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Abstract 

The physicochemical compatibility between amphiphilic polymers and hydrophobic 

drugs has been recognized as an important issue for improving the drug solubilisation in 

polymeric micelle formulations. In this work, poly-L-lysine (PLL) grafted with cholate 

pendants as the only hydrophobic moiety were synthesized in order to facilitate the 

solubilisation of sterol drugs. Results showed that micelles formed by cholate grafted PLL 

encapsulated significantly higher level of prednisolone and estradiol than palmitoylated PLL 

micelles, whereas the solubilisation capacity of non-sterol drug (griseofulvin) is inefficient 

for both polymers. This suggests that higher drug-polymer incorporation can be achieved by 

the inclusion of hydrophobic moieties with similar architecture as the drugs, i.e. “drug-like” 

functional groups, which will be useful for the future design of colloidal systems for the 

encapsulation of specific drug. 

 

Key words hydrophobic drug solubilisation, Amphiphilic graft copolymer, Micelle, Drug-

polymer interaction. 
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Introduction 

It has been estimated that 40% of the current drug candidates in development and 

marketed drugs consist of water insoluble entities (Kilpatrick 2003). Poorly water-soluble 

drugs present a major challenge to the pharmaceutical industry, as it can hinder or even 

prevent the progress of the drug into clinical use (Wenlock et al. 2003). In an attempt to 

improve aqueous solubility of hydrophobic drugs, traditional formulations such as oil in 

water emulsions, co-solvents and low molecular weight surfactants have been employed 

(Strickley 2004). In recent years, amphiphilic polymers have attracted much attention as 

solubilisers for hydrophobic drugs (Kabanov et al. 2002, Kwon 2003, Gaucher et al. 2005, 

Rijcken et al. 2007). In the aqueous environment, amphiphilic polymers form nano-sized self-

assemblies, where a hydrophobic core is created upon the aggregation of hydrophobic 

moieties of the polymers. The core serves as a “container” for water insoluble drugs and thus 

resulted in an increased solubilisation.  

Basically a good polymeric solubiliser should have favourable and stronger interactions 

with solubilisate than the intermolecular interactions among the solubilisate molecules 

(Huang et al. 2008). This is especially important for those solubilisates with highly crystalline 

structures (Soo et al. 2002, Marsac et al. 2009). In addition to the hydrophobic interaction, the 

formation of ionic complexes and hydrogen bonding between the solubiliser and the 

solubilisate would certainly enhance the solubilisation, due to the presence of multiple polar 

groups commonly found in many drug molecules (Tian et al. 2007, Huang et al. 2008). 

Therefore the compatibility between the drug and micelle-forming polymers becomes a major 

concern for the design of drug solubilisers (Nagarajan 2001, Liu et al. 2004, Gaucher et al. 

2005, Attwood et al. 2007, Letchford et al. 2007, Mahmud et al. 2009). One of the widely 

used theoretical methods, especially on amphiphilic block copolymers, is to calculate the 

Flory-Huggins interaction parameter (sc) between drug and the hydrophobic block 
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(Nagarajan 2001, Rekatas et al. 2001, Letchford et al. 2007). Lower calculated sc value 

normally indicates better drug-polymer compatibility hence higher predicted level of 

solubilisation (Rekatas et al. 2001, Soo et al. 2002, Letchford et al. 2007, Mahmud et al. 

2009). However it has been found that this theoretical model does not work in all cases 

(Marsac et al. 2006). On the other hand, in recent years a few experimental works have 

addressed the attachment of drug molecules or functional groups with similar chemical 

structure of drugs onto the polymers in order to enhance the drug-polymer interaction 

(Kataoka et al. 2000, Lavasanifar et al. 2002, Mahmud et al. 2009). For example, Mahmud et. 

al conjugated doxorubicin (DOX) to the hydrophobic block of poly(ethylene oxide)-block-

poly(ε-caprolactone) (PEO-b-PCL) to favour the DOX solubilisation (Mahmuda et al. 2008), 

while the inclusion of cholesteryl groups in the PEO-b-PCL also resulted in a higher 

solubilisation of cucurbitacin I, a cholesterol drug, than the parent polymer (Mahmud et al. 

2009). 

