Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks

Egri-Nagy, Attila and Nehaniv, C.L. (2008) Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks. pp. 299-312. ISSN 1064-5462
Copy

Beyond complexity measures, sometimes it is worth in addition investigating how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.

picture_as_pdf

picture_as_pdf
900799.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads