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Abstract: Fatigue is one of the main causes for in service failure of mechanical components and
structures. With the development of new materials, such as high strength aluminium or titanium
alloys with different microstructures from steels, materials no longer have a fatigue limit in the
classical sense, where it was accepted that they would have ‘infinite life’ from 10 million (107) cycles.
The emergence of new materials used in critical mechanical parts, including parts obtained from
metal additive manufacturing (AM), the need for weight reduction and the ambition to travel greater
distances in shorter periods of time, have brought many challenges to design engineers, since they
demand predictability of material properties and that they are readily available. Most fatigue testing
today still uses uniaxial loads. However, it is generally recognised that multiaxial stresses occur in
many full-scale structures, being rare the occurrence of pure uniaxial stress states. By combining
both Ultrasonic Fatigue Testing with multiaxial testing through Single-Input-Multiple-Output Modal
Analysis, the high costs of both equipment and time to conduct experiments have seen a massive
improvement. It is presently possible to test materials under multiaxial loading conditions and for
a very high number of cycles in a fraction of the time compared to non-ultrasonic fatigue testing
methods (days compared to months or years). This work presents the current status of ultrasonic
fatigue testing machines working at a frequency of 20 kHz to date, with emphasis on multiaxial
fatigue and very high cycle fatigue. Special attention will be put into the performance of multiaxial
fatigue tests of classical cylindrical specimens under tension/torsion and flat cruciform specimens
under in-plane bi-axial testing using low cost piezoelectric transducers. Together with the description
of the testing machines and associated instrumentation, some experimental results of fatigue tests
are presented in order to demonstrate how ultrasonic fatigue testing can be used to determine the
behaviour of a steel alloy from a railway wheel at very high cycle fatigue regime when subjected to
multiaxial tension/torsion loadings.

Keywords: piezoelectric machine; ultrasonic fatigue testing (UFT); biaxial fatigue; cruciform
specimens; very high cycle fatigue (VHCF); multiaxial loading

1. Introduction

Fatigue is an inevitable process that occurs in structural parts subjected to variable loads. If ignored,
it can lead to catastrophic failure with inevitable economic costs and threat to human life. It is estimated
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that about 90% of all metallic failures are due to fatigue [1]. The pioneering research work performed by
Wohler in the middle of the 19th century when investigating failure causes of railway axles, led to the
concept of endurance limit and the early rules for fatigue design [2].

The emergence of new technologies and manufacturing processes, together with the need to
increase the lifetime and safety of mechanical systems, led to the need to increase the fatigue life of
load-bearing mechanical components [3]. For example, spaceships will be launching passengers from
New York to Shanghai in 29 min by 2030, says the Swiss bank UBS [4]. Thus, updated fatigue data is
necessary to design mechanical components that will be subjected to extended lifetimes in comparison
to the past [5]. Moreover, the emergence of additive manufacturing (AM) materials, which can
present anisotropy and heterogeneous microstructure, brought new challenges to material testing and
characterisation [6]. This is the case of the high-quality standards of manufacturing industries using
AM materials, which demand predictability of material properties for static and dynamic load cases.

With the development of new materials, such as high strength aluminium or titanium alloys with
different microstructures from steels, materials are not expected to have a fatigue limit in the classical
sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture
up to 10 million (107) cycles [3,7]. This limit, referred to as ‘infinite’ fatigue life, has already been
dismissed [8,9]. This led to the need to improve S-N (stress vs. cycles to failure) curves and eliminate
the endurance limit by extending the concept of fatigue to over 1 billion cycles (109) [10]. However,
in classical testing, the low operating frequencies require lengthy times for the completion of tests.
For example, servo-hydraulic machines working at 50 Hz would take 8 months to complete 109 cycles,
if no interruptions were made. The recent development of ultrasonic fatigue testing (UFT) machines
where frequencies can go above 20 kHz enabled tests to be extended to ranges greater than 109 in a
matter of hours or days, which is an advantage to industries wanting to deploy new materials into their
products. This area of study, which is gaining increased notoriety [8] largely due to the appearance of
UFT machines [11], is now known as gigacycle or Very High Cycle Fatigue (VHCF).

Most of the fatigue test equipment are uniaxial test machines [12], in the sense that the state of
stress created is unidirectional. However, it is generally recognised that multiaxial stresses occur in
many full-scale structures, being rare the occurrence of pure uniaxial stress states [2]. This includes
critical components used in the aerospace, automotive, naval, medical or oil and gas industries, which
are usually subjected to multiaxial loads [13,14]. Two of the existing machines for biaxial fatigue
testing are the combined tension-torsion (which includes compression-torsion) and combined in-plane
tension-tension (which includes tension-tension, tension-compression, or compression-compression).
The first method uses solid and thin-walled cylinder specimens (tubes), whereas the second one
employs cruciform specimens [12]. The combined tension-torsion test is commonly used to assess
the fatigue life of shafts and similar components. However, besides allowing for only a few stress
states to be simulated, it requires the material to come in the form of circular tubes, being difficult to be
applied to rolled sheet and composite materials [12]. Nevertheless, recently, Costa et al. presented
a new specimen and horn design for combined tension—torsion ultrasonic fatigue testing in the
VHCF regime [15]. Results show that it is possible to carry out tension-torsion loading fatigue tests
at very high frequencies. Typical biaxial in-plane fatigue machines require symmetry to ensure that
the centre of the specimen does not move during the test, meaning that the four actuators must be
precisely synchronised [12,16]. Furthermore, even if electric actuators have lately been replacing
servo-hydraulic ones, most available in-plane biaxial machines still use the latter. Thus, in most cases,
the installation and maintenance costs are prohibitive for most of the laboratories, even if a lower
capacity is required [12]. Moreover, these machines are not good candidates to be used in VHCF due
to the low operating frequencies. This results in lengthy lead times (usually unfeasible) for tests to be
completed up to 109 cycles.

As already mentioned, most UFT in the literature is based on uniaxial tension-compression
machines [17–19], although pure torsion UFT machines have also been developed [20–22]. More recently,
the concepts of biaxial and VHCF fatigue were combined with the development of cylindrical
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specimens for tension/torsion UFT [15,23]; cruciform specimens for tension/tension in-plane UFT [24–26];
and disc-shaped specimens for multiaxial bending UFT [27].

This paper presents a review of recent developments on multiaxial UFT, including descriptions of
the main equipment, instrumentation, and specimens. Original experimental results of UFT conducted
on a Steel alloy from a Railway wheel and on an aluminium alloy are also presented in order to
demonstrate the capability of multiaxial loading testing in the VHCF regime. The paper starts with
an overview of what UFT is and how it is implemented, with a focus on uniaxial test specimens.
Then, a review of multiaxial fatigue using ‘conventional’ test methods and speeds is presented, so that
the integration of both multiaxial testing and UFT can be better understood.

2. Ultrasonic Fatigue Testing at Very High Number of Cycles

The advantages of UFT, associated with the improvements in piezoelectric devices, made
these fatigue testing methods an attractive technique to establish S-N curves in VHCF. Research
into the VHCF range was largely facilitated over the last seven decades thanks to the massive
improvement of the technology available for testing. The development started with Hopkinson at
the beginning of the 19th century with testing frequencies around 116 Hz and continuously evolved
until 1950, when Mason introduced the concept of ultrasonic machine operating at 20 kHz [3,10,28,29].
The piezoelectric technique at 20 kHz was established as the frequency testing norm [30]. Other
machines operating at higher frequencies were presented but the difficulties to correlate results and
experiments slowed down the development of this technique. Presently [10], with the development of
new sensors, new computational methods, and faster and more efficient control systems, VHCF gained
increasing popularity as many of the challenges in the past could be addressed from incorporating
technological innovation.

