
 

 

 

Modelling length of stay and patient flows: methodological case 

studies from the UK neonatal care services 

Eren Demir, Reda Lebcir and Shola Adeyemi 

Hertfordshire Business School Working Paper   (2013) 

 

The Working Paper Series is intended for rapid dissemination of research results, work-in-progress, 

and innovative teaching methods, at the pre-publication stage. Comments are welcomed and should be 

addressed to the individual author(s). It should be noted that papers in this series are often provisional 

and comments and/or citations should take account of this. 

Hertfordshire Business School Working Papers are freely downloadable from 

https://uhra.herts.ac.uk/dspace/handle/2299/5549 and also from the British Library: www.mbsportal.bl.uk  

Copyright and all rights therein are retained by the authors. All persons copying this information 

are expected to adhere to the terms and conditions invoked by each author's copyright. These 

works may not be re-posted without the explicit permission of the copyright holders. 

 

The Hertfordshire Business School employs approximately 150 academic staff in a state-of-the-art environment 

located in Hatfield Business Park. It offers 17 undergraduate degree programmes and 21 postgraduate programmes; 

there are about 75 research students working at doctoral level. The University of Hertfordshire is the UK’s leading 

business-facing university and an exemplar in the sector. It is one of the region’s largest employers with over 2,650 

staff and a turnover of almost £233 million. It ranks in the top 4% of all universities in the world according to the Times 

Higher Education World Rankings and is also one of the top 100 universities in the world under 50 years old. In the 

last UK Research Assessment Exercise it was given the highest rank for research quality among the post-1992 

universities. 

https://uhra.herts.ac.uk/dspace/handle/2299/5549
http://www.mbsportal.bl.uk/


Modelling length of stay and patient flows: methodological case

studies from the UK neonatal care services

Eren Demir and Reda Lebcir
e.demir@herts.ac.uk, m.r.lebcir@herts.ac.uk

Department of Marketing & Enterprise, Business School,
University of Hertfordshire, Hertfordshire, UK

Shola Adeyemi
sholadeyemi2003@yahoo.com

Department of Business Information Systems,
School of Electronics and Computer Science,

University of Westminster, London, UK

March 7, 2013

Abstract

The number of babies needing neonatal care is increasing due mainly to technological and thera-

peutic advances. These advances have implied a decreasing neonatal mortality rate for low birth

weight infants and also a falling incidence of preterm stillbirth. Given the structural changes

in the National Health Service in England, coupled with recession and capacity constraints, the

neonatal system is facing some serious challenges, such as nurse shortages and the lack of cots,

which could inevitably impact neonates length of stay, and the performance of the system as a

whole. These constraints have forced neonatal managers to better understand their organisation

and operations in order to optimize their systems. As a result, we have developed three unique

methodologies based on length of stay modelling, physical patient pathways, and system dynam-

ics modelling. This paper evaluates these techniques applied to neonatal services in London, and

showcases their usefulness and implications in practice, particularly focusing on patient flow to

determine major drivers of the system, which could reduce inefficiencies, improve patient expe-

rience, and reduce cost.
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1 Introduction

Neonatal services in the United Kingdom (UK) are part of the National Health Service (NHS) and

are tasked with providing medical care for babies who develop health complications. These babies

are born premature (under 37 weeks), have a low birth weight (under 2,500g) or are born at term

with medical problems (BLISS, 2007). These services are under significant pressure as the number

of babies requiring such care is increasing. For example, in 2006-07, 62,471 babies, roughly one in

ten of all births in the UK, were admitted to neonatal services up from 59,711 in 2005-06 (National

Audit Office, 2008). This trend is expected to continue as the number of births in the UK has been

increasing in the last few years.

This high demand has put neonatal units under severe strain and there is a growing body of evidence

that units are unable to cope with this demand. A recent study reported that over a 6 month period

in 2006-2007, neonatal units were shut to new admissions for an average of 24 days. It was found

that 1 in 10 units exceeded their capacity for intensive care for more than 50 days during the 6

month period (Asaduzzaman et al , 2009). A recent report found that in 2010, neonatal units in

the UK provided a total of 710,631 care-days from which 93,427 care day were for the high cost

Intensive Care (NDAU, 2010).

The significant demand for neonatal care coupled with the fact that this care belongs to the high

cost category had led to special attention and the scrutiny of the management and performance of

neonatal units in the UK. Following a 2008 report by the National Audit Office (National Audit

Office, 2008), a neonatal task force was set up by the NHS chief executive with the objective to

respond to the report. The task force published a “Neonatal Services toolkit” (Department of

Health, 2009), which highlighted, among other things, the importance and urgency of addressing

productivity challenges in the UK neonatal services especially in the new public sector where the

reality is that more must be done with less.

Neonatal services structure includes two layers of complexity, which affects its ability to cope with

demand. First, there are three different levels of care (Intensive, High Dependency and Special) and

babies in every level of care are subject to various movements between different intermediate states
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from the entry point (admission state) to the exit points from the system (treatment outcomes

states). Second, many babies do not exit the neonatal care system in the level of care in which

they were admitted and these babies are subject to transitions between states in different levels of

care while in the neonatal system. Combining these two layers of complexity means that neonatal

services are a multistate multi care level system in which babies spend some time in some states

and care levels and then transit to other ones before they are released from the system.

The time spent in the different care states, known as “Length of Stay (LoS)” is therefore central

to the performance of neonatal services as it regulates the pace at which babies flow between these

states. This pace determines the number of babies that can be treated in the neonatal units per unit

time (one year for example) and the level of utilisation of resources in these services. Furthermore,

if we take account of the high cost of neonatal care (Tucker, 2002), then it becomes clear that LoS

is a critical driver of both the clinical and economic performance of the neonatal care system.

The impact of LoS on the performance of health care delivery systems is a growing field of inter-

est in health services research and modelling techniques have played a pivotal role in this research

(Cooper et al , 2007; Proudlove et al , 2007). This is due to the growing need to understand the com-

plexity of these systems and provide evidence based methodologies to guide clinical and healthcare

management policy making.

