cut teeth, the greatest stress will 

occur when the load acts at the greatest height for which only one pair of teeth are in 

contact. In other words, when the load acts at the tip of the tooth another pair of teeth 

is in contact and is sharing the load and thus the greatest stress does not occur at this 

position. 

The geometry factor also includes the effect of stress concentration as well as 

tangential (bending stress) load and radial (compressive stress) load. Figure D. 3 may 
be used to determine the geometry factor for 20-degrees spur gear. 

inion adderidum . 000 
1 

Gem addwWLwn 1.000 
0.60 0.90 

0-911 IODD 
170 

O. u 

0.90 - 0.35 R so 
36 DAG, 
25 
17 0 46 0.45 - . 

Generating rack I Pitch Number of tooth 
0.40 - in nuting gear 

0.40 

0.35 - 0.35 

0.3D - am 

0.25 - 
Load applied at tip ol tooth 0.25 

0.20 - 0.20 

12 is 17 20 24 30 36 4046 50 80 80 125 275 

Nurriber of teeth for which ge~rv factor is desired 

Fig. D. 3 Geometry factor for 20-degree spur gear 

For S. 1 units the AGMA equation can be expressed as follows: 
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FK K 1- 0m 
AIK, bJ (D. 15) 

It should be noted that the factors given in Eqn. D. 15 are the same as in Eqn. D. 13. 

The term M is referred to as the gear module. 
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ABSTRACT 

The practical thermal efficiency of gas turbine engines 
ranges between 28% and 33%. In view of the rapidly depleting 
global reserves of fossil fuels, i. e. coal, oil and natural gas, this 
level of thermal efficiency is of serious concern to thermal 
power engineers. Several modifications to the thermodynamic 
cycle have been introduced to raise the thermal efficiency of 
gas turbine plants, including the Combined Heat and Power, 
CHP for short plants. These plants recover the thermal energy 
from the exhaust of the gas turbine and use it for district 
heating. This concept improves the energy efficiency of the 
plant but it does not affect the thermal efficiency of the gas 
turbine. 

In hot counties district heating is not necessary, but it is 
more beneficial if thermal energy recovered was used for 
producing additional electrical power. In this paper the results of 
a two part parametric study of the combined power and power, 
CPP for short are presented. Part one deals with the recovery 
of thermal energy from the exhaust gas of the gas turbine 
engine to raise high-pressure superheated steam. The steam 
powers a steam turbine to generate additional electricity. 

The results of the study show quite clearly that the values of 
the gas turbine cycle parameters that would produce optimum 
performance in the CPP plant are different from either the gas 
turbine or the CHP plant. Furthermore, overall thermal efficiency 
in the region of 55% may be achieved by using typical values 
for the cycle parameters, but further refinements may help to 
raise the efficiency to 60%. The results of this parametric study 
also show a significant reduction in the greenhouse effect 

In view of the growing worldwide concern for energy 
conservation and environmental protection, the authors feel that 
this paper would lead to a stimulating discýussion. 

NOMENCLATURE 

symbol Mearing 

C, Specific heat at constant pressure 
C', Specific heat at constant volume 
7 Ratio of specific heats 

Ih Mass flow rate 
q, Q Heat supplied or rejected 
W, W Specific work output, work output 
P Pressure 
T Temperature 
S Entropy 
r Pressure ratio 

Efficiency 
Ratio of maximum to minimum temperature 

h Enthalpy 
LCV Lower calorific value 
T Torque 
PP Pinch point temperature difference 
f Fuel to air ratio, function 

C Effectiveness 
D Dryness factor 

Pressure loss in combustion chamber 
d Diameter 

Subscripts 
I, Z3 State points in the cycles 
9t Gas turbine 
st Steam turbine 
Iq liquid 
8 Isentropic 
00 Polytopic 
0 Stagnation 
9 Gas 
a Air 
C Compressor 
t Turbine 
cc Combustion chamber 