In classical fatigue testing, the machines’ low operating frequencies require unfeasible lengths of
time for the completion of tests up to 109 cycles. For example, typical rotating bending machines operate
at frequencies up to 30 Hz, servo-hydraulic machines work at frequencies up to 50 Hz and resonant
fatigue machines work at up to 150 Hz [25]. This means that to achieve 109 cycles, ‘conventional’ testing
may require a machine to be operating between 2 months to more than 1 year, and this is 24/7, i.e.,
without any interruptions (see Table 1). The recent development of UFT machines where frequencies
can go as high as 20 kHz (or more) enabled tests to be extended to ranges larger than 109 in a fraction
of the time, as little as 14 h (in theory), if no interruptions had to be made. Therefore, as demonstrated
in Table 1, one can highlight a remarkable time and money-saving aspect which allows tests to take up
to 400 times less time than with ‘conventional’ methods [31–35]: from days to minutes, from months to
hours, from years to days, from decades to weeks. Another attractive facet of this testing method is the
great versatility offered for testing different types of fatigue such as tension [17–19], torsional [20–22],
bending or flexural [23,27], fretting [23,27] and even corrosion fatigue [36]. The effects of diverse
temperature environments, hot [37,38] or cold [11], or loading patterns [26,39] with different stress and
biaxiality ratios can also be investigated to try and replicate real-life field conditions.

Table 1. Comparison between the duration different fatigue testing methods need to be completed,
assuming tests can run uninterruptedly (approximate values, rounded to the nearest 0.5).

Number of Cycles Ultrasonic (20 kHz) Resonance (150 Hz) Rotating Bending (30 Hz)

107 8.5 min 1 days 4 days
108 1.5 h 1 weeks 1.5 months
109 0.5 days 2.5 months 1 years
1010 1 weeks 2 years 1 decades

Figure 1 shows a servo-hydraulic ‘conventional’ machine and an UFT machine, both being used
to test uniaxial steel specimens. One interesting thing to notice, and which will be important to
understand for the development of multiaxial UFT, is that the UFT machine does not require both ends



Machines 2020, 8, 25 4 of 29

of the specimen to be attached as the ‘conventional’ machine requires. UFT specimens are designed to
have a particular mode shape vibrating at a given frequency: the operating frequency of the machine,
usually 20 kHz. Therefore, if we take the principles of Single-Input-Multiple-Output (SIMO) Modal
Analysis, the only requirement is that the connection between the machine and the specimen is done at
a coordinate that is an anti-node of that particular mode shape [25].
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Figure 1. Fatigue testing in (a) a servo-hydraulic ‘conventional’ machine; and (b) an UFT machine.
Both photos taken at Instituto Superior Técnico, University of Lisbon. Please note that in the UFT
machine the specimen’s attachment is achieved through a single end only (the other end is free).

The resonant system is composed by a piezoelectric actuator, a booster, a horn, and the specimen
sequentially assembled together in series by screw connections. These four elements form the resonant
system of the testing machine (Figure 2). The mechanical vibration generated by the piezoelectric
actuator is meant to reproduce a pure sine wave with a frequency of 20 ± 0.5 kHz (Figure 2). This wave
is transmitted from element to element down to the bottom of the specimen with the displacement and
stresses schematically shown in Figure 3. The principle of operation of the vibration system is based
on free vibration resulting in a minimum of force contact between the elements. The booster and horn
(typically, a conical sonotrode) are also used to amplify the amplitude of the vibrations transmitted to
the test specimen.

Machines 2020, 8, x FOR PEER REVIEW 4 of 30 

 

the machine, usually 20 kHz. Therefore, if we take the principles of Single-Input-Multiple-Output 
(SIMO) Modal Analysis, the only requirement is that the connection between the machine and the 
specimen is done at a coordinate that is an anti-node of that particular mode shape [25]. 

 
(a) 

 
(b) 

Figure 1. Fatigue testing in (a) a servo-hydraulic ‘conventional’ machine; and (b) an UFT machine. 
Both photos taken at Instituto Superior Técnico, University of Lisbon. Please note that in the UFT 
machine the specimen’s attachment is achieved through a single end only (the other end is free). 

The resonant system is composed by a piezoelectric actuator, a booster, a horn, and the specimen 
sequentially assembled together in series by screw connections. These four elements form the 
resonant system of the testing machine (Figure 2). The mechanical vibration generated by the 
piezoelectric actuator is meant to reproduce a pure sine wave with a frequency of 20 ± 0.5 kHz 
(Figures 2). This wave is transmitted from element to element down to the bottom of the specimen 
with the displacement and stresses schematically shown in Figure 3. The principle of operation of the 
vibration system is based on free vibration resulting in a minimum of force contact between the 
elements. The booster and horn (typically, a conical sonotrode) are also used to amplify the amplitude 
of the vibrations transmitted to the test specimen. 

 
Figure 2. UFT machine resonant system components of one of the machines at Instituto Superior 
Técnico, University of Lisbon. 

Figure 2. UFT machine resonant system components of one of the machines at Instituto Superior
Técnico, University of Lisbon.



Machines 2020, 8, 25 5 of 29

Machines 2020, 8, x FOR PEER REVIEW 5 of 30 

 

 
(a)  

(b) 

Figure 3. (a) Normalised distribution of displacement and stress along the normalised length of a 
uniaxial UFT specimen [10]; (b) Modal analysis simulation results (displacement) for the first axial 
(tension) mode at 20 kHz of the resonant system components [10]. 

Besides the resonant system just described, UFT machines should also include (Figure 4): 
• A measurement or data acquisition system which can be made of various instrumentation 

devices from strain gauges, laser doppler vibrometers, thermocouples, infrared cameras, and 
other data-gathering transducers. Here, different configurations can be found due to resources’ 
limitations (usually budget related) or the objectives of the experiments being conducted; 

• A control or safeguarding system which monitors and maintains suitable conditions for the 
experiment through the implementation of a feedback control loop system, for example. This 
system is usually responsible for avoiding the overheating of the test specimen, which has is one 
of the greatest problems in UFT. 

 

Figure 4. Schematic representation of the typical systems found in a UFT machine [10]. 

A fairly sizeable amount of work has been done over the years in VHCF testing with very 
satisfactory results in uniaxial testing [10,40–42]. The vast majority of that research was conducted 
with uniaxial test specimens. The most popular test methodologies tend to make use of fatigue 
specimens in the shape of a dumbbell [32,43,44], Gaussian curve [45] or hourglass [10,33,34], where 
the thinner middle part acts as a stress concentrator as depicted in Figure 5. 

Figure 3. (a) Normalised distribution of displacement and stress along the normalised length of a
uniaxial UFT specimen [10]; (b) Modal analysis simulation results (displacement) for the first axial
(tension) mode at 20 kHz of the resonant system components [10].

Besides the resonant system just described, UFT machines should also include (Figure 4):

• A measurement or data acquisition system which can be made of various instrumentation devices from
strain gauges, laser doppler vibrometers, thermocouples, infrared cameras, and other data-gathering
transducers. Here, different configurations can be found due to resources’ limitations (usually budget
related) or the objectives of the experiments being conducted;

• A control or safeguarding system which monitors and maintains suitable conditions for the experiment
through the implementation of a feedback control loop system, for example. This system is usually
responsible for avoiding the overheating of the test specimen, which has is one of the greatest
problems in UFT.

Machines 2020, 8, x FOR PEER REVIEW 5 of 30 

 

 
(a)  

(b) 

Figure 3. (a) Normalised distribution of displacement and stress along the normalised length of a 
uniaxial UFT specimen [10]; (b) Modal analysis simulation results (displacement) for the first axial 
(tension) mode at 20 kHz of the resonant system components [10]. 

Besides the resonant system just described, UFT machines should also include (Figure 4): 
• A measurement or data acquisition system which can be made of various instrumentation 

devices from strain gauges, laser doppler vibrometers, thermocouples, infrared cameras, and 
other data-gathering transducers. Here, different configurations can be found due to resources’ 
limitations (usually budget related) or the objectives of the experiments being conducted; 

• A control or safeguarding system which monitors and maintains suitable conditions for the 
experiment through the implementation of a feedback control loop system, for example. This 
system is usually responsible for avoiding the overheating of the test specimen, which has is one 
of the greatest problems in UFT. 

 

Figure 4. Schematic representation of the typical systems found in a UFT machine [10]. 

