

PARALLEL SOLUTION OF DIFFUSION EQUATIONS

USING LAPLACE TRANSFORM METHODS

WITH PARTICULAR REFERENCE TO

BLACK-SCHOLES MODELS OF FINANCIAL OPTIONS

A. M. FITZHARRIS

PH. D

2014

Parallel Solution of Diffusion Equations

Using Laplace Transform Methods

With Particular Reference to

Black-Scholes Models of Financial Options

Andrew Fitzharris

A thesis submitted in partial fulfilment of the requirements of the

University of Hertfordshire for the degree of

Doctor of Philosophy

The programme of research was carried out in the

School of Physics, Astronomy and Mathematics

University of Hertfordshire

February 2014

 i

Acknowledgements

In July 1968 my maths teacher, Mrs Catherall, wrote in my end of year school report, "If

Andrew spent as much time working as he does looking out of the window at the other boys

playing football, he would be quite good at maths". Needless to say my parents were not

impressed
1
. However, this comment was a fairly accurate reflection of my interest in

academic subjects at that time. I remained disinterested until September 1975 when, as a final

year engineering apprentice on day-release at Letchworth College of Technology, I was

fortunate to have Dr Brian Crawford for maths. He was unlike any maths teacher I had been

taught by before. He was young, drove a Jensen sports car and was a fan of The Who and

Bruce Springsteen. However, more importantly he taught maths in a way that inspired me and

all of the other apprentices in the class. His method was to teach maths in an applied context

i.e. to show us real-world applications for the maths we were studying. For the first time we

saw that topics like algebra, calculus, trigonometry and geometry were not intellectual

pursuits as many of us believed but were essential tools for solving problems in engineering

and many other areas. His inspirational teaching changed the direction of my life. The

following September, encouraged by my late wife Yvonne, I enrolled at Stevenage College to

take my 'O'-level in maths and to use an old cliché, "and the rest is history". How surprised

would Mrs Catherall be to discover that I have had a 30-year career teaching maths at a

university, that I have lecturered at the Royal Institution and that I have obtained my Ph.D.

Coming up-to-date, I would also like to thank :

● my supervisors, Dr. Steve Kane and Professor Choi-Hong Lai for their guidance, support

 and encouragement during this investigation

● Professor Alan Davies for his helpful input and advice

● Professor Bruce Christianson, Dr Abdel Salhi and Dr David Sayers for the friendly and

 professional way in which they conducted my viva voce examination

Finally, I would like to thank my daughters Laura and Robyn who are the best thing that has

ever happened to me and are a constant source of inspiration.

This dissertation is dedicated to Emily Alice Johnson, 1905-1974. With me always ...

1
 Fortunately for me I excelled in P.E. and played several sports at County level.

 ii

Abstract

Diffusion equations arise in areas such as fluid mechanics, cellular biology, weather

forecasting, electronics, mechanical engineering, atomic physics, environmental science,

medicine, etc. This dissertation considers equations of this type that arise in mathematical

finance.

For over 40 years traders in financial markets around the world have used Black-Scholes

equations for valuing financial options. These equations need to be solved quickly and

accurately so that the traders can make prompt and accurate investment decisions. One way

to do this is to use parallel numerical algorithms. This dissertation develops and evaluates

algorithms of this kind that are based on the Laplace transform, numerical inversion

algorithms and finite difference methods. Laplace transform-based algorithms have faced a

legitimate criticism that they are ill-posed i.e. prone to instability. We demonstrate with

reference to the Black-Scholes equation, contrary to the received wisdom, that the use of the

Laplace transform may be used to produce reasonably accurate solutions (i.e. to two decimal

places), in a fast and reliable manner when used in conjunction with standard PDE

techniques.

To set the scene for the investigations that follow, the reader is introduced to financial

options, option pricing and the one-dimensional and two-dimensional linear and nonlinear

Black-Scholes equations. This is followed by a description of the Laplace transform method

and in particular, four widely used numerical algorithms that can be used for finding inverse

Laplace transform values. Chapter 4 describes methodology used in the investigations

completed i.e. the programming environment used, the measures used to evaluate the

performance of the numerical algorithms, the method of data collection used, issues in the

design of parallel programs and the parameter values used.

To demonstrate the potential of the Laplace transform based approach, Chapter 5 uses

existing procedures of this kind to solve the one-dimensional, linear Black-Scholes equation.

Chapters 6, 7, 8, and 9 then develop and evaluate new Laplace transform-finite difference

algorithms for solving one-dimensional and two-dimensional, linear and nonlinear Black-

Scholes equations. They also determine the optimal parameter values to use in each case i.e.

the parameter values that produce the fastest and most accurate solutions. Chapters 7 and 9

also develop new, iterative Monte Carlo algorithms for calculating the reference

solutions needed to determine the accuracy of the LTFD solutions.

 iii

Chapter 10 identifies the general patterns of behaviour observed within the LTFD solutions

and explains them. The dissertation then concludes by explaining how this programme of

work can be extended. The investigations completed make significant contributions to

knowledge. These are summarised at the end of the chapters in which they occur. Perhaps the

most important of these is the development of fast and accurate numerical algorithms that can

be used for solving diffusion equations in a variety of application areas.

 iv

Contents

1 Introduction ..1

 1.0 Introduction ..1

 1.1 Background ..1

 1.2 Aims ...3

 1.3 Dissertation Structure ..3

 1.4 Chapter Summary ...4

2 The Black-Scholes Model and Equations ...5

 2.0 Introduction ..5

 2.1 Historical Background ..5

 2.2 European Call Options ...7

 2.3 The Underlying Assumptions of the Black-Scholes Model8

 2.4 The One-Dimensional, Linear Black-Scholes Equation ..9

 2.4.1 Itô's Lemma ..9

 2.4.2 Development of the Equation ..9

 2.4.3 The Analytical Solution ...11

 2.5 European Put Options ..12

 2.6 The Multi-Dimensional, Linear Black-Scholes Equation ...12

 2.6.1 Itô's Lemma in Higher Dimensions ...13

 2.6.2 Development of the Equation ...14

 2.7 An Alternative Approach .. 18

 2.8 Nonlinear Black-Scholes Equations ...18

 2.8.1 Volatility Models ..19

 2.8.1.1 A Simulated Modified Volatility Model ...19

 2.8.1.2 Leland ..20

 2.8.1.3 Boyle and Vorst ...21

 2.8.1.4 Barles and Soner ...21

 2.8.1.5 The Risk Adjusted Pricing Methodology ...21

 2.9 Black-Scholes Equations with Stochastic Volatility...22

 2.10 Chapter Summary ...25

 2.11 Contribution to Knowledge ... 25

 v

3 The Laplace Transform Method ...26

 3.0 Introduction ..26

 3.1 Background ..26

 3.2 Definition ..26

 3.3 The Method ..27

 3.4 Advantages ..28

 3.5 Disadvantage ..28

 3.6 Alternative Methods of Laplace Transform Inversion ..29

 3.6.1 Stehfest's Method ..29

 3.6.2 The Shifted Legendre Polynomial Method ...30

 3.6.3 The Jacobi Polynomial Method ...31

 3.6.4 The Laguerre Polynomial Method ..32

 3.7 Chapter Summary ...33

 3.8 Contribution to Knowledge ..33

4 Methodology ..34

 4.0 Introduction ..34

 4.1 Programming Environment ...34

 4.2 Measures of Performance ...34

 4.2.1 Measures of Speed ..35

 4.2.2 Measure of Accuracy ..35

 4.3 Method of Data Collection ..35

 4.4 Parallel Program Design ...36

 4.4.1 Inter-Processor Communication ..36

 4.4.2 Functional Decomposition Verses Domain Decomposition 36

 4.4.2.1 NRMSD Values ...37

 4.4.2.2 Execution Speeds ...38

 4.4.2.3 Conclusions ..42

 4.5 Parameter Values Used in the Numerical Inversion Algorithms 43

 4.6 Number of Weights/Terms and Processors Used ...43

 4.7 Chapter Summary ...44

 4.8 Contribution to Knowledge ..44

 vi

5 Laplace Transform Solutions - Initial Investigations ..45

 5.0 Introduction ..45

 5.1 The Solution Domain ...45

 5.2 Parameter Values ...46

 5.3 Investigation 1 : The Laplace Transform of the Analytical Solution46

 5.3.1 Aim ...46

 5.3.2 The Laplace Transform Formula ...46

 5.3.3 Performance Data...49

 5.3.3.1 Optimal Sequential Programs Data ..49

 5.3.3.2 Part 1 - Varying the Number of Weights/Terms Used 50

 5.3.3.3 Part 2 - Varying the Number of Processors Used 51

 5.3.3.4 Optimal Parallel Programs Data ..54

 5.4 Investigation 2 : The Laplace Transforms Arising in the ODE BVP Form..............54

 5.4.1 Aim ..54

 5.4.2 The Finite Difference Solution of the ODE BVP Form 54

 5.4.3 Performance Data...55

 5.4.3.1 Optimal Sequential Programs Data ..56

 5.4.3.2 Part 1 - Varying the Number of Weights/Terms Used 56

 5.4.3.3 Part 2 - Varying the Number of Processors Used 57

 5.4.3.4 Optimal Parallel Programs Data ..60

 5.5 Conclusions ..60

 5.6 Chapter Summary ..61

 5.7 Contribution to Knowledge ..61

6 The One-Dimensional, Laplace Transform-Finite Difference Algorithm62

 6.0 Introduction ..62

 6.1 The Algorithm ..62

 6.2 The Diffusion Equation Form ..64

 6.2.1 The Computational Procedure ..65

 6.2.2 An Improved Procedure ..65

 6.3 Finite Difference Methods .. 66

 6.4 Solving One-Dimensional, Linear Black-Scholes Equations 67

 6.4.1 Parameter Values ..67

 6.4.2 Aim ...67

 vii

 6.4.3 Preliminary Notes ...67

 6.4.4 Performance Data ..68

 6.4.4.1 Sequential Program Data ...68

 6.4.4.2 Part 1 - Varying the Number of Weights/Terms Used 68

 6.4.4.3 Part 2 - Varying the Number of Processors Used 70

 6.4.4.4 Optimal Parallel Programs Data ..73

 6.4.5 Conclusions ...73

 6.5 Chapter Summary ..73

 6.6 Contribution to Knowledge ..73

7 Solving One-Dimensional, Nonlinear Black-Scholes Equations75

 7.0 Introduction ...75

 7.1 Parameter Values ...75

 7.2 Practical Difficulties When Solving the Nonlinear Form ..75

 7.2.1 Linearisation Techniques ..76

 7.2.1.1 Direct Iteration ...76

 7.2.1.2 Semi-Direct Iteration ...77

 7.2.1.3 Taylor Series Iteration...77

 7.2.1.4 Termination ..78

 7.2.1.5 Comparison of Methods .. 78

 7.2.1.6 Accuracy in the Nonlinear Volatility Models 79

 7.2.2 Monte Carlo Algorithms ...80

 7.2.2.1 History and Background ..80

 7.2.2.2 The Monte Carlo Algorithm for Solving One-Dimensional, Linear

 Black-Scholes Equations ...81

 7.2.2.3 Random Number Generation ...82

 7.2.2.4 Obtaining Standard Normal Values ...84

 7.2.2.5 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear

 Black-Scholes Equations ...84

 7.3 The Laplace Transform-Finite Difference Algorithm ...85

 7.4 Solving One-Dimensional, Nonlinear Black-Scholes Equations 87

 7.4.1 Parameter Values ..87

 7.4.2 Aim ...88

 7.4.3 Preliminary Notes ...88

 7.4.4 Performance Data ..88

 viii

 7.4.4.1 Modified Volatility Function : Simulated Modified Volatility89

 7.4.4.1.1 Sequential Program Data ..89

 7.4.4.1.2 Part 1 - Varying the Number of Weights/Terms Used 89

 7.4.4.1.3 Part 2 - Varying the Number of Processors Used 91

 7.4.4.1.4 Optimal Parallel Programs Data ...94

 7.4.4.2 Modified Volatility Function : Leland ...94

 7.4.4.2.1 Sequential Program Data ..94

 7.4.4.2.2 Part 1 - Varying the Number of Weights/Terms Used 94

 7.4.4.2.3 Part 2 - Varying the Number of Processors Used 96

 7.4.4.2.4 Optimal Parallel Programs Data ...98

 7.4.4.3 Modified Volatility Function : Boyle and Vorst 99

 7.4.4.3.1 Sequential Program Data ..99

 7.4.4.3.2 Part 1 - Varying the Number of Weights/Terms Used 99

 7.4.4.3.3 Part 2 - Varying the Number of Processors Used 100

 7.4.4.3.4 Optimal Parallel Programs Data ...103

 7.4.4.4 Modified Volatility Function : Barles and Soner 103

 7.4.4.4.1 Sequential Program Data ..103

 7.4.4.4.2 Part 1 - Varying the Number of Weights/Terms Used 104

 7.4.4.4.3 Part 2 - Varying the Number of Processors Used 105

 7.4.4.4.4 Optimal Parallel Programs Data ...108

 7.4.4.5 Modified Volatility Function : Risk Adjusted Pricing Methodology ..108

 7.4.4.5.1 Sequential Program Data ..108

 7.4.4.5.2 Part 1 - Varying the Number of Weights/Terms Used 108

 7.4.4.5.3 Part 2 - Varying the Number of Processors Used 110

 7.4.4.5.4 Optimal Parallel Programs Data ...113

 7.4.5 Conclusions ...113

 7.4.6 The Numerical Solutions ..114

 7.5 Chapter Summary ..115

 7.6 Contribution to Knowledge ..115

8 The Two-Dimensional, Laplace Transform-Finite Difference Algorithm116

 8.0 Introduction ...116

 8.1 Background ...116

 8.2 The Algorithm ..117

 ix

 8.3 The Sequential LTFD Algorithm ...122

 8.4 The Parallel LTFD Algorithm ...122

 8.5 Calculating the Reference Solution ...122

 8.5.1 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear

 Black-Scholes Equations ..122

 8.6 Solving Two-Dimensional, Linear Black-Scholes Equations 125

 8.6.1 Parameter Values ..125

 8.6.2 Aim ...125

 8.6.3 Preliminary Notes ...125

 8.6.4 Performance Data ..125

 8.6.4.1 Sequential Programs Data ..126

 8.6.4.2 Parallel Programs Data ..127

 8.6.5 Conclusions ...128

 8.7 Chapter Summary ..129

 8.8 Contribution to Knowledge ..129

9 Solving Two-Dimensional, Nonlinear Black-Scholes Equations 130

 9.0 Introduction ..130

 9.1 Practical Difficulties When Solving the Nonlinear Form 130

 9.2 Solving Two-Dimensional, Nonlinear Black-Scholes Equations 132

 9.2.1 Parameter Values ..132

 9.2.2 Aim ...132

 9.2.3 Preliminary Notes ...132

 9.2.4 Performance Data ..132

 9.2.4.1 Modified Volatility Function : Simulated Modified Volatility 133

 9.2.4.1.1 Sequential Programs Data ...133

 9.2.4.1.2 Parallel Programs Data ...134

 9.2.4.2 Modified Volatility Function : Leland ...135

 9.2.4.2.1 Sequential Programs Data ...135

 9.2.4.2.2 Parallel Programs Data ...136

 9.2.4.3 Modified Volatility Function : Boyle and Vorst 138

 9.2.4.3.1 Sequential Programs Data ...138

 9.2.4.3.2 Parallel Programs Data ...139

 9.2.4.4 Modified Volatility Function : Barles and Soner 140

 9.2.4.4.1 Sequential Programs Data ...140

 x

 9.2.4.4.2 Parallel Programs Data ...141

 9.2.4.5 Modified Volatility Function : Risk Adjusted Pricing Methodology ..143

 9.2.4.5.1 Sequential Programs Data ...143

 9.2.4.5.2 Parallel Programs Data ...144

 9.2.5 Conclusions ...145

 9.3 Chapter Summary ..146

 9.4 Contribution to Knowledge ..146

10 Program Performance ...147

 10.0 Introduction ..147

 10.1 The Effects of the Number of Weights/Terms Used ...147

 10.1.1 On Execution Speeds and Parallel/Sequential Speed Ups 147

 10.1.2 On Accuracies ...148

 10.2 The Effects of the Number of Processors Used ...149

 10.2.1 On Execution Speeds and Parallel/Sequential Speed Ups 149

 10.2.2 On Accuracies ...149

 10.3 Chapter Summary ..150

 10.4 Contribution to Knowledge ..150

11 Conclusions and Future Work ..151

 11.0 Introduction ..151

 11.1 Overall Contribution to Knowledge ...151

 11.2 Future Work ...151

 11.3 Chapter Summary ..153

References ...154

 xi

Appendices

A STRI Cluster Specification ...161

B Performance Data for Laplace Transform Solutions - Initial Investigations 162

C Performance Data for the One-Dimensional, Linear Black-Scholes Equation 168

D Performance Data for the One-Dimensional, Nonlinear Black-Scholes Equations 170

E Performance Data for the Two-Dimensional, Linear Black-Scholes Equation 180

F Performance Data for the Two-Dimensional, Nonlinear Black-Scholes Equations 182

G Computer Programs ...192

 xii

List of Figures

Chapter 2

Figure 2.1 The Outline Solution Domain for the Two-Dimensional

 Black-Scholes Equation ...16

Figure 2.2 The Detailed Solution Domain for the Two-Dimensional

 Black-Scholes Equation ..17

Figure 2.3 Historical Volatility for Apple Shares ... 22

Figure 2.4 Option Values for Apple Shares .. 24

Chapter 3

Figure 3.1 The Bromwich Contour ...27

Chapter 4

Figure 4.1 Minimum Wall Times for

 Stehfest's Method ...38

Figure 4.2 Parallel/Sequential Speed Up for

 Stehfest's Method ...39

Figure 4.3 Parallel/Sequential Speed Up Per Processor for

 Stehfest's Method ...39

Figure 4.4 Minimum Wall Times for the

 SLP Method ...39

Figure 4.5 Parallel/Sequential Speed Up for the

 SLP Method ...40

Figure 4.6 Parallel/Sequential Speed Up Per Processor for the

 SLP Method ..40

Figure 4.7 Minimum Wall Times for the

 Jacobi Polynomial Method ..40

Figure 4.8 Parallel/Sequential Speed Up for the

 Jacobi Polynomial Method ..41

Figure 4.9 Parallel/Sequential Speed Up Per Processor for the

 Jacobi Polynomial Method ..41

Figure 4.10 Minimum Wall Times for the

 Laguerre Polynomial Method ..41

Figure 4.11 Parallel/Sequential Speed Up for the

 Laguerre Polynomial Method ..42

Figure 4.12 Parallel/Sequential Speed Up Per Processor for the

 Laguerre Polynomial Method ...42

 xiii

Chapter 5

Figure 5.1 Domain Decomposition ...45

Figure 5.2 Normalised Root Mean Square Deviation, Parallel Programs

 (Analytical LT) ..50

Figure 5.3 Minimum Wall Times, Parallel Programs

 (Analytical LT) ..50

Figure 5.4 Parallel/Sequential Speed Up

 (Analytical LT) ..50

Figure 5.5 Parallel/Sequential Speed Up Per Processor

 (Analytical LT) ..51

Figure 5.6 Normalised Root Mean Square Deviation

 (Analytical LT) (3-8 Processors) ...51

Figure 5.7 Normalised Root Mean Square Deviation

 (Analytical LT) (8-152 Processors) ...52

Figure 5.8 Minimum Wall Times

 (Analytical LT) (3-8 Processors) ...52

Figure 5.9 Minimum Wall Times

 (Analytical LT) (8-152 Processors) ...52

Figure 5.10 Parallel/Sequential Speed Up

 (Analytical LT) (3-8 Processors) ...53

Figure 5.11 Parallel/Sequential Speed Up

 (Analytical LT) (8-152 Processors) ...53

Figure 5.12 Parallel/Sequential Speed Up Per Processor

 (Analytical LT) (3-8 Processors) ...53

Figure 5.13 Parallel/Sequential Speed Up Per Processor

 (Analytical LT) (8-152 Processors) ...54

Figure 5.14 Normalised Root Mean Square Deviation, Parallel Programs

 (BVP LT) ...56

Figure 5.15 Minimum Wall Times, Parallel Programs

 (BVP LT) ...56

Figure 5.16 Parallel/Sequential Speed Up

 (BVP LT) ...57

Figure 5.17 Parallel/Sequential Speed Up Per Processor

 (BVP LT) ...57

Figure 5.18 Normalised Root Mean Square Deviation

 (BVP LT) (3-8 Processors) ..57

Figure 5.19 Normalised Root Mean Square Deviation

 (BVP LT) (8-152 Processors) ..58

Figure 5.20 Minimum Wall Times

 (BVP LT) (3-8 Processors) ..58

 xiv

Figure 5.21 Minimum Wall Times

 (BVP LT) (8-152 Processors) ..58

Figure 5.22 Parallel/Sequential Speed Up

 (BVP LT) (3-8 Processors) ..59

Figure 5.23 Parallel/Sequential Speed Up

 (BVP LT) (8-152 Processors) ..59

Figure 5.24 Parallel/Sequential Speed Up Per Processor

 (BVP LT) (3-8 Processors) ..59

Figure 5.25 Parallel/Sequential Speed Up Per Processor

 (BVP LT) (8-152 Processors) ..60

Chapter 6

Figure 6.1 The Laplace Transform-Finite Difference Algorithm63

Figure 6.2 Normalised Root Mean Square Deviation, Parallel Programs 68

Figure 6.3 Minimum Wall Times, Parallel Programs ...69

Figure 6.4 Parallel/Sequential Speed Up ..69

Figure 6.5 Parallel/Sequential Speed Up Per Processor ...69

Figure 6.6 Normalised Root Mean Square Deviation (3-8 Processors)70

Figure 6.7 Normalised Root Mean Square Deviation (8-152 Processors)70

Figure 6.8 Minimum Wall Times (3-8 Processors) ..71

Figure 6.9 Minimum Wall Times (8-152 Processors) ..71

Figure 6.10 Parallel/Sequential Speed Up (3-8 Processors) ...71

Figure 6.11 Parallel/Sequential Speed Up (8-152 Processors) ...72

Figure 6.12 Parallel/Sequential Speed Up Per Processor (3-8 Processors) 72

Figure 6.13 Parallel/Sequential Speed Up Per Processor (8-152 Processors) 72

Chapter 7

Figure 7.1 The Monte Carlo Algorithm for Solving One-Dimensional, Linear

 Black-Scholes Equations ..82

Figure 7.2 The L'Ecuyer Combined Multiple Recursive Generator83

Figure 7.3 The Box-Muller Algorithm ..84

Figure 7.4 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear

 Black-Scholes Equations ..85

Figure 7.5 The Algorithm for Calculating the Subsequent Initial Conditions 86

Figure 7.6 The Algorithm for Calculating the Rows of Each Sub-Domain 87

Figure 7.7 Normalised Root Mean Square Deviation, Parallel Programs

 (Simulated Modified Volatility) ...89

Figure 7.8 Minimum Wall Times, Parallel Programs

 (Simulated Modified Volatility) ...89

 xv

Figure 7.9 Parallel/Sequential Speed Up

 (Simulated Modified Volatility) ...90

Figure 7.10 Parallel/Sequential Speed Up Per Processor

 (Simulated Modified Volatility) ...90

Figure 7.11 Normalised Root Mean Square Deviation

 (Simulated Modified Volatility) (3-8 Processors) ..91

Figure 7.12 Normalised Root Mean Square Deviation

 (Simulated Modified Volatility) (8-152 Processors) 91

Figure 7.13 Minimum Wall Times

 (Simulated Modified Volatility) (3-8 Processors) ...92

Figure 7.14 Minimum Wall Times

 (Simulated Modified Volatility) (8-152 Processors) 92

Figure 7.15 Parallel/Sequential Speed Up

 (Simulated Modified Volatility) (3-8 Processors) ..92

Figure 7.16 Parallel/Sequential Speed Up

 (Simulated Modified Volatility) (8-152 Processors) 93

Figure 7.17 Parallel/Sequential Speed Up Per Processor

 (Simulated Modified Volatility) (3-8 Processors) ..93

Figure 7.18 Parallel/Sequential Speed Up Per Processor

 (Simulated Modified Volatility) (8-152 Processors) 93

Figure 7.19 Normalised Root Mean Square Deviation, Parallel Programs

 (Leland) ...94

Figure 7.20 Minimum Wall Times, Parallel Programs

 (Leland) ...95

Figure 7.21 Parallel/Sequential Speed Up

 (Leland) ...95

Figure 7.22 Parallel/Sequential Speed Up Per Processor

 (Leland) ...95

Figure 7.23 Normalised Root Mean Square Deviation

 (Leland) (3-8 Processors) ..96

Figure 7.24 Normalised Root Mean Square Deviation

 (Leland) (8-152 Processors) ..96

Figure 7.25 Minimum Wall Times

 (Leland) (3-8 Processors) ...96

Figure 7.26 Minimum Wall Times

 (Leland) (8-152 Processors) ..97

Figure 7.27 Parallel/Sequential Speed Up

 (Leland) (3-8 Processors) ..97

Figure 7.28 Parallel/Sequential Speed Up

 (Leland) (8-152 Processors) ..97

 xvi

Figure 7.29 Parallel/Sequential Speed Up Per Processor

 (Leland) (3-8 Processors) ..98

Figure 7.30 Parallel/Sequential Speed Up Per Processor

 (Leland) (8-152 Processors) ..98

Figure 7.31 Normalised Root Mean Square Deviation, Parallel Programs

 (Boyle and Vorst) ..99

Figure 7.32 Minimum Wall Times, Parallel Programs

 (Boyle and Vorst) ..99

Figure 7.33 Parallel/Sequential Speed Up

 (Boyle and Vorst) ..100

Figure 7.34 Parallel/Sequential Speed Up Per Processor

 (Boyle and Vorst) ..100

Figure 7.35 Normalised Root Mean Square Deviation

 (Boyle and Vorst) (3-8 Processors) ...100

Figure 7.36 Normalised Root Mean Square Deviation

 (Boyle and Vorst) (8-152 Processors) ...101

Figure 7.37 Minimum Wall Times

 (Boyle and Vorst) (3-8 Processors) ..101

Figure 7.38 Minimum Wall Times

 (Boyle and Vorst) (8-152 Processors) ...101

Figure 7.39 Parallel/Sequential Speed Up

 (Boyle and Vorst) (3-8 Processors) ...102

Figure 7.40 Parallel/Sequential Speed Up

 (Boyle and Vorst) (8-152 Processors) ...102

Figure 7.41 Parallel/Sequential Speed Up Per Processor

 (Boyle and Vorst) (3-8 Processors) ...102

Figure 7.42 Parallel/Sequential Speed Up Per Processor

 (Boyle and Vorst) (8-152 Processors) ...103

Figure 7.43 Normalised Root Mean Square Deviation, Parallel Programs

 (Barles and Soner) ...104

Figure 7.44 Minimum Wall Times, Parallel Programs

 (Barles and Soner) ...104

Figure 7.45 Parallel/Sequential Speed Up

 (Barles and Soner) ...104

Figure 7.46 Parallel/Sequential Speed Up Per Processor

 (Barles and Soner) ...105

Figure 7.47 Normalised Root Mean Square Deviation

 (Barles and Soner) (3-8 Processors) ...105

Figure 7.48 Normalised Root Mean Square Deviation

 (Barles and Soner) (8-152 Processors) ...105

 xvii

Figure 7.49 Minimum Wall Times

 (Barles and Soner) (3-8 Processors) ..106

Figure 7.50 Minimum Wall Times

 (Barles and Soner) (8-152 Processors) ...106

Figure 7.51 Parallel/Sequential Speed Up

 (Barles and Soner) (3-8 Processors) ...106

Figure 7.52 Parallel/Sequential Speed Up

 (Barles and Soner) (8-152 Processors) ...107

Figure 7.53 Parallel/Sequential Speed Up Per Processor

 (Barles and Soner) (3-8 Processors) ...107

Figure 7.54 Parallel/Sequential Speed Up Per Processor

 (Barles and Soner) (8-152 Processors) ...107

Figure 7.55 Normalised Root Mean Square Deviation, Parallel Programs

 (RAPM) ...108

Figure 7.56 Minimum Wall Times, Parallel Programs

 (RAPM) ...109

Figure 7.57 Parallel/Sequential Speed Up

 (RAPM) ...109

Figure 7.58 Parallel/Sequential Speed Up Per Processor

 (RAPM) ...109

Figure 7.59 Normalised Root Mean Square Deviation

 (RAPM) (3-8 Processors) ...110

Figure 7.60 Normalised Root Mean Square Deviation

 (RAPM) (8-152 Processors) ...110

Figure 7.61 Minimum Wall Times

 (RAPM) (3-8 Processors) ..111

Figure 7.62 Minimum Wall Times

 (RAPM) (8-152 Processors) ...111

Figure 7.63 Parallel/Sequential Speed Up

 (RAPM) (3-8 Processors) ...111

Figure 7.64 Parallel/Sequential Speed Up

 (RAPM) (8-152 Processors) ...112

Figure 7.65 Parallel/Sequential Speed Up Per Processor

 (RAPM) (3-8 Processors) ...112

Figure 7.66 Parallel/Sequential Speed Up Per Processor

 (RAPM) (8-152 Processors) ...112

Figure 7.67 Numerical Solutions of the Nonlinear Black-Scholes Equations

 for  0,10  ...114

Figure 7.68 Numerical Solutions of the Nonlinear Black-Scholes Equations

 for  0,100  ...114

 xviii

Chapter 8

Figure 8.1 The Initial Solution Domain in Laplace Space for Two-Dimensional, Linear

 Black-Scholes Equations ..118

Figure 8.2 The Decomposed Solution Domain in Laplace Space for Two-Dimensional

 Black-Scholes Equations ..121

Figure 8.3 Calculating the Option Values in the Two-Dimensional LTFD Algorithm ..121