Compared to block copolymers, the investigation on amphiphilic graft copolymers 

bearing “drug-like” pendant groups for enhancing the solubilisation of poorly water-soluble 

drugs is rarely reported, albeit several papers have published the work related to the self-

assembly (Wang et al. 2004, Gu et al. 2008, Qu et al. 2008, Thompson et al. 2008) and drug 

delivery properties of amphiphilic graft copolymers (van Krevelen 1997, Francis et al. 2003, 

Cheng et al. 2006). Unlike those block copolymer micelles (Mahmuda et al. 2008, 2009), it is 

noteworthy that the pendant group of graft copolymers could be the only hydrophobic moiety 

that will form the hydrophobic microdomains and contribute to the major interaction with the 

hydrophobic drug molecules. Therefore the investigation on the impact of hydrophobic 

pendant groups of amphiphilic graft copolymers on the solubility enhancement of 

hydrophobic drugs will be helpful to explore the rationale of the structural compatibility on 

drug solubilisation. In this work, Poly-l-lysine (PLL) is used as the hydrophilic backbone to 
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graft alkyl (C16) chains and cholate pendant groups respectively (Scheme 1). Two sterol drugs 

with different water solubility (prednisolone and estradiol) (Scheme 2) were used as “cholate 

like” model drugs for the cholate grafted PLL to compare the solubilisation with the alkyl 

grafted PLL. Alkyl chains are common hydrophobic groups for fabricating amphiphilic graft 

copolymers and low molecular amphiphiles. Meanwhile, a non sterol-like drug, griseofulvin, 

were also selected for a comparison from the solubilisate side. 

 

Experimental 

Materials 

Poly-L-lysine (PLL) (MW = 15k - 30k Da), cholic acid (CA), palmitoyl chloride, 

dicyclohexyl carbodiimide (DCC), N-hydroxysuccinimide (NHS), deuterated dimethyl 

sulfoxide (DMSO-d6), prednisolone, estradiol, and griseofulvin were purchased from Sigma-

Aldrich, USA. High performance liquid chromatography (HPLC) grade solvents were 

obtained from Sigma-Aldrich, UK. Other solvents and compounds were all obtained form 

Beijing Chemical Reagents Company, China. All reagents were used as received. 

 

Synthesis of cholate grafted PLL (PLL-CA) 

The PLL-CA was synthesized as previously described (Gu et al. 2008). Typically, 

cholic acid (10 g, 24 mmol, 1 equiv) and DCC (5 g, 24 mmol) were dissolved in 50 mL of 

dimethyl sulfoxide (DMSO). To this was added 3.4 g (30 mmol, 1.25 equiv) of NHS with 

stirring. The mixture was stirred for 15 h at room temperature then filtered. The filtrate was 

precipitated by n-hexane (200 mL), washed and vacuum dried to yield 11.2 g (90%) of cholic 

acid succinimide ester. MALDI-TOF MS: [M
+
] = 505.2 (Calculated: [M

+
] = 505.68). 

To 15 mL of DMSO solution containing PLL (0.2 g, 0.96 mmol of lysine segment) and 

triethyl amine (TEA, 0.35 mL) was added dropwise the desired amount of the cholic acid 
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succinimide ester (0.1-0.4 mmol) in 10 mL of DMSO with stirring. The reaction mixture was 

stirred for 24 h at room temperature, precipitated and washed with diethyl ether, then 

dispersed in water for dialysis (Molecular weight cut off 12k Da) against distilled water (5 L 

with 6 changes in 24 h) and freeze dried to obtain fibre-like PLL-CA with 62-65% yield 

(calculated as % of the starting polymer weight). The cholate grafting level was determined 

by elemental analysis (Thompson et al. 2008). 

 

Synthesis of palmitate grafted PLL (PLL-PAL) 

PLL (0.2 g, 0.96 mmol of lysine segment) was dissolved in 20 mL of DMSO. To this 

was added 0.35 mL of TEA and desired amount of palmitoyl chloride (30-160 L) with 

violent stirring. The mixture was stirred for 24 h at room temperature, protected from light, 

and dialysed (Molecular weight cut-off 12k Da) against ethanol/water (4:1, 2 L, six changes 

within 24 h) and then water (5L, six change within 24 h), and freeze-dried to gain yellow 

colour product with the yield in a range of 61-71%.  