A fairly sizeable amount of work has been done over the years in VHCF testing with very 
satisfactory results in uniaxial testing [10,40–42]. The vast majority of that research was conducted 
with uniaxial test specimens. The most popular test methodologies tend to make use of fatigue 
specimens in the shape of a dumbbell [32,43,44], Gaussian curve [45] or hourglass [10,33,34], where 
the thinner middle part acts as a stress concentrator as depicted in Figure 5. 
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A fairly sizeable amount of work has been done over the years in VHCF testing with very
satisfactory results in uniaxial testing [10,40–42]. The vast majority of that research was conducted with
uniaxial test specimens. The most popular test methodologies tend to make use of fatigue specimens
in the shape of a dumbbell [32,43,44], Gaussian curve [45] or hourglass [10,33,34], where the thinner
middle part acts as a stress concentrator as depicted in Figure 5.
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3. Multiaxial Fatigue Testing

3.1. Multiaxial Stress States

Most fatigue testing today still uses uniaxial loads; however, real critical parts are usually exposed
to multiaxial loads. This is the case, for example, of the fuselage and wings of aircraft which are
subjected to in-plane biaxial states of stress [26], a drive shaft under combined bending and twisting [46]
or tension in three directions where several parts are welded together. In the latter case, for example,
static failure can appear as brittle, because the deviatoric stresses, which are related to plastic slip, can
be relatively low even if the hydrostatic stress components are high [47,48].To respond to the challenges
imposed by the introduction of new material manufacturing techniques, such as metal AM, multiaxial
fatigue testing is developing to become a standard procedure in material testing. By performing
multiaxial fatigue testing, a better experimental reproduction of the stresses experienced by materials
in real life can be achieved [49]. By the same token, different material behaviour traits and failure
modes can be explored [43,50–52]. It is considered that biaxial loading of a sample would give a more
versatile experimental procedure and a better representation of the true strain field at the tip of a
fatigue crack [53]. However, the area of multiaxial UFT is still only just burgeoning with a limited
number of publications on the topic.

The term multiaxial fatigue is generally accepted in the literature but indeed it may not be the
adequate one since it includes a triaxial stress state which is rarely found in service. Moreover, at the
surface of the material, where a large majority of fatigue crack initiation occurs, the stress state is
biaxial. Nevertheless, in the present paper both terms biaxial or multiaxial fatigue will be used since
they are mentioned in a large majority of the literature and in the International Conference series of
multiaxial fatigue and fracture [2].

In many industries, such as aerospace, automotive, maritime, and so on, critical components
are generally subjected to complex multiaxial loading conditions. It is important to characterise and
develop constitutive models to predict the mechanical behaviour of structural materials under real
service loading conditions. Biaxial loading is one particular load case that can be found in many of
the industries, being necessary to quantify and clarify the yield criteria and constitutive equations
of a particular material. For biaxial fatigue testing, there are currently two methods of producing
biaxial stresses in material for different types of specimens [2]. The first method employs thin-walled
cylinder tube specimen subjected to combined tension–torsion loading, whereas the second method
uses cruciform specimens subjected to the biaxial tension-tension loadings.

To investigate the combination effects of biaxial loading, the general stress state case is considered,
Equation (1):

σxx = σxx,a sin(ωt) + σxx,mσyy = σyy,a sin
(
ωt + δyy

)
+ σyy,mσxy = σxy,a sin

(
ωt + δxy

)
+ σxy,m (1)

where σxx and σyy are the normal stresses in the x and y directions, respectively; σxy is the shear stress;
the subscript a refers to the amplitude of the alternating component of the stress; the subscript m refers
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to the mean value of the stress, ω is the angular frequency of application of the load, and δyy and δxy

are the phase shifts of the applied stresses with respect to σxx.
Figure 6 represents schematically the range of biaxial principal stress states, σ1 and σ2, in the four

quadrants. It shows the range of possible combination of stresses, from in-plane biaxial stress states in
the first and third quadrants to the presence of shear stresses in the second and fourth quadrants.
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Figure 6. Schematic representation of biaxial stress states (based in [2]).

3.2. General Testing Procedures and Machines

Currently most of the experimental fatigue tests are performed in rotating bending or in
servo-hydraulic testing machines [2]. Actuators are used to stress test specimens by reproducing any
reference signal (waveforms, random spectra, etc.) at frequencies that in some cases can exceed 200 Hz
(generally for most of the fatigue tests the working frequency ranges from 5–20 Hz) [2]. However,
especially for servo-hydraulic test machines, an enormous amount of energy is lost in the form of heat,
which has consequences in running and maintenance costs.

With the development of new technology, most important brands of fatigue testing machines
started incorporating electrical linear actuators in their uniaxial testing machines. This can be found
in the catalogues of some brands, such as Bose®ElectroForce®, Instron®ElectroPuls™ or MTS®.
The commercial success of these actuators is mainly due to the much lower operating costs and
many other advantages, such as: little consumables needed, lower electrical consumption, less heat
generation, no noise, high cleanliness and almost no wear. The principal drawback is the limitation in
load capacity, in which the most powerful machines can only go up to 10 kN (with more than one
linear motor in tandem). This is much lower than what can be achieved with hydraulics, but enough
to test small samples of most engineering materials [12].

The combined tension–torsion test is popular for biaxial testing. It can be used, for example,
to simulate the stress states of driving shafts. In many cases, this is achieved with an accessory that is
used in uniaxial servo-hydraulic test machines. However, only some stress states can be simulated by
this test type [2]. It means that the biaxial tension (and biaxial compression) stress states cannot be
simulated by the combined tension–torsion test system. Another disadvantage is that it requires the
material to be in the form of a cylinder or tube, being difficult to be applied to rolled sheet materials
and most composite shapes. Therefore, cruciform specimens were introduced instead.

Biaxial in-plane ‘conventional’ fatigue tests usually require at least four actuators to ensure that
the centre of the specimen does not move during the test, due to deformation, to ensure symmetry.
The servo-hydraulic actuator type is the most common option available in the market for biaxial in-plane
fatigue tests. These machines are normally large and can exceed 500 kN of load. The installation
and maintenance costs are prohibitive for most laboratories [54], even if a lower capacity is required.
Bose®ElectroForce®has an alternative to servo-hydraulic actuators for in-plane biaxial fatigue tests
using linear actuators. However, the biaxial testing machine presented in their catalogue has a low
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capacity of 200 N, being only appropriated to test materials such as soft tissues. Recently, a novel low
cost and efficient in-plane biaxial fatigue testing machine, based on linear electrical motors and with
an innovative guiding system (using pneumatic bearings) was proposed. This machine can reach up to
1 kN with an operating frequency of 20 Hz, which is suitable to test most metal alloys. With this new
fatigue testing machine, together with the development of guidelines for cruciform specimen design,
an extensive programme to test several specimens under different combinations of in-plane biaxial
loads at a relatively low cost was presented [55,56].

Biaxial fatigue testing on metals tries to replicate a loading situation that would be closer to
real-life applications than uniaxial testing. As a matter of fact, rarely would a piece of component
be stressed in a singular direction during operation. One would expect materials to be extended
or compressed in complex and various manners, which can only be approximated by multiaxial
experimental testing [57].

Another primary reason to consider biaxial testing would be because of the high level of anisotropy
exhibited by rolled metal sheets. Also, since uniaxial tensile tests and fatigue tests only produce results
pertaining to unidirectional loading, those test results might not be adequately suited to properly
characterise a multi-directionally formed component. In fact, it has to be noted that in a biaxial loading
case, failure can occur at a lower stress level than would have been expected in a uniaxial loading
scenario, therefore it is not possible to make a straightforward like for like comparison between uniaxial
and biaxial cases [57–60].

It was shown that in VHCF biaxial testing, the picture is still incomplete. It is, therefore, not
surprising to find that most of the study done on biaxial fatigue was undertaken at lower fatigue
regimes. Many researchers have even unanimously reported a lack of standardisation for biaxial
fatigue testing. There is an absence of standards in the testing methodology and more importantly in
the testing specimens [43,50]. This is in stark contrast with uniaxial testing where a large number of
standards exist [61].