Figure 8.4 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear

 Black-Scholes Equations ..124

Figure 8.5 Normalised Root Mean Square Deviation, Sequential Programs 126

Figure 8.6 Minimum Wall Times, Sequential Programs ..126

Figure 8.7 Normalised Root Mean Square Deviation, Parallel Programs 127

Figure 8.8 Minimum Wall Times, Parallel Programs ..127

Figure 8.9 Parallel/Sequential Speed Up ..127

Figure 8.10 Parallel/Sequential Speed Up Per Processor ...128

Chapter 9

Figure 9.1 The Laplace Transform-Finite Difference Algorithm for Solving

 Two-Dimensional, Nonlinear Black-Scholes Equations130

Figure 9.2 A Monte Carlo Algorithm for Solving Two-Dimensional Nonlinear

 Black-Scholes Equations ...131

Figure 9.3 Normalised Root Mean Square Deviation, Sequential Programs

 (Simulated Modified Volatility) ...133

Figure 9.4 Minimum Wall Times, Sequential Programs

 (Simulated Modified Volatility) ...133

Figure 9.5 Normalised Root Mean Square Deviation, Parallel Programs

 (Simulated Modified Volatility) ...134

Figure 9.6 Minimum Wall Times, Parallel Programs

 (Simulated Modified Volatility) ...134

Figure 9.7 Parallel/Sequential Speed Up

 (Simulated Modified Volatility) ...134

Figure 9.8 Parallel/Sequential Speed Up Per Processor

 (Simulated Modified Volatility) ...135

Figure 9.9 Normalised Root Mean Square Deviation, Sequential Programs

 (Leland) ...135

Figure 9.10 Minimum Wall Times, Sequential Programs

 (Leland) ...136

Figure 9.11 Normalised Root Mean Square Deviation, Parallel Programs

 (Leland) ...136

Figure 9.12 Minimum Wall Times, Parallel Programs

 (Leland) ...137

 xix

Figure 9.13 Parallel/Sequential Speed Up

 (Leland) ...137

Figure 9.14 Parallel/Sequential Speed Up Per Processor

 (Leland) ...137

Figure 9.15 Normalised Root Mean Square Deviation, Sequential Programs

 (Boyle and Vorst) ..138

Figure 9.16 Minimum Wall Times, Sequential Programs

 (Boyle and Vorst) ..138

Figure 9.17 Normalised Root Mean Square Deviation, Parallel Programs

 (Boyle and Vorst) ..139

Figure 9.18 Minimum Wall Times, Parallel Programs

 (Boyle and Vorst) ..139

Figure 9.19 Parallel/Sequential Speed Up

 (Boyle and Vorst) ..139

Figure 9.20 Parallel/Sequential Speed Up Per Processor

 (Boyle and Vorst) ..140

Figure 9.21 Normalised Root Mean Square Deviation, Sequential Programs

 (Barles and Soner) ...140

Figure 9.22 Minimum Wall Times, Sequential Programs

 (Barles and Soner) ...141

Figure 9.23 Normalised Root Mean Square Deviation, Parallel Programs

 (Barles and Soner) ...141

Figure 9.24 Minimum Wall Times, Parallel Programs

 (Barles and Soner) ...142

Figure 9.25 Parallel/Sequential Speed Up

 (Barles and Soner) ...142

Figure 9.26 Parallel/Sequential Speed Up Per Processor

 (Barles and Soner) ...142

Figure 9.27 Normalised Root Mean Square Deviation, Sequential Programs

 (RAPM) ...143

Figure 9.28 Minimum Wall Times, Sequential Programs

 (RAPM) ...143

Figure 9.29 Normalised Root Mean Square Deviation, Parallel Programs

 (RAPM) ...144

Figure 9.30 Minimum Wall Times, Parallel Programs

 (RAPM) ...144

Figure 9.31 Parallel/Sequential Speed Up

 (RAPM) ...144

Figure 9.32 Parallel/Sequential Speed Up Per Processor

 (RAPM) ...145

 xx

List of Tables

Chapter 4

Table 4.1 NRMSD Values for Stehfest's Method ...37

Table 4.2 NRMSD Values for the SLP Method ...37

Table 4.3 NRMSD Values for the Jacobi Polynomial Method37

Table 4.4 NRMSD Values for the Laguerre Polynomial Method 38

Table 4.5 Parameter Values Used in the Numerical Inversion Algorithms43

Chapter 5

Table 5.1 Parameter Values Used in the One-Dimensional, Linear

 Black-Scholes Equation ..46

Table 5.2 Optimal Sequential Programs Data (Analytical LT) 49

Table 5.3 Optimal Parallel Programs Data (Analytical LT) ...54

Table 5.4 Optimal Sequential Programs Data (BVP LT) ...56

Table 5.5 Optimal Parallel Programs Data (BVP LT) ..60

Chapter 6

Table 6.1 Parameter Values Used in the One-Dimensional, Linear

 Black-Scholes Equation ..67

Table 6.2 Sequential Finite Difference Program Data ..68

Table 6.3 Optimal Parallel Programs Data ...73

Chapter 7

Table 7.1 Parameter Values Used in the Modified Volatility Models75

Table 7.2 Parameter Values Used in the One-Dimensional, Nonlinear

 Black-Scholes Equation ..87

Table 7.3 Sequential, Finite Difference Program Data

 (Simulated Modified Volatility) ...89

Table 7.4 Optimal Parallel Programs Data

 (Simulated Modified Volatility) ...94

Table 7.5 Sequential, Finite Difference Program Data

 (Leland) ...94

Table 7.6 Optimal Parallel Programs Data

 (Leland) ...98

Table 7.7 Sequential, Finite Difference Program Data

 (Boyle and Vorst) ..99

Table 7.8 Optimal Parallel Programs Data

 (Boyle and Vorst) ..103

 xxi

Table 7.9 Sequential, Finite Difference Program Data

 (Barles and Soner) ...103

Table 7.10 Optimal Parallel Programs Data

 (Barles and Soner) ...108

Table 7.11 Sequential, Finite Difference Program Data

 (RAPM) ...108

Table 7.12 Optimal Parallel Programs Data

 (RAPM) ...113

Chapter 8

Table 8.1 Parameter Values Used in the Two-Dimensional, Linear

 Black-Scholes Equation ..125

Table 8.2 Optimal Sequential Programs Data ..126

Table 8.3 Optimal Parallel Programs Data ...128

Chapter 9

Table 9.1 Parameter Values Used in the Two-Dimensional, Nonlinear

 Black-Scholes Equation ..132

Table 9.2 Optimal Sequential Programs Data

 (Simulated Modified Volatility) ...133

Table 9.3 Optimal Parallel Programs Data

 (Simulated Modified Volatility) ...135

Table 9.4 Optimal Sequential Programs Data

 (Leland) ...136

Table 9.5 Optimal Parallel Programs Data

 (Leland) ...138

Table 9.6 Optimal Sequential Programs Data

 (Boyle and Vorst) ..138

Table 9.7 Optimal Parallel Programs Data

 (Boyle and Vorst) ..140

Table 9.8 Optimal Sequential Programs Data

 (Barles and Soner) ...141

Table 9.9 Optimal Parallel Programs Data

 (Barles and Soner) ...143

Table 9.10 Optimal Sequential Programs Data

 (RAPM) ...143

Table 9.11 Optimal Parallel Programs Data

 (RAPM) ...145

 xxii

Appendix B

Table B.1 Optimal Sequential Programs Data

 (Analytical LT) ...162

Table B.2 Optimal Weights/Terms Data, Parallel Programs

 (Analytical LT) ...163

Table B.3 Optimal Processors Data

 (Analytical LT) ...164

Table B.4 Optimal Sequential Programs Data

 (BVP LT) ..165

Table B.5 Optimal Weights/Terms Data, Parallel Programs

 (BVP LT) ..166

Table B.6 Optimal Processors Data

 (BVP LT) ..167

Appendix C

Table C.1 Optimal Weights/Terms Data, Parallel Programs ...168

Table C.2 Optimal Processors Data ...169

Appendix D

Table D.1 Optimal Weights/Terms Data, Parallel Programs

 (Simulated Modified Volatility) ...170

Table D.2 Optimal Processors Data

 (Simulated Modified Volatility) ...171

Table D.3 Optimal Weights/Terms Data, Parallel Programs

 (Leland) ...172

Table D.4 Optimal Processors Data (Leland) ..173

Table D.5 Optimal Weights/Terms Data, Parallel Programs

 (Boyle and Vorst) ..174

Table D.6 Optimal Processors Data

 (Boyle and Vorst) ..175

Table D.7 Optimal Weights/Terms Data, Parallel Programs

 (Barles and Soner) ...176

Table D.8 Optimal Processors Data

 (Barles and Soner) ...177

Table D.9 Optimal Weights/Terms Data, Parallel Programs

 (RAPM) ...178

Table D.10 Optimal Processors Data

 (RAPM) ...179

 xxiii

Appendix E

Table E.1 Optimal Sequential Programs Data ...180

Table E.2 Optimal Parallel Programs Data ...181

Appendix F

Table F.1 Optimal Sequential Programs Data

 (Simulated Modified Volatility) ...182

Table F.2 Optimal Parallel Programs Data

 (Simulated Modified Volatility) ...183

Table F.3 Optimal Sequential Programs Data

 (Leland) ...184

Table F.4 Optimal Parallel Programs Data

 (Leland) ...185

Table F.5 Optimal Sequential Programs Data

 (Boyle and Vorst) ..186

Table F.6 Optimal Parallel Programs Data

 (Boyle and Vorst) ..187

Table F.7 Optimal Sequential Programs Data

 (Barles and Soner) ...188

Table F.8 Optimal Parallel Programs Data

 (Barles and Soner) ...189

Table F.9 Optimal Sequential Programs Data

 (RAPM) ...190

Table F.10 Optimal Parallel Programs Data

 (RAPM) ...191

 1

Chapter 1

Introduction

1.0 Introduction

The opening chapter of this dissertation provides the background information for this

research programme. It explains that diffusion equations arise in a variety of application areas

and gives some specific examples. The application area considered in this dissertation is

mathematical finance. In the financial sector there is a need to find fast and accurate solutions

of option pricing problems. One way to find these solutions is to use parallel numerical

algorithms based on the Laplace transform. This chapter gives the aims of this research

programme and states my thesis. It concludes by outlining the structure of this dissertation.

1.1 Background

Diffusion equations arise in many areas of science, engineering and commerce. For example,

they are used to model :

● the diffusion of one material into another e.g. smoke particles into air

● the flow of heat from one part of an object to another

● chemical reactions

● electrical activity in the membranes of living organisms

● the dispersion of populations

● pursuit and evasion in predator-prey systems.

In financial markets around the world traders use mathematical models to value financial

options. In order to make prompt and accurate investment decisions traders need :

● a range of solutions so that a variety of financial scenarios can be considered

● fast and accurate numerical algorithms for solving the underlying equations.

An efficient way to obtain these solutions is to use an algorithm in which the time domain is

decomposed so that parallel computing methods can be used. One way to do this is to use an

algorithm based on the Laplace transform, (Crann et al. 2007). However, a legitimate

 2

criticism of these algorithms is that Laplace transform inversion is ill-posed
1

(Epstein and Schotland 2008). As a result, Laplace transform based algorithms have become

unfashionable and most recent research into time domain decomposition (i.e. parallel)

algorithms for solving option pricing problems has focused on the use of Fourier and Fast

Fourier transforms. See Leentvaar et al. (2008) and Barua et al. (2004). However, Laplace

transforms have a number of advantages over Fourier and Fast Fourier transforms.

Beerends et al. (2003) state that Laplace transforms :

● exist for a wider range of inputs and are more generally applicable

● are usually easier to invert

● are better suited for solving Causal LTC-systems
2
. Equations modelling financial options

 fall into this category.

● are more computationally efficient. When using Laplace transforms the initial conditions

 can be introduced into the solution at an early stage and this reduces the number of

 subsequent calculations, especially for high-order equations.

Furthermore, significant progress has been made into developing accurate numerical

algorithms for inverting Laplace transforms, (Kuhlman 2012). Hence, Laplace transform

based algorithms are due for reconsideration.

In this research programme the accuracy of the solutions obtained using the Laplace

transform based algorithms is validated by comparing them with solutions obtained using

independent methods. This is either the analytical solution of the equation or a solution

obtained using a Monte Carlo algorithm. It is left for future work to validate the accuracy of

the solutions obtained using corresponding algorithms based on the use of Fourier and Fast

Fourier transforms. See 11.2.

In addition to Fourier, Fast Fourier and Laplace transform based methods many other time

domain decomposition methods are available e.g. mortar methods, balancing domain

decomposition methods, Schwarz methods, the Schur complement method and FETI-DP
3

methods. Detailed descriptions of these methods can be found in Quarteroni and Valli (1999).

1
 Hadamard (1923) states that a problem is well-posed if (1) a solution to the problem exists, (2) the

 solution is unique and (3) the solution depends continuously on the problem data so that small changes in

 the data produce small changes in the solution. It follows from this definition that a problem is ill-posed if

 any of these conditions do not hold.
2
 Linear, Time-invariant and Continuous. A system of this kind is said to be Causal if it remains at rest until

 time 0t  .
3
 Finite Element Tearing and Interconnect - Dual Primal.

 3

1.2 Aims

The aims of this research programme are to :

● develop and evaluate sequential finite difference algorithms and sequential and parallel

 Laplace transform based algorithms for solving one-dimensional and two-dimensional,

 linear and nonlinear diffusion equations. In particular, Black-Scholes equations of these

 types

● determine the optimal numerical inversion algorithms to use in the Laplace transform

 based algorithms for solving these equations and the optimal parameter values to use in

 each case

● provide the evidence to support my thesis i.e. to show that the Laplace transform based

 algorithms produce fast and accurate solutions of the Black-Scholes equations mentioned

 above.

It is not an aim of this research programme to examine or to provide detailed descriptions of

financial markets, products or trading strategies. Interested readers should consult a reference

such as Wilmot et al. (1999)

1.3 Dissertation Structure

Chapters 2, 3 and 4 of this dissertation provide a review of the supporting literature. Chapter

2 introduces financial options, option pricing and the Black-Scholes model and equations.

Chapter 3 describes the Laplace transform method for solving differential equations. It

considers the advantages and disadvantages of this method and describes four commonly

used numerical algorithms that can be used for finding inverse Laplace transform values.

Chapter 4 explains the methodology used. It describes the programming environment used,

the measures used to evaluate the performance of the programs and algorithms and the

method of data collection used. It then considers issues in the design of parallel programs and

gives the parameter values used in the numerical inversion algorithms.

Chapters 5, 6, 7, 8 and 9 provide the evidence to support my thesis. Chapter 5 describes

initial investigations into Laplace transform solutions of the one-dimensional, linear

Black-Scholes equation. Firstly, the equation is solved using the Laplace transform of its

analytical solution. Secondly, the equation is converted into its ordinary differential equation

(ODE) boundary-value problem (BVP) form and then solved using Laplace transform and

finite difference methods. Chapter 6, 7, 8 and 9 develop and evaluate sequential finite

 4

difference algorithms and sequential and parallel Laplace transform and finite difference

algorithms for solving one-dimensional and two-dimensional, linear and nonlinear

Black-Scholes equations. These chapters also determine the optimal numerical inversion

algorithms to use with the Laplace transform based methods and the optimal parameter

values to use in these algorithms. In the nonlinear cases Monte Carlo algorithms are also

developed for calculating the reference solutions required for assessing the accuracy of the

finite difference and the Laplace transform-finite difference solutions obtained.

The final parts of this dissertation are Chapter 10 and Chapter 11. Chapter 10 identifies and

explains the general patterns of behaviour observed when solving Black-Scholes equations.

Chapter 11 gives the overall contribution to knowledge and describes how this research

programme can be extended.

1.4 Chapter Summary

This chapter has set the scene for this research programme. The next stage will be to

familiarise the reader with financial markets and in particular, the Black-Scholes equations

that are used widely for calculating option prices.

 5

Chapter 2

The Black-Scholes Model and Equations

2.0 Introduction

Financial markets have existed for hundreds of years and financial options have been traded

for even longer. This chapter gives the historical background of this field and describes

options of the types traded today. It continues by introducing the Black-Scholes model and by

developing the one-dimensional and multi-dimensional, linear Black-Scholes equations. The

linear equations assume that financial options can be traded without cost. In reality, each time

a quantity of the underlying asset is bought or sold a transaction cost is incurred. When

transaction costs are taken into consideration Black-Scholes equations become nonlinear i.e.

contain non-constant volatilities. The most commonly used volatility models are described

and this chapter concludes by describing Black-Scholes equations in which the volatility is

modelled by a stochastic process.

2.1 Historical Background

Financial options have been traded for thousands of years. One of the earliest records dates

back to the time of the Ancient Greeks. At this time it was common for someone wishing to

invest in a commodity like olives, to pay the producer for the right to purchase a particular

quantity, for an agreed price at a fixed time in the future, (Pliska 2010). Options of this type

are still traded today. The first fully functional commodities exchange was established by the

Japanese in the 17
th

 Century initially to enable the elite class, the Samurai, to earn money

from the rice trade, (Abraham 2010). During these times the fair price of an option was

usually determined by negotiation between the buyer and the seller. The first attempt in

recent times to use mathematical methods to determine the value of an option dates back to

1900. In his Ph.D dissertation the French mathematician Louis Bachelier derived a closed

formula
4
 for calculating option prices, (Bachelier 1900). His formula was based upon similar

assumptions to modern option pricing formulae and used the same dependent variables,

(Benhamou 2008). However, his formula had two major faults. Firstly, it ignored discounting

i.e. it did not give the present value of an option and secondly, it allowed option prices to be

negative. As a result it was not used widely.

4
 A closed formula is one that is expressed in terms of a finite number of “well-known” functions.

 6

Over the next 70 years many other option pricing formulae were developed, many based on

the Bachelier approach. A history of the development of these formulae can be found in

Benhamou (2008). Unfortunately, all of these formulae had disadvantages. Some were

complicated i.e. contained numerous parameters, many of which were difficult to estimate.

Others did not give investors control over, or information about, the degree of risk involved

in purchasing an option. A number failed to give a universal price for an option. The price

given was related to the degree of risk the investor was prepared to accept. As a result, none

of these formulae gained widespread popularity.

The major breakthrough in option pricing came in 1973 when Fischer Black and Myron

Scholes published their now famous paper
5
. In this, they introduced the Black-Scholes partial

differential equation (PDE). Its solution is a closed formula for pricing options, similar to the

one developed by Bachelier in 1900, but without the earlier formulas’ disadvantages. The

advance made by Black and Scholes was to realise that the expected return of the option price

should be the risk-free interest rate and that by holding a particular quantity of stock (called

the delta), all risk in the investment could be eliminated, (Benhamou 2008). The

Black-Scholes formula also has the following advantages over previous option pricing

formulae :

● it is a relatively easy formula to evaluate

● it takes into account the five most important factors in option pricing. These are :

 ● the current price of the asset on which the option is based

 ● the price at which the option holder has the right to purchase the asset

 ● the amount of time left until the contract expires

 ● the variability
6
 of the asset price so that the investor can predict the value of the asset

 on the expiry date

 ● the current rates on offer for risk-free investments like Government bonds,

 (Benhamou 2008)

● it allows investors to manage their risk

● it gives a universal option price i.e. the same price for all investors, whatever their degree

 of risk aversion.

5
 See Black and Scholes (1973).

6
 This variability is called the volatility of the option price. This term is defined in more detail in 2.3.

 7

Shortly after its development an empirical study showed that the Black-Scholes formula

predicted option prices that were very close to the actual price at which they were being

traded. As a result the formula gained popularity and is now used in financial markets all over

the world
7
.

Fischer Black died in 1995. However, in 1997, Black, Scholes and Robert Merton, who

provided a detailed mathematical understanding of the options pricing model, were awarded

the Nobel Prize for Economics.

2.2 European Call Options

The simplest financial option is the European call option. This is a financial contract in which

the holder may purchase a particular asset, called the underlying asset, for an agreed price,

called the exercise price or the strike price, at some time in the future, called the expiry date.

The term may here indicates that the holder has the right to purchase the underlying asset but

does not have an obligation to do so. However, the other party to the contract, the seller, has

an obligation to sell the asset if the holder chooses to buy it. The term European here

indicates that the holder may not purchase the asset i.e. exercise the option, until the expiry

date. Options in which the holder may exercise the option before the expiry date are called

American options.

The holder of a European call option will purchase the underlying asset if it is financially

sensible to do so. That is, if the value of this asset is greater than the exercise price at the

expiry date. However, if value of the underlying asset is less than the exercise price at the

expiry date then the holder will not purchase the asset. This right, without obligation,

combined with the need to compensate the seller for the obligation they have assumed, means

that an option of this type has a value
8
. The seller must determine this value under the current

market conditions so that the option can be sold for the appropriate price.

The most commonly used mathematical model for determining the value of a European call

option is the Black-Scholes equation.

7
 Black, Scholes and Merton worked as Professors at MIT. Here, they helped to train the next generation of

 traders, many of whom would go on to work on the New York Stock Exchange on Wall Street. This helped

 to increase the popularity of the Black-Scholes model further.
8
 The value of an option is the non-refundable premium the holder must pay the seller in order to have the

 right to buy the underlying asset at the expiry date. It does not include the exercise price of the option.

 8

2.3 The Underlying Assumptions of the Black-Scholes Model

Black and Scholes (1973) state that the underlying assumptions of their model are :

1. The value of the underlying asset follows a lognormal random walk
9
. This behaviour is

 described by the stochastic differential equation :

()dS Sdt SdW t   ---- (1)

 Here :

 Sdt is the deterministic component of the equation

  is called the drift. This is a measure of the average rate of growth of the

 underlying asset value

 S is the current value of the underlying asset

 t is time. dt is a small change in time

 ()SdW t is the stochastic component of the equation

  is called the volatility. This is a measure of the variation in the price of the

 underlying asset over time
10

 ()W t is called a Wiener process or Brownian motion. This is a continuous sequence

 of random values drawn from a normal distribution with a mean of zero and a

 variance of dt . ()dW t is a small change in ()W t .

2. The volatility  and the risk-free interest rate r are constants or known functions of time

3. There are no transaction costs associated with hedging
11

 the portfolio

4. The underlying asset pays no dividends during the life of the option

5. There are no arbitrage opportunities i.e. it is not possible for an investor to make more

 money by investing the value of the underlying asset in a risk-free, no cost investment

 such as a high interest savings account

9
 The log of the asset price follows a normal distribution.

10
 A commonly used measure of volatility is the annualised standard deviation of the daily logarithmic returns

 i.e. S P  where S is standard deviation of the daily logarithmic returns and P is the time period of the

 returns. Since there are 252 trading days in a year it is usual to assume that 1 252P  . The daily

 logarithmic return is defined as  log ln n cr V V where cV is the current value of the option and nV is the

 next value of the option.
11

 A hedge is an investment position used to offset potential losses in a companion investment.

 9

6. Trading in the underlying asset can take place continuously

7. Short selling is permissible and the underlying asset is divisible. Short selling is selling a

 stock or asset that the seller does not own in the hope that the value of that stock or asset

 will go down.

2.4 The One-Dimensional, Linear Black-Scholes Equation

2.4.1 Itô's Lemma

Let (,)V S t be a smooth function of a stochastic variable S and a deterministic variable t.

Suppose that S and t vary by small amounts dS and dt respectively. Then, by Taylor series,

neglecting the high-order terms, the corresponding small change in V is given by :

2

2

2

1

2

V V V
dV dS dt dS

S t S

  
  
  

 ---- (2)

From (1) it follows that :

 
22 ()dS Sdt SdW t  

i.e. 2 2 2 2 2 2 2 22 () ()dS S dt S dtdW t S dW t    

The changes in S and t occur over small intervals of time. Shreve (2010) shows that as

0dt  in a Brownian motion, 2 0dt  and 2()dW t dt . Hence :

2 2 2dS S dt ---- (3)

Replacing dS with its value from (1) and 2dS with its value from (3) the Taylor expansion (2)

becomes :

 
2

2 2

2

1
()

2

V V V
dV Sdt SdW t dt S dt

S t S
  

  
   
  

i.e.
2

2 2

2

1
()

2

V V V V
dV S S dt S dW t

S t S S
  
    

    
    

This expression is called Itô's Lemma. It is the stochastic calculus equivalent of the total

differential in ordinary calculus.

2.4.2 Development of the Equation

Consider a portfolio consisting of an option to short sell a number  of the underlying

asset. The value  of the portfolio is :

V S  

 10

where V is the value of the option and S is the current value of the underlying asset. The

change in the value of this portfolio over a small interval in time dt is :

d dV dS  

Replacing dV with its value from Itô's Lemma and dS with its value from (1) :

 
2

2 2

2

1
() ()

2

V V V V
d S S dt S dW t Sdt SdW t

S t S S
     

    
      

    

i.e.
2

2 2

2

1
()

2

V V V V
d S S S dt S S dW t

S t S S
     

     
        

     

The stochastic component in this expression can be eliminated by choosing
V

S


 


. This is

called delta hedging. In this case, the change in the value of the portfolio becomes :

2

2 2

2

1

2

V V
d S dt

t S
 

  
  

  
 ---- (4)

Suppose that the value of the portfolio  is invested in a risk-free, no cost investment that

produces a return of r% per annum. Then, the change in the value of the investment over a

small interval in time dt is :

r dt ---- (5)

To prevent arbitrage opportunities the change in the value of the portfolio and the change in

the value of the investment must be the same. Equating (4) and (5) :

2

2 2

2

1

2

V V
r dt S dt

t S
 

  
  

  

Since V S   and
V

S


 


,

V
V S

S



 


. Hence :

2

2 2

2

1

2

V V V
r V S dt S dt

S t S


    
    
     

i.e.
2

2 2

2

1

2

V V V
rV rS S

S t S


  
  

  

i.e.
2

2 2

2

1
0

2

  
   

  

V V V
S rS rV

t S S
 ---- (6)

 11

The Black-Scholes equation (6) is a backward parabolic PDE
12

, (Smith 2004). Its solution

gives the value of the option at the expiry time i.e. the future value of the option. To be able

to solve this equation uniquely it is necessary to know the final condition and the boundary

conditions. For a European call option these conditions are as follows. The final condition is

given by the payoff at the expiry time,

   , max ,0V S T S E  ---- (7)

where T is the expiry time and E is the exercise price. If 0S  at the expiry time then the

value of the option is zero. Hence, the first boundary condition is :

 0, 0V t  ---- (8)

As the current value of the underlying asset increases it becomes increasingly likely that the

option will be exercised. In this case the value of the option will tend to the value of the asset.

Hence, the second boundary condition is :

 ,V S t S as S  ---- (9)

The seller will wish to know the current value of the option. To be able to determine this

value using the Black-Scholes model, equation (6) must be rewritten as a forward parabolic

PDE. This can be done by making the change of variable T t   , where  is the time to

expiry. Using this transformation, the equation becomes :

2

2 2

2

1
0

2

V V V
S rS rV

S S




  
    
  

 ---- (10)

The final condition (7) is transformed into the initial condition :

   ,0 max ,0V S S E  ---- (11)

The boundary conditions (8) and (9) change to :

 0, 0V   ---- (12) and  ,V S S  as S  ---- (13)

2.4.3 The Analytical Solution

Using a technique called Similarity Reduction, Black and Scholes (1973) and Wilmot et al.

(1999) show that the analytical solution of equation (10) is :

12

 A backward parabolic PDE is one in which the time derivative and the second spatial derivative have the

 same sign when they are written on the same side of the equation.

 12

   1 2, ()rV S SN d Ee N d   ---- (14)

where  N x is the cumulative distribution function for a standardised normal random

variable. This is defined as :

 
21

2
1

2

x y

N x e dy






  or  
1

2 2

x
N x erfc

 
  

 

The terms 1d and 2d are defined as :

   2

1

ln 1 2S E r
d

 

 

 


   2

2

ln 1 2S E r
d

 

 

 


2.5 European Put Options

The Black-Scholes equation (10) can also be used for valuing a European put option. This is

a financial contract in which the holder may sell a particular asset for an agreed price at some

time in the future. However, when used to value an option of this type the equation has a

different initial condition, different boundary conditions and a different analytical solution.

Since the value of a European put option can always be calculated using the call-put parity

equation i.e.

 
0

1
t

E
C S P

r
  



where C is the call premium, P is the put premium and 0S is the initial value of the

underlying asset (Wilmot 2000), options of this type are not considered during this research

programme.

2.6 The Multi-Dimensional, Linear Black-Scholes Equation

Financial options can be written on more than one underlying asset. Options of this type are

called basket options or rainbow options, Geske (1979). The value of an option of this type

can be found using the multi-dimensional version of the Black-Scholes equation (10). This is

developed in the same way as the one-dimensional equation.

 13

2.6.1 Itô's Lemma in Higher Dimensions

Let  1 2, , . . ., ,dV S S S t be a smooth function of d stochastic variables 1 2, , . . ., dS S S and a

deterministic variable t. Suppose that
1 2, , . . ., dS S S and t vary by small amounts

1 2, , . . ., ddS dS dS and dt respectively. Then, by Taylor series, neglecting the high-order terms

as before, the corresponding small change in V is given by :

2

1 1 1

1

2
  

  
  

    
d d d

i i j

i i ji i j

V V V
dV dS dS dS dt

S S S t
 ---- (15)

Extending assumption 1. of the Black-Scholes model, the change in the value of the ith

stochastic variable iS is given by :

() i i i i i idS S dt S dW t  ---- (16)

where i and i are the drift and the volatility of the ith asset respectively and ()idW t is a

Brownian motion.

Note

In the multi-dimensional case ()idW t and ()jdW t , i j , are correlated i.e.

 E (). () i j ijdW t dW t dt

where ij is the correlation coefficient between the ith and jth random walks, ij ji  and

1ii . The symmetric, positive definite or positive semi-definite matrix
13

 Σ that has ij in

the ith row and the jth column is called the correlation matrix. For example, for an option

written on five underlying assets, the correlation matrix is :

12 13 14 15

21 23 24 25

31 32 34 35

41 42 43 45

51 52 53 54

1

1

1

1

1

 
 
 
 
 
 
  



   

   

   

   

   

From (16) it follows that :

  () ()i j i i i i i j j j j jdS dS S dt S dW t S dt S dW t     

13

 Let M be an xn n real, symmetric matrix and y be a column vector. Then M is positive definite if

 0Ty My 0 y and positive semi-definite if 0Ty My  0 y .

 14

i.e. 2 () () () ()   i j i j i j i j i j j j i i j i i j i j i jdS dS S S dt S S dtdW t S S dtdW t S S dW t dW t      

In a Brownian motion 2 0dt  as 0dt  , (Shreve 2010). Hence :

() ()i j i j i j i jdS dS S S dW t dW t 

Since  E (). () i j ijdW t dW t dt it follows that :

i j i j ij i jdS dS S S dt   ---- (17)

Substituting (17) into (15), the multi-dimensional version of Itô's Lemma becomes :

2

1 1 1

1

2
  

  
  

    
d d d

i i j ij i j

i i ji i j

V V V
dV dS S S dt dt

S S S t
  

i.e.
2

1 1 1

1

2
  

   
   
    
 

 
d d d

i j ij i j i

i j ii j i

V V V
dV S S dt dS

t S S S
  

2.6.2 Development of the Equation

Consider a portfolio consisting of an option to short sell a number i of the ith underlying

asset. The value  of the portfolio is :

1

  
d

i i

i

V S

where V is the value of the option and iS is the current value of the ith underlying asset. The

change in the value of this portfolio over a small interval in time dt is :

1

  
d

i i

i

d dV dS

Replacing dV with its value from Itô's Lemma :

2

1 1 1 1

1

2
   

   
     
    
 

  
d d d d

i j ij i j i i i

i j ii j i i

V V V
d S S dt dS dS

t S S S
   

The stochastic component in this expression can be eliminated by delta hedging i.e. by

choosing


 


i

i

V

S
. The change in the value of the portfolio then becomes :

 15

2

1 1

1

2
 

  
  
   
 


d d

i j ij i j

i ji j

V V
d S S dt

t S S
    ---- (18)

Suppose that the value of the portfolio  is invested in a risk-free, no cost investment that

produces a return of r% per annum. Then, as before, the change in the value of the investment

over a small interval in time dt is :

r dt ---- (5)

Using the arbitrage argument from 2.4.2, the change in the value of the portfolio and

the change in the value of the investment must be the same. Equating (18) and (5) :

2

1 1

1

2
 

  
  
   
 


d d

i j ij i j

i ji j

V V
r dt S S dt

t S S
   

i.e.
2

1 1

1

2
 

 
 
  

d d

i j ij i j

i ji j

V V
r S S

t S S
    ----(19)

Since

1

  
d

i i

i

V S and


 


i

i

V

S
 :

1


 


d

i

ii

V
V S

S


Substituting this into (19) :

2

1 1 1

1

2
  

   
        
 

d d d

i i j ij i j

i i ji i j

V V V
r V S S S

S t S S
  

i.e.
2

1 1 1

1
0

2
  

  
   

    
d d d

i j ij i j i

i j ii j i

V V V
S S r S rV

t S S S
  

This equation is the multi-dimensional version of the Black-Scholes equation (6). In the case

where 2d , this equation becomes
14

 :

2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

t S S S S S S
    

     
      

      
 ---- (20)

14

 Since V is a smooth function, the mixed partial derivatives are equal.