An overview of past research suggests that four types of methodologies have dominated patient

flow and LoS modelling: (i) stochastic modelling, (ii) statistical modelling, (iii) systems dynamics

(SD) modelling and (iv) discrete event simulation modelling. Stochastic modelling is a LoS data-

driven approach in which the data is allowed to “speak for itself”. The objective is to capture

the distribution of LoS, which can be explained by loosely defining the flow of neonates. This

approach does not impose any preconceptions or clinical/organisational interpretations on it. The

statistical approach is about the clinical/organisational based pathways, where we start with the

known structure of the real-life system. This model can be used to capture interesting pathways,

such as those with the least (or highest) risk of death. Systems Dynamics modelling focuses on the

representation of systems whose behaviour over time is driven by feedback processes and exhibits
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high level of dynamic complexity. SD allows the simulation and testing of the behaviour of these

systems with the aim of improving our understanding of the inner working of systems and the

policies to improve their performance. Discrete-event simulation modelling is a common approach

to capture the real life setting of patient pathways (or systems) with the aid of a simulation software

(e.g. SIMUL8). It allows the analysis of different scenarios to understand the impact of each decision

in complex systems. These techniques are not exhaustive, but nevertheless they are the most widely

used approaches to better understand major drivers and the linkages between the operational policies

related to LoS and patient flows.

This research aims at advancing our knowledge with regard to the application of modelling tech-

niques to neonatal services. Although the four techniques cited above have been extensively applied

in the area of health management, there have been very few applications of stochastic modelling

and no applications of system dynamics modelling in neonatal services. This is another important

motivator of this research as we would like to assess the usefulness of various modelling techniques

in neonatal services and showcase their benefits and implications in practice. By doing so, the aim

is to widen the remit of applications of modeling techniques in health care management and assess

the pertinence of the insights gained from such exercise.

The paper is organised as follows: Section 2 illustrates the current literature on LoS modelling

and patient pathways. Section 3 introduces the methodology for stochastic modelling, where the

results are summarised using data from a neonatal unit of a hospital in London. Section 4 describes

the statistical framework (physical patient pathways) and summarises the results based on the

physical movement of neonates within the neonatal system. Section 5 describes the system dynamics

modelling approach and develops a computer simulation model of a neonatal unit in one of London’s

hospitals. The last section of the paper focuses on the main conclusions of the study and compares

and discusses the three approaches in terms of the implications and usefulness in practice.
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2 Patient flow and length of stay modelling

Patients flow can be viewed in two perspectives, operational and clinical (Thomas, 1968; Cote,

2000). The common characteristics of both include an entrance, an exit, a path connecting both

entrance and exit, and the random nature of the health care elements. This section discusses some

of the developments in the area of research in which modelling of patient flow and LOS has been

carried out, namely stochastic modelling, statistical modelling and systems dynamic modelling. As

our research does not involve the development of a discrete event simulation (DES) model, further

literature reviewing related to DES was not carried out. However, readers should note that DES

is a popular technique and widely used in the context of examining patient pathways (for further

details see (Gunal and Pidd, 2010; Jun et al , 1999)).

2.1 Stochastic modelling

Markov models have been used extensively to capture probabilistic laws that govern the dynamics

of patients in a healthcare system. For instance, a two-stage continuous-time Markov model that

describes the movement of patients through two compartments in geriatric hospitals was developed

by Irvine and McClean (1994). Such an approach takes into account different types of patients

and their corresponding length of stay. Irvine’s (Markov) model (Irvine and McClean, 1994) was

further extended to describe the behaviour of patients moving through three stages in a geriatric

department (McClean and Millard, 1993). The model estimates the rate of discharge and costs

the movements of patients through virtual compartments (or phases), which are loosely defined as

acute care, rehabilitation and long-stay care, thus providing a model that can facilitate planning

of health and social services for the elderly while taking cost into account. For the first time Cote

and Stein (2007) developed a stochastic model (semi-Markov process) to capture the individual

patient’s experience during a visit to the local family practice clinic, and estimated the transition

probabilities between the paths (waiting room, nurse aide station, examining room, lab/x-ray and

discharge) visited by the patient.

Phase-type distributions have also been employed to represent the variable nature of LoS. This
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class of distributions describes the time to absorption of a finite Markov chain in continuous time,

where there is a single exit (absorbing state) and the stochastic process starts in a transient state

(Faddy and McClean, 1999). These models describe duration until an event occurs in terms of a

process consisting of a sequence of latent phases (the states of a latent Markov model). However,

the generality of the phase-type distributions makes it difficult to estimate all the parameters of

the model. To overcome this problem Coxian Phase-type distributions were introduced. Coxian

phase-type distributions describe duration until an event in terms of a process which consists of a

sequence of latent phases.

2.2 Statistical modelling

In the context of LoS and patient flow modelling, few papers have appeared in the application of

advanced statistical models, such as Generalized Linear Mixed Model (GLMM) with none known

so far applied to capture individual patients’ pathway. Using multilevel modelling, Frick et al

(1996) compared the influence of individual and organizational variables on patients’ LoS in a large

psychiatric hospital in Germany and demonstrated the general advantages of mixed effect modelling

in the comparisons of hospitals or other health care organizations. A hierarchical Poisson regression

model for maternity LoS (Lee et al , 2001) was developed to capture the inherent correlations of

patients clustered within hospitals. A finite mixture regression model with random effects and its

application to neonatal hospital length of stay has been proposed in Yau et al (2003) leading to the

development of the class of finite mixture GLMM where heterogeneity in LoS has been modelled by a

two-component mixture model, with one component corresponding to the short stay subpopulation

and another component corresponding to the long-stay subpopulation.

Motivated by Cote and Stein (2007) and the aforementioned articles above, Adeyemi et al (2010)

developed a multinomial logit model to capture individual patient’s pathway in the process of care,

where patient frailties (or severity) were modelled as random effects. Two variants of the model

were developed, one based on mere patient pathways and the other based on patient characteristics.