P Pump 
B Boiler (Heat recovery steam generator) 
con Condenser 
eco Economiser 
evp Evaporator 
$qp Superheater 
sat Saturation 
mec Mechanical 
0 Overall 
CPP Combined power and power 
max Maximum 
min Minimum 
atm Atmospheric 

Superscripts 
Rate 

INTRODUCTION 

The world demand for electrical power is increasing sharply 
due to rising living standards, increasing world population and 
growing industries in many third world countries. In contrast the 
reserves of fossil fuels, coal, oil and natural gas, are depleting 
at an alarming rate. The contributions to the world's energy 
demand from the alternative sources of energy such as solar, 
wind, tidal, geothermal, etc., often described as renewable 
energy, are still insignificant in spite of the fact that much 
research effort is being directed globally to exploit these 
resources.. In view of this scenario, conservation of fossil fuels 
by improving the efficiency of all thermal power plants, 
particularly those used for generating electricity, is of paramount 
importance. 

conventional power generation plants are powered by either 
steam turbines or gas turbines. The thermal efficiency of such 
plants is low. There have been many attempts to improve the 
ýýency of steam and gas turbines by reheating and 
regeneration or by using a mixture of worldng fluid inside the 
cycle in case of steam turbine. In spite of all these attempts the 
thermal efficiency of such plants is sul low, thermal efficiency of 
gas turbine plants ranges between 28% and 33% and of steam 
turbine plants between 36% and 45%. Theoretical studies have 
shown that by recovering some of the low grade thermal energy 
from the exhaust gas of the gas turbine to produce high 

pressure steam and using this steam to power a steam turbine, 

which in turn, will produce additional electrical power, the 

overall thermal efficiency of the combined plant can be 
increased to as high as 60%. However, careful selection of the 

principal design parameters for the gas and steam turbines as 
well as proper scheduling of their control systems are of utmost 
importance for achieving optimum performance of CPP plants, 

particularly under part load conditions. 
Generally, the power generating plants efficiencies can be 

increased either by the utilization of cogeneration cycle (Power 

and heat (CHP) plants) or by combined power and power (CPP) 

plants. Although the former is of simple structure and of higher 
thermal efficiency than the latter, this study is concerned mainly 
with latter type of plants (CPP). This is mainly due to the need 
for electricity and the hot climate nature of the developing 
countries. 

The schematic diagram of the CPP plant can be shown in 
Fig. 1 where the gas turbine exhaust will be used as the heat 

source of the steam power plant; an afterburner can be used to 
raise the gas turbine exhaust temperature. 

THERMODYNAMIC ANALYSIS 

Thermal efficiency and specific work can be used to 
represent the performance of the CPP plant. 

2ý- 3 
cb-b., 

Zklctrk. 1 1 
t_ C.. r. t. 5 

Gas 
-pr.. Torbi.. 

" iýý 
, 

40 

Zkcirkal ired 
t 

Fig. I Schematic diagram of a combined gas-steam power plant 
with a heat recovery steam generator 

The two Diants In series 

In a simple analysis, consider a cyclic power plant consists 
of combined gas turbine power plant and steam turbine power 
plant as shown in Fig. 2. The gas turbine plant had a thermal 
efficiency of 17,,, absorbed heat of Q, , rejected heat of Q,,. and 

work done of W,,. The steam turbine plant had a thermal 

efficiency of rl, absorbed heat of Q, rejected heat of Q, 

and work done of W,. A supplementary heat (Q.. ) can be 

added between the two power plards while a heat (Q, 
_) can be 

lost at that point. 

Q. 1 

W 
, Gas turbine s 

QMI 
Qý 

Q, 

W 
Steam turbine . 