 16

For a particular value of time t, the solution domain for equation (20) can be visualised as :

Figure 2.1 The Outline Solution Domain for the Two-Dimensional Black-Scholes Equation

Like its one-dimensional counterpart, equation (20) is a backward parabolic PDE. To be able

to solve this equation uniquely it is necessary to know the final condition and the boundary

conditions. For a European call option written on two assets these conditions are as follows.

The final condition is the payoff at the expiry time. Hence, at each internal node within the

solution domain :

    1 2 1 2, , max max , ,0V S S t S S E  ---- (21)

At all points on the bottom boundary 2 0S  . Hence, the value of V at each internal point on

this boundary is the value of an option written on the first asset only. Similarly, at all points

on the left boundary 1 0S  so that the value of V at each internal point on this boundary is

the value of an option written on the second asset only. Hence :

 1 1,0,V S t Vs t ---- (22)  2 20, ,V S t Vs t ---- (23)

where 1Vs t and 2Vs t are the single asset solutions of the one-dimensional, linear

Black-Scholes equation (6) subject to the initial condition (7) and the boundary conditions (8)

and (9).

As the values of 1S and 2S increase it becomes increasingly likely that the option will be

exercised. In this case the value of the option will tend to the value of the most expensive

asset i.e. the asset with the largest current value. Hence :

1S

2S

1 2 0S S 

 17

 1 2 1, ,V S S t S as
1S  ---- (24)

and :

 1 2 2, ,V S S t S as 2S  ---- (25)

These conditions imply that at each internal point on the right boundary, 1V S and at each

internal point on the top boundary, 2V S .

At the bottom left-hand corner of the solution domain 1 2 0S S  . Hence, at this point

0V  . The other corner points of the solution domain are discontinuities
15

. A common way

of dealing with points of this type is to let their value be the average of the adjacent values on

the intersecting boundaries. Hence :

● at the top left-hand corner, 2 2

2

Vs t S
V




● at the top right-hand corner, 1 2

2

S S
V




● at the bottom right-hand corner, 1 1

2

S Vs t
V


 .

The final condition and the boundary conditions for equation (20) are summarised below in

Figure 2.2

Figure 2.2 The Detailed Solution Domain for the Two-Dimensional Black-Scholes Equation

15

 For the Black-Scholes Equation and the solution technique we use, the discontinuities do not cause

 problems.

1V S

2V S

1S

2S

1V Vs t

2V Vs t

1 1

2

S Vs t
V




1 2

2

S S
V




0V 

2 2

2

Vs t S
V




    1 2 1 2, , max max , ,0V S S t S S E 

 18

The seller will wish to know the current value of the option. To determine this value using the

Black-Scholes model, equation (20) must be rewritten as a forward parabolic PDE. As before,

this can be done by making the change of variable T t   , where  is the time to expiry.

Using this transformation, the equation becomes :

2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

 ---- (26)

The final condition (21) is transformed into the initial condition :

    1 2 1 2, ,0 max max , ,0V S S S S E  ---- (27)

The boundary conditions (22), (23), (24) and (25) change to :

 1 1,0,V S Vs  ---- (28)  2 20, ,V S Vs  ---- (29)

 1 2 1, ,V S S S  as 1S  ---- (30)  1 2 2, ,V S S S  as 2S  ---- (31)

The easiest way to find the values of 1Vs  and 2Vs  is to use the analytical solution of the

Black-Scholes equation (10) i.e. expression (14).

2.7 An Alternative Approach

Option prices can be calculated by solving the underlying stochastic differential equations

rather than the corresponding Black-Scholes equations. However, Sauer (2012) shows that

numerical methods for solving stochastic differential equations arising in finance must

incorporate Monte Carlo methods for simulating the Brownian motion terms ()dW t and

()idW t . Monte Carlo methods are notoriously slow and are not competitive with numerical

methods for solving parabolic PDEs e.g. finite difference methods.

2.8 Nonlinear Black-Scholes Equations

Assumption 6. of the Black-Scholes model allows investors to continuously buy and sell

quantities of the underlying asset in order to offset potential losses they may incur due to

variations in the price of that asset. Ankudinova and Ehrhardt (2008) describe this process as

"continuous portfolio adjustment to hedge the position without risk". Assumption 3. of the

Black-Scholes model assumes that this portfolio adjustment can be accomplished without

additional costs. However, in practice each time a quantity of the underlying asset is bought

or sold a transaction cost is incurred. Since these transaction costs occur continuously they

effect the price of the underlying asset over time and hence the volatilities in the

 19

Black-Scholes equations. A number of volatility models incorporating transactions costs have

been developed. This research programme considers those described by Lai et al. (2005) and

Ankudinova and Ehrhardt (2008). It is not an aim of this research programme to give the

theoretical development of these models or to evaluate their strengths and weaknesses.

Interested readers should consult the references given with each model.

The volatility models described below can all be written in the general form :

 2 2 1 corr   

where  is called the modified volatility,  is the volatility without transaction costs and

corr is called the volatility correction, (Ankudinova and Ehrhardt 2008). In the absence of

transaction costs 0corr  . The volatility correction can be a function of time t, the time to

expiry  , the current value of the underlying asset S, the value of the option V, the first and

second partial derivatives of V or the solution of an initial-value problem, (Lai et al. 2005). In

these cases the Black-Scholes equation (10) becomes :

2

2 2

2

1
0

2

V V V
S rS rV

S S

  
    
  




 ---- (32)

Similarly, the Black-Scholes equation (26) becomes :

2 2 2

2 2 2 2

1 1 1 1 1 2 12 1 2 1 22 2

1 1 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

 ---- (33)

Equations (32) and (33) are nonlinear. Unfortunately, very few analytical solutions exist for

equations of this type. Solutions must usually be found using numerical methods.

2.8.1 Volatility Models

2.8.1.1 A Simulated Modified Volatility Model

Boyle and Vorst (1992) assume that the transaction cost is related to the option value V and

follows a normal distribution. They propose a modified volatility model in the form :

 2 2 1 a  

where a is the proportional transaction cost
16

 scaled by  and the transaction time. Lai et al.

(2005) adopt the same approach but assume that the transaction cost follows a pulse-like

16

 A transaction cost that is proportional to the number of transactions made rather than a fixed transaction

 cost.

 20

distribution. They model the proportional transaction cost using a sine function in the form :

sin
V

a
E

 
  

 

to produce a simulated modified volatility model.

2.8.1.2 Leland

Leland (1985) assumes that the transaction costs can be minimised if the transactions occur at

discrete points in time rather than continuously. Leland's modified volatility model has the

form :

  2 2 1 signLe   

where Le is called the Leland number. This is defined as :

2 k
Le

t 

 
  

 

where k is the round trip transaction cost per unit dollar of the transaction
17

 and t is the

transaction frequency. This is the time interval between successive revisions of the

portfolio
18

. The term  is the gamma of the underlying asset. This is defined as :

2

2

V

S


 



and is a measure of how often or by how much the portfolio needs to be hedged to maintain a

risk-free position. Wilmot (2000) shows that for a long option
19

 such as a European call, and

in the absence of transaction costs, 0  . If the same assumption is made for a European call

in the presence of transaction costs then Leland's modified volatility model becomes :

 2 2 1 Le  

In this case, the modified volatility is a constant and the Black-Scholes equations (32) and

(33) are linear.

17

 This is defined as :

ask bid

mid

S S
k

S




 where
askS is the price the seller is willing to accept for the asset,

bidS is the highest price the bidder is

 willing to pay for the asset and
midS is the mid value of the asset. This is average of the current bid and ask

 prices.
18

 Since there are 252 trading days in a year, a transaction frequency of 1 day gives 1 252t  .
19

 A option whose value is expected to increase over time.

 21

2.8.1.3 Boyle and Vorst

Boyle and Vorst (1992) also assume that the transaction costs can be minimised if the

transactions occur at discrete points in time rather than continuously. Their modified

volatility model has the form :

 2 2 1 sign
2

Le


 
 

    
 

However, the term t in their definition of the Leland number is the mean length of time for

a change in the value of the underlying asset. If it is again assumed that 0  for a European

call in the presence of transaction costs then this modified volatility is also constant and the

Black-Scholes equations (32) and (33) are linear.

2.8.1.4 Barles and Soner

Barles and Soner (1998) propose a modified volatility model in the form
20

 :

  2 2 2 21 re S     

where r is the risk-free interest rate, 2 2Na  ,  is the risk aversion factor
21

, N is the

number of assets bought or sold, a is the proportional transaction cost and  x is the

solution of the initial-value problem :

 

 

1

2

xd

dx x x x









 0x  ,  0 0  ---- (34)

To calculate the values of  x in the Barles and Soner model equation (34) must be solved

over a suitable range of values of x. Then, as each argument 2 2rx e S  is calculated, the

corresponding value of  x is found by interpolation.

2.8.1.5 The Risk Adjusted Pricing Methodology

The Risk Adjusted Pricing Methodology (RAPM) model was developed by Kratka (1998)

and subsequently refined by Jandačka and Ševčovič (2005). Here, "the optimal time-lag

t between transactions is chosen to minimise the sum of the rate of the transaction costs and

the rate of risk from an unprotected portfolio", (Ankudinova and Ehrhardt 2008). The

20

 The presence of the exponential term in this model means that is can be used only for calculating the

 modified volatility over short periods of time.
21

 A common measure used for  is the standard deviation of the returns on the underlying asset.

 22

modified volatility model in this case is :

1

2 3
2 2 1 3

2

C M
S 



 
      
  

 

where C is the risk premium measure
22

 and M is the coefficient of transaction costs. This is

defined as :

1

2

k S
M

t




 

where k is the round trip transaction cost per unit dollar of the transaction.

2.9 Black-Scholes Equations with Stochastic Volatility

Volatility is not constant as required by the Black-Scholes model. Empirical studies show that

volatility is highly variable, even in the absence of transaction costs. For example, consider

the historical volatility data shown in Figure 2.3. This data was calculated by applying the

formulae given in the footnote on page 8 to the NASDAQ
23

 share price data
24

 for the

multimedia company Apple for the period 14th January 2013 to 14th January 2014 inclusive.

Historical Volatility for Apple Shares

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 25 49 73 97 121 145 169 193 217 241

Day

V
o

la
ti

li
ty

Figure 2.3 Historical Volatility for Apple Shares

Clearly, the volatility for Apple shares is not constant. In this situation it is natural to model

the volatility as a stochastic process. Wilmot (2000) states that by modelling volatility in this

22

 A measure of the amount by which an assets expected rate of return exceeds the risk-free interest rate.
23

 NASDAQ is an acronym for National Association of Securities Dealers Automated Quotations. It is

 America's second largest stock exchange after the New York stock exchange on Wall Street.
24

 The data used to calculate the volatilities was the daily closing share prices in $.

 23

way, options can be valued more accurately.

The general stochastic volatility model has the form :

(, ,) (, ,) ()d p S t dt q S t dB t    ---- (35)

where (, ,)p S t dt is called the volatility of volatility, (, ,)q S t is called the drift of volatility

and ()dB t is a Brownian motion that is correlated with ()dW t in equation (1) with

correlation coefficient  , (Wilmot 2000).

A number of stochastic volatility models have been developed, each one using different

formulae for the functions p and q. Interested readers should consult a reference such as

Jäckel (2005). One of the most commonly used is the Heston model, (Heston 1993). His

stochastic volatility model has the form :

() ()t t td dt dB t       

where t is a function that models the variance of S, the current value of the underlying asset,

 is the rate at which the volatility reverts towards its long-term mean,  is the mean long-

term volatility and  is the volatility of volatility. Heston (1993) derives a closed formula for

the value of a European call option written on an asset with stochastic volatility modelled by

this equation. However, analytical solutions of this type are rare. To find the value of an

option with stochastic volatility three methods are commonly used i.e.

1. Equation (35) can be used instead of equation (1) to derive the corresponding Black-

 Scholes equation. Wilmot (2000) uses this approach to derive the equation :

2 2 2

2 2 2

2 2

1 1
() 0

2 2

V V V V V V
S Sq q rS p q rV

t S S S
  

  

     
       

      
 ---- (36)

 for a European call option
25

. Here, (, ,)S t  is a function called the market price of

 volatility risk. Equation (36) is nonlinear and must be solved using numerical methods.

 A parallel, Laplace transform based algorithm for solving problems of this type is

 described in Chapter 9.

2. Statistical procedures can be applied to historical volatility data to produce estimates for

 the functions (, ,)p S t and (, ,)q S t in the stochastic volatility model. These can then

 be substituted into the Fokker-Planck equation :

25

 Equation (36) has the same initial and boundary conditions as the Black-Scholes equation (6).

 24

2 2

2

1 () ()

2

p p p

t

 

 

  
 

  

 where  and  are the estimates of (, ,)p S t and (, ,)q S t obtained from the data.

 This equation "describes the evolution over time of the probability density function of a

 random variable described by a stochastic differential equation", (Wilmot 2000). In this

 case the closed form solution of this equation
26

 is the probability density function for  .

 This expression can be used to forecast the values of  at future points in time,

 (Wilmot 2000).

3. Time series methods can be applied to historical volatility data to forecast the values of

  at future points in time.

If method 2. or method 3. is used then a set of constant volatility values is available for

calculating the required option values. A computer program can simply read the

corresponding pairs of S and  values one at a time and then calculate the value of the option

using the analytical solution (14). This procedure can be parallelised by assigning each

processor a range of volatility values to process. When a program of this kind is used to

calculate the values of a European call option written on a single share in Apple, the option

value data shown in Figure 2.4 is obtained. The exercise price E is taken to be $380 , the

risk-free interest rate r is taken to be 0.05 and the required values of  are calculated within

the program.

Option Values ($)

0

30

60

90

120

150

180

210

1 25 49 73 97 121 145 169 193 217 241

Day

V
a

lu
e

($
)

Figure 2.4 Option Values for Apple Shares

26

 Details of how to solve the Fokker-Planck equation can be found in Risken (1996).

 25

It can be seen that the option values follow an upward trend in line with the share price data

and the boundary condition  ,V S S  as S  . Like the historical volatility data, the

option values also exhibit time series like behaviour.

Stochastic volatility is an important issue in option pricing and volatility has become a

tradable asset in its own right. For example, a VIX option is a non-equity option in which the

underlying asset is the volatility index, (McKhann 2006).

2.10 Chapter Summary

Background information has been provided on financial markets, financial options and the

Black-Scholes equations that are used widely for valuing options in the financial sector. In

Chapter 1 it was explained that one way to find fast and accurate solutions of these equations

is to use parallel numerical algorithms that are based on the Laplace transform. Chapter 3 will

therefore describe Laplace transform methods and to explain how these methods can facilitate

parallel solutions.

2.11 Contribution to Knowledge

This chapter has developed and implemented a relatively simple procedure for calculating

option values in the case where the volatility is stochastic and historical volatility data is

available.

 26

Chapter 3

The Laplace Transform Method

3.0 Introduction

The Laplace transform method can be used for solving both ODEs and PDEs. This chapter

describes this method and considers its advantages and disadvantages. The advantage most

relevant to this research programme is that it allows the time domain in diffusion problems

such as Black-Scholes equations to be decomposed so that parallel computing methods can

be used for finding their solutions. The main disadvantages are that it can be difficult to find

inverse Laplace transforms, especially when tables cannot be used and that Laplace transform

inversion is ill-posed. This chapter considers alternative methods for overcoming these

problems, in particular numerical inversion algorithms.

3.1 Background

Parabolic PDEs can be solved using a variety of analytical and numerical procedures.

Authors such as Edwards and Penney (2008), Morton and Mayers (2008), Smith (2004) and

Wilmot et al. (1999) describe the most commonly used methods. This research programme

considers the Laplace transform method. A description of the history and development of this

technique can be found in Deakin (1992).

3.2 Definition

Consider a function  x t . The Laplace transform of  x t is defined as :

     
0

tx t e x t dt x 


     L

where  is the transform variable. Widder (1946) states that sufficient conditions for the

existence of  x t  L are that :

● the defining integral converges as t 

● the function  x t is piecewise continuous
27

 on the interval 0 t 

27

 A function is piecewise continuous if it can be divided into a finite number of sections so that it is

 continuous on the interior of each section and that its value remains bounded as its argument approaches the

 end points of the sections.

 27

● the function  x t is of exponential order i.e.  constants c, 0M  and 0T  such that

   ctx t Me t T   .

The inverse Laplace transform of  x  is given by the Bromwich contour integral :

   
 1

01

2 0 0

j
t

j

x t t
x e x d

j t






  


 


 

 
     


L

Widder (1946). To ensure that the contour path is within the region of convergence, the

constant  is chosen so that the singularities
28

 is of  x  lie to the left of the vertical line

 Re   in the complex plane (Laverty 2003) i.e.

Figure 3.1 The Bromwich Contour

3.3 The Method

In outline, the procedure for solving a time-dependent ODE or PDE using the Laplace

transform method is :

● take the Laplace transform with respect to time. This reduces the number of independent

 variables by one and simplifies the problem being solved e.g. ODEs become algebraic

 equations, one-dimensional PDEs become ordinary differential equations, etc.

● substitute the initial condition(s)

● solve the simplified equation to obtain the Laplace transform of the solution

28

 A singularity of a function ()f z is a point a such that as z a , ()f z  .

Re

Im

Re

Im



4s



3s



2s



1s



 Re  

 28

● find the inverse Laplace transform to give the solution of the original differential

 equation in the time domain. The inverse Laplace transform of many standard functions

 can be found from tables such as those given in Davies and Crann (2004).

3.4 Advantages

The Laplace transform method has a number of advantages over time-marching, finite

difference methods for solving parabolic PDEs such as those described in Morton and

Mayers (2008), Smith (2004) and Buetow and Sochacki (2000). The Laplace transform

method :

● avoids the restrictions described in Smith (2004) that must be imposed upon the step

 length in the case of explicit time-marching methods in order to ensure accuracy and

 stability, (Davies and Crann 2010)

● is more computationally efficient when the solution is required at a single point in time.

 The Laplace transform method does not require the solutions to be found at the

 intermediate values, (Davies et al. 2007). This is particularly important in mathematical

 finance where it is often required to calculate the value of an option at a particular time in

 the future. By comparing the future value with the value at which the option is currently

 being traded, dealers can determine whether the option value is likely to increase or

 decrease in the future and formulate an appropriate trading strategy. The Black-Scholes

 model is a relatively simple tool for calculating future values

● allows the time domain to be decomposed so that the equation can be solved using

 parallel computing methods, (Crann et al. 2007).

3.5 Disadvantage

The main disadvantage of the Laplace transform method is that, if tables cannot be used then

it can be difficult to find the inverse Laplace transform. The Bromwich contour integral is a

Fredholm integral equation of the first kind, (McWhirter and Pike 1978). Equations of this

kind are ill-posed
29

 and hence Laplace transform inversion is prone to instability. Kano

(2010) states that the ill-posedness of the Bromwich contour integral is caused by the

exponential term in the integrand that magnifies any algorithmic or computational errors in

the method being used to find the inverse. However, for a more rigorous explanation of why

29

 Fredholm integral equations of the first kind are ill-posed because they fail the third condition in the test

 given by Hadamard. See the footnote at the bottom of page 1. With an equation of this kind, small changes

 in the data produce large changes in the solution i.e. the solution does not depend continuously on the data.

 Fredholm integral equations of the second kind are well-posed.

 29

Laplace transform inversion is prone to instability see Epstein and Schotland (2008).

3.6 Alternative Methods of Laplace Transform Inversion

Authors such as Abate and Whitt (2006), Skachkov (2002) and Davies (2002) have proposed

methods for finding the inverse Laplace transform that are based on evaluating the Bromwich

contour integral. However, other authors have criticised this approach claiming that it is too

difficult to be of practical value (Laverty 2003) and ill-posed, (Crann 2005) and (Wing 1991).

An alternative approach is to use a numerical inversion algorithm. For a review of the most

commonly used procedures, interested readers should consult references such as Kuhlman

(2012), Craddock et al. (2000) and Davies and Martin (1979). Although numerical Laplace

transform inversion is also ill-posed, this approach has been used successfully in a wide

variety of application areas, (NanoDotTek 2007). Furthermore, Kano (2010) suggests that

numerical Laplace transform inversion is safe provided that the inversion algorithms are

implemented accurately e.g. using double precision arithmetic and that a range of algorithms

are evaluated to find one that is fast and accurate for the application to which it is being

applied. This advice is followed throughout the remainder of this research programme.

To determine the fastest and most accurate numerical inversion algorithm for solving

Black-Scholes equations four widely used methods that have been used successfully in other

applications are evaluated. These methods are Stehfest’s method, Stehfest (1970), the shifted

Legendre polynomial method, Zakian and Littlewood (1973), the Jacobi polynomial method,

Miller and Guy (1966) and the Laguerre polynomial method, Piessens and Branders (1971)

and Weeks (1966). The last of these methods is the one identified by Davies and Martin

(1979) as being the best overall performer. A number of performance comparisons have been

completed previously. However, this research programme extends this work by evaluating

the numerical inversion algorithms in a financial context.

3.6.1 Stehfest’s Method

The Stehfest inversion method is based upon a stochastic inversion process described by

Gaver (1966). Here, the numerical inverse Laplace transform is given by a weighted sum of

the Laplace transform values :

 
1

ln 2
m

j j

j

V V 




 

where m must be even. The values of the transform variable j are calculated using :

ln 2
1,2, . . . ,j j j m


 

 30

and the weights
j are given by :

 
 

       
 

 2 2

2

1

2

min ,

21

2 !
1

! ! 1 ! ! 2 !

m m

m

j

j

j m

k j

k k

k k k j k k j




 

 
    (Stehfest 1970).

3.6.2 The Shifted Legendre Polynomial Method

The shifted Legendre polynomial (SLP) method is a member of a class of numerical

inversion algorithms in which the inverse Laplace transform is given by a weighted sum of

exponential functions :

 
0

1
m

k k

k

V C P z




 

The values of the transform variable k are calculated using :

1
0,1, . . . ,k

k
k m




 

The Legendre polynomials  kP z are given by :

  2

1 2 . . . k

k ko k k kkP z a a z a z a z    

with :

z e






 ,  1 0 ; 0,1, . . . ,
k j

kj

k j k
a j k k m

k j

   
      

  
 and

 
!

! !

n n

r r n r

 
 

 

The coefficients kC are given by :

   
0

2 1

k

k kj j

j

C k a V 


  

(Zakian and Littlewood 1973). The term  is an arbitrary parameter
30

. Aral and Gülçat

(1977) discuss possible values for this parameter and suggest setting  to the value of the

independent variable e.g.   . However, (Crann 2005) found that using 1  gave good

results and that varying  made little difference to the accuracy of the results obtained.

30

 Aral and Gülçat (1977) and Crann (2005) use the symbol  to denote this parameter. The symbol  is

 used here to avoid confusion with the use of  to denote the time to expiry.

 31

3.6.3 The Jacobi Polynomial Method

The Jacobi polynomial method is a member of a class of numerical inversion algorithms in

which the inverse Laplace transform is given by a weighted sum of orthogonal polynomials
31

,

(Laverty 2003) :

   
1

0,

0

2 1

N

n n

n

V c P e
 







 

where  and  are arbitrary parameters. The values of the transform variable
n are

calculated using :

 1 0,1, . . . , 1n n n N      

The coefficients nc are given by :

   0 01c V         0

1 12 3
2

c
c V   



 
    

 

 

 

 

 

 

1 1

1

1 0

1 1

0

0 1

, 2

n m

n

j j

n n mn m

m

j j

n j n j

c V c n

n j n j



 



 



 

 



 

 
   

 
   

   
 
 

 


 

The Jacobi polynomials
   0,

nP x


 are given by :

   
 

     0, 1
1 1 1

2 !

n
n

n n

n n n

d
P x x x x

n dx

   
    
 

(Miller and Guy 1966, Laverty 2003). For computational purposes it is more convenient to

use the formula for the Jacobi polynomials given in (Abramowitz and Stegum 1972) i.e.

       0,

0

1
1 1

2

n
n m m

n n

m

n n
P x x x

m n m

  



  
    

  
 where

 
!

! !

n n

r r n r

 
 

 
.

Miller and Guy (1966) suggest that the most accurate results are obtained when the

parameters  and  are assigned values in the ranges 0.5 5.0   and 0.05 2.0  .

However, a preliminary investigation conducted during this research programme found that

varying the values of  and  made little difference to the accuracy of the results obtained.

31

 Suppose that two polynomials f and g are evaluated at regular intervals to produce approximating vectors

 f and g respectively. Then, f and g are orthogonal if these vectors are perpendicular i.e. if 0f g  .

 32

3.6.4 The Laguerre Polynomial Method

In the Laguerre polynomial method the Laplace transform is approximated using a bilinear

transformation of a complex variable
32

 (Davies and Martin 1979) :

 
0

!

!

N

ct

k k

k

k t
V t e a L

k T

 







 
  

  


where  , c , N and T are parameters. The Laguerre polynomials can be calculated using the

recursive formulae :

 0 1L t 

 1 1L t t   

         1 22 1 1n n nn L t n t L t n L t          

The coefficients ka can be calculated using :

 0

0

1

1

N

j

j

a h
N








   
0

2
cos

1

N

k j j

j

a h k
N

 



 

where :

2 1

1 2
j

j

N




 
  

 

and :

 

1

1 cot cot
12 2

Re
2 2 2

h V c i
T T T


 



        
        

          
     
           

, 1i  

The complex expression within the V bracket in the formula for  h  is the transform

variable for this algorithm.

32

 A bilinear transformation Z of an independent complex variable z is a relationship in the form :

a bz
Z

c dz






 where , , ,a b c d  .

 33

Authors such as Weeks (1966), Piessens and Branders (1971) and Davies and Martin (1979)

make recommendations for the optimal values of the parameters  , c , N and T . However,

while investigating this algorithm it was found that the optimal parameter values i.e. the

values that gave the most accurate numerical inverse, depended upon the function to which

the method was being applied. For example, when inverting the Laplace transform of the

exponential function te , the optimal parameter values were found to be 0  , 0.7c  ,

10N  and 3.1T  . When inverting the Laplace transforms arising in the solution of the

Black-Scholes equation (10), the optimal parameter values were found to be 0  , 2.4c  ,

6N  and 0.1T 
33

.

3.7 Chapter Summary

This chapter has described the Laplace transform method, considered its advantages and

disadvantages and described four numerical algorithms that can be used for finding inverse

Laplace transform values. Before proceeding to use Laplace transform based methods for

solving Black-Scholes equations, the methodology used in the investigations that follow will

be described.

3.8 Contribution to Knowledge

This chapter has established the optimal parameter values to use in the Laguerre polynomial

method when the algorithm is used to invert the Laplace transforms arising in the solution of

the Black-Scholes equation (10).

33

 The optimal parameter values were determined by experimentation i.e. by calculating the numerical inverse

 for parameter values in the ranges 0  ,  0.1 0.1 5.1c  ,  1 1 20N  ,  0.1 0.1 6.1T  and choosing the

 combination that gave the most accurate solution.

 34

Chapter 4

Methodology

4.0 Introduction

The methodology explains how the investigations described later in this dissertation are

conducted. It describes the programming environment used, the measures used to evaluate the

performance of the algorithms developed, the method of data collection used, issues in the

design of the parallel programs and the parameter values used in the numerical inversion

algorithms.

4.1 Programming Environment

The numerical algorithms developed in this research program are implemented in Fortran 90.

This programming language was chosen because :

● it contains a range of built-in mathematical functions and provides facilities to support

 accurate numerical computation e.g. double precision arithmetic, (Metcalf and Reid 2006)

● it can be linked to parallel development environments (Snir et al. 1996).

The numerical algorithms are implemented sequentially and/or in parallel. All programs are

run on a 96-node cluster/blade system. The full specification of this system is given in

Appendix A.

Commonly used parallel development environments are PVM (Parallel Virtual Machine),

Sunderam (1990) and the MPI (Message Passing Interface), Snir et al. (1996) and Gropp et

al. (1999). Geist et al. (1996) compare the features, strengths and weaknesses of each system.

They conclude that when using a cluster/blade system, the MPI should be used because it

provides a larger set of communication functions in particular, asynchronous communication,

faster inter-processor communication and produces code that is more portable across different

platforms. The first two advantages are particularly important in the context of this research

programme. MPI parallelism is illustrative and many other means of obtaining parallel

computation exist. Some may be more or less apposite - for example GPU or the XEON PHI

accelerator etc.

4.2 Measures of Performance

The numerical algorithms are evaluated in terms of their speed and accuracy.

 35

4.2.1 Measures of Speed

Three measures of speed are used. For a measure of absolute speed Burkardt (2010)

recommends using the program wall time. This is the difference between the CPU time at the

beginning of the program and the CPU time at the end of the program. The MPI provides a

built-in function for collecting data of this type. The measures of relative speed used are :

● the parallel/sequential speed up. Magoules(2010) defines this as :

Execution Speed of Sequential Program
Parallel/Sequential Speed Up

Execution Speed of Parallel Program


● the parallel/sequential speed up per processor
34

.

4.2.2 Measure of Accuracy

For a measure of accuracy, the normalised root mean square deviation (NRMSD) between

the numerical solutions in and the analytical solutions ia is used. This is defined as :

 

 
2

1

max min

1
NRMSD

m

i i

i

n a

n n m










where m is the number of pairs of solutions. This is the measure of accuracy used by Davies

and Martin (1979) and is a commonly used measure of the differences between the values

predicted by a model and the values actually observed, (Schiller et al. 2008).

4.3 Method of Data Collection

The programs implementing the numerical algorithms are largely CPU-bound i.e. perform no

input and minimal output. Hence, the load on the cluster should not have a significant effect

upon the program wall times. However, to allow accurate performance comparisons to be

made, all programs are run at the same time i.e. under the same load conditions. Each

program is also run 100 times. The wall time data collected is then used to calculate summary

statistics. As in all empirical research the data collected contains the occasional statistical

outlier e.g. a program wall time for a complicated algorithm being smaller than the program

wall time for a simple one. Values of this type should be ignored and only the general trends

in the data should be considered.