The approach identified interesting pathways such as those that resulted in high probability of
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death (survival), pathways incurring the least (highest) cost of care or pathways with the least

(highest) length of stay. Patient specific discharge probabilities from the healthcare system were

also predicted. As an extension, a marginal continuation ratio logit model (Adeyemi et al , 2009b)

was further developed to determine the probability of a chronic obstructive pulmonary disease

(COPD) patient to be in the high risk group in their next readmission, given patient and regional

specific previous readmissions, i.e. capturing individual clinical pathways of patient’s leading to

multiple readmissions. Here, COPD patients from the North West of England were found to be

16% more likely to experience multiple readmissions than Yorkshire and The Humber region.

2.3 Systems dynamics modelling

System Dynamics (SD) applications in health management have grown significantly in the last

decade both in terms of their number and the areas of investigation. This process is driven by the

increased awareness that health systems are complex and dynamic in nature, include a dense web

of interconnected elements, and are subject to time delays and non linear relationships. Health

systems in which patients’ flows are core components are a good example of such dynamic complex

systems (Dangerfield, 1999; Brailsford et al , 2004; Taylor and Dangerfield, 2005; Lebcir et al , 2010).

Patient flow modelling represents the transition of patients between the different disease and care

states and the processes governing these transitions. The primary focus is on the groups of patients

sharing the same state rather than on the pathways taken by individual patients especially in

contexts where the number of patients is significant. This fits well with SD modelling as in SD the

population of patients is divided into large homogenous groups representing the clinical states and

patients flows are represented by the rates at which patients move between these states (Brailsford

et al , 2004; Atun et al , 2007).

There have been several applications of SD to model patient flows. For instance, Wolstenholme

(1999) developed a model to represent patients flows in the UK NHS, which portrayed the movement

of patients through the different “routes” in the NHS system with a specific focus on pre-operative

and post-operative “intermediate” states. The model showed that reduction in the LoS was a more
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effective policy to reduce the waiting time to admission to hospitals than increasing bed capacity in

hospitals. Townshend and Turner (2000) built a model to assess the impact of screening programs

on the spread of Chlamydia disease. The model represented the flow of patients between the

susceptible, disease, and recovery states. Scenario testing suggested that targeted screening policies

would reduce the spread of the disease in a cost-effective manner. In a study of patient flows in

an accident and emergency unit in a UK hospital, a model focused on the movement of patients to

the unit including patients who are admitted to the hospital wards after their emergency treatment

and from GPs (Lane et al , 2000). The model showed that an increase in the hospital bed capacity

did not have a significant influence on the waiting time in the A&E unit. However, even a small

increase in accident and emergency demand would increase the LoS in the unit and impact on

the patients’ total waiting time. A model covering the entire health system of Nottingham (UK),

which included patients’ flows between the system’s units was developed to test policies regarding

growth of emergency admissions and reduction of the LoS of elderly patients (Brailsford et al , 2004).

Results suggest that a reduction of the LoS made almost no difference to the bed occupancy rate

and, hence, had no impact on the system’s performance.

The next section describes the Coxian phase-type distribution approach (i.e. stochastic modelling),

which is used to capture the LoS distribution of babies in neonatal care. Section 4 illustrates the

multinomial random effects modelling approach (statistical model) to capture individual babies

pathways (or movements) within neonatal care to explore pathways that may be of an interest to

key decision makers. The effects of patient characteristics (LoS, birth weight and gestation age) on

these pathways are further investigated. Section 5 develops a system dynamics model to evaluate the

impact of introducing new treatment technologies to neonatal care. A qualitative map portraying

the inner workings of the neonatal system is produced, followed by the development of a computer

simulation model. A number of scenarios were simulated, i.e. examining the impact of reducing

LoS.
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3 Stochastic modelling

Stochastic networks provide a general and powerful framework to describe LoS data, which can

be viewed as generated by some underlying absorbing random process. Phase-type distributions

describe the time to absorption (or LoS) of such process. The structure of the stochastic network

reflects some prior knowledge on the underlying process. Aalen (1995) reviews the use of phase-type

distributions to analyse survival data. Examples of using Coxian distributions in modelling failure

time data can be found in Faddy (1994, 1995). It should be stressed that the analysis of survival

data (or LoS data) using stochastic networks differs in its focus from traditional survival analysis,

e.g., using the Cox proportional hazard model. The former concentrates on modelling the random

process from which the LoS data is generated, whereas the latter uses LoS data as a vehicle to study

the effect of different factors on survival time. Although patient attributes are not usually explicitly

modelled in the stochastic network approach, the heterogeneity among patients is reflected in the

choice of different paths when progressing through the network.

3.1 Case study 1: Coxian phase-type distribution

In the context of the neonatal system, increasing length-of-stay (LoS) in hospital could be related

to the severity of the illness being treated. The proposed conceptual model for the movement of

neonates in hospital is depicted in Figure 1. Less severe neonates can be discharged (home or death)

at an early phase, whereas those associated with more severe illnesses could stay in hospital for a

longer period of time before discharge. We construct a continuous-time Markov chain of the flow of

neonates in hospital.

Given the model described in Figure 1, the generator matrix is written as

Ψ =


−(λ1+µ1) λ1 0 ... 0 0

0 −(λ2+µ2) λ2 ... 0 0

...
...

...
...

...
...

0 0 0 ... −(λk−1+µk−1) λk−1

0 0 0 ... 0 −µk

 (1)

where λ1 to λk−1 are the sequential transfer rates between phases, i.e. the rates of the flow of
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Figure 1: Phases neonates experience in hospital before discharge

neonates in hospital, and µ1 to µk are discharge rates from hospital. Thus, the random variable

length-of-stay (denoted by X) has the probability density function (pdf) f(x), given by f(x) =

φexp(Ψx)α, where φ =

(
1 0 0 · · · 0 0

)T
, i.e., the process starts in the first phase, α =

−Ψ1 =

(
µ1 µ2 · · · µk

)T
and 1 is a column vector of 1’s. The resulting pdf could also be

expressed as a mixture of generalized Erlang distributions (Ross, 2003) with probability p1 =

µ1/(λ1 + µ1) absorption (or discharge) is from phase 1, or with probability p2 = λ1/(λ1 + µ1) ·

µ2/(λ2 + µ2) absorbtion is from phase 2, and so on. Given data consisting of observed length

of stay, x1, x2, x3, ..., xs, the 2n − 1 parameters describing the LoS distribution is determined by

maximizing the log-likelihood function using a statistical computing language R (R, 2005) (see

Faddy and McClean (1999) for further details).