 

Preparation of polymer dispersion 

Polymers (PLL-CA or PLL-PAL) were dispersed in water at desired concentrations by 

probe sonication using a JY96-II probe sonicator (Zhejiang Xin-Zhi, China) with the output 

set at 150 W. 

 

Drug solubilisation 

Drug loading was achieved by probe sonicating desired amount of drug (prednisolone, 

estradiol or griseofulvin) in the polymer dispersions (1 mg/mL or 3 mg/mL) as prepared 

above for 5 min with the maximum output (Cheng et al. 2006, Qu et al. 2006). For all drugs, 
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the drug to polymer initial weight ratios of 2:1 and 5:1 were used. Drug levels contained in 

the polymeric micelles were measured using HPLC. 

For polymer/prednisolone and polymer/estradiol formulations, after sonication the 

dispersions were cooled down to room temperature and equilibrated for 4 h, then were 

filtered through syringe filters (pore size: 450 nm with prefilters). The filtrates were then 

diluted with the mobile phase (water/acetonitrile 64:36), and was injected (20 L) into a 

reverse phase 3.5 m C18 symmetry column (4.6  75 mm, Waters Instruments, U.K.) at a 

mobile phase flow rate of 1 mL/min. The HPLC consists of a Waters 515 isocratic pump and 

a Waters 717 autosampler, and sample detection was achieved using a Waters 486 variable 

wavelength ultraviolet wavelength detector ( = 243 nm for prednisolone and 205nm for 

estradiol). The retention peak was 3 min and 10 min respectively for prednisolone and 

estradiol. The drug contents in the samples were quantified by comparing to a standard 

calibration containing the drugs dissolved in the mobile phase (6 µg/mL - 25 µg/mL), R
2 

= 

0.999. 

The above procedure was repeated for polymer/griseofulvin formulations but using a 

different mobile phase (45:55 v/v of acetonitrile: 45mM potassium dihydrogen phosphate in 

water and adjusted to pH=3 with orthophosphoric acid). The UV detection wavelength was 

293 nm and the column used was a RP Phenomenex C18 (250mm  46mm, 5m). 

Calibration graphs were constructed to determine the drug content in the samples where 

griseofulvin was dissolved in the mobile phase (0.6 µg/mL - 10 µg/mL), R
2 

= 0.999. The 

retention peak was detected at 9.5 min.  

The amount of drugs in the polymeric micelle system in relation to the drug solubility in 

water, also referred to as solubility enhancement of the drugs in polymer solution, was 

calculated as following: 

Solubility enhancement = 100%[Drug]dispersion/[Drug]water  (1) 
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where the [Drug]dispersion and [Drug]water are the concentrations of the drug in polymer solution 

and the aqueous solubility of the drug detected by HPLC. 

 

Elemental Analysis 

The contents of C, H and N of the polymers were detected using a Perkin Elmer 2400 

analyser. The hydrophobic pendant grafting level of PLL-CA and PLL-PAL was evaluated 

based on the method reported in the previous works (Gu et al. 2008, Qu et al. 2008, 

Thompson et al. 2008), which was calculated by the comparison of the C/N ratio of the graft 

polymer to the parent PLL. 

 

1
H NMR analysis 

1
H NMR analysis of synthesized polymers was performed on polymer solutions in 

DMSO-d6 using a Bruker AMX 600 MHz spectrometer. 

 

Size measurements 

Particle size measurement was carried out for all polymer/drug formulations and 

polymer alone in water with a NanoPlus Zetasizer (Malvern Instruments, UK). All samples 

were passed through membrane filters (pore size: 450 nm, Millipore) before measurement. 

The measurement was conducted in triplicates.  

 

Transmission electron microscopy 

Carbon-coated 200 mesh copper grids were discharged and sample dispersions applied, 

followed by the application of phosphate-tungstic acid (1%) for negative stain. The grids 

were dried and imaged using a LEO 902 transmission electron microscope (TEM) at 80 kV. 
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X-ray powder diffraction 

Wide-angle X-ray diffraction (WAXD) of powder specimen (5 mg) was obtained using 

a wide-angle Rigaku D/max-2500 diffractometer (Rigaku Corporation, Japan) with Cu-Kα 

radiation (50 kV × 250 mA). The samples were prepared using following methods: (1) 

Selected formulations (polymer concentration: 1 mg/mL, drug to polymer initial ratio: 2:1 

w/w) as-prepared in 2.4.3 were freeze-dried; (2) Formulations were prepared via probe 

sonicating the drug/polymer solution with a drug to polymer initial ratio of 0.4:1 w/w, and 

freeze-dried without filtration; (3) Drug and polymer were blended as control samples.  