34

 This is also a measure of the efficiency of a parallel numerical algorithm.

 36

4.4 Parallel Program Design

The most obvious reason for implementing a numerical algorithm in parallel is the potential

for increased execution speed. This is particularly important in areas such as mathematical

finance where rapid results can give traders a competitive edge over their rivals. However,

this is not the only reason. Many algorithms can be described more naturally as a number of

simultaneously executing tasks rather than as a sequence of individual steps,

(Magoules 2010).

The parallel programs are designed using the master/slave model. Here, each parallel

program contains a master processor and a number of slave processors. The master processor

is responsible for allocating work and data to the slave processors and for calculating and

presenting the final results. The slave processors are each responsible for performing part of

the overall computation and for returning their results to the master processor. Baldo et al.

(2005) state that this is the most common way to design parallel programs implemented on

shared data/message passing systems like the MPI and is the method that produces the fastest

execution speeds.

4.4.1 Inter-Processor Communication

Communication between processors is achieved using synchronous and asynchronous calls as

appropriate. If the receiving processor cannot proceed without the data being sent e.g. when it

is waiting for the weights/parameters to use in the numerical inversion algorithm or the range

of t (or ) values for which it is responsible then synchronous calls such as mpi_send,

mpi_receive and mpi_bcast are used. However, if the receiving processor can be doing other

work e.g. receiving and processing data from another processor then asynchronous calls such

as mpi_reduce are used.

4.4.2 Functional Decomposition Verses Domain Decomposition

To parallelise a numerical algorithm a choice is available between a functional decomposition

and a domain decomposition (Fitzharris et al. 2012), (Grama et al. 2003). In the context of

numerical Laplace transform inversion this means a choice between assigning each slave

processor part of the each inversion calculation e.g. the calculations associated with a

particular weight/term in the inversion formula or assigning each slave processor part of the

solution domain e.g. the calculations associated with a range of t (or ) values. To determine

the best method to use in terms of speed and accuracy, the numerical inversion algorithms

were implemented using each decomposition method. Performance data was then collected

for the range of test functions and parameter values used by Davies and Martin (1979). The

 37

number of weights/terms used in the numerical inversion algorithms was varied in the range

6(2)(16). In the programs based upon a functional decomposition the number of processors

used was 1n , where n is the number of weights/terms used in the numerical inversion

algorithm. In the programs based upon a domain decomposition the number of processors

used was always the same as the number used in the corresponding functional decomposition

program. This ensured that an accurate performance comparison could be made between the

two decomposition methods.

The results presented below were obtained by numerically inverting the Laplace transform of

the function () tx t e for values of t in the range 0(0.01)100. However, almost identical

results were obtained for the other functions tested.

4.4.2.1 NRMSD Values

The tables below give the NRMSD values for each numerical inversion algorithm and each

decomposition method.

Stehfest’s Method

Number of Weights : 6 8 10 12 14 16

Sequential Program 0.0142322545 0.0036774285 0.0008157130 0.0002046827 0.0000594815 0.0000160370

Functional Decomposition 0.0142308042 0.0036768908 0.0008156957 0.0002047592 0.0000595126 0.0000160453

Domain Decomposition 0.0142242159 0.0036733632 0.0008146399 0.0002046388 0.0000594235 0.0000160071

Table 4.1 NRMSD Values for Stehfest's Method

The SLP Method

Number of Weights : 6 8 10 12 14 16

Sequential Program 0.0000000000 0.0000000000 0.0000000001 0.0000000001 0.0000000223 0.0000246744

Functional Decomposition 0.0000000000 0.0000000000 0.0000000000 0.0000000001 0.0000000223 0.0000008250

Domain Decomposition 0.0000000000 0.0000000000 0.0000000001 0.0000000001 0.0000000223 0.0000246229

Table4.2 NRMSD Values for the SLP Method

The Jacobi Polynomial Method

Number of Terms : 6 8 10 12 14 16

Sequential Program 0.0000000007 0.0000001333 0.0000265723 0.0024033179 0.1361245659 0.4325653824

Functional Decomposition 0.0000000007 0.0000001333 0.0000265799 0.0024042109 0.1361903713 0.4326578113

Domain Decomposition 0.0000000007 0.0000001332 0.0000265412 0.0024028027 0.1359877938 0.4317798724

Table 4.3 NRMSD Values for the Jacobi Polynomial Method

 38

The Laguerre Polynomial Method

Number of Terms : 6 8 10 12 14 16

Sequential Program 0.0655779344 0.0587723753 0.0498944950 0.0469411261 0.0476426049 0.0486373446

Functional Decomposition 0.0655779344 0.0587723753 0.0498944950 0.0469411261 0.0476426049 0.0486373446

Domain Decomposition 0.0655420217 0.0587101715 0.0498289249 0.0469159920 0.0475790506 0.0485350214

Table 4.4 NRMSD Values for the Laguerre Polynomial Method

The zero NRMSD values shown in Table 4.2 are numbers that are smaller than 1010 . It can

be seen from these tables that the choice of decomposition method does not appear to

significantly effect the accuracy of the inverse Laplace transform values obtained.

The data in these tables suggest that the SLP method is the most accurate numerical inversion

algorithm. However, this was not generally the case. For all other test functions Stehfest's

method gave the most accurate results
35

.

4.4.2.2 Execution Speeds

The graphs below summarise the wall time data and the parallel/sequential speed up data

collected. The minimum wall time is considered to be the most accurate measure of absolute

speed.

Stehfest’s Method

Minimum Wall Times (s)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.1 Minimum Wall Times for Stehfest's Method

35

 Zakian and Littlewood (1973) show that when ()  tx t e , the truncation error in the SLP method is zero.

 Hence highly accurate inverse Laplace transform values can be expected in this case.

 39

Parallel/Sequential Speed Up

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.2 Parallel/Sequential Speed Up for Stehfest's Method

Parallel/Sequential Speed Up Per Processor

0.00

0.02

0.04

0.06

0.08

0.10

0.12

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.3 Parallel/Sequential Speed Up Per Processor for Stehfest's Method

The SLP Method

Minimum Wall Times (s)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.4 Minimum Wall Times for the SLP Method

 40

Parallel/Sequential Speed Up

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.5 Parallel/Sequential Speed Up for the SLP Method

Parallel/Sequential Speed Up Per Processor

0.00

0.01

0.02

0.03

0.04

0.05

0.06

6 8 10 12 14 16

Number of Weights

Functional Decomposition Domain Decomposition

Figure 4.6 Parallel/Sequential Speed Up Per Processor for the SLP Method

The Jacobi Polynomial Method

Minimum Wall Times (s)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.7 Minimum Wall Times for the Jacobi Polynomial Method

 41

Parallel/Sequential Speed Up

0.00

0.50

1.00

1.50

2.00

2.50

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.8 Parallel/Sequential Speed Up for the Jacobi Polynomial Method

Parallel/Sequential Speed Up Per Processor

0.00

0.05

0.10

0.15

0.20

0.25

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.9 Parallel/Sequential Speed Up Per Processor for the Jacobi Polynomial Method

The Laguerre Polynomial Method

Minimum Wall Times (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.10 Minimum Wall Times for the Laguerre Polynomial Method

 42

Parallel/Sequential Speed Up

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.11 Parallel/Sequential Speed Up for the Laguerre Polynomial Method

Parallel/Sequential Speed Up Per Processor

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

6 8 10 12 14 16

Number of Terms

Functional Decomposition Domain Decomposition

Figure 4.12 Parallel/Sequential Speed Up Per Processor for the Laguerre Polynomial Method

It can be seen from these graphs that in all cases, domain decomposition gives the fastest

execution speeds, the largest parallel/sequential speed up and the largest parallel/sequential

speed up per processor.

4.4.2.3 Conclusions

When numerically inverting Laplace transforms in a distributed computing environment

domain decomposition is the preferred method to use. Domain decomposition was found to :

● minimise inter-processor communication. The only inter-processor communication

 required was the initial transmission from the master processor to the slave processors of

 the weight/term/interval data and the final transmission from the slave processors to the

 master processor of the parameters used in the calculation of the normalised root mean

 square deviation

 43

● give the fastest execution speeds. Using domain decomposition much more work was

 performed in parallel than with the functional decomposition approach and hence a

 greater parallel/sequential speed up and parallel/sequential speed up per processor was

 obtained

● facilitate load balancing across the cluster. Barney (2010) defines load balancing as the

 practice of distributing work among tasks so that all tasks are kept busy all of the time.

 Load balancing is an important issue in parallel program design. If the workload is not

 spread evenly over the cluster then the fastest processors will have to wait i.e. idle, until

 the slowest one has completed. This means that the slowest processor will determine the

 overall performance of the program. Furthermore, this idling time is a waste of system

 resources. It is time that could be used for doing work, that is, time that could be used for

 reducing the program execution time. In the parallel programs developed in this research

 programme load balancing is achieved by allocating each slave processor an equal size

 part of the solution domain. Load balancing can be achieved using a functional

 decomposition. However, it is sometimes more difficult in this case.

For these reasons all future parallel algorithms developed and described in this dissertation

will use a domain decomposition.

4.5 Parameter Values Used in the Numerical Inversion Algorithms

The parameter values used in the numerical inversion algorithms are within the ranges

recommended by the authors cited earlier, and in the case of the Laguerre polynomial

method, they are the optimal values calculated.

Algorithm Parameter Values Reference

Stehfest’s Method - -

The SLP Method 1  Crann (2005)

The Jacobi Polynomial

Method
5  , 1  Miller and Guy (1966)

The Laguerre Polynomial

Method
0  , 2.4c  , 100N  , 0.1T  -

Table 4.5 Parameter Values Used in the Numerical Inversion Algorithms

4.6 Number of Weights/Terms and Processors Used

When solving one-dimensional, linear and nonlinear Black-Scholes equations :

 44

● the number of weights/terms used in the numerical inversion algorithms is varied in the

 range 6(2)26 in both sequential and parallel programs. While the optimal number of

 weights/terms is being determined each parallel program uses 21 processors i.e. one

 master processor and twenty slave processors

● the number of processors used in the parallel programs is varied in the ranges 3(1)8 and

 8(16)152
36

. While the optimal number of processors is being determined, the number of

 weights/terms used is fixed at the optimal number determined in the investigations above.

 This enables the optimal combination of weights/terms and processors for each numerical

 inversion algorithm to be determined. This is an aim of this research programme.

 An alternative approach is to fix the number of weights/terms used in each numerical

 inversion algorithm to the same value e.g. 6. In theory this should enable accurate speed

 comparisons to be made. However, an investigation conducted using the codes developed

 in Chapter 6 showed that although this approach produced minor differences in the data,

 the relative speeds of the numerical inversion algorithms remained the same. The likely

 reasons for this behaviour are explained in 10.1.1.

When solving two-dimensional, linear and nonlinear Black-Scholes equations the number of

weights/terms used in the numerical inversion algorithms is again varied in the range 6(2)26

in both sequential and parallel programs. However, due to the nature of the two-dimensional

algorithm, the number of processors used in the parallel version is always the number of

values of the transform variable plus one (i.e. for the master processor).

For both the one-dimensional and the two-dimensional Black-Scholes equations, the ranges

of weights/terms and processors given above capture the optimal performance data.

4.7 Chapter Summary

The methodology used in the investigations that follow has been described. In the next

chapter, initial investigations will be conducted to determine whether Laplace transform

based algorithms are effective when they are used to solve the one-dimensional, linear

Black-Scholes equation.

4.8 Contribution to Knowledge

This chapter has established the most efficient decomposition method to use when

numerically inverting Laplace transforms in a distributed computing environment.

36

 Multiples of eight are used because each node on the cluster contains eight processors.

 45

Chapter 5

Laplace Transform Solutions - Initial Investigations

5.0 Introduction

In these initial investigations Laplace transform based algorithms are developed for solving

the one-dimensional, linear Black-Scholes equation, firstly by using the Laplace transform of

its analytical solution and secondly by solving its ODE BVP form.

Since this equation has an analytical solution i.e. expression (14), it is not necessary to use

Laplace transform based algorithms to find its solution. However, algorithms of this type are

developed here for three reasons. Firstly, to demonstrate the potential of Laplace transform

based algorithms for solving problems of this type, secondly, to develop and evaluate parallel

implementations of the numerical inversion algorithms described in Chapter 3 i.e. Stehfest's

method, the shifted Legendre polynomial method, the Jacobi polynomial method and the

Laguerre polynomial method and thirdly, to develop and evaluate numerical procedures that

will be used within the more advanced algorithms described later in this dissertation.

5.1 The Solution Domain

By looking at the Black-Scholes equation (10) it can be seen that the value of an option V

depends upon the current value of the underlying asset S and the time to expiry . To ensure

that each computer program performs a significant amount of work, the equation is solved for

a variety of S and  values, that is, over an S- domain. In the parallel programs, each slave

processor performs the calculations associated with a range of  values.

Figure 5.1 Domain Decomposition

Solution Domain

Slave Processor 1



S

etc.

Slave Processor 2

 46

5.2 Parameter Values

The parameter values used in the Black-Scholes equation (10) in this chapter are :

Parameter Values

S 0.0(0.01)40.0

E 10

r 0.05

 0.25

 0.0(0.1)100.0
37

Table 5.1 Parameter Values Used in the One-Dimensional, Linear Black-Scholes Equation

5.3 Investigation 1 : The Laplace Transform of the Analytical Solution

5.3.1 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

implementations of the numerical inversion algorithms when they are used to invert the

Laplace transform of the analytical solution of the one-dimensional, linear Black-Scholes

equation (10) and use it to compare their relative performances..

5.3.2 The Laplace Transform Formula

In Chapter 2 it was shown that the Black-Scholes equation (6) can be written as :

2

2 2

2

1
0

2

V V V
S rS rV

S S




  
    
  

 ---- (10)

with initial condition :

   ,0 max ,0V S S E  ---- (11)

and boundary conditions :

 0, 0V   ---- (12) and  ,V S S as S  ---- (13)

Taking Laplace transforms with respect to  , the Black-Scholes equation (10) can be written

as :

   
2

2 2

2

1
,0

2

d V dV
S rS r V V S

dSdS
     

Substituting the initial condition  ,0V S i.e. (11) :

37

 Since  is measured in years, large values are unrealistic. However, large values are used because they

 produce execution times that allow accurate timing comparisons to be made. Furthermore, if a numerical

 algorithm is fast and accurate for a large value of  , it will also be fast and accurate for a small value of  .

 47

 
 2

2 2

2

1

2 0

S E S Ed V dV
S rS r V

dSdS S E
 

  
    


 ---- (37)

Taking Laplace transforms with respect to  , the boundary conditions (12) and (13) become :

 0; 0V   ---- (38)  ; as
S

V S S


 ---- (39)

In these equations V is the Laplace transform of V and  is the transform variable. Equation

(37) is the ODE BVP form of the one-dimensional, linear Black-Scholes equation.

Equation (37) can be solved using the analytical method, (Edwards and Penney 2008). The

complementary function (CF) can be found using the trial solution nV CS , ,C n .

Substituting this solution into the homogeneous form of equation (37) :

 2 2 21 1
0

2 2

nCS n r n r  
  

      
  

Dividing through by 21

2
 , substituting

2

2r
k


 and solving for n :

2

1 1 2

2 2

k k
n





 
  

Hence :
2

1 2

1 2

3 4

CF
in n

n n

C S C S S E

C S C S S E

  
 

 

where :

1 2 3 4, , ,C C C C  , 1 2

1 1 2

2 2

k k
n





 
   , 2 2

1 1 2

2 2

k k
n





 
   and

2

2r
k




When S E the particular integral (PI) has the general form :

1 2V D D S  where 1 2,D D 

Substituting this into equation (37) and equating coefficients :

PI
E S

r  
  



When S E , PI 0 .

Combining the complementary functions and particular integrals :

 48

2

1 2

1 2

3 4

in n

n n

E S
C S C S S E

V r

C S C S S E

 


   

 
  

To satisfy boundary condition (39), the complementary function 2

1 2
in n

C S C S must tend to

E

r 
 as S  . Since 1 0n  and 2 0n  , this will only happen if 1 0C  .

To satisfy boundary condition (38), the complementary function 1 2

3 4

n n
C S C S must tend to

zero as 0S  . Since
1 0n  and

2 0n  , this will only happen if
4 0C  . Substituting these

values :

2

1

2

3

n

n

E S
C S S E

V r

C S S E

 


  

 
 

 ---- (40)

The values of 2C and 3C can be found by considering the behaviour of V at the transition

point i.e. the point where S E . Here, the expressions in (40) must give the same value of

V i.e.

2 1

2 3

n nE S
C S C S

r  
  



Substituting S E :

2 1

2 3

n nE E
C E C E

r  
  


 ---- (41)

Since V varies continuously, the derivatives of the expressions in (40) with respect to S must

also be equal i.e.

2 11 1

2 2 1 3

1n n
n C S n C S



 
 

Substituting S E :

2 11 1

2 2 1 3

1n n
n C E n C E



 
  ---- (42)

Solving (41) and (42) simultaneously :

 

 

2

1

1

1 1
2

1 2

1

2 2
3

1 2

1

 ---- (43)
1

n

n

n n E
C

r n n

n n E
C

r n n

 

 





 
      


        

 49

Substituting the expressions for 2C and 3C in (43) into (40), the Laplace transform of the

analytical solution of the Black-Scholes equation (10) becomes :

 

 

2

2

1

1

1

1 1

1 2

1

2 2

1 2

1

1

n
n

n
n

n n E E S
S S E

r n n r
V

n n E
S S E

r n n

   

 





  
       

 
       

 ---- (44)

where 1 2

1 1 2

2 2

k k
n





 
   , 2 2

1 1 2

2 2

k k
n





 
   and

2

2r
k




By looking at the initial condition (11) it can be seen that when S E , 0V  and hence

0V  .

5.3.3 Performance Data

The graphs and tables below provide a summary of the data collected during this

investigation. The graphs show visually, the relative performances of the numerical inversion

algorithms. As before, only the graphs showing the minimum wall times are included.

Detailed results are given in Appendix B.

5.3.3.1 Optimal Sequential Programs Data

Optimal Optimal Optimal

Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.00760937300

Minimum Wall Time (s) : Stehfest 6 7.40825700800

Table 5.2 Optimal Sequential Programs Data (Analytical LT)

 50

5.3.3.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.2 Normalised Root Mean Square Deviation, Parallel Programs (Analytical LT)

Minimum Wall Times (s)

0.00

15.00

30.00

45.00

60.00

75.00

90.00

105.00

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.3 Minimum Wall Times, Parallel Programs (Analytical LT)
38

Parallel/Sequential Speed Up

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.4 Parallel/Sequential Speed Up (Analytical LT)

38

 The minimum wall times for Stehfest’s method and the Jacobi polynomial method follow slight upward

 trends.

 51

Parallel/Sequential Speed Up Per Processor

0.50

0.60

0.70

0.80

0.90

1.00

1.10

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.5 Parallel/Sequential Speed Up Per Processor (Analytical LT)

5.3.3.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.6 Normalised Root Mean Square Deviation (Analytical LT) (3-8 Processors)
39

39

 The NRMSD values for Stehfest’s method, the Jacobi polynomial method and the Laguerre polynomial

 method follow slight oscillating trends.

 52

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.7 Normalised Root Mean Square Deviation (Analytical LT) (8-152 Processors)
40

Minimum Wall Times (s)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.8 Minimum Wall Times (Analytical LT) (3-8 Processors)
41

Minimum Wall Times (s)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.9 Minimum Wall Times (Analytical LT) (8-152 Processors)
42

40

 The NRMSD values for Stehfest’s method follow a slight oscillating trend.
41

 The minimum wall times for Stehfest’s method and the Jacobi polynomial method follow oscillating trends.
42

 The minimum wall times for Stehfest’s method follow an oscillating trend.

 53

Parallel/Sequential Speed Up

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.10 Parallel/Sequential Speed Up (Analytical LT) (3-8 Processors)

Parallel/Sequential Speed Up

1.00

6.00

11.00

16.00

21.00

26.00

31.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.11 Parallel/Sequential Speed Up (Analytical LT) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.12 Parallel/Sequential Speed Up Per Processor (Analytical LT) (3-8 Processors)

 54

Parallel/Sequential Speed Up Per Processor

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.13 Parallel/Sequential Speed Up Per Processor (Analytical LT) (8-152 Processors)
43

5.3.3.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Stehfest 6 21 0.00753181310

Minimum Wall Time (s) : Stehfest 6 40 0.50650691880

Parallel/Sequential Speed Up : Laguerre 6 136 30.08960574915

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 1.05105894946

Table 5.3 Optimal Parallel Programs Data (Analytical LT)

5.4 Investigation 2 : The Laplace Transforms Arising in the ODE BVP Form

5.4.1 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

implementations of the numerical inversion algorithms when they are used to invert the

Laplace transforms arising in the finite difference solution of the ODE BVP form of the

one-dimensional, linear Black-Scholes equation (10) and use it to compare their relative

performances.

5.4.2 The Finite Difference Solution of the ODE BVP Form

In 5.3.2 it was shown that the Black-Scholes equation (10) can be written as :

 
 2

2 2

2

1

2 0

S E S Ed V dV
S rS r V

dS dS S E
 

  
    


 ---- (37)

with boundary conditions :

 0; 0V   ---- (38)  ; as
S

V S S


 ---- (39)

43

 The parallel/sequential speed up per processor values for the Laguerre polynomial method follow a slight

 oscillating trend.

 55

An alternative way to solve the Black-Scholes equation (10) is to solve the ODE BVP form

(37) using an appropriate numerical method and then to invert the V values obtained using a

numerical inversion algorithm. Crann et al. (1998) used this approach and solved the ODE

BVP form using the finite volume method. In this investigation the ODE BVP form is solved

using the finite difference method, that is, by replacing the derivatives with central difference

approximations. Smith (2004) shows that if h is the step length in the x-direction then :

1 1

2

i iy ydy

dx h

 
 and

2

1 1

2 2

2i i iy y yd y

dx h

  


Applying these results to equation (37) :

 
 2 2 1 1 1 1

2

21

2 2 0

ii i i i i
i i i

S E S EV V V V V
S rS r V

h h S E
    

        
       

    

      
 2

2 2 2 2 2 2 2

1 1

2
2

0

i

i i i i i i i i

h S E S E
S hrS V S h r V S hrS V

S E
    

  
       



where h is now the step length in the S-direction. This expression produces a tridiagonal

system of linear equations for each value of . To solve the Black-Scholes equation (10)

using this method the  values used in the numerical inversion algorithm are calculated and

the corresponding systems of linear equation are formed and solved. The numerical inversion

algorithm is then applied to the solutions. Each system is stored within a compact storage

scheme. Only the leading diagonal, the principal sub-diagonal, the principal super-diagonal

and the right-hand side vector are stored. Following (Chapra and Canale 2010) we solve the

tridiagonal system using the Thomas algorithm, which is a computationally efficient method

for solving the tridiagonal systems arising from diffusion equations.
44

5.4.3 Performance Data

The graphs and tables below provide a summary of the data collected during this

investigation. Once again, the graphs show visually, the relative performances of the

numerical inversion algorithms. As before, the minimum wall time is considered to be the

most accurate measure of absolute speed. Detailed results are given in Appendix B.

44

 An alternative, more general approach would be to use the routine DGTSV from LAPACK

 (http://www.netlib.org/lapack/)

 56

5.4.3.1 Optimal Sequential Programs Data

Optimal Optimal Optimal

Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.04177589251

Minimum Wall Time (s) : Stehfest 6 2.13941407200

Table 5.4 Optimal Sequential Programs Data (BVP LT)

5.4.3.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.14 Normalised Root Mean Square Deviation, Parallel Programs (BVP LT)

Minimum Wall Times (s)

0.00

4.00

8.00

12.00

16.00

20.00

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.15 Minimum Wall Times, Parallel Programs (BVP LT)
45

45

 The minimum wall times for Stehfest's method and the SLP method follow increasing trends.

 57

Parallel/Sequential Speed Up

4.00

8.00

12.00

16.00

20.00

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.16 Parallel/Sequential Speed Up (BVP LT)

Parallel/Sequential Speed Up Per Processor

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.17 Parallel/Sequential Speed Up Per Processor (BVP LT)

5.4.3.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.18 Normalised Root Mean Square Deviation (BVP LT) (3-8 Processors)
46

46

 The NRMSD values for Stehfest's method, the SLP method and the Jacobi polynomial method follow slight

 oscillating trends.

 58

NRMSD

0.02

0.04

0.06

0.08

0.10

0.12

0.14

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.19 Normalised Root Mean Square Deviation (BVP LT) (8-152 Processors)

Minimum Wall Times (s)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.20 Minimum Wall Times (BVP LT) (3-8 Processors)

Minimum Wall Times (s)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.21 Minimum Wall Times (BVP LT) (8-152 Processors)

 59

Parallel/Sequential Speed Up

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.22 Parallel/Sequential Speed Up (BVP LT) (3-8 Processors)

Parallel/Sequential Speed Up

1.00

3.00

5.00

7.00

9.00

11.00

13.00

15.00

17.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.23 Parallel/Sequential Speed Up (BVP LT) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.10

0.30

0.50

0.70

0.90

1.10

1.30

1.50

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.24 Parallel/Sequential Speed Up Per Processor (BVP LT) (3-8 Processors)

 60

Parallel/Sequential Speed Up Per Processor

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 5.25 Parallel/Sequential Speed Up Per Processor (BVP LT) (8-152 Processors)
47

5.4.3.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 26 21 0.03302565905

Minimum Wall Time (s) : Stehfest 6 21 0.19930100440

Parallel/Sequential Speed Up : Laguerre 20 21 18.95694137668

Parallel/Sequential Speed Up/Processor : Laguerre 6 8 1.47589113525

Table 5.5 Optimal Parallel Programs Data (BVP LT)

5.5 Conclusions

Tables 5.2, 5.3, 5.4 and 5.5 above give the optimal number of weights/terms and processors

to use in/with sequential and parallel programs for solving the one-dimensional, linear

Black-Scholes equation (10) using each of the Laplace transform based approaches

considered. In these initial investigations :

● the parallel programs are faster and more accurate than the corresponding sequential

 programs. However, the differences in accuracy are negligible

● the most accurate way to solve the Black-Scholes equation (10) using the Laplace

 transform method is to use the Laplace transform of the analytical solution approach

● the fastest way to solve the Black-Scholes equation (10) using the Laplace transform

 method is to use the ODE BVP approach

● the best all-round numerical inversion algorithm is Stehfest's method. The Laguerre

 polynomial method only features in the parallel/sequential speed up categories because it

47

 The parallel/sequential speed up per processor values for all numerical inversion algorithms follow

 decreasing trends.

 61

 is significantly slower than the other numerical inversion algorithms tested.

Speed and accuracy are equally important when solving mathematical problems using

numerical methods. However, since the ODE BVP approach can be used for solving both

linear and nonlinear equations, this will be the method used in the parallel, Laplace transform

based algorithms described in Chapter 6 and Chapter 7.

5.6 Chapter Summary

These initial investigations have shown that despite the disadvantages of Laplace transform

based algorithms described in Chapter 3, methods of this type can be used for solving the

one-dimensional, linear Black-Scholes equation (10). The next chapter will develop and

evaluate a parallel algorithm for solving this equation that combines Laplace transform

methods with finite difference techniques.

5.7 Contribution to Knowledge

This chapter has :

● shown that Laplace transform based algorithms can produce fast and accurate solutions of

 the one-dimensional, linear Black-Scholes equation (10)

● evaluated parallel implementations of Stehfest's method, the shifted Legendre polynomial

 method, the Jacobi polynomial method and the Laguerre polynomial method when these

 algorithms are used to invert the Laplace transforms arising in the solution of the

 one-dimensional, linear Black-Scholes equation (10)

● determined the optimal number of weights/terms and processors to use with the

 numerical inversion algorithms in this financial context. The optimal values are the ones

 that give the most accurate solution (i.e. the smallest NRMSD value) and the fastest

 solution (i.e. the minimum program wall time, the largest parallel/sequential speed up and

 the largest parallel/sequential speed up per processor).

 62

Chapter 6

The One-Dimensional, Laplace Transform-Finite

Difference Algorithm

6.0 Introduction

One-dimensional, linear Black-Scholes equations are often solved using finite difference

methods. The solutions along the first time row are given by the initial condition of the

equation. The solutions along the remaining time rows are then calculated using a time-

marching algorithm. The following investigation will show how Laplace transform methods

can be incorporated into this procedure to produce a parallel algorithm that will find the

solutions as accurately as its sequential counterpart but much more quickly.

Since one-dimensional, linear Black-Scholes equations can be solved using the analytical

solution (14), it is not necessary to solve these equations using numerical methods
48

. A

parallel, Laplace transform-finite difference (LTFD) algorithm is developed and evaluated

here :

● to demonstrate the potential of the Laplace transform based approach

● as the first stage in the development of an algorithm that can be used for solving

 one-dimensional, nonlinear Black-Scholes equations i.e. Black-Scholes equations for

 which very few analytical solutions exist

● because some nonlinear Black-Scholes equations become linear under the financial

 assumptions described in 2.3.2 and 2.3.3

● to create a fast and robust
49

 algorithm for those who need to use numerical methods to

 solve diffusion equations in other application areas
50

. This will the case when no

 analytical solutions of these equations exist.

6.1 The Algorithm

Using the Laplace transform method the time domain of a one-dimensional, parabolic PDE

can decomposed so that the problem can be solved using parallel computing methods,

48

 Numerical methods are used for simplicity. The analytical solution (14) contains the complementary error

 function. Some computing environments do not provide a built-in procedure for evaluating this function.
49

 A numerical algorithm is said to be robust if it produces accurate solutions for a variety of parameter values

 and these solutions are reproducible.
50

 See Chapter 1 for possible application areas.

 63

(Crann et al. 2007). The solutions along the first row of the first sub-domain (i.e. the first

time row) can be found using the initial condition of the equation. The solutions along the

first row of the second and all following sub-domains can be found using the Laplace

transform method. The solutions within each sub-domain can be found using a finite

difference method i.e.

Figure 6.1 The Laplace Transform-Finite Difference Algorithm

Domain decomposition based algorithms of this type have been developed previously. For

example, Tagliani and Milev (2012), Wang et al. (2009), Natkunam (2009), Lai et al. (2005)

and Chen and Lin (1991) have developed similar Laplace transform and finite difference

based algorithms
51

. Crann et al. (2007) and Davies et al. (2007) have developed algorithms

that use Laplace transform methods for finding the initial values required and then the finite

volume method or the boundary element method for finding the solutions within each sub-

domain. Another well known domain decomposition based algorithm is the predictor-

corrector version of the Parareal
52

 algorithm. This was developed by Bal and Maday and

described in their 2002 paper. This algorithm uses an iterative finite difference procedure for

finding the initial values required
53

 and then uses a time-marching finite difference algorithm

51

 The main difference between these algorithms and the LTFD algorithm presented here is that the authors

 have not applied finite difference methods to the dimensionless, forward diffusion equation form of the

 PDE being solved. Hence, they have not used a computational procedure like the one described in 6.2.2.
52

 Parallel in time.
53

 In outline, the procedure is as follows. Firstly, the initial values are predicted by solving the PDE over the

 entire solution domain using a finite difference method with a relatively large time step i.e. using a coarse

 grid. These calculations must be performed sequentially. Secondly, the initial values are corrected by

 solving the PDE over part of each sub-domain using a finite difference method with a relatively small time

 step i.e. using a fine grid. The predicted values are used as initial conditions. These calculations are

 performed in parallel. If necessary, the corrector stage can be repeated iteratively until the initial values are

 sufficiently accurate.