Despite the fact that the testing procedure can be similar to the uniaxial fatigue cases, applying
more than one load complicates matters a lot more. Indeed, in order to have a successful biaxial test,
three basic elements need to be present [61]:

• A machine suitable for applying multiaxial loads and with reliable instrumentation capable of
handling complex experimental conditions (temperature, vibrations, etc.);

• A specimen capable of producing the desired level of biaxiality required across the area of interest
which will be the origin of the fatigue failure. This aspect is far from straightforward mainly
due to the various spots of stress concentrations encountered with biaxial specimens. Besides,
the gauge area is usually fairly limited which can make achieving a good homogenous biaxial
stress state a rather thorny task;

• A test configuration or measuring system which allows for the recording of the necessary data
(displacement, stresses, temperature, etc.). Therefore, there needs to be a free or easy access to the
surface of the specimen for acquiring data.

Therefore, faced with a multitude of testing rigs and complex methods available, coupled to the
difficulty of finding the right specimen for the job, not all existing designs are suitable candidates to be
adapted for gigacycle testing.

3.3. Specimens for ‘Conventional’ Multiaxial Fatigue Testing

Considering only research on crack initiation and early crack growth, a large variety of specimens
that can be applied in experimental research on multiaxial fatigue [2] include solid cylindrical specimen,
tubular specimens, and cruciform specimens. All these specimens can have either notched or unnotched
versions. Also, sheet specimens with straight or inclined cracks can be used for mixed mode crack
growth research.
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3.3.1. Cylindrical Solid and Tubular Biaxial Fatigue Specimens

Toroidal (Figure 7a) and tubular specimens (Figure 7b) are used to carry out tension or bending
with torsion fatigue tests, for stress states represented on quadrants 2 and 4 of Figure 6.Machines 2020, 8, x FOR PEER REVIEW 9 of 30 
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Biaxial fatigue testing using cylindrical specimens appears to have been among the most popular
methods of biaxial fatigue testing in the early years [62–64]. It was highlighted that they provide a
very useful flexibility in terms of the type of loads that can be used in the testing [61,64]. This biaxial
fatigue test makes use of the capacity of a cylinder to be loaded under a combination of tension or
bending with torsion. Hollow specimens can also be loaded by applying internal/external pressure in
the specimens, additionally to the tension and torsion applied loading [2]. Tubular cylindrical fatigue
testing is rare, mainly due to the difficulty of the apparatus of the multiaxial fatigue testing machine,
but indeed it is the only fatigue test that allows the characterisation of the material behaviour with the
multiaxial stresses described in Equation (1) [2,65].

Thick-walled tubular specimens are used to replicate real-life structures such as bridge girders [66],
high pressure containers, and deep submersibles in power plants or even as protective oil casing
conduits in oil and natural gas extraction [67]. On the other hand, thin-walled test pieces appear to be
suitable for simulating the loading that could be experienced by shell structures such as a pressure
vessel or piping [63], a bicycle frame or even an aircraft wing [68]. However, due to the very nature of
their cylindrical shape, these specimens suffer one major drawback: because of the thickness and the
fact that the surface of the specimen is curved, the stress state recorded all over the specimen is not
constant [63]. The thickness and curvature of the specimen have the debilitating effect of causing a stress
gradient to exist across the specimen [61], whether it is solid or tubular. Due to the presence of a stress
gradient between the surface and the centre of cylindrical specimens, when bending and/or torsion
loadings are applied, it is mandatory that solid cylindrical specimens (Figure 7a) shall be used only in
the elastic regime, therefore they are only used to characterise S-N curves where maximum stresses
are below the yield stress of the material [2]. However, cylindrical specimens, as shown in Figure 7b,
may be used in low cycle fatigue where plasticity is present in order to have a full characterisation of
the material’s plastic strain. Due to fact that these specimens are curved, internal/external pressure
will have an undesired effect of introducing radial stress into the material [63]. Those radial stresses
have more impact on the stress state of the specimen in the thick-wall rather than the thin-wall one
where they are conventionally ignored as thin-walled specimens develop a state of plane stress. These
observations showed that in some occurrences biaxial thick-wall tubular test specimens tend to fail
under triaxial loading rather than the originally intended biaxial loading [69–71].

Finally, these cylindrical specimens do not lend themselves very well to rolled and flat sheet
materials. As a consequence, the experimental results obtained from biaxial tests on cylindrical
specimens cannot be directly applied to flat sheet materials [70,72].

3.3.2. Flat Square Biaxial Specimen or Flat Coupons

The biaxial testing making use of a flat square test piece [73] was presented as one of the simplest
multiaxial testing methods available. The test piece consists of a flat piece of material in the shape of a
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square. Several holes are drilled around the periphery to provide the necessary anchor to grip the
specimen to the machine. The number and placement of holes all around the specimen wasshown
to be a source of great difficulty with this type of test. Too few holes and inadequately placed will
result in a distortion of the edges of the specimen upon loading called free edge effect. To counteract
that effect, the main course of action has been to increase the number of load application points so
as to produce as a uniform loading scenario as possible. Despite the fact that this made it possible
to apply more uniformly the desired load across the edges of the specimen, unwanted compression
areas were observed between the load application points and the free edges. These compression areas
which can be seen in Figure 8, have the negative effect of disturbing the stress uniformity that ought
to have developed at the centre of the specimen, especially when the specimen is relatively small.
The field of uniform stress can be somewhat improved in this type of specimen by decreasing the
influence of compression zones [74], locating them far from the center and increasing the number of
load application spots, as is done in [75] with 1220× 1220 mm specimen plates [73,75].
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Figure 8. Photoelastic fringe pattern image of a biaxially loaded flat square specimen with edge holes
and loaded by vertical forces with disturbance from compression zones on show [74].

3.3.3. Cruciform Biaxial Specimens

Cruciform biaxial specimens were reported by many researchers as the best option to reproduce an
accurate and stable biaxial loading scenario as would be expected in a real-life application [52,62,70,76].
In its loading pattern and specimen behaviour, this test is very analogous to the flat coupon. Of all
the biaxial testing procedures, this one seems to provide the most realistic stress state because of the
application of in-plane stresses and strains on the perpendicular arms of a cross-shaped specimen.
Some researchers have even likened the testing with cruciform specimens to testing two uniaxial test
pieces crossed at 90◦ [77]. This can be supported by the fact that the original aim of biaxial testing with
cruciform specimens is to apply a force along a specimen arm and generate the desired stresses without
any unwanted resistance occurring in the other perpendicular arm’s direction [72]. This consideration
made it possible for researchers to compare their experimental biaxial test results to published uniaxial
ones with a high degree of confidence in the comparability [42,76].

By using cruciform specimens, one is also able to reduce the influence of the shear stress in the
material (even though not completely) by employing several optimal geometry features. Therefore,
longitudinal and transverse stresses dominate in the material. This possibility offers an easier way to
induce orthogonal tension-tension stress state in a material [61].

When studying different loading modes and their combinations, cruciform biaxial specimens
allow more complicated stress fields to be created for non-proportional loading experiments [51,52].
These specimens will give an equibiaxial stress field if both axes are in tension, or a pure shear field if
one is in tension and the other in compression. If a crack is at 45◦ to the axes in the pure shear field,
then it will be in pure mode II loading [51].

An extensive amount of work was done on cruciform biaxial specimens to try and produce a
standard type of testing. However, due to the various types of cruciform models and methodologies
employed that task still remains a challenge [8,78]. Cruciform specimens tend to be commonly tested in
a biaxial testing device that is fitted with four actuators clamps aimed at fixing and loading the specimen
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during testing. The clamps are usually put into motion by servo-hydraulic jacks or electromagnetic
motors that induce the stresses into the test specimen (Figure 9).
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The damage, generally in the form of a crack suffered by the materials used in this test can be
recorded with an electronic microscope. There exist many different cruciform specimen designs that
can be tested in these devices. All the specimens encountered in the literature, despite exhibiting
different geometries, tend to follow the similar guidelines in order to reach two main objectives [69]:

• To maximise the stress level recorded in the central part of the specimen;
• To reduce the stress concentration in the arms of the specimen.