 

Infrared spectroscopy (FTIR) 

Infrared spectroscopy of freeze-dried polymers or polymer/drug formulations prepared 

as the same procedures described in the XRD measurements was recorded using a 

Brukerequinox 55 FTIR spectrometer. The samples were pressed with KBr under vacuum 

and scanned from 4000 to 400 cm
-1

 with a resolution of 2 cm
-1

. 

 

Drug-polymer compatibility calculations 

The compatibility between drug and hydrophobic pendant group of the amphiphilic 

graft polymers was calculated by the Flory-Huggins interaction parameter (sc) using the 

Hildebrand-Scatchard equation (eq.2). 

 
RT

Vs
cssc

2
 

 (2) 

where s and c are the solubility parameters of drug (s) and hydrophobic pendant group 

respectively . Vs is the molar volume of the drug, R is the gas constant, and T is the Kelvin 

temperature. The solubility parameter () of the drug (s) and the hydrophobic pendant group 

of the polymers (c) was obtained separately by group contribution method (GCM) as 
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described by van Krevelen (van Krevelen 1997),
 
which uses partial solubility parameters to 

calculate the total solubility parameter as outlined in eq. 3. 

  2
1

222

hpd    (3) 

where d, p, and h are the partial solubility parameters indicating contributions from Van 

der Waals, polar interactions, and hydrogen bonding between molecules respectively. Each 

individual component can be calculated according to the following equations (eq. 4-6). 


V

Fdi
d

 (4) 

 
V

Fpi

p

2
1

2


 (5) 

2
1









 

V

Ehi
h

 (6) 

where Fdi and Fpi are the molar dispersion and polar attraction constants, respectively, and Ehi 

is the hydrogen bonding energy. 

 

Statistical analysis 

Data represent at least three independent experiments and are expressed as mean ± SD. 

Statistical significance was assessed using Student’s t-test using SPSS software. The 

difference was considered to be statistically significant if the probability value was less than 

0.05 (p<0.05). 

 

Results and Discussion 

Polymer synthesis and self-assembly 

The synthesis and characterization of PLL-CA has been described previously (Gu et al. 

2008). PLL-PAL was synthesized by reacting PLL with palmitoyl chloride in the presence of 
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trimethyl amine. The structure of the products was examined using 
1
H NMR. The proton 

assignments for the PLL-PALs dissolved in DMSO-d6 were as follows:
 
δ4.3 ppm = CH 

(PLL), δ3.2-3.4 ppm = CH2-N
+
 (PLL) and CH2-N-CO (palmitoyl), δ2.2 ppm = CH2-CO-N 

(palmitoyl), δ1.2-1.8 ppm = CH2 (PLL and palmitoyl), δ0.9 ppm, = CH3 (palmitoyl). The 

palmitoylation level of PLL-PALs was evaluated using elemental analysis, by comparing the 

carbon to nitrogen molar ratio of PLL and the PLL-PALs, which were also confirmed by 

comparing the 
1
H NMR integrals of palmitoyl proton peak at 0.9 ppm and the PLL proton 

peak at 4.3 ppm. The details of chemical composition of the PLL-CAs and PLL-PALs 

synthesized for this study are summarized in Table 1. By changing the initial feed ratio of 

reagents, the CA and palmitoylation level could be adjusted in a wide range, i.e. 10-50 mol% 

to the lysine segment. 

The PLL grafted with two different hydrophobic pendant groups, i.e. PLL-CA and PLL-

PAL, self-assembled in aqueous solution after probe sonication due to the amphiphilicity 

nature of the polymers, irrespective of the structure of pendant groups. Previous studies have 

proven that the supramolecular structures formed by amphphilic graft copolymers transform 

from polymeric micelle to solid nanoparticle with the increase of hydrophobicity (Wang et al. 