Solution Domain

Solutions along this row calculated

using the initial condition

Spatial Variable

etc.

Solutions within these

regions calculated using

finite difference methods

T
im

e
V

ar
ia

b
le

Solutions along these rows

calculated using the Laplace

transform method

Time domain decomposition

 64

for finding the solutions within each sub-domain.

This research programme extends previous work in this area by using the Laplace transform-

finite difference approach to solve a variety of one-dimensional, linear and nonlinear Black-

Scholes equations.

6.2 The Diffusion Equation Form

When solving the one-dimensional, linear Black-Scholes equation (10) using finite difference

methods it is usual to apply the numerical algorithms to the diffusion equation form. Wilmot

et al. (1999) state that this is the simplest way to solve these equations.

In Chapter 2 it was shown that the one-dimensional, backward Black-Scholes equation is :

2

2 2

2

1
0

2

  
   

  

V V V
S rS rV

t S S
 ---- (6)

with the final condition :

   , max ,0V S T S E  ---- (7)

and the boundary conditions :

 0, 0V t  ---- (8)  ,V S t S as S  ---- (9)

Wilmot et al. (1999) show that by using the changes of variable :

xS Ee ---- (45)
2

2
t T




  ---- (46)  ,xV Ee u x   ---- (47)

this problem can be written as the dimensionless
54

, forward diffusion equation :

2

2

u u

x 

 


 
 x  , 0  ---- (48)

with the initial condition :

    1
,0 max ,0

x xu x e e
    ---- (49)

and the boundary conditions :

 , 0u x   as x ---- (50)    1
,

x
u x e

 


 
 as x ---- (51)

Here, S, E, t, T, r and  are as before,  is now the non-dimensional time to expiry,

54

 Non-dimensionalisation is the partial or full removal of the units from an equation involving physical

 quantities using suitable changes of variable. The technique is used to simplify and parameterise problems.

 Once the simplified problem has been solved, the values of the original variables can be recovered using the

 changes of variable used.

 65

 
1

1
2

k    ,  
21

1
4

k    and
2

2r
k


 .

6.2.1 The Computational Procedure

Using the diffusion equation form, the solution of the forward Black-Scholes equation (10)

i.e. the value of  ,V S t for particular values of S and t can be found by :

● calculating the corresponding  -value using (46) i.e.  
2

2
t T


  

● solving equation (48) for  ,u x  . This can be done by choosing step lengths x and  ,

 choosing large values of N  and N  to simulate the infinite spatial domain and then

 solving equation (48) over the region  , x 0,N x N x      . The u-values in the first row

 of this region can be calculated using the initial condition (49). The u-values at the ends

 of this region can be calculated using the boundary conditions (50) and (51). The u-values

 in the remaining part of this region can be calculated using a finite difference method

● converting the x-values into S-values using (45) i.e. xS Ee

● converting the  ,u x  values into V-values using (47) i.e.  ,xV Ee u x  

● calculating  ,V S t by interpolation. The most accurate way to do this is to fit a cubic

 spline to the S and V-values and to interpolate the required value using this.

6.2.2 An Improved Procedure

A practical difficulty with this algorithm is choosing appropriate values for N  and N  .

These values must be sufficiently large to ensure that the required x-value (i.e. S-value) is

within the solution domain. However, choosing large values for N  and N  increases the

amount of calculations that must be performed. During this investigation it was discovered

that a better algorithm for calculating  ,V S t is to :

● calculate the corresponding  -value using (46) i.e.  
2

2
t T


  

● calculate the corresponding x-value using (45) i.e. ln
S

x
E

 
  

 

● solve equation (48) over a region  , x 0,N x N x      as before. The difference here is

 that the x-value is placed in the centre of this region

 66

● calculate  ,V S t using (47) i.e.    , ,xV S t Ee u x   .

The advantages of this modified procedure are that since the x-value is guaranteed to be

within the solution domain, smaller values of N  and N  can be used. This increases the

computation speed and reduces the storage requirements. Furthermore, since the exact

position of the x-value (i.e. S-value) is known, there is no need to calculate  ,V S t using

interpolation. This modified procedure is the one that will be used.

6.3 Finite Difference Methods

Significant effort has been put into developing sophisticated finite difference schemes that

can be used for solving diffusion equations. Interested readers should consult references such

as Düring et al. (2012), Hirsa (2012), Wang et al. (2011), Jeong et al. (2009), Liao et al.

(2001), Buetow and Sochacki (2000), Wood (1990) and Hull and White (1990). However, the

question arises, do these methods offer significant advantages over simple finite difference

schemes ?

To support our thesis that good results may be obtained using Laplace transforms we choose

the simplest scheme available to us, the explicit method.

In the explicit method the spatial derivative is replaced with a central difference

approximation and the time derivative is replaced with a forward difference approximation.

Hence, the diffusion equation (48) is approximated at the point (i, j) by :

 

1, , 1, , 1 ,

2

2i j i j i j i j i ju u u u u

x 

    


This can be transposed to give :

, 1 1, , 1,(1 2)i j i j i j i ju Ru R u Ru     

where
 

2
R

x




 is the mesh ratio. Smith (2004) shows that the explicit method is stable

55

only for values of R in the range 0 0.5R  .

For very high accuracy a small spatial step may be needed and this may impose a very severe

restriction on the time step. If this were prohibitive it would then be appropriate to reconsider

the use of implicit methods.

6.4 Solving One-Dimensional, Linear Black-Scholes Equations

55

 A numerical method is said to be stable if a small change in the data produces a small change in the

 solution.

 67

6.4.1 Parameter Values

The parameter values used in the Black-Scholes equation (10) are :

Parameter Values

S 0.0(0.1)40.0

E 10

r 0.05

 0.25

 0.0(0.1)100.0

Table 6.1 Parameter Values Used in the One-Dimensional, Linear Black-Scholes Equation

6.4.2 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

algorithms for solving the one-dimensional, linear Black-Scholes equation (10) and use it to

compare their relative performances.

6.4.3 Preliminary Notes

When using the LTFD approach to solve the Black-Scholes equation (10) :

● the solutions along the first row of the first sub-domain (i.e. the first time row) are found

 using the initial condition of the equation

   ,0 max ,0V S S E 

● the solutions along the first row of the second and all following sub-domains are found

 using the Laplace transform method i.e. by solving the ODE BVP form :

   
2

2 2

2

1
,0

2

d V dV
S rS r V V S

dSdS
      ---- (37)

 0; 0V   ---- (38)  ; as
S

V S S


 ---- (39)

 using the procedure described in 5.4.2

 In each case the initial values of V are converted into the u-values required by the finite

 difference method using the change of variable :

   
,

xV
u x e

E

 


 


● the remaining solutions within each sub-domain are calculated by solving the diffusion

 equation (48), using the procedure described in 6.2.2

 68

● by looking at the ODE BVP form (37) it can be seen that the term on the right-hand side

 of the equation is always (the negative of) the solution in the first time row. This means

 that the solutions along the first rows of the second and all following sub-domains can be

 calculated in parallel i.e. that each slave processor can calculate its own initial condition

 and then proceed to calculate the remaining solutions within its sub-domain.

6.4.4 Performance Data

The graphs and tables below provide a summary of the data collected. Once again, the

graphs show visually, the relative performances of the numerical inversion algorithms. As

before, only the graphs showing the minimum wall times are included. Detailed results are

given in Appendix C.

6.4.4.1 Sequential Program Data

Table 6.2 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.03543374850

Minimum Wall Time (s) : 6.81629490900

Table 6.2 Sequential, Finite Difference Program Data

6.4.4.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.2 Normalised Root Mean Square Deviation, Parallel Programs

 69

Minimum Wall Times (s)

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.3 Minimum Wall Times, Parallel Programs

Parallel/Sequential Speed Up

4.00

4.20

4.40

4.60

4.80

5.00

5.20

5.40

5.60

5.80

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.4 Parallel/Sequential Speed Up

Parallel/Sequential Speed Up Per Processor

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.5 Parallel/Sequential Speed Up Per Processor

 70

6.4.4.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.6 Normalised Root Mean Square Deviation (3-8 Processors)
56

NRMSD

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.7 Normalised Root Mean Square Deviation (8-152 Processors)
57

56

 The NRMSD values for Stehfest's method, the SLP method and the Jacobi Polynomial method follow slight

 oscillating tends.
57

 The NRMSD values for the Laguerre polynomial method follow a slight oscillating tend.

 71

Minimum Wall Times (s)

1.50

2.00

2.50

3.00

3.50

4.00

4.50

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.8 Minimum Wall Times (3-8 Processors)

Minimum Wall Times (s)

1.00

1.50

2.00

2.50

3.00

3.50

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.9 Minimum Wall Times (8-152 Processors)

Parallel/Sequential Speed Up

1.50

2.00

2.50

3.00

3.50

4.00

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.10 Parallel/Sequential Speed Up (3-8 Processors)

 72

Parallel/Sequential Speed Up

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.11 Parallel/Sequential Speed Up (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.12 Parallel/Sequential Speed Up Per Processor (3-8 Processors)

Parallel/Sequential Speed Up Per Processor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 6.13 Parallel/Sequential Speed Up Per Processor (8-152 Processors)

 73

6.4.4.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 10 4 0.00088366262

Minimum Wall Time (s) : Stehfest 6 40 1.20931506200

Parallel/Sequential Speed Up : Stehfest 6 40 5.63649219561

Parallel/Sequential Speed Up/Processor : Stehfest 6 4 0.59781910392

Table 6.3 Optimal Parallel Programs Data

6.4.5 Conclusions

Table 6.3 above gives the optimal number of weights/terms and processors to use in/with the

LTFD algorithm when it is used to solve the Black-Scholes equation (10).

It can be seen from the data collected that the LTFD program is faster and more accurate than

the sequential finite difference program. The reason for the improved accuracy is that the

Laplace transform solution at the beginning of the second and all following sub-domains is

more accurate than the corresponding time-marched result in the sequential finite difference

solution. The Laplace transform approach appears to pull the finite difference solution back

towards the analytical solution at the beginning of each sub-domain. The reason that the

accuracy of the LTFD solution generally decreases as the number of processors increases is

explained in Chapter 10.

Further information about the behaviour observed in this investigation is given in 7.4.5.

Once again, the best all-round numerical inversion algorithm is Stehfest's method.

6.5 Chapter Summary

The one-dimensional, Laplace transform-finite difference algorithm can accurately and

quickly solve one-dimensional, linear Black-Scholes equations. Chapter 7 will determine

whether this algorithm will be equally successful when it is used to solve nonlinear Black-

Scholes equations of this type.

6.6 Contribution to Knowledge

This chapter has :

● introduced an improved computational procedure for solving the diffusion equation

 form of the one-dimensional, linear Black-Scholes equation

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for

 solving the Black-Scholes equation (10) and shown that this algorithm produces fast

 and accurate solutions

 74

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi

 polynomial method and the Laguerre polynomial method when these methods are used to

 invert the Laplace transforms arising in the LTFD algorithm

● determined the optimal number of weights/terms and processors to use with each of

 the numerical inversion algorithms when they are used in the LTFD algorithm

● demonstrated the potential of the LTFD approach and established the advantages of using

 this algorithm for solving the one-dimensional linear Black-Scholes equation.

 75

Chapter 7

Solving One-Dimensional, Nonlinear Black-Scholes

Equations

7.0 Introduction

In 2.7 it was explained that when transaction costs are taken into account, Black-Scholes

equations become nonlinear. Very few equations of this type have an analytical solution.

Here, it is shown how the basic LTFD algorithm described in Chapter 6 can be modified to

deal with the nonlinear terms and how, in the absence of analytical solutions, accurate

reference solutions can be calculated.

7.1 Parameter Values

The parameter values used in the modified volatility models described in Chapter 2 are

given in Table 7.1 below.

Modified Volatility Model Parameter Values

Simulated Modified Volatility -

Leland 1 252t 
58

, 0.0072k 
59

 i.e. 5.7907Le

Boyle and Vorst 1 6048t 
60

, 0.0072k 

Barles and Soner 0.25  61
, 1N  , 0.01a 

62

Risk Adjusted Pricing Methodology 0.01C  , 1 252t  , 0.0072k 

Table 7.1 Parameter Values Used in the Modified Volatility Models

7.2 Practical Difficulties When Solving the Nonlinear Form

The one-dimensional, nonlinear Black-Scholes equation (32) is a much more complicated

problem to solve than the linear equation (10). Before a corresponding LTFD algorithm can

be developed for solving this equation, methods must be found for dealing with the nonlinear

volatility term 2 and for calculating accurate reference solutions.

58

 1 day
59

 Estimated from the BP share price data on 18/9/2012
60

 1 hour
61

 Estimated from the Chicago Board Options Exchange (CBOE) Volatility Index on 31/12/2012. This index

 shows the expected volatility for a 30-day period.
62

 1%

 76

7.2.1 Linearisation Techniques

The Laplace transform is a linear operator and cannot be applied to a nonlinear PDE directly,

(Crann 2005). This problem can sometimes be overcome by linearising the nonlinear terms in

the equation before this operator is applied. The most commonly used linearisation

techniques are direct iteration (Crann 2005), semi-direct iteration (Zhu 1999) and Taylor

series iteration, (Zhu 1999). These methods will be illustrated using the second-order ODE

BVP :
2

2

2
1

5

d x t
x t

dt

 
   
 

 (1) 2x  , (3) 1x   ---- (52)

To solve this equation using the finite difference method, incorporating a linearisation

technique :

● divide the interval  1,3 into n+1 equally spaced points 0 1, , . . . , nx x x where 1i ix x h  

● linearise the 2x term using one of the techniques mentioned above

● replace the first and second derivatives with finite difference approximations e.g.

1 1

2

i ix xdx

dt h

 
 and

2

1 1

2 2

2i i ix x xd x

dt h

  


● approximate the boundary-value problem at each of the internal points 1 2 1, , . . . , nx x x  .

 This operation produces a tridiagonal system of linear equations

● solve this system of linear equations iteratively to obtain the values of 1 2 1, , . . . , nx x x  . The

 values of 0x and nx are obtained from the boundary conditions. The initial values of

 1 2 1, , . . . , nx x x  are obtained by interpolation i.e. by fitting a straight line to the boundary

 conditions and then estimating their values from this. For equation (52) this straight line

 is 3.5 1.5x t  .

7.2.1.1 Direct Iteration

In direct iteration the nonlinear term is converted into a constant by using its value at the

previous iteration, (Crann 2005). For example, at the rth iteration the nonlinear term 2

ix

would be written as  
2

(1)r

ix  . Hence, using the procedure described in 7.2.1 with direct

iteration, equation (52) becomes :

 77

 
() () ()

2
(1)1 1

2

2
1

5

r r r
ri i i i

i i

x x x t
x t

h

    
   
 

and the expression used to approximate the boundary-value problem at each of the internal

points
1 2 1, , . . . , nx x x 

 is :

 
2

() () () 2 (1)

1 12 1
5

r r r ri
i i i i i

t
x x x h t x 

 

  
      

  

7.2.1.2 Semi-Direct Iteration

Semi-direct iteration can be used for linearising algebraic terms. Zhu (1999) shows that at the

rth iteration a nonlinear term in the form n

ix can be linearised by writing it as  
(1)

(1) ()
n

r r

i ix x


 .

Hence, using semi-direct iteration with the procedure given in 7.2.1, equation (52) becomes :

() () ()

(1) ()1 1

2

2
1

5

r r r

r ri i i i

i i i

x x x t
x x t

h

    
   
 

and the expression used to approximate the boundary-value problem at each of the internal

points 1 2 1, , . . . , nx x x  is :

() 2 (1) () () 2

1 12 1
5

r r r ri

i i i i i

t
x h x x x h t

 

  
      

  

7.2.1.3 Taylor Series Iteration

Zhu (1999) also suggests that at the rth iteration a nonlinear term in the form  ()r

if x can be

linearised by replacing it in the equation with a first-order Taylor series in the form :

      () (1) (1) () (1)r r r r r

i i i i if x f x f x x x    

Hence, incorporating Taylor series iteration into the procedure described in 7.2.1, equation

(52) becomes :

    
() () ()

2
(1) (1) () (1)1 1

2

2
1 2

5

r r r
r r r ri i i i

i i i i i

x x x t
x x x x t

h

      
     
 

and the expression used to approximate the boundary-value problem at each of the internal

points 1 2 1, , . . . , nx x x  is :

 
2

() 2 (1) () () 2 (1)

1 12 1 1 1
5 5

r r r r ri i
i i i i i i

t t
x h x x x h t x 

 

      
            

      

 78

7.2.1.4 Termination

All three linearisation techniques are terminated when an accuracy criterion is satisfied. A

commonly used condition is :

  
  

(1) ()

(1) ()

max abs

max abs

r r

i i

r r

i i

x x

x x










 ---- (53)

where ()r

ix denotes the value of
ix at the rth iteration and  is a small positive number.

7.2.1.5 Comparison of Methods

Crann (2005) evaluates these techniques by using them to solve a nonlinear Poisson

equation
63

 whose analytical solution is known. She found that all three methods were able to

produce solutions that were close to those calculated using the analytical solution and that

they had similar rates of convergence. Using 0.001  in termination condition (53), the

average number of iterations required for convergence was five. The limitations of these

methods are that they require a good initial approximation to the solution, they are not

guaranteed to converge and that they do not always linearise the equation being solved. For

example, consider the second-order ODE BVP :

2

2

2
1

5

d x t dx
x t

dtdt

 
   
 

 (1) 2x  , (3) 1x   ---- (54)

Applying direct iteration to this equation, together with the procedure given in 7.2.1 gives :

 
() () () () ()

2
(1)1 1 1 1

2

2
1

5 2

r r r r r
ri i i i i i

i i

x x x t x x
x t

h h

   
    

    
   

and hence :

   
2 2

(1) () () (1) () 2

1 11 1 2 1 1
2 5 2 5

r r r r ri i
i i i i i i

t th h
x x x x x h t 

 

      
            

      

In this case equation (54) has been linearised as required. However, using the same procedure

with semi-direct iteration produces :

() () () () ()

(1) ()1 1 1 1

2

2
1

5 2

r r r r r

r ri i i i i i

i i i

x x x t x x
x x t

hh

   
    

    
   

and hence :

63

 A Poisson equation is a type of elliptic PDE. Equations of this type arise frequently in engineering and

 physics.

 79

(1) () () () (1) () () 2

1 11 1 2 1 1
2 5 2 5

r r r r r r ri i

i i i i i i i i

t th h
x x x x x x x h t 

 

      
            

      
 ---- (60)

Using the same procedure with Taylor series iteration produces :

    
() () () () ()

2
(1) (1) () (1)1 1 1 1

2

2
1 2

5 2

r r r r r
r r r ri i i i i i

i i i i i

x x x t x x
x x x x t

h h

     
    

      
   

and hence :

    
2

(1) (1) () (1) () ()

11 1 2 2
2 5

r r r r r ri
i i i i i i

th
x x x x x x  



  
       

  

     
2

(1) (1) () (1) () 2

11 1 2
2 5

r r r r ri
i i i i i i

th
x x x x x h t  



  
      

  
 ---- (61)

The presence of the () ()

1

r r

i ix x 
 and () ()

1

r r

i ix x 
 terms in expressions (60) and (61) indicates that

these expressions produce systems of nonlinear equations. Hence, semi-direct iteration and

Taylor series iteration have failed to linearise equation (54). These methods also fail to

linearise the Black-Scholes equations (32) and (33) when they contain the modified volatility

models proposed by Lai et al., Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing

Methodology model). Since direct iteration is a simple method can be used in all of these

cases it will be the linearisation technique used in all future sequential and parallel nonlinear

algorithms. Other linearisation techniques are available. It is left for future work to

investigate and evaluate alternative methods of this kind. See 11.2.

7.2.1.6 Accuracy in the Nonlinear Modified Volatility Models

The modified volatility models proposed by Lai et al., Barles and Soner and Kratka (i.e. the

Risk Adjusted Pricing Model) are functions of the value of the option V, either directly or

indirectly via the gamma of the underlying asset. These models forecast the volatility used in

the Black-Scholes equations.

By looking at the algorithms used for solving the one-dimensional, nonlinear Black-Scholes

equation (32) shown in Figures 7.5 and 7.6 it can be seen that at the start of each iterative

step, the modified volatility is calculated using the option values from the previous iteration.

Hence, throughout the iterative procedure there is a close correspondence between the

accuracy of the option values and the accuracy of the volatility forecast. Since the option

values calculated using these forecasts are measured in monetary units, predicted volatilities

accurate to two decimal places are sufficient.

 80

7.2.2 Monte Carlo Algorithms

When solving the linear Black-Scholes equation (10) the accuracy of the numerical solution

can be assessed by comparing it with a solution produced using the analytical solution (14).

However, for nonlinear Black-Scholes equations very few analytical solutions exist. To

generate accurate reference solutions in these cases numerical methods must be used. Ideally,

the methods used should be independent i.e. not involve Laplace transforms or finite

differences. This not only allows the accuracy of the solutions to be assessed but also ensures

that the LTFD algorithm is not being compared with itself. A common method used for

solving PDEs arising in mathematical finance is the Monte Carlo method.

7.2.2.1 History and Background

Monte Carlo methods were developed by the Polish mathematician Stanislaw Ulam at the

Los Alamos laboratory in New Mexico during World War Two for evaluating the

high-dimension integrals that arose during the development of the first atomic bomb
64

 . The

methods were first used for option pricing by Phelim Boyle in the 1970's, (Boyle 1977). In

general, these methods obtain solutions by calculating and then averaging estimates for the

quantity being calculated using random values drawn from appropriate statistical

distributions. They have the advantage that they can be used to solve problems that are

impossible to solve using other methods. However, they have the disadvantage that millions

of random values are sometimes required to produce accurate results and hence these

methods can be slow. A range of methods is available for speeding up the rate of

convergence of Monte Carlo algorithms such as antithetic variables, control variate

techniques, leapfrog methods, variance reduction techniques, overrelaxation, simulated

annealing and Hamiltonian methods. Consideration of these method is beyond the scope of

this research programme and interested readers should consult a reference such as

Glasserman (2003) or Mackay (2004).

64

 For further information on the history and development of these methods see Ulam (1983).

 81

7.2.2.2 The Monte Carlo Algorithm for Solving One-Dimensional, Linear Black-Scholes

 Equations

In the forward, linear Black-Scholes model, the future value of the underlying asset is

given by the stochastic differential equation :

 dS rSd SdW     ---- (62)

where r is the risk-free interest rate, S is the current value of the underlying asset, is the

time to expiry,  is the volatility and  W  is a Brownian motion. The solution of equation

(62) is :

 21
exp

2
S S r W    

  
    

  

(Wilmot et al. 1999). Glasserman (2003) shows that the Brownian motion  W  is normally

distributed with a mean of zero and a variance of d . The term Z , where Z is a standard

normal random variable
65

, has the same distribution. Hence, the future value of the

underlying asset can be written as :

21
exp

2
S S r Z    

  
    

  
 ---- (63)

The payoff of a European call option at the expiry time is :

 max ,0S E  ---- (64)

where E is the exercise price. The seller of the option will wish to know the current value of

the option. This can be calculated by pre-multiplying expression (64) by the discount factor

re  . Hence, the current value of the option V is :

 max ,0rV e S E



  ---- (65)

Expressions (63) and (65) form the basis of the Monte Carlo algorithm. Given a mechanism

for generating standard normal random variables Z, expressions (63) and (65) can be used to

produce sample values of V that can be averaged to give an estimate of the current value of

the option. More formally, the algorithm can be written as :

65

 A normally distributed random variable with a mean of 0 and a variance of 1.

 82

` loop i = 1 to n

 generate
iZ

 21
exp

2
iS S r Z    

  
    

  

  max ,0r

iV e S E



 

 end loop

 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
  

Figure 7.1 The Monte Carlo Algorithm for Solving One-Dimensional, Linear Black-Scholes Equations
66

Glasserman (2003) shows that by the strong law of large numbers
67

, the estimator V̂ is

unbiased i.e.  ˆE V V and strongly consistent i.e. as n , V̂ V with a probability of

one.

7.2.2.3 Random Number Generation

Most Monte Carlo algorithms are based upon a sequence of pseudo-random numbers iu
68

.

The iu values must be :

● uniformly distributed between 0 and 1

● mutually independent i.e. iu must not be predictable from 1iu  .

A variety of algorithms is available for generating values of this type. Glasserman (2003)

states that the attributes of a good pseudo-random number generator are :

● a long period length. The algorithm must generate a long sequence of random values

 before that sequence repeats

● reproducability. The algorithm must be able to reproduce a particular sequence of

 random values in case it is required to re-run a simulation with the same inputs

● speed. Since millions of random values may be required the algorithm must be fast

66

 This algorithm is due to Wilmot et al. (1999) and Glasserman (2003).
67

 The average of the results obtained from a large number of trials will become closer to the expected value

 as the number of trials increases.
68

 A sequence of random numbers generated by an algorithm.

 83

● portability. The algorithm must produce the same sequence of random values on all

 computing platforms

● randomness. The algorithm must produce random values
iu with the properties listed

 above.

An algorithm that possesses all of these properties is the multiple recursive generator (MRG).

This has the general form :

 1 1 2 2 . . . modi i i k i kx a x a x a x m     

i
i

x
u

m


where ia i  and m . The initial (i.e. seed) values of 1 2, , . . . ,i i i kx x x   are usually

assigned using a simple algorithm such as the intrinsic random number generator available in

a programming language. Research has shown that the period length of the sequence iu can

be increased significantly if two or more MRGs are combined. The combination is usually

performed by summing the ix values and then dividing this sum by the largest value of m.

The pseudo-random number generator used in this investigation is the combined MRG shown

in Figure 7.2. This is due to L'Ecuyer (1999). He combines two MRGs to produce an

algorithm that has a period of 3192 . Details of the parameter values used in this algorithm can

be found in Glasserman (2003).

  1, 1 1, 1 2 1, 2 1, 1. . . modi i i k i kx a x a x a x m     

  2, 1 2, 1 2 2, 2 2, 2. . . modi i i k i kx b x b x b x m     

  1 2max ,m m m

  
2

1

,

1

1 mod
j

i j i

j

y x m




 

 

, 0

1
0

i
i

i

i

y
y

m
u

m
y

m




 
 



Figure 7.2 The L'Ecuyer Combined Multiple Recursive Generator

 84

7.2.2.4 Obtaining Standard Normal Values

To implement the Monte Carlo algorithm described in Figure 7.1 the
iu values must be

converted into standard normal values. One of the most commonly used algorithms for doing

this is the Box-Muller method, (Box and Muller 1958). This algorithm is based upon the

following property. Let
1z and

2z be univariate
69

 standard normal values. Then,
1z and

2z

are the coordinates of a point on the circumference of a circle, centred at the origin with

radius R , where R is a random value from an exponential distribution with a mean of 2. Let

1u and
2u be uniformly distributed random numbers between 0 and 1. Then, the Box-Muller

algorithm is :

● generate a random exponential value R  12lnR u 

● generate a random angle V in the interval  0,2 22V u

● map the angle V to a point  1 2,z z on the circumference of a circle, centred at the origin

 with radius R 1 cosz R V , 2 sinz R V

This procedure is summarised in Figure 7.3.

 Generate 1u and 2u

  12lnR u 

 22V u

 Return 1 cosz R V , 2 sinz R V

Figure 7.3 The Box-Muller Algorithm

7.2.2.5 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear

 Black-Scholes Equations

Jackel (2002) states that to solve nonlinear Black-Scholes equations using Monte Carlo

methods least squares techniques must be used. A more straightforward approach is to

incorporate the direct iteration technique from 7.2.1.1 into the basic Monte Carlo algorithm

given in Figure 7.1. The proposed algorithm is given in Figure 7.4.

69

 A univariate distribution is a distribution of a single variable. A distribution of a combination of two

 variables e.g. 1 2z z is called a bivariate distribution.

 85

 initialise 

 repeat

 loop i = 1 to n

 generate iZ

 21
exp

2
iS S r Z    

  
    

  

  max ,0r

iV e S E



 

 end loop

 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
  

 recalculate 

 until
  
  

(1) ()

(1) ()

ˆ ˆmax abs

ˆ ˆmax abs

r r

r r

V V

V V











Figure 7.4 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear Black-Scholes Equations
70

Here  is the modified volatility, ()ˆ rV denotes the value of V̂ at the rth iteration and  is a

small positive number. This algorithm is simpler than the procedure given by Jackel and

converges for the modified volatility models considered in this research programme.

The Monte Carlo reference solutions are stored in data files. The relevant file is then read into

a two-dimensional array at the beginning of the Laplace transform-finite difference program

so that accurate comparison data is available for calculating the normalised root mean square

deviation values.

7.3 The Laplace Transform-Finite Difference Algorithm

The Laplace-transform-finite difference algorithm for solving one-dimensional, nonlinear

Black-Scholes equations is a more complicated and computationally expensive procedure

than the algorithm for solving the corresponding linear equations. The main reason for this is

the need to incorporate a linearisation technique into the basic algorithm described in

Chapter 6.

70

 This algorithm was invented by the author i.e. is a contribution to knowledge. It is based upon the algorithm

 for solving one-dimensional, linear Black-Scholes equations developed by Wilmot et al. (1999) and

 Glasserman (2003).

 86

As before, the solutions along the first row of the first sub-domain are found using the initial

condition of the equation (11). The solutions along the first row of the second and all

following sub-domains are found using the Laplace transform method i.e. by solving the

ODE BVP form of the Black-Scholes equation (32) :

   
2

2 2

12

1
,

2
i

d V dV
S rS r V V S

dS dS
        ---- (66)

subject to the boundary conditions :

 0; 0V    ; as
S

V S S




In equation (66) the function on the right-hand side is the solution of the equation in the

previous time row. This gives a good initial approximation to the required solution and helps

to ensure that the linearisation technique converges. However, the consequence of this is that

in the nonlinear case, the initial conditions cannot be calculated in parallel. Instead, they must

be calculated one at a time at the beginning of the program and then passed to the slave

processors as parameters. Equation (66) is solved using the finite difference method for BVPs

incorporating the direct iteration linearisation technique described in 7.2.1.1. This is a

computationally expensive procedure since the inverse Laplace transform of the V values

must be found at each iterative step in order to update the modified volatility  . The

algorithm used to calculate the solutions along the first row of the second and all following

sub-domains is summarised in Figure 7.5.

 initialise V using initial condition (11)

 repeat

 solve equation (66) (using V to calculate the 2 values) to obtain V

 invert V obtain V

 until
  
  

(1) ()

(1) ()

max abs

max abs

r r

r r

V V

V V











Figure 7.5 The Algorithm for Calculating the Subsequent Initial Conditions

Here, ()rV denotes a value in V at the rth iteration and  is a small positive number.