Having said that, it was shown in the literature that when it comes to cruciform specimens,
the main problematic areas are at the transition between the perpendicular arms. Because of the
proximity of these areas to the gauge area of the specimen, they end up having a noticeable influence
on the uniformity of the recorded stresses at the centre. This problem was tackled by using several
various geometrical enhancements to cruciform specimens in order to achieve the two objectives
aforementioned. These are also aimed towards guaranteeing that the crack initiation site occurs and
propagates from the centre of the specimen.

Cruciform specimens with slits cut into the arms (Figure 10a) are reported to help with reducing
the influence of the specimen arms on the size of the stress field as well as smoothing the stress
field recorded in the central gauge area of the specimen [74,80]. By doing so, it is possible to reduce
significantly stress concentrations and therefore produce uniform stresses at the centre [81]. However,
there are several problems, which were reported. For example, it was found that experimental
results were not in agreement with published literature centred on the Hill’s quadratic yield equation
for anisotropic deformations, which is described as a reliable tool for cold rolled Steel behaviour
characterisation [33,34], was not in agreement. For most load ratios, the published results of work
contours to failure were higher than the experimental ones, with the equibiaxial loading scenario
being the furthest off, especially at lower strain levels. It was also found that the number, size and
spacing of slits have a considerable influence on the stress field generated at the centre of these
specimens [57,61,73], and increasing the number of slits in the arms is only beneficial up to a certain
extent. Furthermore, the cruciform specimen with slits would not be very adequate for testing with
plastic deformations [81]. Finally, it was noticed that the slits in the arms have the undesired effect of
increasing the influence of shear stress in the failure of the test pieces [81].
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Notched corners were introduced aiming at increasing strain levels in the central area of
the specimen, while reducing stress concentrations at the corners formed by the arm-to-arm
transitions [70,73,82]. These stress concentrations were also found to result in undesired shear stresses,
compromising the uniformity of the stresses in the central gauge area [73]. Typical biaxial cruciform
specimens with circular and elliptical notched corners can be seen in Figure 10b,c. It is interesting to
note that the performance of circular-notched specimens is variable and that specimens with elliptical
corner notches are the best alternative. Specimens with elliptical corners proved more adequate when the
loading was not equibiaxial by guaranteeing a good level of stress uniformity up to 80% [73].

One well-documented aspect of concern with this style of specimen is that despite the maximum
stress level being achieved in the central area, if the radii at the tip end of the notch are fairly small,
then that could create a problematic site of stress concentration and necking [72,77]. Other works
observed that such specimens are not particularly suitable for studying biaxial plastic fatigue due to
several specimen failures happening outside the central gauge area [77].

In most cases encountered in the published literature, experimental test pieces that exhibited a
thinner central area are combined with the feature of notched corners. This is the case of the specimen
presented in Figure 10c, where the thinner central area is circular. The reduction in thickness at the
centre of the specimen contributes in increasing stress levels around that area [62,72].

A variation to the thinner central area specimen is to shape it in the form of a square or a
rhombus [31,83] (Figure 11a). It transpired that for specimens with arm length dimension at least double
that of arm width, the strain distribution in the gauge area was quite uniform. In fact, by increasing the
ratio of arm length to arm width, an improvement in strain field uniformity is observed [83]. As it can
be seen in Figure 11b, the direct strain fields in the central area of such specimens are comparatively
better and uniform, stress concentration in the arms are practically non-existent, and shear strains at
the centre are close to zero, proving further the good uniformity of the stress field produced by these
specimens [61]. However, it has to be noted that these specimens were designed for testing on textile
composite materials. To achieve such configuration, instead of a circular recess, on metals through
subtractive manufacturing would probably be more challenging, so its suitability for testing on metals
cannot necessarily be guaranteed. Nevertheless, it provides a nice basis for possible adaptation to a
metal testing scenario on UFT, especially if one is to analyse metal AM materials.

In High Cycle Fatigue biaxial experiments conducted on ductile aluminium (alloy 1050A-H14),
cruciform specimens with combined elliptical notched corners and reduced centre thickness (Figure 12)
were tested in an electromagnetic four-actuator loading device (Figure 9) with forces up to 1 kN at
20 Hz [12,78]. After having used direct multi-search (DMS), a Multiple Objective Optimisation (MOO)
method, the geometry of the specimen shown in Figure 12 was optimised by isolating five major
design parameters. Special attention was paid to the centre geometry. To keep stress as uniform as
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possible without the effect of stress concentrations the centre region was generated with a revolving
spline starting horizontally at the centre of the specimen and ending with an angle θ at a diameter d,
both defined as design variables for the optimisation algorithm. This spline ensures a smooth geometrical
transition to avoid stress concentration in the critical region. In this specimen, the thickness at the centre
was fixed as 0.5 mm, stipulated as being the minimum value to ensure good machining conditions, and the
thickness t of the sheet plate in the arms was fixed at 3.0 mm. The remain design variables are the major R
and minor r ellipse radii [70,78]. The optimised geometry of this specimen resulted in a stress field that is
maximum and uniform at the centre. This was demonstrated by verifying that the stress gradient would
not exceed 4% for every 2 mm radius away from the centre of the test piece and that the stress value in the
arms was at least 20% lower that the stress value in the gauge area.
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The work presented in [70,78] was extended to expose the influence of each geometrical
design parameter on biaxial fatigue test response. The geometries proposed in the works from
Baptista et al. [16,55,56] appear to be, to some extent, a combination of all the features of the cruciform
specimens aforementioned. These specimens present many advantages among which a fairly thorough
definition of the influential parameters of the geometry and their impacts on the stress state of the
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specimen. Equations were derived in [16,56] as a tool to help with obtaining optimised geometries for
biaxial testing with different sizes.

3.3.4. Biaxial Specimens for Uniaxial Machines

There are many other biaxial test specimens’ designs that were presented over the years, including
biaxial specimens that can be tested in uniaxial test machines [84–86]. Of particular interest is the
one presented by Bellett et al. [87], as an attempt to study elastic and plastic stresses under biaxial
fatigue. This specimen has a very distinct geometry: it is a flat unnotched hourglass specimen, with
two through holes that remind teardrops. The authors have not given any specific name to these
specimens. However, since hourglass specimens are quite generalised in fatigue testing, in the context
of this paper, this specimen will be designated as twin-teardrop, or teardrop for simplicity (Figure 13).Machines 2020, 8, x FOR PEER REVIEW 14 of 30 
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Figure 13. The ‘Twin-Teardrop’ specimen [87].

The interesting feature of the teardrop specimen is that biaxial stress states can be induced
under the application of uniaxial loads. High cycle fatigue tests at 2 × 106 cycles under 2 kN were
conducted for two types of Aluminium: wrought Aluminium 2024-O, and cast Aluminium-silicon
alloy AlSiCu0.5Mg0.3. The authors used shape optimisation in ANSYS to generate a specimen that
could be obtained within a 100 × 40 × 4.7 mm envelope, based on the Dang Van fatigue failure
criterion [63,70,73,74] and the Lin-Taylor hypothesis [88]. The Dang Van fatigue failure criterion was
used to increase the likelihood of crack initiation to happen in the centre of the recessed area of the
specimen. The Lin-Taylor hypothesis was used to explain the cases where fatigue failure could happen
outside the centre of the specimen. Their second objective was to maximise the biaxial uniformity on
the gauge area. The overall findings of the experiments were satisfactory with biaxial tensile tests
and biaxial fatigue both covered by the specimen. However, it was shown that this specimen was not
suitable for testing cast aluminium in biaxial fatigue since 5 out of 5 specimens tested failed outside
the gauge area. A possible reason touted for that was the presence of defects (micro-shrinkage pores)
for failure to occur in such a small biaxial gauge area. On the other hand, the wrought aluminium
performed well with 100% of failures occurring in the centre. A further observation was that for a
specimen with overall thickness increased from 4.5 mm to 10 mm, the performance was improved [87].