)7, 

Qý 

FIg. 2 A CyCIIC Combined gas-steam power plant 
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Thermal efficiency of gas turbine power plant is 

17# = 
Q. 11 

(1) 

Thermal efficiency of steam turbine power plant is 

17, = 
W- 
Q, 

(2) 

and the heat supplied to the steam power plant is 

Q,, = Q. + Q.. - Q,.. (3) 

Thermal efficiency of the combined power plant is 

77CPP = 
We +W, (4) 
QH + Qa& 

Using equations 1,2,3 and 4 

%, + 17, 
Q- 

+I-%- 
Qý'- 

? Icpp 
Q. Q'I 

+ 
Q.. 
Q'I 

If there isn't any supplementary heating (Q, = 0) and no 
heat loss (Q, = 0) then 

j7c,,, = J7, + I& - 17gt? 7, t 

Using Equation 5, Fig. 3 shows the value of the combined 
thermal efficiency (y7,,, ) being calculated against the steam 
turbine thermal efficiency (q, ) with a constant gas turbine 
thermal efficiency (17,, ) of 0.3 at different constant values of 

supplementary heat rabos ( 
Qw 
Q'Il 

Without supplementary heating (add =0) and by varying Q'I 

the gas turbine thermal efficiency (17,, ) between 0.0 and 0.6, 

Equation 5 has been used to calculate the steam turbine 
thermal efficiency (q, ) at two constant combined cycle 

efficiencies (17, ) of 0.5 and 0.6. The calculated results versus 

the gas turbine thermal efficiency plotted in Fig. 4 at two 

constant heat loss percentages 
Q' ) of 0% and 1 OOA. 
Q. 11 

Using Fig. 3 and Fig. 4 the following observations can be 
made: 
L Supplementary heating will always decrease the overal 
combined power plant thermal efficiency except if the 
supplementary heating significantly increases the steam turbine 
thermal efficiency. 

0.6 

0.5 

E 
4) 

0.4 

CL 
'0 
0 
r 

0.3 

J2 
E 
0 

0.2 

Fig. 3 

- -0, * ---0% 
20%] -20% 

--------- 40% 

0 0.1 0.2 0.3 0.4 
Steam Plant Thermal efficiency 

power plant thermal efficiency versus 

0.5 

plant thermal efficiency at constant supplementary heating 
ratios and 0.30 gas turbine plant thermal efficiency 

0.7 

8ý 
0-6 

VE 0.5 

0.4 

r 
0.3 

0.2 
E 

0.1 

rl,. 6Wo 

50V. ý- 

No heat 

N -. t o heat 

: 

oss 

10% heat loss 

10% heat lose 

0 0.1 0.2 0.3 0.4 0.5 0.6 
Gas turbine thermal efficiency 

steam Want thermal eftiency versus nas 
thermal efficiency at constant heat loss rabos for 0.60 and 0.50 

Combined power plant thermal efficiency 

ii. To exceed specified combined power plant thermal 
efficiency, a correct combination between the two plard's 
efficiencies should be chosen. 
iii. The lost heat between the plants (Q, 

_ 
) increases the 

importance of gas turbine thermal efficiency on the combined 
power plant performance. 

The CPP cycle thermodynamic analysis 
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Thermal efficiency and specific work of the CPP plant are 
function of many parameters: 

WCPP 

17.. = 

Mathematical solution of these two equations is very difficult. 
In this case a parametric study has been carried out to explore 
the effect of main gas turbine parameters on the performance of 
CPP plant. 

The CPP cycle thermodynamic analysis can be simplified by 
making the following assumptions: 
L The air used by the gas turbine as well as the products of 
the combusbon are perfect gases. 
ii. The specific heat capacities can be constant through the 
process and represented at the average temperature of that 
process. 
iii. The loss of stagnation pressure in the compressor inlet is a 
constant percentage of the compressor inlet pressure. 
iv. The loss of stagnation pressure in the combustion chamber 
is a constant percentage of the combustion chamber inlet 
pressure. 

The CPP cycle performance can be calculated through a 
step-by-step analysis for each component in the cycle. 

Air and combustion oases 9)ropertle 

The thermodynamic properties of combustion gases and air 
at various stages throughout the gas turbine cycle are 
calculated by considering variable specific heats and no 
disiation. 