The remaining solutions within each sub-domain are calculated using the explicit finite

difference method. This procedure does not involve tridiagonal matrices. Hence, the

 87

computational advantages of applying this technique to a diffusion equation form of the

equation disappear. In this algorithm the explicit method is therefore applied to the nonlinear

Black-Scholes equation (32) directly. This produces the iterative formula :

2 2 2 2 2 2

, 1 1, , 1,2 2

1 1
1

1 2 2
i j i j i j i j

k krS k k
V S V S V S rS V

kr h h h h h
    

    
         

     
 ---- (67)

where k is the  -step and h is the S-step. The rows within each sub-domain are calculated in

sequence. The algorithm used to calculate each row V is summarised in Figure 7.6.

 initialise V using the previous row in the sub-domain

 repeat

 calculate the 2 values using V

 use expression (67) to calculate V

 until
  
  

(1) ()

(1) ()

max abs

max abs

r r

r r

V V

V V











Figure 7.6 The Algorithm for Calculating the Rows of Each Sub-Domain

Here, ()rV and  are as defined before.

7.4 Solving One-Dimensional, Nonlinear Black-Scholes Equations

7.4.1 Parameter Values

The parameter values used in the Black-Scholes equation (32) are :

Parameter Values

S 0.0(0.1)5.0
71

E 10

r 0.05

 0.25

 0.0(0.1)100.0

Table 7.2 Parameter Values Used in the One-Dimensional, Nonlinear Black-Scholes Equation

71

 The S-range is reduced for the nonlinear modified volatility models because of the slow speed of the

 Monte Carlo algorithm for calculating the reference solutions. Using the range used with the linear equation

 the Monte Carlo algorithm failed to produce sufficiently accurate solutions after 150 hours of processing

 time.

 88

For a European call option the modified volatilities proposed by Leland and Boyle and Vorst

become constants. The data for these functions is therefore collected using the LTFD

program for the one-dimensional, linear Black-Scholes equation (10) and the parameter

values given in Table 6.1.

7.4.2 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

algorithms for solving one-dimensional, nonlinear Black-Scholes equations and use it to

compare their relative performances.

7.4.3 Preliminary Notes

● Düring et al. (2003) recommend estimating the gamma term in the Barles and Soner and

 Risk Adjusted Pricing Methodology modified volatility models using the finite

 difference approximation :

2 2

2

2

4

i i iV V V

h

  
 

 where h is the spatial step. They claim that this expression gives a better approximation to

 the second spatial derivative than the usual central difference approximation
72

● the reference solutions used to determine the NRMSD values for the nonlinear Black-

 Scholes equations are calculated using the Monte Carlo algorithm given in Figure 7.4

● in 4.3 it was explained that the load on the cluster should not have a significant effect

 upon the program wall times. However, this does not mean that it will not have any

 effect at all. While all the codes for a particular nonlinear equation were run at the same

 time i.e. under the same load conditions, the codes for other equations were run on

 different days. Hence, when comparing the performances of the numerical inversion

 algorithms it is important to do so only for the same modified volatility model.

7.4.4 Performance Data

The graphs and tables below provide a summary of the data collected. Once again, the

graphs show visually, the relative performances of the numerical inversion algorithms. As

before, only the graphs showing the minimum wall times are included. Detailed results are

given in Appendix D.

72

 Their experiments showed that if the usual central difference approximation is used, the resulting finite

 difference scheme becomes unstable for small values of the spatial step unless small values of the time step

 are also used.

 89

7.4.4.1 Modified Volatility Model : Simulated Modified Volatility
73

7.4.4.1.1 Sequential Program Data

Table 7.3 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.08588035887

Minimum Wall Time (s) : 0.53442788120

Table 7.3 Sequential, Finite Difference Program Data (Simulated Modified Volatility)

7.4.4.1.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.7 Normalised Root Mean Square Deviation, Parallel Programs (Simulated Modified Volatility)
74

Minimum Wall Times (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.8 Minimum Wall Times, Parallel Programs (Simulated Modified Volatility)
75

73

 See Lai et al. (2005).
74

 The NRMSD values for all numerical inversion algorithms follow oscillating trends.
75

 The minimum wall times for Stehfest’s method follow a slight upward trend.

 90

Parallel/Sequential Speed Up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.9 Parallel/Sequential Speed Up (Simulated Modified Volatility)

Parallel/Sequential Speed Up Per Processor

0.00

0.04

0.08

0.12

0.16

0.20

0.24

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.10 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility)

 91

7.4.4.1.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.11 Normalised Root Mean Square Deviation (Simulated Modified Volatility) (3-8 Processors)
76

NRMSD

0.05

0.10

0.15

0.20

0.25

0.30

0.35

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.12 Normalised Root Mean Square Deviation (Simulated Modified Volatility) (8-152 Processors)
77

76

 The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method the NRMSD

 values oscillate slightly.
77

 The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi

 polynomial method the NRMSD values oscillate slightly.

 92

Minimum Wall Times (s)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.13 Minimum Wall Times (Simulated Modified Volatility) (3-8 Processors)

Minimum Wall Times (s)

0.0

0.5

1.0

1.5

2.0

2.5

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.14 Minimum Wall Times (Simulated Modified Volatility) (8-152 Processors)

Parallel/Sequential Speed Up

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.15 Parallel/Sequential Speed Up (Simulated Modified Volatility) (3-8 Processors)

 93

Parallel/Sequential Speed Up

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.16 Parallel/Sequential Speed Up (Simulated Modified Volatility) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.17 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) (3-8 Processors)

Parallel/Sequential Speed Up Per Processor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.18 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) (8-152 Processors)

 94

7.4.4.1.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 24 21 0.01175761424

Minimum Wall Time (s) : Stehfest 6 21 0.12257361320

Parallel/Sequential Speed Up : Stehfest 6 21 4.36005651827

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 0.54030901625

Table 7.4 Optimal Parallel Programs Data (Simulated Modified Volatility)

7.4.4.2 Modified Volatility Model : Leland

7.4.4.2.1 Sequential Program Data

Table 7.5 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.01402741597

Minimum Wall Time (s) : 8.32147940000

Table 7.5 Sequential, Finite Difference Program Data (Leland)

7.4.4.2.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.19 Normalised Root Mean Square Deviation, Parallel Programs (Leland)
78

78

 The NRMSD values for Stefhest's method and the SLP method follow slight oscillating trends.

 95

Minimum Wall Times (s)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.20 Minimum Wall Times, Parallel Programs (Leland)

Parallel/Sequential Speed Up

4.0

4.5

5.0

5.5

6.0

6.5

7.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.21 Parallel/Sequential Speed Up (Leland)

Parallel/Sequential Speed Up Per Processor

0.20

0.22

0.24

0.26

0.28

0.30

0.32

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.22 Parallel/Sequential Speed Up Per Processor (Leland)

 96

7.4.4.2.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.23 Normalised Root Mean Square Deviation (Leland) (3-8 Processors)
79

NRMSD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.24 Normalised Root Mean Square Deviation (Leland) (8-152 Processors)

Minimum Wall Times (s)

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.25 Minimum Wall Times (Leland) (3-8 Processors)

79

 The NRMSD values for Stehfest’s method follow a slight oscillating trend. For the SLP method and the

 Jacobi polynomial method the NRMSD values follow a slight upward trend.

 97

Minimum Wall Times (s)

1.0

1.4

1.8

2.2

2.6

3.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.26 Minimum Wall Times (Leland) (8-152 Processors)

Parallel/Sequential Speed Up

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.27 Parallel/Sequential Speed Up (Leland) (3-8 Processors)

Parallel/Sequential Speed Up

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.28 Parallel/Sequential Speed Up (Leland) (8-152 Processors)

 98

Parallel/Sequential Speed Up Per Processor

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.29 Parallel/Sequential Speed Up Per Processor (Leland) (3-8 Processors)

Parallel/Sequential Speed Up Per Processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.30 Parallel/Sequential Speed Up Per Processor (Leland) (8-152 Processors)

7.4.4.2.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Laguerre 20 21 0.00769955575

Minimum Wall Time (s) : Stehfest 6 40 1.24268794100

Parallel/Sequential Speed Up : Stehfest 6 40 6.45417539463

Parallel/Sequential Speed Up/Processor : Stehfest 6 6 0.62382862880

Table 7.6 Optimal Parallel Programs Data (Leland)

 99

7.4.4.3 Modified Volatility Model : Boyle and Vorst

7.4.4.3.1 Sequential Program Data

Table 7.7 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.04648613774

Minimum Wall Time (s) : 7.50991988200

Table 7.7 Sequential, Finite Difference Program Data (Boyle and Vorst)

7.4.4.3.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.31 Normalised Root Mean Square Deviation, Parallel Programs (Boyle and Vorst)
80

Minimum Wall Times (s)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.32 Minimum Wall Times, Parallel Programs (Boyle and Vorst)

80

 The NRMSD values for Stehfest's method follow a slight oscillating trend.

 100

Parallel/Sequential Speed Up

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.33 Parallel/Sequential Speed Up (Boyle and Vorst)

Parallel/Sequential Speed Up Per Processor

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.34 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst)

7.4.4.3.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.35 Normalised Root Mean Square Deviation (Boyle and Vorst) (3-8 Processors)
81

81

 The NRMSD values for Stehfest’s method and the SLP method follow slight decreasing trends.

 101

NRMSD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.36 Normalised Root Mean Square Deviation (Boyle and Vorst) (8-152 Processors)
82

Minimum Wall Times (s)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.37 Minimum Wall Times (Boyle and Vorst) (3-8 Processors)

Minimum Wall Times (s)

1.0

1.5

2.0

2.5

3.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.38 Minimum Wall Times (Boyle and Vorst) (8-152 Processors)

82

 The NRMSD values for Stehfest’s method follow a slight decreasing trend.

 102

Parallel/Sequential Speed Up

1.5

2.0

2.5

3.0

3.5

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.39 Parallel/Sequential Speed Up (Boyle and Vorst) (3-8 Processors)

Parallel/Sequential Speed Up

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.40 Parallel/Sequential Speed Up (Boyle and Vorst) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.35

0.40

0.45

0.50

0.55

0.60

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.41 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) (3-8 Processors)

 103

Parallel/Sequential Speed Up Per Processor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.42 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) (8-152 Processors)

7.4.4.3.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 20 136 0.01167072834

Minimum Wall Time (s) : Stehfest 6 21 1.36069107100

Parallel/Sequential Speed Up : Stehfest 6 21 5.65549822220

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 0.56982627545

Table 7.8 Optimal Parallel Programs Data (Boyle and Vorst)

7.4.4.4 Modified Volatility Model : Barles and Soner

7.4.4.4.1 Sequential Program Data

Table 7.9 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.08974615390

Minimum Wall Time (s) : 3.91849494000

Table 7.9 Sequential, Finite Difference Program Data (Barles and Soner)

 104

7.4.4.4.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.43 Normalised Root Mean Square Deviation, Parallel Programs (Barles and Soner)
83

Minimum Wall Times (s)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.44 Minimum Wall Times, Parallel Programs (Barles and Soner)

Parallel/Sequential Speed Up

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.45 Parallel/Sequential Speed Up (Barles and Soner)

83

 The NRMSD values for all numerical inversion algorithms follow oscillating trends.

 105

Parallel/Sequential Speed Up Per Processor

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.46 Parallel/Sequential Speed Up Per Processor (Barles and Soner)

7.4.4.4.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.47 Normalised Root Mean Square Deviation (Barles and Soner) (3-8 Processors)

84

NRMSD

0.05

0.10

0.15

0.20

0.25

0.30

0.35

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.48 Normalised Root Mean Square Deviation (Barles and Soner) (8-152 Processors)

85

84

 The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi

 polynomial method the NRMSD values oscillate slightly.

 106

Minimum Wall Times (s)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.49 Minimum Wall Times (Barles and Soner) (3-8 Processors)

Minimum Wall Times (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.50 Minimum Wall Times (Barles and Soner) (8-152 Processors)

Parallel/Sequential Speed Up

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.51 Parallel/Sequential Speed Up (Barles and Soner) (3-8 Processors)

85

 The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi

 polynomial method the NRMSD values oscillate slightly.

 107

Parallel/Sequential Speed Up

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.52 Parallel/Sequential Speed Up (Barles and Soner) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.50

0.55

0.60

0.65

0.70

0.75

0.80

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.53 Parallel/Sequential Speed Up Per Processor (Barles and Soner) (3-8 Processors)

Parallel/Sequential Speed Up Per Processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.54 Parallel/Sequential Speed Up Per Processor (Barles and Soner) (8-152 Processors)

 108

7.4.4.4.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 16 21 0.00743902902

Minimum Wall Time (s) : Stehfest 6 21 0.42293095590

Parallel/Sequential Speed Up : Stehfest 6 21 9.26509371172

Parallel/Sequential Speed Up/Processor : Stehfest 6 6 0.79714300681

Table 7.10 Optimal Parallel Programs Data (Barles and Soner)

7.4.4.5 Modified Volatility Model : Risk Adjusted Pricing Methodology

7.4.4.5.1 Sequential Program Data

Table 7.11 below gives the data collected using the sequential, finite difference program.

Value

NRMSD : 0.08908669343

Minimum Wall Time (s) : 1.17682810000

Table 7.11 Sequential, Finite Difference Program Data (RAPM)

7.4.4.5.2 Part 1 - Varying the Number of Weights/Terms Used

NRMSD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.55 Normalised Root Mean Square Deviation, Parallel Programs (RAPM)
86

86

 The NRMSD values for all numerical inversion algorithms follow oscillating trends.

 109

Minimum Wall Times (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.56 Minimum Wall Times, Parallel Programs (RAPM)

Parallel/Sequential Speed Up

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.57 Parallel/Sequential Speed Up (RAPM)

Parallel/Sequential Speed Up Per Processor

0.00

0.05

0.10

0.15

0.20

0.25

0.30

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.58 Parallel/Sequential Speed Up Per Processor (RAPM)

 110

7.4.4.5.3 Part 2 - Varying the Number of Processors Used

NRMSD

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.59 Normalised Root Mean Square Deviation (RAPM) (3-8 Processors)
87

NRMSD

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.60 Normalised Root Mean Square Deviation (RAPM) (8-152 Processors)
88

87

 The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi

 polynomial method the NRMSD values oscillate slightly.
88

 The NRMSD values for Stehfest’s method, the SLP method and the Jacobi polynomial method follow slight

 oscillating trends.

 111

Minimum Wall Times (s)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.61 Minimum Wall Times (RAPM) (3-8 Processors)

Minimum Wall Times (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.62 Minimum Wall Times (RAPM) (8-152 Processors)

Parallel/Sequential Speed Up

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.63 Parallel/Sequential Speed Up (RAPM) (3-8 Processors)

 112

Parallel/Sequential Speed Up

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.64 Parallel/Sequential Speed Up (RAPM) (8-152 Processors)

Parallel/Sequential Speed Up Per Processor

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.65 Parallel/Sequential Speed Up Per Processor (RAPM) (3-8 Processors)

Parallel/Sequential Speed Up Per Processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 7.66 Parallel/Sequential Speed Up Per Processor (RAPM) (8-152 Processors)

 113

7.4.4.5.4 Optimal Parallel Programs Data

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 18 21 0.00801089964

Minimum Wall Time (s) : Stehfest 6 24 0.19593906400

Parallel/Sequential Speed Up : Stehfest 6 24 6.00609228183

Parallel/Sequential Speed Up/Processor : Jacobi 6 3 0.64110825564

Table 7.12 Optimal Parallel Programs Data (RAPM)

7.4.5 Conclusions

Tables 7.4, 7.6, 7.8, 7.10 and 7.12 above give the optimal number of weights/terms and

processors to use in/with the LTFD algorithm when it is used to solve one-dimensional

nonlinear Black-Scholes equations containing the modified volatility models proposed by Lai

et al., Leland, Boyle and Vorst, Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing

Methodology model).

It can be seen from the graphs and tables in this chapter that :

● the LTFD algorithm is faster and generally more accurate, relative to the analytical or

 reference solutions, than the sequential finite difference algorithm. Whenever the LTFD

 solutions are less accurate than the finite difference solutions, the differences are

 small

● the nonlinear data exhibits behaviour seen in earlier investigations. This behaviour is

 described and explained in Chapter 10

● the best all-round numerical algorithm for inverting the Laplace transforms arising in the

 solution of one-dimensional, nonlinear Black-Scholes equations is Stehfest's method.

 Whenever another inversion algorithm performs better than Stehfest, the difference is

 marginal.

 114

7.4.6 The Numerical Solutions

Figure 7.67 and Figure 7.68 show the numerical solutions of the nonlinear Black-Scholes

equations in the case when 1S  . The solutions were calculated using the LTFD algorithm.

The inverse Laplace transform values were calculated using Stehfest's method with 6 weights

and 21 processors.

Nonlinear Black-Scholes Equations (S=1)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

tau

V

Simulated Modified Volatility Leland Boyle and Vorst Barles and Soner RAPM

Figure 7.67 Numerical Solutions of the Nonlinear Black-Scholes Equations for  0,10

Nonlinear Black-Scholes Equations (S=1)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

tau

V

Simulated Modified Volatility Leland Boyle and Vorst Barles and Soner RAPM

Figure 7.68 Numerical Solutions of the Nonlinear Black-Scholes Equations for  0,100

The behaviour shown is the same for all other values of S i.e. as   , V S . With the

exception of the graph for Boyle and Vorst, the solutions exhibit similar behaviour. Initially,

the graphs have the characteristic hockey stick shape associated with European call options

(Wilmot, 2000) and as the expiry date of the option approaches, the value of the option

approaches the value of the underlying asset (as predicted by the boundary condition of the

Black-Scholes equation (32)). In the case of the Boyle and Vorst solution the value of the

option appears to approach the value of the underlying asset much more quickly. The likely

 115

reason for this is that the volatility in this case is much larger than in the other solutions.

When the volatility is large the second derivative in the Black-Scholes equation (32) becomes

dominant so that it behaves like the diffusion equation. It is known that when the diffusivity

in equations of this type is large, the dependent variable increases quickly over time. It

appears that the same behaviour is occurring here.

7.5 Chapter Summary

This chapter has shown that a modified version of the LTFD algorithm described earlier can

be used to solve one-dimensional, nonlinear Black-Scholes equations and that accurate

reference solutions can be calculated using Monte Carlo methods. The next question to be

answered is can Laplace transform - finite difference algorithms be used to solve

two-dimensional Black-Scholes equations ?

7.6 Contribution to Knowledge

This chapter has :

● explained how Monte Carlo methods can be used for calculating accurate reference

 solutions of one-dimensional, nonlinear Black-Scholes equations

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for

 solving one-dimensional, nonlinear Black-Scholes equations and shown that this

 algorithm produces fast and accurate solutions

● used the LTFD algorithm for solving one-dimensional nonlinear Black-Scholes equations

 containing the modified volatility models proposed by Leland, Boyle and Vorst, Barles

 and Soner and Kratka (i.e. the Risk Adjusted Pricing Methodology model)

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi

 polynomial method and the Laguerre polynomial method when these methods are used to

 invert the Laplace transforms arising in the LTFD algorithm

● determined the optimal number of weights/terms and processors to use with each of

 the numerical inversion algorithms when they are used in the LTFD algorithm

● established the advantages of using the LTFD algorithm for solving one-dimensional

 nonlinear Black-Scholes equations.

 116

Chapter 8

The Two-Dimensional, Laplace Transform-Finite

Difference Algorithm

8.0 Introduction

The previous investigative chapters of this dissertation have shown that LTFD algorithms can

be used for solving one-dimensional, linear and nonlinear Black-Scholes equations. For two-

dimensional Black-Scholes equations, i.e. equations that model financial options written on

two underlying assets, the solution domain, for a range of  values, is three-dimensional.

However, this chapter will show that the Laplace transform-finite difference approach can

also be used for calculating option prices in this more complicated case.

8.1 Background

Black-Scholes equations that model financial options written on more than two underlying

assets must be solved using Monte Carlo methods, Wilmot (2000). However, in the two-

dimensional case a range of numerical methods can be used for finding the solution.

A legitimate criticism of finite difference methods for solving two-dimensional diffusion

equations is that they can be inaccurate. To avoid this inaccuracy very small step lengths

must be used and this increases the amount of computational effort required to find the

solution. For example, suppose that the explicit finite difference method is used to solve the

two-dimensional heat equation :

2 2

2 2

u u u
a

t x y

   
  

   
, a

on an unit square defined by 0 1x  , 0 1y  . Sharcnet (2008) shows that to produce an

accurate solution, the time step t must be chosen so that :

2 2

2 2

1

2

x y
t

a x y

 


 

 
  

 

Here, x and y are the step lengths in the x and y directions respectively. For example, if

0.05x y   then the maximum value of t is 0.000625.

The advantage of using Laplace transform based algorithms for solving problems of this type

is that the time domain is removed from the equation. This eases the restrictions that must be

 117

placed upon the step lengths. For example, Morton and Mayers (2008) show that if the time

domain is removed from the two-dimensional heat equation above, the explicit finite

difference solution is accurate provided that 0.25x  and 0.25y  . However, the

disadvantages of Laplace transform based algorithms are that additional computational effort

is required to find the inverse Laplace transforms and that Laplace transform inversion is

itself, ill-posed.

Parallel, Laplace transform based algorithms for solving two-dimensional, linear

Black-Scholes equations have been developed previously. For example, Lee and Sheen

(2009) describe an algorithm in which Laplace transform/contour integral methods are used

to decompose an equation of this type into an equivalent system of elliptic PDEs. These

equations are independent and can therefore be solved on separate processors. However, their

algorithm is complicated and is unlikely to be competitive with the LTFD algorithm

described here. Furthermore, the authors have not shown how their algorithm can be used for

solving two-dimensional, nonlinear Black-Scholes equations i.e. those involving transaction

costs.

8.2 The Algorithm

The forward, two-dimensional, linear Black-Scholes equation is :

2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

 ---- (26)

Subject to the initial condition :

    1 2 1 2, ,0 max max , ,0V S S S S E  ---- (27)

and the boundary conditions :

 1 1,0,V S Vs  ---- (28)  2 20, ,V S Vs  ---- (29)

 1 2 1, ,V S S S  as 1S  ---- (30)  1 2 2, ,V S S S  as 2S  ---- (31)

To solve this equation using the Laplace transform-finite difference algorithm :

● take Laplace transforms with respect to  . Equation (26) then becomes :

2 2 2

2 2 2 2

0,0 1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 21 2

1 1
0

2 2

V V V V V
V V S S S S rS rS rV

S S S SS S
     

    
        

    

 118

i.e.
2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 21 2

1 1
0

2 2

V V V V V
V S S S S rS rS rV

S S S SS S
     

    
       

    

89

---- (68)

 The initial condition (27) becomes :

  1 2

1 2, ,0 max max , ,0
S S E

V S S
  

  
   

  

 and the boundary conditions (28), (29), (30) and (31) become :

 1 1,0,V S Vs   2 20, ,V S Vs 

  1

1 2, ,
S

V S S 


 as 1S    2

1 2, ,
S

V S S 


 as 2S 

 where  is the transform variable and
1Vs  and

2Vs  are the Laplace transforms of the

 solutions of the one-dimensional, linear Black-Scholes equation (10) written on the first

 and second assets respectively. See Chapter 2 for further details. The easiest way to find

 these values is to use the Laplace transform of the analytical solution i.e. expression (44)

● create and initialise the solution domain in Laplace space. For a particular value of  ,

 the initial solution domain for equation (68) is :

Figure 8.1 The Initial Solution Domain in Laplace Space for the Two-Dimensional, Linear

Black-Scholes Equation

89

 Since 0,0 0V  .

1S
V




2S
V




1S

2S

1V Vs 

2V Vs 

1

1

2

S
Vs

V







1 2

2

S S

V  




0V 

2
2

2

S
Vs

V








  1 2

1 2, ,0 max max , ,0
S S E

V S S
  

  
   

  

 119

● use finite difference methods to calculate the internal V values

 In Chapter 6 it was shown that the most computationally efficient finite difference

 method for solving the one-dimensional, linear Black-Scholes equation (10) is the explicit

 method. This procedure will also be used in the two-dimensional case. In this method first

 partial derivatives are replaced with forward difference approximations and second partial

 derivatives are replaced with central difference approximations. Hence, if h is the step

 length in the 1S and 2S directions then :

1, ,

1

i j i jV VV

S h

 




, 1 ,

2

i j i jV VV

S h

 




2

1, , 1,

2 2

1

2i j i j i jV V VV

S h

  




2
, 1 , , 1

2 2

2

2i j i j i jV V VV

S h

  




 Smith (2004) also shows that the mixed partial derivative can be approximated as :

2

1, 1 1, 1 1, 1 1, 1

2

1 2 4

i j i j i j i jV V V VV

S S h

         


 

 Substituting these approximations into equation (68) :

1, , 1, , 1 , , 12 2 2 2

1 1 2 22 2

2 21 1

2 2

i j i j i j i j i j i jV V V V V V
V S S

h h
  

   
      

         
   

1, 1 1, 1 1, 1 1, 1

1 2 12 1 2 24

i j i j i j i jV V V V
S S

h
  

       
   

  
 

1, , , 1 ,

1 2 0
i j i j i j i jV V V V

rS rS rV
h h

 
    

        
   

 ---- (69)

 One way of calculating the internal V values is to use expression (69) to form a system

 of linear equations and to solve this system using an appropriate numerical method. In the

 case where 12 0  , the matrix of coefficients in the system of equations is tridiagonal

 and the system can be solved efficiently using the Thomas algorithm. However, this

 approach has two major disadvantages. Firstly, it requires the solution domain to be

 square, which is not always the case, and secondly, if 12 0  , the tridiagonal structure is

 lost and the system of equations becomes more difficult and time-consuming to solve. To

 overcome these problems the approach used by authors such as Horak and Gruber (2002)

 120

 can be used. When solving two-dimensional diffusion equations of this type they use an

 iterative procedure, similar to the Jacobi method for solving systems of linear equations,

 to calculate the values of the dependent variables i.e. a procedure in which the new values

 of these variables are calculated using their values at the previous iteration.

 Rearranging expression (69) the required iterative formula in this case becomes :

 

   
, 1, 1 1, , 1 , 1

1

2 2i j i j i j i i j i jnew old old old oldV cV a d V cV b e V
a b d e r      

      
     

 
, 1 1, 1 1, 1, 1i j i j i j i jold old old oldbV cV aV cV
     

    ---- (70)

 i.e.  new oldV f V where :

2 2

1 1

22

S
a

h


 ,

2 2

2 2

22

S
b

h


 , 1 2 12 1 2

24

S S
c

h

  
 , 1rS

d
h

 and 2rS
e

h


 The iterative formula (70) is applied until the accuracy criterion :

  
  

, ,

, ,

max abs

max abs

i j i j

i j i j

new old

new old

V V

V V







 is satisfied. Here, i and j increment the values of 1S and 2S and  is a small positive

 number

● find the inverse Laplace transforms of the V values to give the option values.

 If the inverse Laplace transforms are found using a numerical inversion algorithm, the

 solution domain in Laplace space will be three-dimensional i.e. initially, there will be a

 grid i.e. rank in the form of Figure 8.1 for each value of the transform variable. For

 example, using Stehfest’s method with 6m  this solution domain will have the form :

 121

Figure 8.2 The Decomposed Solution Domain in Laplace Space for Two-Dimensional

Black-Scholes Equations

 The option values are found by applying the numerical inversion algorithm to the

 corresponding V values in each rank. Using the example in Figure 8.2 above, this

 operation can be visualised as follows :

Figure 8.3 Calculating the Option Values in the Two-Dimensional LTFD Algorithm

1S

2S

1

2

3

4

5

6

1 2
3 4 5 6

Stehfest’s Method

The Solution Domain in Laplace Space (Side View)

Option Value

 122

8.3 The Sequential LTFD Algorithm

In the sequential LTFD algorithm the ranks within the solution domain are processed in

order. Once the final rank has been solved in Laplace space, the numerical inversion

algorithm is used to calculate the option values. Finally, the sequential algorithm reads in the

reference solution, calculates the NRMSD value and then calculates and stores the program

wall time.

8.4 The Parallel LTFD Algorithm

In the parallel LTFD algorithm each slave processor is responsible for processing one rank

within the solution domain. Each rank is then passed back to the master processor. Once all

ranks have been received, the master processor uses the numerical inversion algorithm to

calculate the option values and then calculates and stores the speed and accuracy data.

8.5 Calculating the Reference Solution

No analytical solutions are available for solving two-dimensional Black-Scholes equations.

To calculate the accurate reference solutions required for calculating the NRMSD in the two-

dimensional case Monte Carlo algorithms must be used.

8.5.1 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear Black-Scholes

 Equations

Suppose that the basket option contains d underling assets. Then, the future value of the ith

underlying asset is given by the stochastic differential equation :

 ,i i i i idS rS d S dW     ---- (71)

where r is the risk-free interest rate, iS is the current value of the ith underlying asset, is the

time to expiry, i is the volatility of the ith underlying asset and  iW  is a Brownian

motion. The solution of equation (71) is :

 2

,

1
exp

2
i i i i iS S r W    

  
    

  
 ---- (72)

In the multi-dimensional case it is assumed that the future value of the basket option depends

upon the average of the future values of the underlying assets i.e.

,

1

1
d

j

j

S
d





 90

90

 If some underlying assets have more influence on the future value of the option than others, a weighted

 average of the future values is used.

 123

The payoff of a basket option at the expiry time is :

,

1

1
max ,0

d

j

j

S E
d




 
 

 
 ---- (73)

where E is the exercise price. The seller of the option will wish to know the current value of

the option. This can be calculated by pre-multiplying expression (73) by the discount

factor re  . Hence, the current value of the basket option V is :

,

1

1
max ,0

d
r

j

j

V e S E
d









 
  

 
 ---- (74)

The problem in the multi-dimensional case is that the values of  i i ix W  in expression

(71) are correlated i.e.

 E i j ijx x 

where ij is the correlation coefficient between the ith and jth underlying assets. To calculate

the option values in this case correlated standard normal values must be used. To find these

values :

● decompose the correlation matrix into a product :

TMM

 where M is a lower triangular matrix

● let y be a column vector containing d uncorrelated standard normal random variables iZ

● let  be a column vector defined as My  .

Then, the vector  contains the correlated standard normal random variables required.

Proof

     E E ET T T T T T TMy y M M y y M MIM MM     

Glasserman (2003).