4. Multiaxial Fatigue Testing at Very High Number of Cycles

4.1. Tension/Torsion Ultrasonic Fatigue Testing

Recently [23,76], a tension/torsion loading UFT device using a single piezoelectric axial actuator
was presented. Contrary to the cruciform UFT specimens developed by Montalvão et al. [25,26] that
make use of the same horn as the one for uniaxial UFT (later described in Section 4.2), a custom horn
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and new specimen were proposed (Figure 14). The horn is designed in order to transform the axial
displacement from the actuator into both axial and rotational motion [23,76]. This excitation pattern is
then transmitted to the specimen, which will both stretch/compress and twist. The resulting specimen
is shown in Figure 15. It is composed of three ‘throats’, where the central one is where maximum
tension/torsion are achieved [15] and where fatigue failure is expected.
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Several steel tension/torsion specimens were machined from a railway wheel’s rim [89–91].
When testing these particular specimens in UFT machines, they do not achieve complete failure, i.e.,
split up into two pieces. It is required to take them to another machine for the complete failure to be
reached, with the purpose to have the fatigue fracture unveiled. Such a procedure is required because
in such tests the specimen works in resonance. It must be noted that such a procedure is not unusual in
UFT, whether it is uniaxial or multiaxial. With the growth of the fatigue crack, the stiffness k is reduced,
but the mass m is assumed to remain constant. Making an analogy to a single-degree-of-freedom
lumped-mass spring system where the natural frequency is:

ωn =

√
k
m

(2)

It is easy to see that as the stiffness k reduces, the natural frequencyωn reduces too. This is a typical
assumption in vibration-based Structural Health Monitoring [92–96]. Since the operating frequency of
the UFT testing machine has a tight tolerance of ± 0.5 kHz, once the specimen’s resonant frequency
drops more than the tolerance’s lower limit (i.e., drops below 19.5 kHz), the UFT is interrupted and can
no longer proceed. This is a consequence of horn and booster still having 20 kHz resonant frequencies;
it is only the specimen’s resonant frequency what is offset due to crack initiation and propagation.

4.2. Tension/Tension Ultrasonic Fatigue Testing (Cruciform Specimens)

An original approach to biaxial UFT was proposed in order to achieve VHCF regime using
cruciform specimens [25]. Having as starting point the same principles used in the design of the
ultrasonic fatigue testing machines and design rules for cruciform specimen design as in [16,24,55],
it was shown that at least when using cruciform specimens for in-plane tension-tension (biaxial) testing,
only the specimen needs to be redesigned and no changes are required to be made to the machine.
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Figure 16 shows the UFT machine setup described by Montalvão and Wren [25]. It can be seen that
the machine used is the same as Lage et al. [10] used, an uniaxial UFT machine (Figures 1b and 4),
and that the specimen is a redesigned version based on Baptista et al. [16,55] (Figure 12). The specimen
is attached to the machine through an M6 screw connection.Machines 2020, 8, x FOR PEER REVIEW 16 of 30 
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The principles behind the redesign of these specimens are based on Single-Input-Multiple-Output
(SIMO) modal analysis. This means that an important requirement in the specimen’s design is that the
connection between the machine and the specimen is done at a coordinate that is an anti-node of the
particular mode shape of interest being excited [25]. In this case, where specimens have all their arms
free (except the one being excited, which is attached to the horn through a screw connection), the stress
ratio is [97]:

R =
σx,min

σx,max
=
σy,min

σy,max
= −1 (3)

Since these specimens (as any solid body that can be described as a continuous system)
have an infinite number of mode shapes, it is shown that two different stress scenarios can
be contemplated [25]: Tension-Tension (T-T) where both orthogonal arms stretch (or compress)
in-phase; and, Compression-Tension (C-T), where when one arm is stretching the perpendicular one is
compressing, i.e., they are out-of-phase and result in shear (Figure 17).

Cruciform specimens, such as the ones discussed in Section 3.3.3, were optimised to ensure that
stress concentrations at the corners between the arms are minimised and the bulk of the stress occurs
at the centre and is homogeneously distributed. Therefore, it is reasonable to assume that if one of
the resonant mode shapes represented in Figure 17 can be obtained when the specimen is excited at
a single (harmonic) ultrasonic frequency and at a single anti-node (i.e., with only one piezoelectric
actuator as shown in Figure 16), the stress field created by the vibrating mode shape is no different
from the one generated when the specimen is being loaded in ‘conventional’ test machines through all
four arms (e.g., such as the ones shown in Figure 9, Section 3.3.3). The problem with adapting existing
specimens into UFT machines is how to ‘tune’ them so that they present only the intended vibrating
patterns (such as the ones shown in Figure 17) at the machine’s operating frequency.
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4.2.1. Tuning with a Global Dimensional Scale Factor

Montalvão and Wren [25] show that one approach for ‘reusing’ existing designs (such as the ones
from Baptista et al. [16,55]), consists of using a geometrical scale factor that can be determined from:

s =
fUD

fCD
(4)

where fUD is the mode shape’s resonant frequency of the ‘Uncalibrated Design’ and fCD is the mode
shape’s resonant frequency of the ‘Calibrated Design’. In practice, what this means is that if we scale up
all the dimensions of an existing design by a scale factor of s, all the natural frequencies will be scaled
down in the same proportion. Since we want to have one of the tension mode shapes of the Calibrated
Design cruciform specimen tuned at a certain natural frequency (in the case of Montalvão and Wren,
2017, 20 ± 0.5 kHz [25]), we only need to determine the dimensional scale factor based on the natural
frequency of the existing Uncalibrated Design (UD), which can be achieved either experimentally or
using Finite Element Analysis (FEA).

The scale factors determined were 0.5533 and 0.4577 for the T-T and C-T specimens respectively,
considering a 6082-T651 aluminium alloy and a 10 mm thick base specimen. This means that Equation (4)
can yield rather small specimens, especially at the gauge area. Also, since the gauge area of specimens
T-T and C-T present different dimensions due to the different scale factors, it is not clear that they
are comparable.

4.2.2. Tuning by Changing the Specimen’s Arms’ Dimensions

To ensure that the gauge area dimensions are pre-determined, an alternative method is suggested,
whereby the rectangular ends of the arms have their lengths (and/or widths) changed [26,97]. If one
considers the approximation that one single arm of the cruciform specimen behaves as a rod with a
lump mass at the tip under free longitudinal vibration, then the increase in mass at the tip will lead to
a reduction in the natural frequency fn, and vice versa, as illustrated with Equation (5):

fn =
1

2π

√
AE
mL

(5)

where A is the cross-sectional area of the idealised rod, L is its length, E is the Young’s modulus of the
rod’s material, and m is value of the lump mass at the tip.
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However, cruciform specimens are not composed of uniform rods with lump masses at their tips,
so although the basic idea can be explored, Equation (5) cannot be formally used. Instead, using FEA,
this approximation was proposed to be used to tune the original specimens from Baptista et al. [16,55]
so that the required C-T and T-T mode shapes at 20 kHz were obtained without affecting the geometry
of the specimens’ gauge area [26,97]. The result was a cruciform specimen with the same central
section geometry and thickness as the original specimen, but only slightly shorter (or even narrower)
arms (Figure 18). To achieve a working specimen, several dimension combinations were numerically
tested and experimentally tested until they have the resonance mode of interest within the working
frequency [24].
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Figure 18. Comparison between the resulting UFT cruciform specimens from the (a) “scaling” and from
the (b) change in arms’ dimensions methods. The original design is faded for comparison purposes.
Both UFT designs deliver an in-phase (T-T) mode shape at 20 kHz [26].4.2.3. Tuning for Non-Unitary
Biaxiality Ratios

The same principles as the ones described in the previous Section 4.2.2 were used to design
specimens that are able to deliver biaxiality ratios B ∈ [−1, 1] [26]:

B =

{
σy/σx i f |σx| ≥

∣∣∣σy
∣∣∣

σx/σy i f |σx| <
∣∣∣σy

∣∣∣ (6)

This means that for B = ±1 we have the same in-plane stresses in both directions (symmetric
cruciform specimens) and for the limit case where B = 0 we have uniaxial stress in one direction only.
The signal is indicating if the mode shape is either in-phase (T-T) when positive (+), or out-of-phase
(C-T) when negative (-).