ChapPel and CockshutP 'I suggested the following equations 
to compute 

Q 
specific heat Values for air and combustion 

gases: For air at low temperature range Of 200 to 800 K 

Cpa =1.0189xIO' -0.13784T, +1.9843 X IOAT 2 

10-7T3 
+ 4.2399 x. -3.7632xlO"T (9) 

For air at high temperature range of 800 to 2200 K 

Cý = 7.9865 X 102 + 0.5339T. - 2.2882 xI O'T. ' 

+ 3.7421 xI 0-7ý' (10) 

For specific heats of products of combustion 

Cps = CP. + (F /(I + F))B, 

where BT at low temperature range of 200 to 800 K 

Br = -3.59494xIO2 +4.5164T, +2.8II6xIO-'T, '-2.1709xIO-'T. ' 

2.8689x 10-'T, ' - 1.2263x 10-"T, ' 

and BT at high temperatwe range of 800 to 2200 K 

B, =1.0998 x 10'-0.1416T. +1.916 x 10-3T, 2 -1.2401 x 10-"T. 3 

+3.0669 x 10-'*T, ' -2.6117 x 10-"T, ' 

Air compression 

The compression power (W, ) can be described as 

ho. c. 

Where the finale stagnation temperature in the compression 
process (T., ) equal 

T. = T. + (15) 

Combustion 

The energy balance of the combustion chamber can be 
expressed as 

r7j(LCV) =0+ f)C,,, (T., - T. 0 

Therefore the fuel to air ratio (f ) in the combustion 
chamber 

f= 1 (17) 
q_(LCV) 

C, (T., - T. ) 

The pressure loss in the combustion chamber (ý) is a 
percentage constant value from the inlet pressure where 

P. 
3 ý (1 - ý. )P-2 (18) 

Gas expansion 

The turbine power (W, ) can be described as 

W, =(I+ f)? h. CPjIrT. 3 1 (19) 

Where the exhaust stagnation temperature in the expansion 
process (T., ) equal 

-(P )y T. = To, - ST., 1 o4 
P. 

4 

VtY 
/7 

(20) 



The efficiency of the gas turbine cycle can be 

described as 

W, -Wý (21) '7" fik(LCV) 

The specific work of the gas turbine cycle ( wv ) can be 

described as 

W9, ý 
S, 

= 
W, -n (22) 

it. Ih. 

Heat recovery steam generator calmdations 

The energy balance in the steam generator can be 
expressed as 

Ih. (I+f)C,, (T. (., )-T.. (gt))? 7B "it(koo-Aw) (23) 

The gas stack temperature (T,, (,,, ) should be kept as low as 

possible, but at the same time condensation should be avoided. 
The fuel type used in the cycle determines the lowest stack 

temperature where the sulfuric fuels should have a higher stack 
temperature. 

T 

juV Q( 
recovery 

The temperature-heat diagram of the heat recovery steam 
generator is shown in Fig. 5. The heat absorbed by the water or 
the steam is carried out in three steps: 
i. The economizing process where the temperature of water 
raises from T, (, ) to the saturation liquid temperature at that 

boiler pressure. 
ii. The evaporation process where the water absorbs heat at 
constant temperature to be converted to steam. 
iii. The superheating step where the temperature of steam 
increases from the saturation temperature to the maximurn 
temperature of the steam (T2,,, ) 

). 

T2(9) ý Cow (To4(gt) - 
T2(&)M )+ T2(&)ý (24) 

where T, (,,. is the saturated temperature at the P, (,,, 
The enthalpy of the steam at the exit of the boiler ( k(,, ) is 

h, (.,,, ý 
f(T2(jt)9 P2(9) ) (25) 

and 

Tý(ýP) ý pp + T2(0)ý (26) 

where T, (_, ) is the gas temperature at the exit of the 

evaporator. 