Using the vector  the future value of the ith underlying asset is given by :

2

,

1
exp

2
i i i iS S r   

  
    

  
 ----(75)

The decomposition of the correlation matrix is non-unique. The most commonly used method

 124

is to decompose  into its Cholesky factors i.e. to write :

TLL

Expressions (74) and (75) form the basis of the Monte Carlo algorithm. Given a mechanism

for generating correlated standard normal random variables
i , expressions (74) and (75) can

be used to produce sample values of V that can then be averaged to give an estimate of the

current value of the basket option. More formally, the algorithm can be written as :

 decompose TLL

 loop i = 1 to n

 loop j=1 to d

 generate j jy Z
91

 end loop

 Ly 

 loop k=1 to d

 2

,

1
exp

2
k k k kS S r   

  
    

  

 end loop

 ,

1

1
max ,0

d
r

i j

j

V e S E
d









 
  

 


 end loop

 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
  

Figure 8.4 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear Black-Scholes Equations
92

Glasserman (2003) shows that by the strong law of large numbers
93

, the estimator V̂ is

unbiased i.e.  ˆE V V and strongly consistent i.e. as n , V̂ V with a probability of

one.

91

 The jZ values can be generated in the same way as the standard normal random values in the

 one- dimensional Monte Carlo algorithm.
92

 This algorithm was developed by Wilmot et al. (1999) and Glasserman (2003).
93

 The average of the results obtained from a large number of trials will become closer to the expected value

 as the number of trials increases.

 125

8.6 Solving Two-Dimensional, Linear Black-Scholes Equations

8.6.1 Parameter Values

The parameter values used in the Black-Scholes equation (26) are :

Parameter Values

1 2,S S 0.0(0.1)20.0

E 1.0

r 0.05

1 2,  0.25

12 0.1

 1.0

Table 8.1 Parameter Values Used in the Two-Dimensional, Linear Black-Scholes Equation

8.6.2 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

algorithms for solving the two-dimensional, linear Black-Scholes equation (26) and use it

to compare their relative performances.

8.6.3 Preliminary Notes

The linear equation is solved to demonstrate the potential of the LTFD approach and also

because some nonlinear, two-dimensional Black-Scholes equations become linear under the

financial assumptions described in 2.3.2 and 2.3.3.

8.6.4 Performance Data

The graphs and tables below provide a summary of the data collected. Once again, the graphs

show visually, the relative performances of the numerical inversion algorithms. As before,

only the graphs showing the minimum wall times are included. Detailed results are given in

Appendix E.

 126

8.6.4.1 Sequential Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.5 Normalised Root Mean Square Deviation, Sequential Programs
94

Minimum Wall Times (s)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.6 Minimum Wall Times, Sequential Programs

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : SLP 26 0.06469810112

Minimum Wall Time (s) : Stehfest 6 20.80843711000

Table 8.2 Optimal Sequential Programs Data

94

 The NRMSD values for all of the numerical inversion algorithms follow oscillating trends.

 127

8.6.4.2 Parallel Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.7 Normalised Root Mean Square Deviation, Parallel Programs
95

Minimum Wall Times (s)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.8 Minimum Wall Times, Parallel Programs

Parallel/Sequential Speed Up

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.9 Parallel/Sequential Speed Up

95

 The NRMSD values for the Laguerre polynomial method follow an upward trend. The NRMSD values for

 the other numerical inversion algorithms follow oscillating trends.

 128

Parallel/Sequential Speed Up Per Processor

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 8.10 Parallel/Sequential Speed Up Per Processor

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : SLP 26 (27) 0.06469810112

Minimum Wall Time (s) : Stehfest 6 (7) 6.85409307500

Parallel/Sequential Speed Up : Laguerre 26 (27) 14.40714439882

Parallel/Sequential Speed Up/Processor : Laguerre 18 (19) 0.60357633598

 Table 8.3 Optimal Parallel Programs Data

8.6.5 Conclusions

Tables 8.2 and 8.3 above give the optimal number of weights/terms and processors to use

in/with the LTFD algorithms when they are used to solve the two-dimensional, linear

Black-Scholes equation (26).

It can be seen from the data collected that :

● the parallel programs are as accurate as the corresponding sequential programs but faster

● overall, the solutions obtained are not as accurate as those obtained in the one-

 dimensional case, particularly when the inverse Laplace transforms are found using the

 Laguerre polynomial method. However, the solutions are still sufficiently accurate for

 their purpose. See 11.1. More work is needed to determine the reason for the reduced

 accuracy in the two-dimensional case and establish what can be done to improve it. This

 is left for future work. See 11.2.

● as the number of weights/terms used in the numerical inversion algorithm increases

 the measures of speed and accuracy used oscillate, sometimes with an upward trend

 and sometimes with a downward trend. The likely reasons for this behaviour is explained

 in Chapter 10.

 129

8.7 Chapter Summary

The two-dimensional, Laplace transform-finite difference algorithms can accurately and

quickly solve two-dimensional, linear Black-Scholes equations. Chapter 9 will determine

whether these algorithms will be equally successful when they are used to solve nonlinear

Black-Scholes equations of this type.

8.8 Contribution to Knowledge

This chapter has :

● explained how Monte Carlo methods can be used for calculating accurate reference

 solutions of two-dimensional, linear Black-Scholes equations

● developed and evaluated sequential and parallel, Laplace transform-finite difference

 algorithms for solving two-dimensional, linear Black-Scholes equations and shown that

 these algorithms produce fast and sufficiently accurate solutions
96

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi

 polynomial method and the Laguerre polynomial method when these methods are used to

 invert the Laplace transforms arising in the LTFD algorithms

● determined the optimal number of weights/terms and processors to use with each of

 the numerical inversion algorithms when they are used in the LTFD algorithms

● established the advantages of using the LTFD algorithm for solving two-dimensional

 linear Black-Scholes equations.

96

 See 11.1

 130

Chapter 9

Solving Two-Dimensional, Nonlinear Black-Scholes

Equations

9.0 Introduction

Two-dimensional, nonlinear Black-Scholes equations are more difficult to solve than linear

equations of this type. However, this chapter will show that even problems of this complexity

can be solved using the Laplace transform-finite difference approach.

9.1 Practical Difficulties When Solving the Nonlinear Form

The problems encountered when solving two-dimensional, nonlinear Black-Scholes

equations are the same as those encountered in the one-dimensional case i.e. dealing with the

nonlinear modified volatility terms and calculating accurate reference solutions. Both

problems can be dealt with in the same way as before i.e. by incorporating a linearisation

technique into the basic algorithms described in Chapter 8 and by using a Monte Carlo

algorithm. In Chapter 7 it was shown that the simplest linearisation technique is direct

iteration. This technique is also used in the two-dimensional case. Please see 7.2.1.1 and

7.2.1.4 for a description of this method and its termination. Please see 7.2.1.6 for details of

the relationship between the accuracy of the option values and the accuracy of the volatility

forecasts. Using direct iteration in the two-dimensional case :

● the LTFD algorithm for solving the nonlinear equation (33) becomes :

 initialise 1 and 2

 repeat

 use the 2-d linear LTFD algorithm to calculate the V values

 use the V values to recalculate 1 and 2

 until
  
  

(1) ()

(1) ()

max abs

max abs

r r

r r

V V

V V











Figure 9.1 The Laplace Transform-Finite Difference Algorithm for Solving Two-Dimensional,

Nonlinear Black-Scholes Equations

 131

Here, ()rV denotes the value of V at the rth iteration and  is a small positive number

● the proposed Monte Carlo algorithm for calculating the reference solutions is :

 decompose TLL

 initialise
1 and

2

 repeat

 loop i = 1 to n

 loop j=1 to d

 generate j jy Z

 end loop

 Ly 

 loop k=1 to d

 2

,

1
exp

2
k k k kS S r   

  
    

  

 end loop

 ,

1

1
max ,0

d
r

i j

j

V e S E
d









 
  

 


 end loop

 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
  

 recalculate 1 and 2

 until
  
  

(1) ()

(1) ()

ˆ ˆmax abs

ˆ ˆmax abs

r r

r r

V V

V V











Figure 9.2 A Monte Carlo Algorithm for Solving Two-Dimensional, Nonlinear Black-Scholes Equations

97

Here 1 and 2 are the modified volatilities, ()ˆ rV denotes the value of V̂ at the rth iteration

and  is a small positive number.

97

 This algorithm was invented by the author i.e. is a contribution to knowledge. It is based upon the algorithm

 for solving two-dimensional, linear Black-Scholes equations developed by Wilmot et al. (1999) and

 Glasserman (2003).

 132

9.2 Solving Two-Dimensional, Nonlinear Black-Scholes Equations

9.2.1 Parameter Values

The parameter values used in the Black-Scholes equation (33) are :

Parameter Values

1 2,S S 0.0(0.1)5.0
98

E 1.0

r 0.05

12 0.1

 1.0

Table 9.1 Parameter Values Used in the Two-Dimensional, Nonlinear Black-Scholes Equation

The parameter values used in the modified volatility models are the same as those given in

Table 7.1. For a European call option the modified volatilities proposed by Leland and Boyle

and Vorst become constants. The data for these functions is therefore collected using the

LTFD program for the two-dimensional, linear Black-Scholes equation (26) and the

parameter values given in Table 8.1.

9.2.2 Aim

The aim of this investigation is to collect speed and accuracy data for sequential and parallel

algorithms for solving two-dimensional, nonlinear Black-Scholes equations and use it to

compare their relative performances.

9.2.3 Preliminary Notes

● the gamma term in the Barles and Soner and Risk Adjusted Pricing Methodology

 modified volatility models is calculated using the finite difference approximation given

 in 7.4.3

● the reference solutions used to determine the NRMSD values for the nonlinear Black-

 Scholes equations are calculated using the Monte Carlo algorithm given in Figure 9.2.

9.2.4 Performance Data

The graphs and tables below provide a summary of the data collected. Once again, the

graphs show visually, the relative performances of the numerical inversion algorithms. As

before, only the graphs showing the minimum wall times are included. Detailed results are

given in Appendix F.

98

 As in the one-dimensional case, the S-range is reduced for the nonlinear modified volatility models because

 of the slow speed of the Monte Carlo algorithm for calculating the reference solutions.

 133

9.2.4.1 Modified Volatility Model : Simulated Modified Volatility
99

9.2.4.1.1 Sequential Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.3 Normalised Root Mean Square Deviation, Sequential Programs (Simulated Modified Volatility)
100

Minimum Wall Times (s)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.4 Minimum Wall Times, Sequential Programs (Simulated Modified Volatility)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02772967769

Minimum Wall Time (s) : Stehfest 8 4.55571794500

Table 9.2 Optimal Sequential Programs Data (Simulated Modified Volatility)

99

 See Lai et al. (2005).
100

 The NRMSD values for all methods follow oscillating trends.

 134

9.2.4.1.2 Parallel Programs Data

NRMSD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.5 Normalised Root Mean Square Deviation, Parallel Programs (Simulated Modified Volatility)
101

Minimum Wall Times (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.6 Minimum Wall Times, Parallel Programs (Simulated Modified Volatility)

Parallel/Sequential Speed Up

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.7 Parallel/Sequential Speed Up (Simulated Modified Volatility)

101

 The NRMSD values for all methods follow oscillating trends.

 135

Parallel/Sequential Speed Up Per Processor

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.8 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02772967769

Minimum Wall Time (s) : Stehfest 12 (13) 1.28097391100

Parallel/Sequential Speed Up : Laguerre 26 (27) 20.15634733328

Parallel/Sequential Speed Up/Processor : Laguerre 20 (21) 0.81481848339

 Table 9.3 Optimal Parallel Programs Data (Simulated Modified Volatility)

9.2.4.2 Modified Volatility Model : Leland

9.2.4.2.1 Sequential Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.9 Normalised Root Mean Square Deviation, Sequential Programs (Leland)
102

102

 The NRMSD values for all methods follow oscillating trends.

 136

Minimum Wall Times (s)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.10 Minimum Wall Times, Sequential Programs (Leland)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.10201155790

Minimum Wall Time (s) : Stehfest 6 17.76280676000

Table 9.4 Optimal Sequential Programs Data (Leland)

9.2.4.2.2 Parallel Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.11 Normalised Root Mean Square Deviation, Parallel Programs (Leland)

 137

Minimum Wall Times (s)

4.0

8.0

12.0

16.0

20.0

24.0

28.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.12 Minimum Wall Times, Parallel Programs (Leland)

Parallel/Sequential Speed Up

2.0

4.0

6.0

8.0

10.0

12.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.13 Parallel/Sequential Speed Up (Leland)

Parallel/Sequential Speed Up Per Processor

0.2

0.3

0.4

0.5

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.14 Parallel/Sequential Speed Up Per Processor (Leland)

 138

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Stehfest 6 (7) 0.10201155790

Minimum Wall Time (s) : Stehfest 6 (7) 5.85089260600

Parallel/Sequential Speed Up : Laguerre 22 (23) 10.78343361760

Parallel/Sequential Speed Up/Processor : Laguerre 20 (21) 0.47000707041

 Table 9.5 Optimal Parallel Programs Data (Leland)

9.2.4.3 Modified Volatility Model : Boyle and Vorst

9.2.4.3.1 Sequential Programs Data

NRMSD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.15 Normalised Root Mean Square Deviation, Sequential Programs (Boyle and Vorst)
103

Minimum Wall Times (s)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.16 Minimum Wall Times, Sequential Programs (Boyle and Vorst)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 26 0.09513891832

Minimum Wall Time (s) : Stehfest 6 18.27469492000

Table 9.6 Optimal Sequential Programs Data (Boyle and Vorst)

103

 The NRMSD values for the Laguerre polynomial method follow an almost constant trend.

 139

9.2.4.3.2 Parallel Programs Data

NRMSD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.17 Normalised Root Mean Square Deviation, Parallel Programs (Boyle and Vorst)

Minimum Wall Times (s)

5.0

10.0

15.0

20.0

25.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.18 Minimum Wall Times, Parallel Programs (Boyle and Vorst)

Parallel/Sequential Speed Up

2.0

4.0

6.0

8.0

10.0

12.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.19 Parallel/Sequential Speed Up (Boyle and Vorst)

 140

Parallel/Sequential Speed Up Per Processor

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.20 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 26 (27) 0.09513891832

Minimum Wall Time (s) : Stehfest 6 (7) 5.83855523400

Parallel/Sequential Speed Up : Laguerre 26 (27) 11.56211680346

Parallel/Sequential Speed Up/Processor : Laguerre 10 (11) 0.50765187507

Table 9.7 Optimal Parallel Programs Data (Boyle and Vorst)

9.2.4.4 Modified Volatility Model : Barles and Soner

9.2.4.4.1 Sequential Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.21 Normalised Root Mean Square Deviation, Sequential Programs (Barles and Soner)
104

104

 The NRMSD values for the Laguerre polynomial method follow a slight oscillating trend.

 141

Minimum Wall Times (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.22 Minimum Wall Times, Sequential Programs (Barles and Soner)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02922910136

Minimum Wall Time (s) : Stehfest 6 0.88142395020

Table 9.8 Optimal Sequential Programs Data (Barles and Soner)

9.2.4.4.2 Parallel Programs Data

NRMSD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.23 Normalised Root Mean Square Deviation, Parallel Programs (Barles and Soner)

 142

Minimum Wall Times (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.24 Minimum Wall Times, Parallel Programs (Barles and Soner)

Parallel/Sequential Speed Up

4.4

4.8

5.2

5.6

6.0

6.4

6.8

7.2

7.6

8.0

8.4

8.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.25 Parallel/Sequential Speed Up (Barles and Soner)

Parallel/Sequential Speed Up Per Processor

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.26 Parallel/Sequential Speed Up Per Processor (Barles and Soner)

 143

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02922910136

Minimum Wall Time (s) : Stehfest 6 (7) 0.12844991680

Parallel/Sequential Speed Up : SLP 8 (9) 8.43622492843

Parallel/Sequential Speed Up/Processor : Laguerre 6 (7) 1.07483109645

Table 9.9 Optimal Parallel Programs Data (Barles and Soner)

9.2.4.5 Modified Volatility Model : Risk Adjusted Pricing Methodology

9.2.4.5.1 Sequential Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.27 Normalised Root Mean Square Deviation, Sequential Programs (RAPM)
105

Minimum Wall Times (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.28 Minimum Wall Times, Sequential Programs (RAPM)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02922910136

Minimum Wall Time (s) : Stehfest 6 0.83622002600

Table 9.10 Optimal Sequential Programs Data (RAPM)

105

 The NRMSD values for all methods follow oscillating trends.

 144

9.2.4.5.2 Parallel Programs Data

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.29 Normalised Root Mean Square Deviation, Parallel Programs (RAPM)
106

Minimum Wall Times (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.30 Minimum Wall Times, Parallel Programs (RAPM)

Parallel/Sequential Speed Up

5.0

6.0

7.0

8.0

9.0

10.0

11.0

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.31 Parallel/Sequential Speed Up (RAPM)

106

 The NRMSD values for all methods follow oscillating trends.

 145

Parallel/Sequential Speed Up Per Processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

Figure 9.32 Parallel/Sequential Speed Up Per Processor (RAPM)

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02922910136

Minimum Wall Time (s) : Stehfest 6 (7) 0.09848403931

Parallel/Sequential Speed Up : Laguerre 10 (11) 10.90384985034

Parallel/Sequential Speed Up/Processor : Jacobi 6 (7) 1.24914529301

 Table 9.11 Optimal Parallel Programs Data (RAPM)

9.2.5 Conclusions

Tables 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 and 9.11 above give the optimal number of

weights/terms and processors to use in/with sequential and parallel programs for solving

two-dimensional, nonlinear Black-Scholes equations containing the modified volatility

models proposed by Lai et al., Leland, Boyle and Vorst, Barles and Soner and Kratka (i.e. the

Risk Adjusted Pricing Methodology model).

It can be seen from the graphs and tables in this chapter that :

● as in the two-dimensional, linear case the solutions obtained are not as accurate as those

 obtained in the one-dimensional case, particularly when the inverse Laplace transforms

 are found using the Laguerre polynomial method. The likely reasons for this are

 explained in 8.6.5

● the parallel programs are as accurate as the corresponding sequential programs but faster

 146

● as seen in previous investigations, the Laguerre polynomial method only features in the

 parallel/sequential speed up categories because it is significantly slower than the other

 numerical inversion algorithms tested.

9.3 Chapter Summary

This chapter has shown that the Laplace transform-finite difference algorithm can be used to

solve two-dimensional, nonlinear Black-Scholes equations. The investigative chapters of this

dissertation have identified consistent patterns of behaviour within the numerical solutions.

Chapter 10 identifies these patterns and explains how they are related to the number of

weights/terms used in the numerical inversion algorithms and the number of processors used

with the parallel Laplace transform based algorithms.

9.4 Contribution to Knowledge

This chapter has :

● explained how Monte Carlo methods can be used for calculating accurate reference

 solutions of two-dimensional, nonlinear Black-Scholes equations

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for

 solving two-dimensional, nonlinear Black-Scholes equations and shown that this

 algorithm produces fast and sufficiently accurate solutions
107

● used the LTFD algorithm for solving two-dimensional nonlinear Black-Scholes equations

 containing the modified volatility models proposed by Lai et al., Leland, Boyle and

 Vorst, Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing Methodology model)

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi

 polynomial method and the Laguerre polynomial method when these methods are used to

 invert the Laplace transforms arising in the LTFD algorithm

● determined the optimal number of weights/terms and processors to use with each of

 the numerical inversion algorithms when they are used in the LTFD algorithm

● established the advantages of using the LTFD algorithm for solving two-dimensional

 nonlinear Black-Scholes equations.

107

 See 11.1

 147

Chapter 10

Program Performance

10.0 Introduction

In the investigative chapters of this dissertation a significant amount of performance data was

collected for the Laplace transform based algorithms for solving one-dimensional and two-

dimensional, linear and nonlinear Black-Scholes equations. It was seen from this data that the

execution speeds and accuracies of the algorithms were related to the number of weights/

terms used in the numerical inversion algorithms and the number of processors used on the

cluster. This chapter attempts to explain this behaviour.

10.1 The Effects of the Number of Weights/Terms Used

10.1.1 On Execution Speeds and Parallel/Sequential Speed Ups

Increasing the number of weights/terms used in a numerical inversion algorithm increases the

number of calculations that must be performed. This in turn, increases the execution time of

the procedure. The size of the increase depends upon the computational intensity of the

algorithm. The computational intensity of a numerical inversion algorithm depends upon :

● the nature of the calculations that must be performed. All four algorithms require the

 calculation of recursive coefficients/weights. However, the Laguerre polynomial method

 requires significantly more calculations of this type than the Jacobi polynomial method.

 This method in turn, requires significantly more recursive calculations than the SLP

 method and Stehfest's method. Although the recursive coefficients/weights are calculated

 (and broadcast) at the beginning of each program, recursive calculations are notoriously

 slow compared with iterative calculations, even on modern computer systems. This is due

 to the need to maintain the stack i.e. the need to push intermediate values onto the stack

 and then pop these values from the stack as the recursion unwinds
108

, (Lantzman 2007)

● the frequency with which those calculations must be performed.

108

 Lantzman (2007) compares the speeds (in clock ticks) of iterative and recursive implementations of a

 number of standard algorithms. He shows that the recursive implementations are between 3 and 30 times

 slower than their iterative counterparts.

 148

 Consider the one-dimensional case. In the Laguerre polynomial method the coefficients

 ka must be calculated for each value of S and the polynomials kL must be calculated for

 each value of  . In the Jacobi polynomial method the coefficients
nc must be calculated

 for each value of S and the polynomials
   0,

2 1nP e
   must be calculated for each

 value of  . In the SLP method the coefficients kC must be calculated for each value of S

 and the polynomials  kP z must be calculated for each value of  . However, in

 Stehfest's method no additional coefficients, polynomials or weights need to be calculated

 for each value of S and  . In the two-dimensional case the frequencies are exactly the

 same. Here, the corresponding calculations must be performed for each pair of 1S and 2S

 values and for each value of  .

Hence, in ascending order of computational intensity, the four numerical inversion algorithms

can be ranked as Stehfest’s method, the SLP method, the Jacobi polynomial method and the

Laguerre polynomial method. This order corresponds with the minimum program wall time

data shown on the graphs within this dissertation.

The relationship between the number of weights/terms used and the parallel/sequential speed

up obtained is less clear. For example, Figure 5.4 and Figure 5.16 show that when the

numerical inversion algorithms are used to invert the Laplace transform of the analytical

solution of the one-dimensional, linear Black-Scholes equation (10) and the Laplace

transforms arising in the finite difference solution of the ODE BVP form of this equation, the

parallel/sequential speed up values oscillate as the number of weights/terms used increases.

However, Figure 8.9 shows that in the two-dimensional linear case, the parallel/sequential

speed up values increase monotonically as the number of weights/terms used increases.

10.1.2 On Accuracies

Increasing the number of weights/terms should increase the accuracy of the solution.

However, as stated above, increasing the number of weights/terms increases the number of

calculations that must be performed i.e. increases the rounding errors in the solution. Hence,

for each numerical inversion algorithm there is an optimal number of weights/terms i.e. a

number beyond which the inaccuracy lost due to rounding errors (and the ill-posed nature of

numerical Laplace transform inversion) exceeds the accuracy gained by increasing the

number of weights/terms. This behaviour can be seen in the Optimal Parallel Program Data

tables included in this dissertation.

 149

10.2 The Effects of the Number of Processors Used

10.2.1 On Execution Speeds and Parallel/Sequential Speed Ups

Before any performance data was collected it was reasonable to assume that the minimum

program wall time in both the one-dimensional and the two-dimensional cases would be

obtained when the number of processors used was the maximum number available. However,

in reality this was not the case. The tables giving the optimal parallel programs data show that

the minimum program wall time was usually obtained when the number of processors used

was significantly lower than this maximum number. The likely reason for this is that beyond

a certain number of processors, the communication overhead, that is, the time required to

manage the parallel tasks, starts to increase the execution time. Barney (2010) states that the

factors contributing to the communication overhead are :

● task start-up times

● task termination times

● the software overhead imposed by parallel compilers, libraries, operating systems, etc.

● inter-task communication times i.e.

 ● the times taken to send and receive data

 ● synchronisations between tasks such as those associated with blocking

 communications. These can result in tasks waiting instead of doing useful work

 ● lack of network bandwidth. This can result in tasks waiting until the required

 communication resources become available.

Naturally, as the execution time of a parallel program increases, the parallel/sequential speed

up obtained decreases.

10.2.2 On Accuracies

By looking at the graphs showing the normalised root mean square deviation values in both

the one-dimensional and the two-dimensional cases it can be seen that beyond a certain

number of processors, the accuracy of the numerical solutions usually decreases. More work

is needed to establish the reason for this behaviour and determine what can be done to correct

it. This is left for future work. See 11.2.

 150

10.3 Chapter Summary

The explanations given in this chapter are correct in theory and explain the behaviour shown

on/in the graphs and tables summarising the performance data in both the one-dimensional

and the two dimensional cases. While the relative execution speeds of the numerical

inversion algorithms was consistent in all investigations completed, the algorithms took turns

at giving the most accurate results. This confirms the assertion made by Davies and Martin in

their 1979 review paper that "there is no single best numerical inversion algorithm". The

final chapter of this dissertation will give the overall contribution to knowledge made by this

research programme and to explain how it can be extended further.

10.4 Contribution to Knowledge

This chapter has provided detailed explanations of how the performances of the sequential

and parallel programs used to solve one-dimensional and two-dimensional Black-Scholes

equations are effected by the number of weights/terms used in the numerical inversion

algorithms by the number of processors used on the cluster.

 151

Chapter 11

Conclusions and Future Work

11.0 Introduction

The final chapter of this dissertation gives the overall contribution to knowledge made by this

research programme and explains how those interested can extend it further.

11.1 Overall Contribution to Knowledge

This research programme has achieved the aims given in Chapter 1 i.e. it has :

● developed and evaluated sequential finite difference algorithms and sequential and

 parallel Laplace transform based algorithms for solving one-dimensional and two-

 dimensional, linear and nonlinear diffusion equations. In particular, Black-Scholes

 equations of these types

● determined the optimal numerical inversion algorithms to use in the Laplace transform

 based algorithms for solving these equations and the optimal number of weights/terms

 and processors to use in each case

● provided the evidence to support my thesis i.e. shown that Laplace transform based

 algorithms produce fast and accurate solutions of the Black-Scholes equations mentioned

 above. In financial markets the solutions of Black-Scholes equations are used by traders

 as guide prices for the values of financial options. Even the least accurate solutions

 produced by the Laplace transform based algorithms e.g. those produced using the

 Laguerre polynomial method in the two-dimensional case, are adequate for this purpose.

11.2 Future Work

Those wishing to extend this research programme could :

● investigate the performance of the Laplace transform based algorithms when they are

 used to solve Black-Scholes equations in which the volatility is modelled by a stochastic

 process

● perform an error analysis of the numerical inversion algorithms. One way to do this is to

 use rounded interval arithmetic. This is an accepted and widely used error bounding

 method that has been in use since the early 1960's, (Moore et al. 2009). In this method

 152

 numerical values are stored as intervals and rules are available for adding, subtracting,

 multiplying and dividing intervals. Whenever an upper/lower end point of an interval

 does not have an exact binary representation (i.e. is not an integral power of 2), it is

 rounded up/down to the nearest representable value. A common rounding system is to

 add/subtract a small constant to/from the end point called the unit-in-the-last-place,

 (Abrams et al. 1998). Computer programs implementing the numerical inversion

 algorithms in this way could be used to :

 ● obtain error bounds on the inverse Laplace transform values calculated

 ● identify the types of problems for which numerical Laplace transform inversion is

 ill-posed

 ● determine where the ill-posedness occurs in the inversion process

 ● investigate how or if the ill-posedness can be controlled

● Validate the accuracy of the solutions obtained using the Laplace transform based

 algorithms using corresponding algorithms based on the use of Fourier and Fast Fourier

 transforms

● Investigate and evaluate other linearisation techniques. Possible methods are exact

 linearisation, direct linearisation, Newton's method, Picard iteration and explicit time

 integration

● Investigate methods for accelerating the convergence of linearisation techniques.

 Possible methods are Richardson extrapolation, the Aitken delta-squared process,

 Wynn's epsilon algorithm, the Levin u-transform and the Wilf-Zeilberger-Ekhad method

● Determine the reason for the reduced accuracy in the two-dimensional case and establish

 what can be done to improve it

● Establish why the accuracy of a parallel numerical solution usually decreases as the

 number of processors used increases and determine what can be done to correct this

 behaviour

● Investigate whether Automatic Differentiation can be used for obtaining highly accurate

 solutions of option pricing problems such as those described in this dissertation. Solutions

 of this kind may be required for calculating the ‘Greeks’.

 153

11.3 Chapter Summary

This chapter has shown that this research programme has made significant contributions to

knowledge and that there is scope for it to be extended further. Most importantly for me, it

has shown that my thesis, stated in Chapter1, is correct and I can now return to looking out of

the window and watching other boys playing football ! Having had tea with Mrs Catherall

recently I know that I can now do this with her permission.

 154

References

Abate, J. and Whitt, W., 2006. A Unified Framework for Numerically Inverting Laplace

Transforms. INFORMS Journal on Computing, 18(4), pp.408-421.

Abraham, S., 2010. The History of Options Contracts.

Available at :

<http://www.investopedia.com/articles/optioninvestor/10/history-options-futures.asp>

[Accessed 29th May 2013]

Abrams, S.L., Cho, W., Hu, C.-Y., Maekawa, X.Y. and Patrikalakis, N.M., 1998. Efficient

and Reliable Methods for Rounded Interval Arithmetic. Computer-Aided Design, 30(8),

pp.657-665.

Abramowitz, M. and Stegum, T.,1972. Handbook of Mathematical Functions With Formulas,

Graphs, and Mathematical Tables.

Available at : <http://www.math.ucla.edu/~cbm/aands/page_775.htm>

[Accessed 26th November 2010]

Ankudinova, J. and Ehrhardt, M., 2008. On the Numerical Solution of Nonlinear Black-

Scholes Equations. Computers and Mathematics with Applications, 56(3), pp.799-812.

Aral, M. and Gülçat, U., 1977. A finite element Laplace transform solution technique for the

wave equation. International Journal for Numerical Methods in Engineering, 11(11),

pp.1719-1732.

Ashi, H., 2008. Numerical Methods for Stiff Systems. Ph.D. University of Nottingham.

Bachelier, L., 1900. Théorie de la Spéculation, Annales de l'Ecole Normale Supérieure, 17.

Bal, G. and Maday, Y., 2002. A “parareal” time discretization for non-linear PDEs with

applications to the pricing of an American put. Lecture Notes in Computer Science and

Engineering, 23, pp.189-202.

Baldo, L., Brenner, L., Fernandes, L., Fernandes, P. and Sales, A., 2005. Performance Models

for Master/Slave Parallel Programs. Electronic Notes in Theoretical Computer Science,

128(4), pp.101-121.

Barles, G. and Soner, H.M., 1998. Option Pricing with Transaction Costs and a Nonlinear

Black-Scholes Equation. Finance and Stochastics, 42, pp.369-397.

Barney, B., 2010. Introduction to Parallel Computing.

Available at : <https://computing.llnl.gov/tutorials/parallel_comp/#ExamplesHeat>

[Accessed 13th December 2010]

Barua, S., Thulasiram, R.K., and Thulasiraman, P., 2004. Fast Fourier Transform for Option

Pricing : Improved Mathematical Modeling and Design of Efficient Parallel Algorithm.