When biaxiality ratios B , ±1 are being sought, this can be achieved by changing the arms’
lengths in different directions by different proportions (Figure 19). If the arm in the horizontal direction
is shortened by a quantity −∆x, and using again the analogy of a rod with a lump mass at the tip,
this corresponds to a reduction in the mass in the horizontal direction; hence, to an increase in the
natural frequency according to Equation (5). To compensate for this increase in the natural frequency,
the arm in the vertical direction is extended by a quantity +∆y until the frequency is reduced back
to 20 kHz. Since the elongation of one arm corresponds to an increase in mass, Equation (5) tells us
that the frequency can be reduced this way. Figure 6 shows one example of what a specimen with a
non-unitary biaxiality ratio may look like following this procedure.



Machines 2020, 8, 25 19 of 29
Machines 2020, 8, x FOR PEER REVIEW 19 of 30 

 

 
Figure 19. Result from the “change in arms’ dimensions” method to obtain an out-of-phase C-T 
specimen with a non-unitary biaxiality ratio at 20 kHz [26]. 

4.3. Tension/Tension Ultrasonic Fatigue Testing (Teardrop Specimens) 

An optimisation process based on the computation of the modal response and biaxial stress state 
profile of a twin-teardrop biaxial specimens was presented by Nwawe et al. [98]. Aiming at adapting 
twin-teardrop specimens to be used in UFT machines, two preliminary UFT twin-teardrop specimen 
concepts (spherical and cylindrical) were obtained (Figure 20).  

 

 
Figure 20. Preliminary designs of UFT twin-teardrop specimens (spherical and cylindrical) [98]. 

Although this is still preliminary work, these UFT twin-teardrop designs should, in principle, 
be able of being tested for stress ratios ܴ ് −1. This could be an advantage when compared to the 
cruciform specimens adapted for UFT as discussed in Section 4.2, which can only be used for ܴ = −1. 
This is because specimens in Figure 20 have two attachment points, one of each can be anchored. By 
having one end fixed, a mean (static) stress could, in principle, be introduced. However, this brings 
more challenges to the design, as boundary conditions need to be modelled precisely. Also, these 
specimens may have some limitations if one wants to study out-of-phase (C-T) biaxial testing or non-
unitary biaxiality ratios. 

5. Performance of Biaxial Specimens based on Experimental Evidence 

Experimental fatigue tests were carried out on the ultrasonic fatigue testing facilities in Instituto 
Superior Técnico (University of Lisbon). Both tension/torsion UFT cylindrical specimens with three 
‘throats’ and tension/tension UFT in-plane biaxial cruciform specimens were used, following the 
guidelines previously described in Sections 4.1 and 4.2, respectively. 

5.1. Tension/Torsion Ultrasonic Fatigue Testing 

Cylindrical specimens were produced from an ER9 class train wheel. The material (Steel) was 
defined to comply with the European Standard EN 13262 + A1. A metallurgical analysis of the railway 
wheel’s Steel in the rim and in the web region was firstly conducted (Figure 21) using an Optical 
microscope and Scanning Electron Microscopy (SEM). This is useful since it is known that the 
material’s microstructure may influence results [99–102].  

Figure 19. Result from the “change in arms’ dimensions” method to obtain an out-of-phase C-T
specimen with a non-unitary biaxiality ratio at 20 kHz [26].

4.3. Tension/Tension Ultrasonic Fatigue Testing (Teardrop Specimens)

An optimisation process based on the computation of the modal response and biaxial stress state
profile of a twin-teardrop biaxial specimens was presented by Nwawe et al. [98]. Aiming at adapting
twin-teardrop specimens to be used in UFT machines, two preliminary UFT twin-teardrop specimen
concepts (spherical and cylindrical) were obtained (Figure 20).
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Figure 20. Preliminary designs of UFT twin-teardrop specimens (spherical and cylindrical) [98].

Although this is still preliminary work, these UFT twin-teardrop designs should, in principle,
be able of being tested for stress ratios R , −1. This could be an advantage when compared to the
cruciform specimens adapted for UFT as discussed in Section 4.2, which can only be used for R = −1.
This is because specimens in Figure 20 have two attachment points, one of each can be anchored. By having
one end fixed, a mean (static) stress could, in principle, be introduced. However, this brings more challenges
to the design, as boundary conditions need to be modelled precisely. Also, these specimens may have
some limitations if one wants to study out-of-phase (C-T) biaxial testing or non-unitary biaxiality ratios.

5. Performance of Biaxial Specimens Based on Experimental Evidence

Experimental fatigue tests were carried out on the ultrasonic fatigue testing facilities in Instituto
Superior Técnico (University of Lisbon). Both tension/torsion UFT cylindrical specimens with three
‘throats’ and tension/tension UFT in-plane biaxial cruciform specimens were used, following the
guidelines previously described in Sections 4.1 and 4.2, respectively.

5.1. Tension/Torsion Ultrasonic Fatigue Testing

Cylindrical specimens were produced from an ER9 class train wheel. The material (Steel) was
defined to comply with the European Standard EN 13262 + A1. A metallurgical analysis of the railway
wheel’s Steel in the rim and in the web region was firstly conducted (Figure 21) using an Optical
microscope and Scanning Electron Microscopy (SEM). This is useful since it is known that the material’s
microstructure may influence results [99–102].
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tested in ultrasonic fatigue at 20 kHz in relation to conventional 5 Hz. Regarding the multiaxial results 
the difference is more pronounced with 45% higher stresses at 20 kHz and no failures during the 
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for certain metals application of high frequency fatigue testing has an impact on fatigue life stress 
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Figure 21. (a) Prepared samples for microstructural analysis; (b) Optical zoom at the web (500×); (c)
SEM at the web (10,000×); (d) Optical zoom at the rim (500×); (e) SEM at the web (10,000×).

In Figure 21, the microstructure images of the web (Figure 21b,c) and the rim (Figure 21d,e),
show a perlite-ferrite microstructure with a predominant perlite phase. The microstructure analyses
show, for the same low magnification (Figure 21b,c), differences in the microstructure distribution and
grain size. In the rim section a smaller grain and greater disorder arrangement of the perlite phase is
found, related to a higher cooling rate treatment.

Figure 22 shows the profile of the fracture on a tension/torsion specimen which was tested with
stress ratios R = −1 (both in tension and in torsion). The von Mises equivalent stress was 0.577
(the use of the von Mises criterion is only exactly applicable when homogeneous material properties
relationship between shear and tensile stresses are equal to 0.577). Fracture occurred at the main throat
(central throat in Figure 15) as intended. The angle between the fracture surface and the horizontal
in Figure 22 is in agreement with similar fatigue tests carried out for the similar Steel and loading
conditions in classical servo-hydraulic fatigue testing machines [89–91].
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Figure 22. Specimen failed by tension/torsion fatigue at VHCF.

A total of eight specimens were tested to failure. The first specimen was used for calibration of
the system using strain gauges, i.e., the correlation between the machine’s output power and induced
stress at the central throat was determined. For the remaining specimens the applied tension/torsion
stresses were transformed into equivalent von Mises stresses and correlated with the obtained final
fatigue life. Fatigue results were then plotted in a S-N graph as shown in Figure 23, showing that
fatigue strength increases for both uniaxial and multiaxial UFT, as well as for run-out specimens under
VHCF conditions. In uniaxial run-out conditions stress results have an increase of 11% when tested
in ultrasonic fatigue at 20 kHz in relation to conventional 5 Hz. Regarding the multiaxial results the
difference is more pronounced with 45% higher stresses at 20 kHz and no failures during the entire
duration of the tests. Such results are in line with what is stated in the literature [101], where for
certain metals application of high frequency fatigue testing has an impact on fatigue life stress results.
Similar observations were made where the application of high frequency loads resulted in fatigue life
strengthening [103–105], at least for low carbon metals with a ferrite-perlite microstructure, similar to
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the one used in this study. It is also worth mentioning that the perlite matrix is the root cause for the
non-growth of micro-cracks in the VHCF regime [99]: the finer perlite at the rim and coarser perlite
at the web influenced positively the fatigue strength of the material at ultrasonic frequencies [106].
Since the material in this study has a predominant perlite phase, it results in little or no failure in the
VHCF regime, i.e., above 106 cycles. On the other hand, the slope of the S-N curve from 106 cycles is
very small (almost a flat plateau), making it extremely difficult to configure a stress state so that failure
occurs at 107 and 108 cycles. Therefore, points at 109 cycles in Figure 23 are representing those that did
not fail at all in the VHCF regime (run-out).
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Figure 23. UFT tension/torsion stress life results.