3.2 Neonatal Dataset

To perform this analysis, one-year data (2006) were collected from the North Central London

Perinatal Network (NCLPN). The database system known as Standardised Electronic Neonatal

Database (SEND) was established in 2006 to collect information from the network. The SEND

system allows the evaluation of the activity across the network and sharing of clinical information

as neonates transfer between units. The NCLPN is made up of 6 hospitals including University

College London Hospital (UCLH) which is the perinatal centre (level 3), two level 2 hospitals

(Barnet and Whittington hospitals) and two level 1 hospitals (Royal Free Hampstead and Chase

Farm hospitals).
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There were 1002 neonates admitted to UCLH in 2006, of which 993 were observed cases (9 missing),

where 830 booked for delivery at the neonatal care of UCLH and 172 from other hospitals, either

inside or outside the NCLPN. The majority of babies are discharged home (about 71%); only few

die (about 1.9%); the others are referred to wards within the hospital (about 7.2%) or to other

hospitals (about 18.6%) for cardiac care, critical care, special care or surgery. Only a very small

number of records have missing discharge destinations.

3.3 The application of Coxian phase-type distribution

A sequential procedure was adopted (as in Faddy and McClean (1999)) whereby increasing num-

bers of phases k were tried, starting with k = 1 (corresponding to the exponential distribution),

until a fit was obtained that satisfactorily described the main features of the observed data. The

initial parameters for each model (n = 1, .., k) were determined by fitting a mixture of exponential

distributions. The results of fitting phase-type distributions to the neonatal dataset is summarized

in Table 1.

Table 1: Model selection
Phases log-likelihood value

k = 1 -3475.577
k = 2 -3321.177
k = 3 -3296.036
k = 4 -3296.846

Judging by the log-likelihood values, k = 3 phases were found to provide “best” fit of the data. Fur-

thermore, visual inspection of the empirical histogram and fitted pdf curve in Figure 2, show a close

agreement and suggest that the selected model is able to capture the overall patterns of LoS. The

maximum likelihood estimates were (with standard errors in brackets): λ̂1 = 0.26717(0.04129), λ̂2 =

0.09094(0.01842), µ̂1 = 0.07842(0.01098), µ̂2 = 0.25496(0.02991) and µ̂3 = 0.03046(0.00292).

The phases can be loosely defined as “short stay”, ”medium stay” and “long stay”. The probability

of discharge from these phases can be estimated, thus the probability of discharge from short,

medium, and long stay group is estimated to be 0.23, 0.57, and 0.20, respectively (with a mean

length of stay of 3, 6, and 39 days, respectively).
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A danger of this loose definition is that readers may associate short, medium and long stayers

with special care (SC), high dependency care (HDC) and intensive care (IC) units, respectively.

Note that neonates could only physically move from IC to HDC to SC (not vice versa) and then

be discharged from hospital, whereas here, increasing length of stay (from phase 1 to phase 3) is

associated with severity and not with physical movement of neonates. Nevertheless, the phases to

some extent can be associated with these units, i.e. a special care unit neonate would be expected

to stay in care shorter than their HDC or IC counterparts. The advantage of this approach is the

simplicity in capturing the distribution of LoS solely based on a single variable, which could easily be

derived from most routinely collected administrative datasets. Furthermore, it provides a high level

overview of neonatal care services with respect to LoS, e.g. probability of discharges and average

LoS within each phase. In the commissioners, clinicians (and/or neonatal managers) perspective

this approach could enable them to gain a better insight into the main driver that regulates the

pace at which babies are admitted into care and the level of utilisaton of resources.
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Figure 2: Observed (histogram) and fitted (dotted line) probability density function
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4 Physical Patient Pathways

Adeyemi et al. (Adeyemi et al , 2007, 2009a, 2010, 2011) developed series of random effects mod-

elling frameworks to capture physical patient flow paths through the healthcare system. The Coxian

phase-type distribution approach presented above assumed virtual or latent phases (i.e. hypotheti-

cal system), whereas this approach deals with the real system, typically identifying the states within

the system that a patient has passed through. This approach provides a convenient way to capture

association and unobserved heterogeneity, such as identifying pathways that result in high proba-

bility of death (survival) or pathways incurring the least (highest) cost of care or pathways with the

least (highest) length of stay. Patient-specific discharge probabilities from the healthcare system

could also be predicted. This is very important from a management perspective since variability

within the system is what makes planning and management difficult. We firstly introduce the mod-

elling framework here and apply this method to the neonatal dataset provided by a hospital in

central London.

 

Intensive 
Care 
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Dependency 

Care 

Special  
Care 

Dead 

Other 
Hospital 

Home 

Figure 3: Pattern of Flow for Neonates between Units of Care
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4.1 Case study 2: Multinomial random effects modelling

Figure 3 illustrates the physical movements of neonates, which is the core piece of information

required as well as transfers and discharge destinations. Discharge from each unit could be by

death, transfer to other hospitals (OH) or home. From the data provided by UCLH, we notice

that all movements are forward, hence the models proposed here do not capture backward flow of

babies (e.g. special care to HDC and HDC to intensive care). The three levels of care are assumed

to be some transient states that the newborn babies experience until they are discharged. So, the

probability of passing through any of the paths is modelled as a random effects multinomial logit

model (see Adeyemi et al (2010) for details).

The probability of patient p passing through any of the paths is a function of the patient specific

frailty, such that the movement of babies through the system is being driven by these random effects

(frailties). The concept of frailty of a newborn is modelled as a random effect. The key idea is that

an individual baby possesses different frailties, and those babies who are most frail will die earlier

while others continue to flow in the system until they are discharged. Frailty is further modelled by

a set of clinical covariates, such as length of stay of babies, their gestation age and birth weight.