. ih. (I+f)? 7. c4(T.. -T. (, )) M. t =. k,, -h 2QWý 

(27) 

where h,,,,,, is the saturated liquid enthalpy at P, (, ) 
The enthalpy of the water at the exit of the pump is 

Aw) = f(P, (. ), S. ) (28) 

and 

T.. = Tý<, ) 
th. Avo. (29) 

th. (I+f)C,,, 

The enthalpy of the steam at the e)dt of the steam turbine 
ko ) is 

h1l) ý f(p4(jf)A) (30) 

The erythalpy of the water at the e)dt of the condenser ( h, (, ) ) 
is 

k(g) ýf(P4(&)) 

The heating exchange process in a counter flow heat 
recovery steam generator must satisfy the following conditions: 
i. The gas stack temperature (T,,,, )) must be greater than the 
inlet water temperature (T,,, ) ). 
ii. The gas temperature at the outlet of the evaporator (T. (, ) 
must be greater than the liquid saturation temperature of the 
steam (T,,,,. ) by a minimum value (pinch point temperature 
difference (PP)). 
iii. The superheated steam temperature (T, (., ) must be less 
than the gas turbine exhaust temperature (T., (,, ). 

Water I)Umgdng 
The water pump power (W, ) can be descrbed as 
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=ý 
i-L (4 

(. ) - h, (32) 
qP 

where the entropy at stage 1 equals the entropy at state 4. 

Steam expansion 

The steam turbine power ( W, (, ) ) can be described as 

Wt(jr) = h'jtqt(jjk(M) - k(jr)) (33) 

where the entropy at state 2 equals the entropy at state 3. 
The efficiency of the steam turbine cycle (77, ) can be 

described as 

W. W, (&) W, (34) 
Q, lk 0+ f)C, (T. - T.. ) 

Combined cycle Derformance 

The combined cycle efficiency ( 17,,,, ) can be described as 

qcpp = W., 
= 

W., W. 
ht, (LCV) A. f(LCV) 

The specific work of the combined cycle (wcPP) can be 
described as 

w-.. = ! ý_ wcpp 
+w. (36) 

ConsideraUons and Ilml tions an the Parametric analVSI 

The parameters can be varied according to the following 
thermodynamic conditions, technological factors and physical 
factors: 
i. The temperature ratio can be assumed all the values from 
the ratio Of (T. ITý, ) to a maximum value where the maximum 
value is tied to technological factors. 
ii. The Pressure raW (r) can be assumed all the values from 
one to a maximum value where the specific work of the gas 
turbine is zero. 
iii. The steam temperature can be assumed all the values from 
the saturation temperature at that pressure to a maximum value 
where the maximum value is tied to technological factors. 
iv. The steam pressure and the condenser pressure are related 
to the wetness of the steam at the exit of the steam turbine, 
which has to be higher than a minimum acceptable value. 
v. The exhaust gas temperature in the boiler should be higher 
than the temperature of the steam by a minimum value where 
this value dependent on the economic and the design 
parameters. 
vi. The stack exhaust temperature should be higher than a 
minimum value where below this value a corrosive 
condensation can happen. 

Using the thermodynamic analysis and parameters 
limitations, a computer program has been developed to 
calculate the specific work output and the thermal efficiency of 
the combined cycle. 

RESULTS AND DISCUSSION 

In the present parametric study the assumed ranges of 
values has been taken to be realistic and to compensate for any 
future developments. Table (1) gives the assumed values of the 
combined cycle parameters. 

T., 293 K 17'(0) 0.88 

Pý 101.3 kPa 0.88 
T03 (1100 - 1700) K 0.87 

r (4-32) 07B 0.85 

Pl(. V) 
10 - 150 ber ? IP 0.85 

pum) 0.05 - 0.5 bar 0.98 
T3(jr) 

ý 950 K 7% 
pp 25 K 0.9 

D. 6. 
0.88 LCV 42400 kJ/kg 

?h 0.86 J7. 
Table 1 Assumed parametersý values used in the parametric 

study 
(35) 

For a simple gas turbine cycle the thermal efficiency versus 
the specific work ouW is given in Fig. 6 and the gas turbine 
exhaust temperature versus the pressure ratio is given in Fig. 7. 
FIg. 6 shows that the maximum gas turbine specific work points 
have different parameters than the maximum thermal efficiency 
points. Fig. 7 shows that the gas turbine exhaust temperature is 
higher at lower gas turbine pressure ratio and that the maximum 
specific work points has a higher gas turbine exhaust 
temperature than the maximum efficiency points. 