2004, Qu et al. 2008). Polymeric micelle will be formed by graft copolymers with relatively 

low level of hydrophobic grafting, e.g. less than 40 mol%. In this work, the dispersions 

formed by the polymers in water were stable for at least 24 h, except the PLL-PAL50, having 

the highest palmitoylation level, which precipitated within 12 h. TEM images showed 

spherical particles for PLL-CAs (Thompson et al. 2008) while similar spherical nano-sized 

aggregates were also found with PLL-PALs (Figure 1). It is revealed that PLL-PAL50 self-

assembled into nanoparticle while the other PLL-PAL copolymers formed polymeric micelles 

(Qu et al. 2006, 2008, Gu et al. 2008). The hydrodynamic diameter of the PLL-CAs and PLL-

PALs aggregates is listed in Table 1. A size over 200 nm possibly indicates a multi-core 
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structure of the aggregates rather than traditional micelles formed by small molecule 

surfactants, which have been observed in both block copolymer and graft copolymer systems 

(Borisov and Halperin 1996, Uchegbu et al. 2001, Hsu et al. 2005). 

 

Drug solubilisation 

It has been well documented that the grafting level influences the hydrophobicity of the 

copolymer and thus will have an impact on the drug incorporation (Cheng et al. 2006, Qu et 

al. 2006). Therefore, a series of PLL-CAs and PLL-PALs with different grafting levels were 

used for the drug solubilisation studies. The drug solubilisation studies were carried out by 

mixing the drugs in polymer solution followed by probe sonication (Cheng et al. 2006). The 

solvent evaporation method was not used in the preparation of drug formulations to eliminate 

the influence of residue solvent on the polymer-drug interactions (Yokoyama et al. 1998). 

Three hydrophobic model drugs were selected. As shown in Scheme 1 and 2, the chemical 

structure of the cholate pendant group of PLL-CA is similar to that of prednisolone and 

estradiol. Prednisolone and estradiol are sterol drugs but have different octanol-water 

partition coefficient (Log P) (Table 2). Griseofulvin does not exhibit similar chemical 

structure as prednisolone or estradiol, however the physicochemical properties such as the 

molar volume and Log P is similar to prednisolone, i.e. 353 g/mol and Log P of 2.2 for 

griseofulvin and 360 g/mol and Log P of 1.8 for prednisolone (Nielsen et al. 2001, Dahan et 

al. 2007).  

Figure 2 summarizes the drug level incorporated by the amphiphilic graft copolymers at 

two different polymer concentrations with different drug to polymer initial weight ratios. In 

general for each polymer/drug formulation, the amount of drug detected by HPLC increases 

with the increase of polymer concentration, i.e. from 1 to 3 mg/mL, and the drug to polymer 

initial mass loading ratio, i.e. from 2:1 to 5:1 (w/w), indicating drug solubilisation by the 



 13 

polymeric aggregates (Kwon et al. 1997, Shim et al. 2006). As shown in Figure 2, the 

solubilisation of prednisolone and estradiol is significantly dependent on the chemical 

structure of the amphiphilic copolymers. The PLL-CAs resulted in a much greater 

prednisolone solubilisation, with a maximum solubilisation of 0.95 mg/mL, ca. 4-fold greater 

than the aqueous solubility of the drug (250 g/mL, HPLC) (Figure 2a). However, only a 

maximum 30% increase of prednisolone concentration (0.33mg/mL /mL) is found with PLL-

PAL/prednisolone formulations. Similarly, although the detected estradiol concentration in 

all formulations was relatively low, which was probably due to the very low water solubility, 

i.e. 3.5 g/mL, a maximum 48-fold increase of estradiol solubility was obtained with PLL-

CA32 (170 g/mL) (Figure 2b), 6 times higher than that in the PLL-PAL formulations (with 

a maximum drug concentration of 30 g/mL).  

Unlike prednisolone, the solubilisation of griseofulvin in PLL-CAs and PLL-PALs 

polymeric micelles is independent of the chemical structure of the polymers. Poor 

griseofulvin solubilisation was observed irrespective of the type of hydrophobic pendant 

groups and the grafting level (Figure 2c). Maximum solubilisation (219 and 174 g/mL), 

only 2-fold of the drug’s water solubility (91 g/mL, HPLC), was achieved respectively with 

PLL-CA and PLL-PAL when the highest drug loading ratio (5:1) and polymer concentration 

(3 mg/mL) were used. This is in good agreement with other published work using 

amphiphilic block copolymers containing linear poly(lactic acid) and poly(butylene oxide) 

hydrophobic blocks (Pierri et al. 2005, Ribeiro et al. 2009), although we used lower polymer 

concentration with a higher drug to polymer mass ratios.  