In this application, we have fitted two models for this purpose. The first is a model (model I) without

any covariates in which the pathways probabilities are modelled as functions of patient experience

during the process of care and patients frailties. The second models pathways probabilities as

functions of patient characteristics (birth weight, total length of stay and gestation age) and frailties.

4.2 Results

Table 2 and 4 provide parameter estimates and standard errors of our neonatal data set for the

described models. Model I depicts satisfactorily the activities in the neonatal system described in

the previous section. The model shows significant activities (p < 0.05) in almost all pathways except

HDC - OH, IC - HDC - OH, HDC - SC - OH, IC - HDC - SC - OH, HDC - Home and IC - HDC

- SC - Home, where there are very few or no movements. These are consistent with the activities
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Pathway Estimate Standard Error

IC - OH 2.4400 0.5018?

HDC - OH 0.8612 0.7852
SC - OH 0.8178 0.1020?

IC - HDC - OH 0.2398 0.4984
IC - SC - OH −1.3458 0.4294?

HDC - SC - OH −0.1295 0.6996
IC - HDC - SC - OH 0.8139 1.3684
IC - Home 3.3311 0.4718?

HDC - Home 3.1274 1.2011
SC - Home 1.8846 0.0808?

IC - SC - Home −2.1498 0.3419?

HDC - SC - Home −2.8357 1.2071?

IC - HDC - SC - Home 1.8630 1.2839
σ2θp 0.0004 0.0037

Fit Statistics
−2 Log Likelihood 3331.1
AIC (smaller is better) 3365.1
BIC (smaller is better) 3448.4

Table 2: Parameter Estimates and Standard Errors for Model I. ? indicates significance at p < 0.05.

depicted in Figure 3. However, other pathways have significant effects. Since the interpretations

of these significant effects are functions of patient specific frailties, we have presented in the figure

below (Figure 4) some plots which show the probabilities of passing through each of the pathways

as a function of the frailties. Frailties, θp are assumed to follow a multivariate normal distribution.

The model estimates of these frailties are incorporated to obtain the multinomial probabilities used

in constructing the plots in Figure 4. Transitions between the units are assumed to be driven by

these frailties. For instance, discharge home is more likely to occur in babies with increasing LoS

(see Figure 4). Transfer from IC to SC is most probable for babies who have being in care (or LoS)

between 34 and 40 days, whereas transfer from IC to HDC or HDC to SC are most probable at

around a LoS of 31 days. LoS of 31 serves as the threshold below which the probability of discharge

by death is most probable while babies who survive this first 31 days have a high chance of being

discharged home. This shows that the most critical units of a neonatal system is the IC SC units.

One observes from Table 3 that the average LoS for babies moving from ICU-HDU-SCU is around

32 days (similarly ICU-HDU is 33 days), which is around the threshold of 31 days, revealing the
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fact that beyond this threshold the probability for a baby to be discharged alive from hospital is

greater. Note that our finding is not conclusive and clearly there is a scope for further research here

to investigate the reasons for this apparent threshold.

 

 

Figure 4: LoS versus flow of babies

Pathway Mean Median Standard Dev

Dead 9 3 15.9
Other Hospitals 14 7 18.7
Home 10 6 15.0
ICU - HDU - SCU 32 24 24.2
HDU - SCU 16 13 12.5
ICU - SCU 27 13 29.7
ICU - HDU 33 24 24.2
SCU Only 6 5 4.7
HDU Only 1 1 −
ICU Only 17 7 20.4

Table 3: LoS attributes based on the flow of babies

Model II provides significant (p < 0.05) effects of all covariates except that birth weight does not

significantly affect the pathways ending by a discharge to other hospitals and home (Table 4).

Pathways ending with discharge home are highly influenced by gestation age, birth weight and total
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Pathway Estimate Standard Error

Constant: OH 2.1116 0.7492?

Constant: Home 2.6668 0.6063?

LOS: OH 0.6584 0.0040?

LOS: Home 0.6679 0.0028?

Gestation: OH 4.2901 0.0257?

Gestation: Home 4.2813 0.0205?

Birth weight: OH 0.1792 0.1134
Birth weight - Home 0.4277 0.0881
σ2θp 0.9985 0.0017?

Fit Statistics
−2 Log Likelihood 2949.8
AIC (smaller is better) 2983.8
BIC (smaller is better) 3066.5

Table 4: Parameter Estimates and Standard Errors for Model II. ? indicates significance at p < 0.05.

length of stay. The longer the total length of stay the more likely of passing through the pathways

ending with a discharge home and this also applies to birth weight and gestation age. Babies with

high gestation age and birth weight are likely to pass through pathways ending with a discharge

home. The attributable variance at patient level for Model I is insignificant and very significant for

Model II (without pathways information) in terms of rejecting the null hypothesis that the patient

population standard deviation equals zero. This means that in Model I the null hypothesis of no

frailty cannot be rejected, while it can be rejected in Model II. This demonstrates that modelling

individual patient pathways captures a substantial part of the variability in the system induced by

frailties or individual differences, while this variability is not captured with the model based only

on patient characteristics.

5 Dynamic Modelling of Patient flows

Patient flow modeling has been a central theme in health care system dynamics modeling. In the

context of neonatal care, babies are grouped in different states upon their admission to the unit

and then flow between these states as they get treatment in the unit (Department of Health, 2009).

In the next section, a System Dynamics simulation model of a neonatal unit in one of the hospitals
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in London, UK focusing on the impact of LoS on patient flows and the performance of the unit is

presented.

5.1 Case study 3: System Dynamics Modelling

This case study took place in a neonatal unit located in one of the hospitals in North West London.

The unit plays a pivotal role in neonatal care in the area as it includes facilities and expertise which

enable it to admit and treat babies in all three levels of care (special, high dependency, and intensive

care). Furthermore, the unit receives babies from both the hospital where it is located and from all

the neonatal units in the area.

The aim of the research was to evaluate the impact of introducing new treatment technologies

in the unit. The rationale is that these new technologies would have a positive effect on LoS,

which, in turn should improve the performance of the unit in terms of the overall number of babies

admitted and treated per year. However, prior to the introduction of these new technologies, the unit

management wanted to quantify their likely impact at the unit level so that the implementation

process is “evidence-based”. This was extremely important as there were doubt on whether the

reduction of LoS at the individual level (micro level) will translate into an improvement at the unit

level (macro level) given the complex interactions between the elements of the unit.

The modelling process included two main phases. First, a qualitative map portraying the inner

working of the unit was developed and included neonatal clinical and medical information and

regulations, management procedures, and the decision making process. This was followed by a

simulation model building phase where the qualitative map was then translated into a computer

based simulation model (iThink version 8.0) representing the functioning of the unit. Several rounds

of information gathering and model improvement took place before the management and clinical

staff of the unit became satisfied that the computer simulation model is a good representation of

the unit structure and processes.

The core component of the simulation model portrays the pathways and flows of patients (babies)

within the unit. In this context, babies entering the unit for treatment are allocated to one of the
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three possible care states IC, HDC, or SC depending on their clinical condition. This is followed by

a treatment phase from which the outcomes are (i) discharge, (ii) transfer to another unit (hospital),

(iii) death, and (iv) transfer to other wards in the hospital where the unit is located. The previous

outcomes are valid for babies in all the three states of IC, HDC, and SC. Additionally, there are

state dependent outcomes of the treatment phase. Babies in the IC state can move to the SC or

HDC state if their situation improves after the treatment phase. Babies in the HDC state can

move to the SC state if their situation improves or the IC state if their situation worsens following

the treatment phase. Additional possible treatment outcome for babies in the SC state include

transitions to the IC or HDC state if the babies’ clinical condition worsens. As an illustration, the

states and transitions associated with the SC state are presented in Figure 5. The flows of babies in

the unit are governed by the different transition rates, namely the admission rate and the treatment

rate. The admission rate is determined by the daily admission demand (number of babies requiring

admission to the unit per day) and the unit admission policies, which stipulate that admission is

restricted only to babies from the hospital where the unit is located if the unit is near saturation.

ADRt = DEMt × ECADRt (2)

ECADRt = f

(
OCCOTSt
TOTCOTS

)
(3)

where

ADRt : Admission Rate

DEMt : Daily admission demand

ECADR : Effect of cot occupancy on admission rate

OCCOTSt : Occupied cots

TOTCOTS : Total cots

The treatment rate (the number of babies treated daily), is determined by the rate related to the

LoS, which reflects the medical technologies, regulations, and practices in the unit and the rate
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Figure 5: States and transitions associated with the special Care state

related to the availability of resources required to treat babies.

TRMRTt.j = Min(LOSRTt.j ;RESRTt.j), j ∈ {SC,HDC, IC} (4)

where

TRMRTt.j : Treatment Rate

LOSRTt.j : Treatment rate allowed by LoS
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RESRTt.j : Treatment rate allowed by resources

Equation 4 is important as it represents and explicitly distinguishes between the effect of LoS as

determined by the clinical needs and regulations (LOSRT) and the effect of the organisational

policies in terms of the availability of resources (RESRT) on the treatment rate of babies.

The treatment rate determined by LoS depends on the number of babies requesting treatment

(treatment demand) and LoS

LOSRTt.j =
BABt.j
LOSj

, j ∈ {SC,HDC, IC} (5)

where

BABt.j : Number of babies requesting treatment

LOSj : Length of stay

The treatment rate determined by the availability of resources depends on the mix of resources

required to treat babies, which are (i) cots, (ii) nurses, and (iii) doctors. Given that the treatment

of a baby requires the availability of these three resources, the rate equation has the following generic

form

RESRTt.j = Min(COTt.j ;NURSt.j , DOCt.j), j ∈ {SC,HDC, IC} (6)

where

RESRTt.j : Treatment rate allowed by resources

COTt.j : Treatment rate determined by the availability of cots

NURSt.j : Treatment rate determined by the availability of nurses

DOCt.j : Treatment rate determined by the availability of doctors

The cots treatment rate depends on the number of babies requesting treatment, the number of
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cots in the unit (by category) and the cot-babies treatment ratio (determined by the regulation).

The doctors and nurses treatment rates depends on the number of babies requesting treatment,

the number of doctors and nurses (by category), the number of babies who can be treated by

the different categories of doctors and nurses, and the fraction of labour allocated to treatment

activities. The latter factor takes account of issues such as leave, absences due to sickness, and time

allocated by doctors and nurses to non-clinical duties (administrative and managerial duties).

The model was validated through a set of qualitative, quantitative, and behavioural reproduction

tests (Sterman, 2000; Barlas, 1996). The qualitative tests included verification, by the unit clinical

and managerial staff, of the relevance of the variables in the model and the accuracy of all the cause-

effects relationships. The quantitative tests included verification of the model equations dimensional

consistency, the real world meaning of all variables in the simulation model, and the accuracy of

the data in the model. This was done with the involvement of the unit data manager, clinical, and

managerial staff. The behavioural reproduction tests included comparison of the simulation results

over a period of one year to the real world observations over the same year. The success of the model

to replicate real world observations regarding the cumulative number of babies associated with the

treatment outcomes (the main performance criteria for the unit management) was significantly high

as shown in Table 5.

Outcome Variable Real World Simulation

Babies transferred to other units IC 117 108

Babies transferred to other units HDC 10 10

Babies transferred to other units SC 84 70

Babies discharged home IC 9 7

Babies discharged home HDC 5 4

Babies discharged home SC 196 202

Babies transferred same hospital IC 14 12

Babies transferred same hospital HDC 1 1

Babies transferred same hospital SC 122 123

Babies deaths IC 37 31

Babies deaths HDC 0 0

Babies deaths SC 0 0

Table 5: Validation results from the simulation model and real world observations
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Given the aims of the research, the scenarios simulated in this study focused on the impact of

reducing LoS on the unit performance. In this context, scenarios included decreasing LoS by 1 day

and 3 days for each level of care individually and then for the three levels of care simultaneously.

These scenarios were informed by the new treatment technologies considered for introduction in the

unit.