45 

40 

25 

30 

20 

I 
-Tud" Wd Towforsh 

r- 32 

-PFOB@Ln ftbo 

r. 10 

T., =I 700K 
T3 1400K 

T., II OOK 

0 50 100 ISO 2m 250 300 350 400 450 
Speeft Work (kJ/kg) 

Fig. 6 Gas turbine eftiency versus speciric work at constant 
turbine inlet temperatures and pressure ratios 

There are many gasisteam cycles configurations, In this 
a" the following configurations has been considered: 
i. Simple gas turbine cycle combined with simple steam cycle. 
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ii. Simple gas turbine cycle combined with dual pressure steam 
cycle. 
iii. Reheat gas turbine cycle combined with simple steam cycle. 
iv. Reheat gas turbine cycle combined with dual pressure steam 
cycle. 

1400 

1100 
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800 

700 

4W 

---Mmdý 
moom 

T, =1700K 

T, =I 400K 

------------- 

T., =II OOK 

Is 20 

Premure Ratlo 

Fig. 7 Gas turbine exhaust temperature versus pressure ratio at 
ccmstant turbine inlet temperatures 

v. Gas turbine Intercooling cycle combined with simple steam 
cycle. 
vi. Gas turbine Intercooling cycle combined with dual pressure 
steam cycle. 

Simultaneous variation of the main parameters in both 
cycles will show the effect of theses parameters on the 
combined cycle performance. While varying some parameters 
the oew parameters should be taken as constants. 
Performance of combined cycle has been discussed with 
respect tO the following parameters: 
i Gas turbine pressure ratio. 
i, Gas turbine inlet temperature. 

Gas turbine exhaust temperature. 
Numerical results of the calculations performed according to 

the thermodynamic analysis of the cycles. The parameters 
varied according to the values in Table 1. 

For a simple gas turbine cycle combined with simple steam 
cycle, combined cycle efficiency versus Pressure ratio keeping 
the gas turbine inlet temperature and the boiler 'pressure 

constants, is given in Fig. 8. The corresponding specific work is 
given in Fig. 9 and the combined efficiency versus the specific 
work is given in Fig. 10- Combined efficiency versus Pressure 
ratio with the maximum efficiency lines at 50 bar and 90 bar 
boiler pressure is given in Fig. 11. 

Combined cycle efficiency versus the boiler Pressure at 
constant pressure ratio and for turbine temperature of 1400 K is 
given in Fig. 12. 

Combined cycle efficiency versus the steam air ratio for 
pressure ratio of 16 and turbine inlet temperature of 1400 K is 
given in Fig. 11 

For a reheat gas turbine cycle with a simple pressure steam 
cycle, the reheat in the gas turbine cycle will increase the 
combined specific work at all turbine inlet temperatures but the 
combined efficiency will be increased at lower turbine inlet 
temperatures and decreased at higher turbine inlet 
temperatures. Combined cycle efficiency versus pressure ratio, 
keeping the gas turbine inlet temperature and the boiler 
pressure constants, is given in Fig. 14. The corresponding 

specific work is given in Fig. 15 and a comparison with the simple 
combined cycle efficiency is shown in Fig. 16. 
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55 

50 

45 
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35 
ý- 30 
a- 
CL 25 

20 

T., 1700K 

TO =I 400K 

2D bar Pst=2D bor 

Pst-50 bar 
TO 
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9 13 17 21 25 29 33 
Pressure Ratio 

versus pressure ratio at constant 
turbine inlet temperatures and boiler pressures (simple 

combined cycle) 
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500 
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9,: 