 

Physicochemical characterization to evaluate the interactions between drug and 

polymer 
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Prednisolone and griseofulvin formulations were selected for comparison since the two 

drugs have similar Log P, molecular weight and molar volume. It seems that the 

incorporation efficiency of drugs influences the size and morphology of the micelles. As seen 

in Table 1, the PLL-PAL/prednisolone formulations have smaller hydrodynamic size when 

compared to unloaded PLL-PAL self-assemblies, especially the formulations with higher 

hydrophobic grafting levels, i.e. PLL-PAL28 and PLL-PAL50. For PLL-CA/prednisolone 

formulations, the level of hydrophobic grafting also has an impact on the hydrodynamic size 

of drug loaded micelles. While the drug loaded PLL-CA10 displays a much larger 

hydrodynamic size, increasing the level of grafting has resulted in a sequential reduction of 

particle size for PLL-CA15 and PLL-CA32 formulations. The results suggest that the 

interaction between the drug and the pendant groups is the predominant driving force for 

prednisolone solubilisation, which resulted in the formation of a more compact core structure 

upon the increase of hydrophobic grafting (Huang et al. 1998, Jiang et al. 2006). However for 

both PLL-CA and PLL-PAL/griseofulvin formulations, the type of pendant groups of the 

polymers has no impact on the hydrodynamic size where increasing the grafting level did not 

change the size significantly compared to unloaded polymeric self-assemblies (Table 1). This 

also corresponds to a low level of solubilisation across all levels of grafting (Figure 2c). The 

morphology of PLL-CA and PLL-PAL formulations are shown in Figure 3. Similar spherical 

particles are seen for the PLL-PAL28/prednisolone formulation and the griseofulvin 

formulations of PLL-PAL28 and PLL-CA32 (Figure 3a-c), whereas irregular shaped particles 

are observed in the PLL-CA32/prednisolone formulation (Figure 3d).  

Powder X-ray diffraction was used to further evaluate the polymer-drug interaction, as 

well as the state of the drug in the polymeric micelles. The XRD patterns of the drugs and 

their formulations are plotted in Figure 4. It is revealed that the two drugs are highly 

crystallized (Figure 4) and the freeze-dried polymers were in amorphous state (data not 
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shown). As shown in Figure 4a, the crystal peaks are visible in all freeze-dried 

griseofulvin/polymer formulations, however compared to the drug-polymer blend (curve 2), 

the unfiltered samples (curve 3 and 5) with a fixed drug content (40 wt%) have weaker 

intensities despite free drugs might be present in the aqueous phase. This suggests that the 

presence of polymer decreased the crystallinity of griseofulvin in the polymer dispersions. 

For filtered samples (Figure 4a, curve 4 and 6), it is expected that most of the drug molecules 

would be solubilised in the micelle cores. However the appearance of crystal peaks in the 

filtered samples could indicate that the interaction between the pendant groups, i.e. cholate or 

palmilate, and griseofulvin is not adequate to physically stabilize the drug molecules at 

molecular level, although it might have reduced the rate of drug crystallization. Stronger 

intermolecular interaction between drug molecules rather than that between the drug and 

polymer might cause drug crystallization and hence inefficient drug incorporation in the 

polymeric micelles (Liu et al. 2004). This is evident from the griseofulvin solubilisation data 

(Figure 2c).  

On the other hand, Figure 4b (curve 4) reveals very weak diffraction patterns 

corresponding to prednisolone crystal in the filtered prednisolone/PLL-CA32 sample 

(drug/polymer feed ratio = 2:1 w/w) which contains ca. 45 % (w/w) of the drug (HPLC). 