Test specimens that nucleated a fatigue crack during UFT and ‘lost resonance’ were then put into a
tensile test machine for total failure to be achieved. The obtained SEM images were compared to uniaxial
ultrasonic specimens machined also from the same Steel (rim of the railway wheel). SEM analysis was
also conducted on specimens that were subjected to uniaxial and multiaxial conventional fatigue testing.
SEM images for uniaxial and multiaxial specimens are showed in Figures 24 and 25, respectively.
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Figure 24. Uniaxial specimen after ultrasonic testing: (a) optical microscope general view; (b) SEM
general view; (c) fatigue propagation near initiation (500×); (d) fatigue propagation near initiation (1000×).
Uniaxial specimen after conventional testing: (e) optical microscope general view; (f) SEM general view;
(g) fatigue propagation near initiation (500×); (h) fatigue propagation near initiation (1000×).
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Figure 25. Multiaxial specimen after ultrasonic testing: (a) optical microscope general view; (b) SEM
general view; (c) point of fatigue crack initiation (500×); (d) point of fatigue crack initiation (1000×).
Multiaxial specimen after conventional testing: (e) optical microscope general view; (f) SEM general
view; (g) fatigue propagation near initiation (500×); (h) fatigue propagation near initiation (1000×).

Figure 24 shows SEM uniaxial tension-compression detailed images for both conventional and
ultrasonic fatigue testing conditions. From comparing both sets of images, no clear difference was
found in the origin of fatigue crack initiation as well as propagation marks. The propagation marks only
show to have a slight spacing increase related to higher crack growth speed in conventional testing.

The multiaxial tension/torsion result images using SEM are shown in Figure 25 for both
conventional and ultrasonic fatigue testing methods. In this case, the total failure is different
between both loading conditions. Nevertheless, propagation marks are similar between both loading
conditions (modal vibration vs. actuator imposed) and indicate the existence of shear stresses.
The shape of propagation marks, as seen in both ultrasonic and conventional higher amplification
images (Figure 25c,d,g,h), is laminated. The separation lines from the chipping point to the initiation
zone can be better observed in the SEM images (Figure 25b,f). Such lamination is linked to fatigue
shear damage mechanism. When there is no shear, a more ‘randomised’ pattern of lines is generated
as seen in the amplified uniaxial propagation marks (Figure 24c,d,g,h).

A much greater stress life increase was obtained between the conducted multiaxial fatigue tests.
Such increase can be associated with a higher influence of shear stress in frequency fatigue strengthening
of the material. It could also be related to the torsion stress gradient or a geometry effect/volume
effect. No clear difference was observed through SEM imaging comparison between conventional and
ultrasonic fatigue cracks. A more detailed research to the fracture surface specimens and to the final
microstructure after fatigue testing is required.

5.2. Tension/Tension Ultrasonic Fatigue Testing (Cruciform Specimens)

Figure 26 shows the fracture surface of a cruciform specimen made from a 6082-T651 Aluminum
alloy, and tested in out-of-phase tension/compression, with a stress ratio R = −1 in both directions.
Crack initiation occurred at the centre of the specimen as expected. Once again, the angle of crack
initiation and the crack growth of the fracture surface is in agreement with similar experimental results
obtained using cruciform specimens on similar aluminium alloys tested with a fatigue testing machine
powered by linear iron core motors [78].

The problem with cruciform specimens, as reported by Costa et al. [24]—in a study that combined
FEA analysis, experimental UFT results, and thermographic analysis—is that these specimens may
present ‘undesired’ mode shapes in the vicinity of 20 kHz. In such a case, the specimen’s deformation
shape will be the result from the combination of the two mode shapes being excited, and not just
predominantly from one. This will condition the stress field at the centre of the specimen. While for
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C-T specimens this was not an issue and the specimens were behaving as intended, T-T specimens in
the study presented what was called a ‘flapping’ mode shape of the horizontal arms.Machines 2020, 8, x FOR PEER REVIEW 23 of 30 
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Figure 29 illustrates two different situations from FEA [24]. The first case (a) concerns the T-T 
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Figure 26. Cruciform C-T specimen failed after tension/tension (out-of-phase) biaxial UFT at VHCF [24].

The displacements at the specimens’ arms were measured in both axial and transverse directions
(Figure 27) with a Polytec LASER vibrometer, which waveforms are shown in Figure 27b,c. It can be
seen that the biaxiality ratios are close to one (unitary), so that the phase shift between horizontal and
vertical arms on specimen C-T is 90◦ (out-of-phase), and the respective phase shift on specimen T-T is
0◦ (in-phase).
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Figure 27. (a) Photo of one manufactured specimen; (b) deformation waveform at the end of C-T in
the axial direction (out-of-phase); (c) deformation waveform at the end of T-T in the axial direction
(in-phase).

Figure 28 shows the Frequency Response Functions (FRFs) for specimen T-T. There is transverse
motion of the cantilever (horizontal) arms, which can be due to many reasons: (i) the surfaces of the
arms not being flat; (ii) body motion due to the horn’s axial mode; (iii) modes in the nearby frequencies
(a disturbance can be seen at 19.8 kHz, within the machine’s operational range); or (iv) asymmetries in
the specimen. The first two issues are not of concern, as they are not related to the specimen’s mode
shape, but the latter ones require more research.

Figure 29 illustrates two different situations from FEA [24]. The first case (a) concerns the T-T
(in-phase) axial mode shape at 20 ± 0.5 kHz, whereas the second case (b) is the preceding mode shape
(the flapping mode shape) where the arms are flexing, at the vicinity of the machine’s T-T mode shape
and machine’s operating frequency. The closer the flapping mode shape is of the T-T mode shape,
the greater its influence on the results. Therefore, designers must take these situations into account
and find ways to reducing this influence when redesigning specimens to be used in UFT machines.
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6. Conclusions

In this paper, a review of recent developments on multiaxial ultrasonic fatigue testing (UFT),
including descriptions of the main equipment, instrumentation, and specimens, was presented.
Original experimental results of UFT conducted on steel and aluminium were also presented in order
to demonstrate the capability of multiaxial load testing in the VHCF regime.

The paper starts with an overview of the early days of UFT using uniaxial test specimens.
Then, a review of multiaxial fatigue using ‘conventional’ test methods and speeds is presented, so that
the integration of both multiaxial testing and UFT can be better understood.

The term multiaxial fatigue is generally accepted in the literature but indeed it may not be the
adequate one since it includes a triaxial stress state which is rarely found in service. Moreover, at the
surface of the material, where a large majority of fatigue crack initiation occurs, the stress state is
biaxial. Therefore, most literature on multiaxial fatigue testing, whether it uses ‘conventional’ testing
or UFT machines, is focused on either one from these two loading conditions:

Tension/torsion where both axial and rotational displacements are combined. Specimens are
cylindrical/toroidal which in the specific case of UFT, include three ‘throats’. The machine has a
modified horn which is more complex than the ones typically seen in uniaxial UFT;

Tension/tension where orthogonal in-plane stresses are generated. In the case of UFT, cruciform
specimens were used. Stresses can be in-phase (tension-tension, or T-T) or out-of-phase (compression-tension,
or C-T) and the biaxiality ratios can vary, in theory, between 0 and 1 for T-T specimens, and between −1
and 0 for C-T specimens. The horn does not require any special features and the ones typically seen in
uniaxial UFT can be used.

UFT machines working at 20 kHz are most often used to perform very high cycle fatigue (VHCF)
tests with a stress ratio R = −1, although for ‘twin-teardrop’ specimens a different stress ratio is
suggested. Experimental results of both tension/torsion using cylindrical specimens and tension/tension
using cruciform specimens show fairly good results with correct induction of multiaxial stresses.
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However, there are challenges that need to be kept in mind when designing specimens for UFT, such as
the existence of nearby mode shapes that may detrimentally affect the stress field and therefore the
fatigue results.
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