] 

.ý 

bar 
50 ber loo 

z 
50 bar 

b. 
0-- -- II 

159 13 17 21 25 29 33 

Pressure Ratio 

: ig. 9 Combined specific work versus pressure ratio at constal 
turbine inlet temperatures and boiler pressures (simple 

combined cycle) 

For a simple gas turbine cycle with a dual pressure steam 
cycle, the dual pressure steam cycle will increase both the 
combined efficiency and the combined specific work Combined 
cycle efficiency versus pressure ratio, keeping the gas turbine 
inlet temperature and the boiler pressure constants, is given in 
Fig. 17. The corresponding specific work is given in Fig. 18 and a 
comparison with the simple combined cycle efficiency is shown 
in Fig. 19. 

For a Gas turbine Intercooling cycle combined with a dual 
Pressure steam cycle, the gas intercooling cycle will increase the 
combined specific work and slightly increase the combined 
eftiencY at higher values of pressure ratio. Combined cycle 
efficiency versus pressure ratio, keeping the gas turbine inlet 
temperature and the boiler pressure constants, is given in 
Fig-20. The corresponding specific work is given in Fig. 21 and a 
comparison with the simple combined cycle efficiency is shown in Fig. 22. 
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Fig. 10 Combined specific work versus combined efficiency at 
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Fig. 23 shows the efficiency versus the specific work for 
different configurations of a gas turbine cycle at 1400 K turbine 
inlet teMPerature and 50 bar boiler pressure. 

CONCLUSION 

From these results some important observations can be 
stated: 
I. Increasing the gas turbine inlet temperature 
will always increase the combined cycle efficiency 
and the combined specific work. 
ii. The higher the gas turbine inlet temperature 
the greater the influence of the pressure ratio 
dIfference on the combined cycle efficiency at any 
combined cycle configuration. 
iii. High steam boiler pressure can be justified 
only with high exhaust temperatures (high turbine 
inlet temperature and/or low pressure ratio). 
iv. Gas turbine reheating can be justified only with 
low turbine inlet temperatures (low gas exhaust 

temperatures) andfor higher combined specific 
work output. 
v. Dual pressure steam will increase the 
combined cycle efficiency and the combined 
specific work output. 
vi. Although gas turbine intercooling raises the 
gas turbine performance, it has a very slight effect 
on the combined cycle efficiency and the 
combined specific work output. 
vii. The gas turbine cycle performance can be described by the 
gas turbine efficiency and the gas turbine specific work. 
viii. The gas turbine inlet temperature and the compressor 
pressure ratio are the most influence parameters on the gas 
turbine cycle performance. 
ix. For a simple gas turbine cycle, the maximum efficiency and 
the maximum specific work have a different performance 
parameters while for a reheat gas turbine cycle, the maximum 
efficiency and the maximum specific work have the same 
performance parameters. 
x. Supplementary heating will always decrease the combined 
cycle efficiency except if the supplementary heating significantly 
increases the steam turbine cycle efficiency. 
A Increasing the gas turbine inlet temperature will always 
increase the combined cycle efficiency and the combined 
specific work. 
A. The higher the gas turbine inlet temperature the greater the 
influence of the pressure ratio difference on the combined cycle 
efficiency at any combined cycle configuration. 
xiii. Gas turbine reheating can be justified only with low turbine 
inlet temperatures (low gas exhaust temperatures) and/or higher 
combined specific work output. 
xiv. Afthough gas turbine intercooling raises the gas turbine 
performance, it has a slight effect on the combined cycle 
efficiency and the combined specific work output. 
xv. In the combined power and power cycle, the combined cycle 
maximum efficiency will not have neither the gas turbine 
maximum efficiency parameters nor the gas turbine maximum 
specific work parameters, but the new parameters are closer to 
the gas turbine maximum specific work parameters. 
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