Comparably the freeze-dried sample of the unfiltered formulation with an apparent 40 % 

(w/w) drug content (drug/polymer = 0.4:1 w/w), thus with less drug in the micelle core 

comparing to the filtered one, has much stronger crystal peaks (Figure 4b, curve 3), which is 

comparable to that of the drug-polymer blend (0.4:1 w/w) (Figure 4b, curve 2). The results 

indicate that the cholate pendant group and prednisolone have formed stronger interaction to 

stabilize the incorporated drug molecules, because the amorphous drugs were more likely 

incorporated inside the PLL-CA32 micelles. Weak crystal diffraction peaks are also observed 

in the filtered prednisolone/PLL-PAL28 sample (Figure 4b, curve 6), however the low drug 
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content in this formulation, i.e. 74 g of drug with ca. 1 mg of polymer (HPLC) must be 

taken into consideration compared to prednisolone/PLL-CA32. 

The FTIR spectra in Figure 5a demonstrate a new absorbance at 1100 cm
-1

 in the 

prednisolone/PLL-CA32 formulations and the intensity increases with the drug loading level 

(curve 3 and 4). Such absorbance is not found in prednisolone/PLL-CA32 blend (Figure 5a, 

curve 5) and similarly no extra band was observed in the prednislone/PLL-PAL28 (Figure 

5b) and all griseofulvin formulations (Figure 5c). The results further confirm that the PLL-

CA could strongly interact with prednisolone possibly due to structural similarity between the 

cholate group and prednisolone molecules.  

 

Calculation of the compatibility between polymer and drug 

With the assumption that that the drugs majorly interact with the hydrophobic pendants 

(Liu et al. 2004),
 
Flory-Huggins interaction parameters (sc) between the drugs and the 

pendant groups of the polymers are calculated and the results are listed in Table 2. 

Comparing the compatibility of the two polymers with the drugs, the calculated sc for PLL-

CA between the cholate pendant group and griseofulvin, prednisolone and estradiol is all 

smaller than that for the PLL-PAL counterparts. In comparison with the experimental results 

as shown in Figure 2, the solubilisation of prednisolone and estradiol is indeed found greater 

with the PLL-CA micelles, in good agreements with the sc prediction (Figure 2a, b), whereas 

the difference in griseofulvin solubilisation capacity of the two different types of polymers, 

i.e. PLL-CA and PLL-PAL, is not obvious (Figure 2c). However, it is also noted in Table 2 

that while HPLC results show that PLL-CA copolymers have better solubilising capacity for 

prednisolone than griseofulvin (Figure 2a and c), the sc of griseofulvin with the pendant 

group of PLL-CA is even smaller than that of prednisolone. This demonstrates the limit of 
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using sc to predict the drug solubilisation in particular, when the drug and the hydrophobic 

pendant group of amphiphilic copolymer both have similar sterol-like structures.  

As mentioned above, the XRD and FTIR data imply stronger interaction between 

prednisolone and the PLL-CAs, which is presumed to be stronger hydrogen bondings formed. 

The contribution of H-bonding on the drug solubilisation can be evaluated by comparing the 

partial solubility parameters between the drugs and the pendant groups of the polymers, i.e. 

d, p and h, because the enthalpy of mixing (HM) can be calculated using the 

following equation (Liu et al. 2004): 

HM=sc(d
2
+p

2
+h

2
) (7) 

where s, c are volume fractions of the drug and polymer. From Table 2 the d
 
and p values 

are very similar; meanwhile the h of predinsolone and griseofulvin are different. Therefore it 

can be calculated that the h between prednisolone and the cholate is much lower, which 

leads to the decrease of mixing enthalpy between prednisolone and PLL-CA micelles.  

 

Conclusions 

PLL amphiphilic graft copolymers with hydrophobic palmitate and cholate pendant 

groups were synthesized. Their ability to solubilise sterol drugs was tested. It is shown that 

the chemical structure of the hydrophobic pendant group of the amphiphilic graft copolymers 

has significantly influenced the solubilisation of poorly water-soluble drugs. With “drug-like” 

pendant groups, PLL-CA achieved higher prednisolone and estradiol encapsulation than the 

palmitoylated PLL (PLL-PAL) despite the water solubility of these two drugs is very 

different. Besides, the PLL-CA also has higher solubilisation capacity for prednisolone when 

comparing with griseofulvin, a non-steroidal drug with similar molecular weight and Log P, 

although the calculated sc between griseofulvin and the cholate is lower. This work provides 

valuable information not only to understand the contribution of structural compatibility on the 
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drug-polymer interactions but also benefit the future design of amphiphilic graft copolymers 

as hydrophobic drug solubilisers.  
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