The model was run over a period of one year. The performance indicators of interest to the

unit management team were related to the cumulative number of babies leaving the unit after

treatment and the number of babies refused access to the unit. Therefore, simulation results were

collected with regard to the variables “cumulative number of babies discharged home (CBDCH)”,

“cumulative number of babies transferred to other units (CBTOUT)”, “cumulative number of babies

transferred in the same hospital (CBTSH)”, and “cumulative number of babies refused entry to

the unit (CBREU)”. The results are presented in Table 6. It is important to notice that these

performance indicators do not reflect issues related to the quality of life or the impact of LoS on

the quality of care. This is because the clinical and management team in the unit indicated that

LoS did not have a direct impact on quality of care as the clinical and treatment procedures were

highly standardized in neonatal care and that these procedures were robustly followed in the unit.

Scenario CBDCH CBTOUT CBTSH CBREU

Baseline (current situation) 230 187 136 18

Scenario 1: Reduction LoS 1 day SC 234 182 138 18

Scenario 2: Reduction LoS 3 days SC 235 182 139 17

Scenario 3: Reduction LoS 1 day HDC 234 182 138 18

Scenario 4: Reduction LoS 3 days HDC 233 181 138 20

Scenario 5: Reduction LoS 1 day IC 233 181 138 21

Scenario 6: Reduction LoS 3 days IC 234 181 138 20

Scenario 7: Reduction LoS 1 day SC, HDC, IC 236 182 139 16

Scenario 8: Reduction LoS 3 days SC, HDC, IC 240 185 139 12

Table 6: Simulation results regarding reduction of LoS

These results show that the reduction of LoS for the three categories of babies (SC, IC, HDC)

increases the cumulative number of babies discharged home, transferred to other units, and trans-

ferred in the same hospital. However, it is important to notice that this performance improvement
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is similar whether LoS is reduced by 1 day and 3 days for the same state. For example, reducing LoS

by 1 and 3 days for the IC state leads to a CBDCH of 233 and 234 babies respectively, a CBTOUT

of 181 babies, and a CBTSH of 138 babies. This means that other forces are at play in the system

which nullifies the effects of reducing LoS from 1 day to 3 days. These unexpected results reflect

the effect of “policy resistance”, which is common in dynamically complex systems such as neonatal

units.

Reducing LoS simultaneously for the 3 states improves performance especially with respect to

CBDCH and CBREU, which are the most important indicators for the unit’s management. However,

it is interesting to observe that CBTSH remains at 139 whether LoS is reduced by 1 or 3 days. This

is another consequence of policy resistance and its effects on the behaviour of systems.

The results indicated that CBREU increases when LoS is decreased by 3 days for the IC state

and by 1 and 3 days for the HDC state (see Figure 6). These results were surprising to the unit

management team as one would expect CBREU to decrease (or at least remain unchanged) if LoS is

reduced. This is a vivid example of the counter-intuitive behaviour of systems involving high levels

of dynamic complexity and how such systems react unexpectedly to policies aiming at improving

their performance (Sterman, 2000).

The unexpected results described above can be explained by the Causal Loop Diagram (CLD)

presented in Figure 7. This CLD represents babies in the HDC state (similar CLDs represents the

IC and SC states but these are not shown here due to lack of space). From the CLD, we can see that

a reduction in the LoS leads to an increase in the HDC treatment rate causing a faster movement

of babies through balancing loop B2. This would have improved the performance of the unit if it

was not for its side effects on reinforcing loops R1 and R2, which represents the process by which

some of the HDC babies move to the SC state, get treated and then worsen again and go back to

the HDC state (Loop R1) and the process by which some of the HDC babies move to the IC state,

get treated and then improve and go back to the HDC state (Loop R2). As balancing loop B2 gets

stronger, it triggers a reaction from reinforcing loops R1 and R2, which become dominant in the

structure and overcome the extra power given to balancing loop B2 (through the reduction in LoS).
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Figure 6: CBREU for the baseline and simulated scenarios

Therefore, a higher number of babies remain within the unit leading to a reduction in the babies

leaving the unit and blocking babies from entering it, hence increasing the number of babies refused

entry. This is a vivid example of the interaction and power shifts between feedback loops, which is

the main driver of counterintuitive behaviour of dynamically complex systems (Sterman, 2000).

This finding illustrates how valuable SD modelling is in improving our understanding of the be-

haviour of complex systems and informing the process of decision making and policy design.

The managerial implication of these results is that reducing LoS will not lead to substantial im-

provement in the performance of the unit (in fact it may lead to the contrary under some scenarios).

This means that a further analysis of the structure of the system will have to be conducted to de-

termine the root causes of its behaviour and determine the policies which could have a significant

influence on the performance of neonatal units.

25



 

Admission Rate

SC Babies

HDC Babies

IC Babies

HDC Treatment

Rate

HDC Babies

Treated

HDC Babies Dischareged

or ExternallyTransfered

+

+

-

HDC Discharge and

External Transfer Rate

+

+
-

-

-
Admittted Babies

Babies Health Status

Check Rate

+

+
+

-

HDC to SC

Improvement Rate

HDC to IC

Worsening Rate

+

+

+

+

HDC Length of

Stay (LoS)

-

HDC Internal Wards

Transfer Rate

HDC Babies Internal

Wards Transfered

+

+

-
B1

B2

B3

B4

B5

B6

SC Treatment

RateSC Babies

Treated

SC to HDC

Worsening Rate

++

+

+

IC Babies

Treatment Rate

IC Babies Treated

IC to HDC

Improvement Rate

+
+

+

+

R1

R2

Figure 7: Causal Loop Diagram for the HDC state

6 Discussion and Conclusion

The current research addresses a top of the agenda issue in health management as it focuses on the

policies related to LoS and how they impact on the performance of health systems. The importance

of the research can be appreciated in the current context of increasing demand on health services

provision at the time when we are moving to the new reality of tighter public finances and the

resulting pressure to improve the effectiveness and efficiency of health care provision and delivery.

The importance of studying LoS is twofold: (i) First, it has a direct impact on the patients flows in

health systems, therefore it determines the number of patients going through the system per unit

time and (ii) LoS is a reliable proxy measure for the consumption of resources in health systems,

which relate directly to the economic performance of these systems.

The methodologies applied in this research generated findings which can be very useful in guiding

decision making. The three-phase distribution provided us with valuable information regarding the

flow of neonates through the system. We calculated LoS statistics such as the average LoS of a baby

in each phase and various probabilities such as the probability that a baby moves from one phase in
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the system to another phase. For instance, suppose there are 20 babies in neonatal care, we could

estimate the number of babies falling into each phase, i.e., 23% is expected to be short stayers (4

babies) with an average length of stay of 3 days; 57% medium stayers, approximately 11 babies with

an average length of stay of 6 days, and the remaining are long stayers. In addition, the estimated

parameters can be substituted into the phase-type model for representing the continuous survival

times of patients in hospital. This information is important for effective planning of resources and

the prediction of future patient LoS in hospitals, thus it enables achievement of better services

provision and clinical outcomes.

The concept of modelling individual neonates’ experience during the process of care gave us valuable

information about the inner working of the system, (e.g. transfer from IC to SC is most probable

for babies who have been in care (or LoS) between 34 and 40 days), a useful information for better

planning of the care process. According to BLISS (2007), 78% of all neonatal units in the UK had to

close to new admissions at least once in the last six months. Rejecting premature babies could create

risk and the expensive transfer of sick babies to other hospitals. Furthermore, cots in neonatal units

are very expensive to maintain and the management wants to optimise their utilization. Therefore,

this model could help predict the outcome of a baby (moving to another unit of care, home, other

hospital or death) given his/her birth weight, gestation age and the unit of care they are admitted

to, hence improving the efficiency and effectiveness of resources allocation policies.

The System Dynamics simulation model represented the pathways in the neonatal system and the

processes governing the flow of patients on these pathways. In determining the patients’ flows,

the model includes different variables to represent the LoS determined by the clinical rules and

regulations and the LoS determined by organisational constraints such as resources availability. As

such, the model allows the evaluation of a range of policies impacting LoS, and covering both the

clinical aspects (e.g. the introduction of a new treatment procedure) and the managerial aspects

(e.g. increasing the number of cots) and their impact on the number of babies treated in the unit and

their associated outcomes. Furthermore, SD modelling allows a better understanding of the linkages

between the structure of the neonatal unit and its behaviour (clinical and managerial outcomes)

and how policies lead to the possible results. Beyond the usefulness of the model to guide policy
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making, this improved understanding is important on its own right.

The research has some methodological and contextual limitations. The three phase distribution is

not incorporated within a software package, and requires the development of a fitting algorithm by

using a general method of maximizing the log-likelihood function. The physical patient pathways

modelling has two main shortcomings towards the implementation of this approach in practice:

1) data related to tracking individual patient pathways and outcomes longitudinally over the full

care cycle may not be available, if it is, it may sometimes be cumbersome to extract such data

as this may involve consulting patients’ case notes especially where health information system is

not present, 2) a difficulty arises when really large number of observations and pathways/outcomes

are of interest. Although (generalized) linear mixed models are very flexible, computational issues

arise with increasing number of observations and pathways. System Dynamics methodology is

associated with some practical difficulties as building and validating SD models is a lengthy and

arduous process, which requires teams with strong modelling skills and the availability of a large

set of qualitative and quantitative data. The success of the process is heavily dependent on the

engagement of the parties involved in the context of the study and this can burden these parties

especially in the context of the UK health care where there are high demands on their time and

attention.

The research focused on the modelling of a single unit and this may hide some of the important

performance drivers as neonatal units are part of larger networks and this may hide the impact of

network related factors such as admission policies and the availability of transportation resources

between units. The research team is currently developing a new model at a network level as

neonatal services are organised into networks in the UK. In addition, the performance indicators in

this research focused primarily on the throughput from the neonatal units (number of babies exiting

the unit per unit time). The evaluation of the performance would be more realistic if it included

performance indicators related to the quality of care and its impact on the quality of life of the

babies and investigated how these aspects may affect readmission of babies and the movement of

babies between the different care states (IC, HDC, SC), which was found to be a main driver of the

performance of neonatal units.
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The indicators used in this research to evaluate the performance of neonatal units did not include

the indicators related to the quality of care and how care quality may have an impact on future

readmissions of babies to the unit. These issues are been addressed in an extended model, which will

include quality of care performance indicators. Furthermore, the new model represents a network of

interconnected neonatal units and will explicitly portray the processes of admissions, readmissions,

and transfer of babies between the different units in the network.

The methodologies used in this research offer decision makers powerful tools to appreciate the

complexity of the neonatal system, understand its inner working, and the variables driving their

behaviour and performance. In fact these methodologies are “tools for thinking” (Pidd, 2010)

enabling managers to challenge their assumptions and see the systems in which they operate in a

new light. Furthermore, they offer decision makers the opportunity to evaluate the implications of

possible policies and actions on the performance of their systems before the actions are implemented

in the real world, hence avoiding the trap of “doing things and hoping for the best”. As such, policies

are designed based on the solid ground offered by the formality and the analytical robustness of

these methodologies, hence an evidence based decision making process.

To conclude, we can say that the current study has led to some important insights into the rela-

tionship between LoS and performance of neonatal systems. However, it has only added to our

thirst to learn more about this important element of the UK health care provision system. The

results of this research have already paved the road to the investigation of more issues regarding the

management of neonatal services in the UK. For example, it would be very interesting to know the

effects of resources allocation and management policies, changes to admission policies, integration

of services, and restructuring of neonatal delivery structures on the performance of these systems.

The tough economic conditions are expected to be with us for quite a while in the future. Against

this background and given the ever increasing demands for health care provision, the growing variety

of health technologies, procedures, and health care delivery modes, and the increasing size and

complexity of health systems structures, it is clear that a paradigm shift is required in the decision

making and policy design processes in order to deal with this new reality. Modelling techniques
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are extremely well positioned to play a significantly greater role in shaping and influencing these

processes and policies and to enable the UK health care system to face up to these challenges and

improve the quality and performance of health care delivery and provision.
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