Lecture Notes in Computer Science, 3045, pp.686-695.

 155

Beerends, R.J., ter Morsche, H.G., van den Berg, J.C., and van de Vrie, E.M., 2003. Fourier

and Laplace Transforms. Cambridge. Cambridge University Press.

Benhamou, E., 2008. Options, pre Black-Scholes.

Available at : <http://www.ericbenhamou.net/documents/Encyclo/PreBlack-Scholes.pdf>

[Accessed 10th May 2013]

Black, F. and Scholes, M., 1973. The Pricing of Options and Corporate Liabilities. The

Journal of Political Economy, 81(3), pp.636-654.

Box, G.E.P., and Muller, M.E., 1958. A note on the generation of random normal deviates.

Annals of Mathematical Statistics, 29, pp.610-611.

Boyle, P.P., 1977. Options : A Monte Carlo Approach. Journal of Financial Economics, 4(3),

pp.323-338.

Boyle, P.P. and Vorst, T., 1992. Option Replication in Discrete Time with Transaction Costs.

The Journal of Finance, XLVII(1), pp.271-293.

Buetow, G. and Sochacki, J., 2000. The trade-offs between alternative finite difference

techniques used to price derivative securities. Applied Mathematics and Computation,

115(2000), pp.177-190.

Burkardt, J., 2010. TIMER Compute Elapsed Time.

Available at : <http://people.sc.fsu.edu/~jburkardt/f_src/timer/timer.html>

[Accessed 2nd July 2010]

Chapra, S.C. and Canale, R.P., 2010. Numerical Methods for Engineers. 6th ed. New York.

McGraw-Hill.

Chen, H-T. and Lin, J-Y., 1991. Hybid Laplace Transform Techniques for Nonlinear

Transient Thermal Problems. International Journal of Heat Mass Transfer, 34(4/5), pp.1301-

1308.

Craddock, M.J., Heath, D.P. and Platen, E., 2000. Numerical Inversion of Laplace

Transforms : A Survey of Techniques with Applications to Derivative Pricing. Journal of

Computational Finance, 4(1), pp.57-81.

Crann, D., 2005. The Laplace Transform Boundary Element Method For Diffusion-type

Problems. Ph.D. University of Hertfordshire.

Crann, D., Davies, A., Lai, C-H. and Leong, S., 1998. Time Domain Decomposition for

European Options in Financial Modelling. Contemporary Mathematics, American

Mathematical Society, 18, pp.486-491.

Crann, D., Kane, S., Davies, A. and Lai, C-H., 2007. A time-domain decomposition method

for the parallel boundary element solution of diffusion problems. In: Advances in Boundary

Element Techniques VIII, 8
th

 International Conference on Boundary Element Techniques.

Naples, Italy, 24-26 July 2007, Eastleigh: EC Ltd.

 156

Davies, B., 2002. Integral Transforms and Their Applications. 3
rd

 ed. New York.

Springer-Verlag.

Davies, A. and Crann, D., 2004. A handbook of essential mathematical formulae.

Hertfordshire. University of Hertfordshire Press.

Davies, A. and Crann, D., 2010. On Laplace transform time-domain decomposition for dual

reciprocity solution of diffusion problems. Workshop on Applied and Numerical

Mathematics. Greenwich University, UK, 15 April 2010, Greenwich: Greenwich University.

Davies, A., Crann, D., Kane, S. and Lai, C-H., 2007. A hybrid Laplace transform/finite

difference boundary element method for diffusion problems.

Available at : <http://www.techscience.com/cmes/2007/v18n2_index.html>

[Accessed 5
th

 May 2011]

Davies, B. and Martin, B., 1979. Numerical Inversion of the Laplace Transform : A Survey

and Comparison of Methods. Journal of Computational Physics, 33(1), pp.1-32.

Deakin, M., 1992. The Ascendancy of the Laplace Transform and how it Came About. The

Archive for History of Exact Sciences, 44(3), pp.265-286.

Düring, B., Fournié, M. and Jüngel, A., 2003. High Order Compact Finite Difference

Schemes for a Nonlinear Black-Scholes Equation. International Journal of Applied

Theoretical Finance, 7, pp.767-789.

Edwards, C. and Penney, D., 2008. Elementary Differential Equations. 6th ed. Upper Saddle

River, New Jersey. Pearson Education Inc.

Epstein, C. and Schotland, J., 2008. The Bad Truth about Laplace's Transform. SIAM, 50(3),

pp. 504-520.

Fitzharris, A., Kane, S. and Lai, C-H., 2012. Numerically Inverting Laplace Transforms in a

Distributed Computing Environment. Workshop on Applied and Numerical Mathematics.

Greenwich University, UK, 8 June 2012, Greenwich: Greenwich University.

Gaver, D., 1966. Observing stochastic processes, and approximate transform inversion.

Operational Research, 14(3), pp.444-459.

Geist, G., Kohl, J. and Papadopoulos,P.,1996. PVM and MPI: A Comparison of Features.

Available at :

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.4809&rep=rep1&type=pdf>

[Accessed 8th November 2010]

Geske, R., 1979. The Valuation of Compound Options. Journal of Financial Economics, 7,

pp.63-81.

Gladwell, I. and Sayers, D.K. (ed.), 1980. Computational Techniques for Ordinary

Differential Equations. Waltham, Massachusetts. Academic Press.

Glasserman, P., 2003. Monte Carlo Methods in Financial Engineering. New York. Springer.

http://www.techscience.com/cmes/2007/v18n2_index.html

 157

Grama, A., Gupta, A., Karypis, G. and Kumar, V., 2003. Introduction to Parallel Computing.

2nd ed. Harlow. Pearson Education.

Gropp, W., Lusk, E. and Skjellum, A., 1999. Using MPI : Portable Parallel Programming

with the Message Passing Interface. London. MIT Press.

Hadamard, J., 1923. Lectures on Cauchy's problem in linear partial differential equations.

New York. Dover Publications.

Heston, S., 1993. A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options. The Review of Financial Studies, 6(2),

pp.327-343.

Hirsa, A.,2012. Computational Methods in Finance. New York. Chapman & Hall.

Horak, V. and Gruber, P., 2002. Parallel Numerical Solution of 2-D Heat Equation. Parallel

Numerics, (5), pp.47-56.

Hull, J. and White, A., 1990. Valuing Derivative Securities Using the Explicit Finite

Difference Method. Journal of Financial and Quantitative Analysis, 25(1), pp.87-100.

Jackel , P., 2002. Monte Carlo Methods in Finance. London. John Wiley & Sons, Inc.

Jackel , P., 2005. Stochastic Volatility Models : Past, Present and Future.

Available at :

<http://www.bfi.d/papers/Jackel-Stochastic Volatility Models Past Present And Future.pdf>

[Accessed 1st June 2013]

Jandačka, M. and Ševčovič, D., 2005. On the Risk-Adjusted Pricing-Methodology of Vanilla

Options and Explanation of the Volatility Smile. Journal of Applied Mathematics,

pp.235-258.

Jeong, D. Kim, J. and Wee, I-S. 2009. An Accurate and Efficient Numerical Method For

Black-Scholes Equations. Communications of the Korean Mathematical Society, 24(4),

pp.617-628.

Kano, P.O., 2010. Numerical Laplace Transform Inversion and Selected Applications. [pdf]

Available at :

<http://math.arizona.edu/~brio/WEEKS_METHOD_PAGE/NLAPcolloqium2010.pdf>

[Accessed 25th June 2012]

Kratka, M. 1998. No Mystery Behind the Smile. Risk, 9, pp. 67-71.

Kuhlman, K.L., 2012. Review of Inverse Laplace Transform Algorithms for Laplace-Space

Numerical Approaches. Numerical Algorithms, 61(174).

Lai, C-H., Parrott, A., Rout, S. and Honnor, M., 2005. A Distributed Algorithm for European

Options with Non-linear Volatility. Computers and Mathematics with Applications, 49,

pp.885-894.

http://books.google.com/books?id=B25O-x21uqkC

 158

Lantzman, E. 2007. Iterative vs Recursive Approaches.

Available at : <www.codeproject.com/Articles/21194/Iterative-vs-Recursive-Approaches>

[Accessed 20th December 2012]

Laverty, R., 2003. Laplace Transform Inversion and Viscoelastic Wave Propagation. In:

Proceedings of the 11th Annual ARL/USMA Technical Symposium. Aberdeen, Maryland,

USA, November 2003, (unpublished).

Lee, H. and Sheen, D., 2009. Laplace Transform Method for the Black-Scholes Equation.

International Journal of Numerical Analysis and Modelling, 6(4), pp 1-17.

L'Ecuyer, P., 1999. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research, 18, pp 816-822.

Leentvaar, C.C.W. and Oosterlee, C.W., 2008. Multi-Asset Option Pricing Using a Parallel

Fourier-Based Technique. Journal of Computational Finance, 12(1), pp.1-26.

Leland, H.E., 1985. Option Replication in Discrete Time with Transaction Costs. Journal of

Finance, 40, pp.1283-1301.

Liao, W., Zhu, J. and Khaliq, A., 2001. An Efficient High-Order Algorithm for Solving

Systems of Reaction-Diffusion Equations. Numerical Methods for Partial Differential

Equations, 18(3), pp.340-354.

Mackay, D.J.C., 2004. Information Theory, Inference and Learning Algorithms. Cambridge.

Cambridge University Press.

Magoules, F. ed., 2010. Fundamentals of Grid Computing, Theory, Algorithms and

Technologies. Boca Raton:USA. Chapman and Hall.

McKhann, C., 2006. Introducing the VIX Options. Available at :

<http://www.investopedia.com/articles/optioninvestor/06/NewVIX.asp#axzz1PmwsKR1s>

[Accessed 12
th

 June 2011]

McWhirter, J. and Pike, E. 1978. On the numerical inversion of the Laplace transform and

similar Fredholm integral equations of the first kind. Journal of Physics and Applied

Mathematics, (11), pp 1729-1745.

Metcalf, M. and Reid, J., 2006. Fortran 90/95 Explained. 2nd ed. Oxford. Oxford University

Press.

Miller, M. and Guy, W., 1966. Numerical Inversion of the Laplace Transform by Use of

Jacobi Polynomials. SIAM Journal on Numerical Analysis, 3(4), pp. 624-635.

Moore, R.E., Kearfott, R.B. and Cloud, M.J., 2009. Introduction to Interval Analysis.

Philadelphia. SIAM Press.

Morton, K.W. and Mayers, D.F., 2008. Numerical Solution of Partial Differential Equations

- An Introduction. Cambridge. Cambridge University Press.

 159

NanoDotTek, 2007. The Laplace Transform Approach to Linear Transmission Line Analysis

[pdf] Available at : <http://www.nanodottek.com/NDT18_09_2007.pdf>

[Accessed 24th June 2012].

Natkunam, K., 2009. Numerical Analysis of the Diffusion Equation Using Laplace

Transform. M.Sc. Greenwich University.

Piessens, R. and Branders, M., 1971. Numerical Inversion of the Laplace Transform Using

Generalized Laguerre Polynomials. Proceedings of the IEE, 118, pp.1517-1522.

Pliska, S.R., 2010. A History of Options from the Middle Ages to Harrison and Kreps.

Available at :

<http://www.fields.utoronto.ca/programs/scientific/09-10/finance/courses/pliska1.pdf>

[Accessed 3rd May 2013].

Quarteroni, A. and Valli, A.,1999. Domain Decomposition Methods for Partial Differential

Equations. Oxford. Oxford University Press.

Reid, J., 1994. The Advantages of Fortran 90.

Available at : <ftp://ftp.numerical.rl.ac.uk/pub/reports/rRAL92017.pdf>

[Accessed 18th August 2011]

Risken, P., 1996. The Fokker-Planck Equation. London. Springer-Verlag.

Sauer, T., 2012. Numerical solution of stochastic differential equations in finance. Handbook

of Computational Finance, pp 529-550.

Schiller, J.J., Srinivason, R.A. and Spiegel, M., 2008. Probability and Statistics. 3rd ed.

London. McGraw-Hill Book Company.

Sharcnet, G.B., 2008. Parallel Numerical Solution of PDEs with Message Passing.pdf

Available at : <https://www.sharcnet.ca/help/images/4/4f/Parallel_Numerical_Solution_

of_PDEs_with_Message_Passing>

[Accessed 3
rd

 May 2013]

Shreve, S.E., 2010. Stochastic Calculus for Finance II. New York. Springer.

Skachkov, I., 2002. Black-Scholes Equation in Laplace Transform Domain.

Available at : <http://www.wilmott.com>

[Accessed 1st August 2011]

Smith,G.D., 2004. Numerical Solution of Partial Differential Equations : Finite Difference

Methods. 3rd ed. Oxford. Oxford University Press.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and Dongarra, J., 1996. MPI : The

Complete Reference. London. The MIT Press.

Stehfest, H., 1970. Numerical Inversion of Laplace Transforms. Communications of the

ACM, 13(1), pp.47-49.

 160

Sunderam, V., 1990. PVM : A framework for parallel distributed computing. Concurrency :

Practice & Experience, 2(4), pp.315-339.

Tagliani, A. and Milev, M., 2012. Laplace Transform and Finite Difference Methods for the

Black-Scholes Equation. Journal of Applied Mathematics and Computations (Submitted).

Ulam, S., 1983. Adventures of a Mathematician. New York. Charles Scribner's Sons.

Wang, Y., Hua, K. and Zhang, J., 2011. Fast and High Accuracy Numerical Methods for

Solving PDEs in Computational Finance. In: Proceedings of the 2011 International

Conference on Business Computing and Global Informatization. Shanghai, China, July 2011.

Wang, A.M-L., Liu, Y-H. and Hsiao, Y-L., 2009. Barrier Option Pricing : A Hybrid

Approach. Quantitative Finance, 9(3), pp.341-352.

Weeks, W., 1966. Numerical Inversion of Laplace Transforms Using Laguerre Functions.

Journal of the Association for Computing Machinery, 13(3), pp.419-426.

Widder, D., 1946. The Laplace Transform. Princeton. Princeton University Press.

Wilmot, P., 2000. Derivatives. The Theory and Practice of Financial Engineering.

Chichester. John Wiley.

Wilmot, P., Howison, S. and Dewynne, J., 1999. The Mathematics of Financial Derivatives.

Cambridge. Cambridge University Press.

Wing, G., 1991. A primer on integral equations of the first kind : the problem of

deconvolution and unfolding. Philadelphia : SIAM.

Wood, W.L., 1990. Practical Time-stepping Schemes. Oxford. Clarendon Press.

Zakian, V. and Littlewood, R.,1973. Numerical inversion of Laplace transforms by weighted

least-squares approximation. The Computer Journal, 16(1), pp.66-68.

Zhu, S-P., 1999. Time-dependent reaction-diffusion problems and the LT-DRM approach.

Boundary Integral Methods, Numerical and Mathematical Aspects, pp.1-35.

 161

Appendix A

STRI Cluster Specification

Hardware

An 96-node cluster/blade system in which 80 nodes each contain two Xeon E5520, 2.27

GHz, quad-core processors and 16 nodes each contain two Xeon X5650, 2.67 GHz, 6-core

processors. The PAM sub-system contains 52 nodes. The CAIR sub-system contains 44

nodes.

Memory

24Gb RAM running over Infini band High Speed Interconnect (to provide low latency/fast

inter-node communications).

Operating System

64-bit Red HAT Linux

User Software

Fortran 90 and MPI CH2.

 162

Appendix B

Performance Data for Laplace Transform Solutions - Initial Investigations

Analytical LT

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 6 0.00760937300

Minimum Wall Time (s) : 6 7.40825700800

Optimal Weights Optimal Value

NRMSD : 26 0.02683993270

Minimum Wall Time (s) : 6 24.54517198000

Optimal Terms Optimal Value

NRMSD : 16 0.09222718870

Minimum Wall Time (s) : 6 8.39083504700

Optimal Terms Optimal Value

NRMSD : 12 0.08118930914

Minimum Wall Time (s) : 6 124.50031500000

SLP Method

Stehfest's Method

Laguerre Polynomial Method

Jacobi Polynomial Method

Table B.1 Optimal Sequential Programs Data (Analytical LT)

 163

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 6 0.00753181310

Minimum Wall Time (s) : 6 0.64976596830

Parallel/Sequential Speed Up : 14 16.28454153804

Parallel/Sequential Speed Up/Processor : 14 0.77545435895

Optimal Weights Optimal Value

NRMSD : 24 0.12780485760

Minimum Wall Time (s) : 6 1.76125001900

Parallel/Sequential Speed Up : 22 19.52100606309

Parallel/Sequential Speed Up/Processor : 22 0.92957171729

Optimal Terms Optimal Value

NRMSD : 16 0.09132087274

Minimum Wall Time (s) : 6 0.73899102210

Parallel/Sequential Speed Up : 24 22.16991136229

Parallel/Sequential Speed Up/Processor : 24 1.05571006487

Optimal Terms Optimal Value

NRMSD : 12 0.08118930914

Minimum Wall Time (s) : 6 7.27635908100

Parallel/Sequential Speed Up : 22 19.36801828272

Parallel/Sequential Speed Up/Processor : 22 0.92228658489

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Table B.2 Optimal Weights/Terms Data, Parallel Programs (Analytical LT)

 164

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 24 0.00756876468

Minimum Wall Time (s) : 40 0.50650691880

Parallel/Sequential Speed Up : 40 14.62617139673

Parallel/Sequential Speed Up/Processor : 5 1.05105894946

Optimal Processors Optimal Value

NRMSD : 6 0.12879715500

Minimum Wall Time (s) : 8 3.20535020800

Parallel/Sequential Speed Up : 8 7.65756325744

Parallel/Sequential Speed Up/Processor : 8 0.95719540718

Optimal Processors Optimal Value

NRMSD : 40 0.09168081284

Minimum Wall Time (s) : 56 1.38076806100

Parallel/Sequential Speed Up : 56 6.07693303749

Parallel/Sequential Speed Up/Processor : 4 0.94456032006

Optimal Processors Optimal Value

NRMSD : 136 0.07924151668

Minimum Wall Time (s) : 136 4.13765192000

Parallel/Sequential Speed Up : 136 30.08960574915

Parallel/Sequential Speed Up/Processor : 7 0.79203734133

Stehfest's Method

Laguerre Polynomial Method

SLP Method

Jacobi Polynomial Method

Table B.3 Optimal Processors Data (Analytical LT)

 165

BVP LT

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 6 0.04177589251

Minimum Wall Time (s) : 6 2.13941407200

Optimal Weights Optimal Value

NRMSD : 14 0.08125714247

Minimum Wall Time (s) : 8 2.91407489800

Optimal Terms Optimal Value

NRMSD : 10 0.12070521050

Minimum Wall Time (s) : 6 3.27581691700

Optimal Terms Optimal Value

NRMSD : 24 0.03691509723

Minimum Wall Time (s) : 6 25.10763097000

Stehfest's Method

SLP Method

Laguerre Polynomial Method

Jacobi Polynomial Method

Table B.4 Optimal Sequential Programs Data (BVP LT)

 166

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 6 0.04181540563

Minimum Wall Time (s) : 6 0.19930100440

Parallel/Sequential Speed Up : 16 12.78437411915

Parallel/Sequential Speed Up/Processor : 16 0.60877971996

Optimal Weights Optimal Value

NRMSD : 26 0.03302565905

Minimum Wall Time (s) : 6 0.33695888520

Parallel/Sequential Speed Up : 6 15.88224930417

Parallel/Sequential Speed Up/Processor : 6 0.75629758591

Optimal Terms Optimal Value

NRMSD : 10 0.12082799120

Minimum Wall Time (s) : 6 0.43632006650

Parallel/Sequential Speed Up : 16 15.78114067238

Parallel/Sequential Speed Up/Processor : 16 0.75148288916

Optimal Terms Optimal Value

NRMSD : 24 0.03692263067

Minimum Wall Time (s) : 6 1.69342899300

Parallel/Sequential Speed Up : 20 18.95694137668

Parallel/Sequential Speed Up/Processor : 20 0.90271149413

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table B.5 Optimal Weights/Terms Data, Parallel Programs (BVP LT)

 167

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 136 0.04078000884

Minimum Wall Time (s) : 24 0.29325103760

Parallel/Sequential Speed Up : 24 7.29550384377

Parallel/Sequential Speed Up/Processor : 5 0.93928715166

Optimal Processors Optimal Value

NRMSD : 24 0.08084034111

Minimum Wall Time (s) : 40 0.46209406850

Parallel/Sequential Speed Up : 40 6.30623740196

Parallel/Sequential Speed Up/Processor : 6 1.00435101795

Optimal Processors Optimal Value

NRMSD : 24 0.12008411140

Minimum Wall Time (s) : 40 0.73716402050

Parallel/Sequential Speed Up : 40 4.44381009640

Parallel/Sequential Speed Up/Processor : 5 0.70881039099

Optimal Processors Optimal Value

NRMSD : 7 0.03812053239

Minimum Wall Time (s) : 136 1.58626890200

Parallel/Sequential Speed Up : 136 15.82810514557

Parallel/Sequential Speed Up/Processor : 8 1.47589113525

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table B.6 Optimal Processors Data (BVP LT)

 168

Appendix C

Performance Data for the One-Dimensional, Linear Black-Scholes Equation

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 6 0.03282266316

Minimum Wall Time (s) : 6 1.21327510800

Parallel/Sequential Speed Up : 6 5.61809507510

Parallel/Sequential Speed Up/Processor : 6 0.26752833691

Optimal Weights Optimal Value

NRMSD : 14 0.06796623244

Minimum Wall Time (s) : 10 1.32123372700

Parallel/Sequential Speed Up : 10 5.15903792774

Parallel/Sequential Speed Up/Processor : 10 0.24566847275

Optimal Terms Optimal Value

NRMSD : 10 0.02524845549

Minimum Wall Time (s) : 8 1.35029285600

Parallel/Sequential Speed Up : 8 5.04801227283

Parallel/Sequential Speed Up/Processor : 8 0.24038153680

Optimal Terms Optimal Value

NRMSD : 20 0.00247189988

Minimum Wall Time (s) : 6 1.38424802200

Parallel/Sequential Speed Up : 6 4.92418612898

Parallel/Sequential Speed Up/Processor : 6 0.23448505376

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table C.1 Optimal Weights/Terms Data, Parallel Programs

 169

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 4 0.03190892874

Minimum Wall Time (s) : 40 1.20931506200

Parallel/Sequential Speed Up : 40 5.63649219561

Parallel/Sequential Speed Up/Processor : 4 0.59781910392

Optimal Processors Optimal Value

NRMSD : 3 0.03834257471

Minimum Wall Time (s) : 72 1.43498492200

Parallel/Sequential Speed Up : 72 4.75008120608

Parallel/Sequential Speed Up/Processor : 3 0.58250843613

Optimal Processors Optimal Value

NRMSD : 4 0.00088366262

Minimum Wall Time (s) : 56 1.35022829500

Parallel/Sequential Speed Up : 56 5.04825364291

Parallel/Sequential Speed Up/Processor : 4 0.54960908927

Optimal Processors Optimal Value

NRMSD : 24 0.00275564186

Minimum Wall Time (s) : 88 1.80055131100

Parallel/Sequential Speed Up : 88 3.78567101496

Parallel/Sequential Speed Up/Processor : 3 0.57348748911

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table C.2 Optimal Processors Data

 170

Appendix D

Performance Data for the One-Dimensional, Nonlinear Black-Scholes Equations

Modified Volatility Function : Simulated Modified Volatility

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 24 0.02799328572

Minimum Wall Time (s) : 6 0.12257361320

Parallel/Sequential Speed Up : 6 4.36005651827

Parallel/Sequential Speed Up/Processor : 6 0.20762173897

Optimal Weights Optimal Value

NRMSD : 24 0.01175761424

Minimum Wall Time (s) : 6 0.13552594180

Parallel/Sequential Speed Up : 6 3.94336223827

Parallel/Sequential Speed Up/Processor : 6 0.18777915420

Optimal Terms Optimal Value

NRMSD : 20 0.01464839485

Minimum Wall Time (s) : 6 0.15520596500

Parallel/Sequential Speed Up : 6 3.44334627345

Parallel/Sequential Speed Up/Processor : 6 0.16396887016

Optimal Terms Optimal Value

NRMSD : 6 0.15206770190

Minimum Wall Time (s) : 6 0.31046605110

Parallel/Sequential Speed Up : 6 1.72137301102

Parallel/Sequential Speed Up/Processor : 6 0.08197014338

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.1 Optimal Weights/Terms Data, Parallel Programs (Simulated Modified Volatility)

 171

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 3 0.08441731708

Minimum Wall Time (s) : 8 0.14818406110

Parallel/Sequential Speed Up : 8 3.60651393431

Parallel/Sequential Speed Up/Processor : 5 0.54030901625

Optimal Processors Optimal Value

NRMSD : 72 0.07853856512

Minimum Wall Time (s) : 8 0.15288754380

Parallel/Sequential Speed Up : 8 3.49556195303

Parallel/Sequential Speed Up/Processor : 5 0.52253271423

Optimal Processors Optimal Value

NRMSD : 88 0.07562827257

Minimum Wall Time (s) : 8 0.15593290330

Parallel/Sequential Speed Up : 8 3.42729385454

Parallel/Sequential Speed Up/Processor : 4 0.50692215624

Optimal Processors Optimal Value

NRMSD : 3 0.09052401633

Minimum Wall Time (s) : 8 0.21030807500

Parallel/Sequential Speed Up : 8 2.54116672030

Parallel/Sequential Speed Up/Processor : 4 0.46816060980

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Table D.2 Optimal Processors Data (Simulated Modified Volatility)

 172

Modified Volatility Function : Leland

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 6 0.01974218390

Minimum Wall Time (s) : 6 1.59266995400

Parallel/Sequential Speed Up : 6 5.03589956717

Parallel/Sequential Speed Up/Processor : 6 0.23980474129

Optimal Weights Optimal Value

NRMSD : 12 0.02785605212

Minimum Wall Time (s) : 6 1.61791706100

Parallel/Sequential Speed Up : 6 4.95731587566

Parallel/Sequential Speed Up/Processor : 6 0.23606266075

Optimal Terms Optimal Value

NRMSD : 10 0.03238814544

Minimum Wall Time (s) : 6 1.70022711800

Parallel/Sequential Speed Up : 6 4.71732620136

Parallel/Sequential Speed Up/Processor : 6 0.22463458102

Optimal Terms Optimal Value

NRMSD : 20 0.00769955575

Minimum Wall Time (s) : 6 1.71153502500

Parallel/Sequential Speed Up : 6 4.68615939192

Parallel/Sequential Speed Up/Processor : 6 0.22315044723

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.3 Optimal Weights/Terms Data, Parallel Programs (Leland)

 173

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 6 0.01043302431

Minimum Wall Time (s) : 40 1.24268794100

Parallel/Sequential Speed Up : 40 6.45417539463

Parallel/Sequential Speed Up/Processor : 6 0.62382862880

Optimal Processors Optimal Value

NRMSD : 3 0.01656271483

Minimum Wall Time (s) : 40 1.28281211900

Parallel/Sequential Speed Up : 40 6.25229978202

Parallel/Sequential Speed Up/Processor : 4 0.60435156532

Optimal Processors Optimal Value

NRMSD : 3 0.00869205162

Minimum Wall Time (s) : 24 1.29155802700

Parallel/Sequential Speed Up : 24 6.20996173949

Parallel/Sequential Speed Up/Processor : 4 0.58678285572

Optimal Processors Optimal Value

NRMSD : 3 0.07142338569

Minimum Wall Time (s) : 24 1.31553101500

Parallel/Sequential Speed Up : 24 6.09679729368

Parallel/Sequential Speed Up/Processor : 4 0.58272848756

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.4 Optimal Processors Data (Leland)

 174

Modified Volatility Function : Boyle and Vorst

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 18 0.03814824315

Minimum Wall Time (s) : 6 1.36069107100

Parallel/Sequential Speed Up : 6 5.65549822220

Parallel/Sequential Speed Up/Processor : 6 0.26930943915

Optimal Weights Optimal Value

NRMSD : 20 0.04437350128

Minimum Wall Time (s) : 6 1.42684006700

Parallel/Sequential Speed Up : 6 5.39330658774

Parallel/Sequential Speed Up/Processor : 6 0.25682412323

Optimal Terms Optimal Value

NRMSD : 14 0.03398463438

Minimum Wall Time (s) : 6 1.44844105700

Parallel/Sequential Speed Up : 6 5.31287475994

Parallel/Sequential Speed Up/Processor : 6 0.25299403619

Optimal Terms Optimal Value

NRMSD : 16 0.01247211126

Minimum Wall Time (s) : 6 1.48429989800

Parallel/Sequential Speed Up : 6 5.18452230804

Parallel/Sequential Speed Up/Processor : 6 0.24688201467

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.5 Optimal Weights/Terms Data, Parallel Programs (Boyle and Vorst)

 175

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 7 0.03483109684

Minimum Wall Time (s) : 40 1.43203806900

Parallel/Sequential Speed Up : 40 5.37373000033

Parallel/Sequential Speed Up/Processor : 5 0.56982627545

Optimal Processors Optimal Value

NRMSD : 136 0.01167072834

Minimum Wall Time (s) : 40 1.44086366710

Parallel/Sequential Speed Up : 40 5.34081475487

Parallel/Sequential Speed Up/Processor : 5 0.56499791628

Optimal Processors Optimal Value

NRMSD : 3 0.02169106686

Minimum Wall Time (s) : 40 1.50040064800

Parallel/Sequential Speed Up : 40 5.12888736969

Parallel/Sequential Speed Up/Processor : 3 0.55831331777

Optimal Processors Optimal Value

NRMSD : 3 0.05148669002

Minimum Wall Time (s) : 40 1.53728062900

Parallel/Sequential Speed Up : 40 5.00584329746

Parallel/Sequential Speed Up/Processor : 3 0.55399455492

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.6 Optimal Processors Data (Boyle and Vorst)

 176

Modified Volatility Function : Barles and Soner

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 24 0.03671890285

Minimum Wall Time (s) : 6 0.42293095590

Parallel/Sequential Speed Up : 6 9.26509371172

Parallel/Sequential Speed Up/Processor : 6 0.44119493865

Optimal Weights Optimal Value

NRMSD : 22 0.01325309981

Minimum Wall Time (s) : 6 0.45432901380

Parallel/Sequential Speed Up : 6 8.62479573388

Parallel/Sequential Speed Up/Processor : 6 0.41070455876

Optimal Terms Optimal Value

NRMSD : 16 0.00743902902

Minimum Wall Time (s) : 6 0.47075891490

Parallel/Sequential Speed Up : 6 8.32378276008

Parallel/Sequential Speed Up/Processor : 6 0.39637060762

Optimal Terms Optimal Value

NRMSD : 16 0.14538297780

Minimum Wall Time (s) : 6 0.55315589900

Parallel/Sequential Speed Up : 6 7.08388891284

Parallel/Sequential Speed Up/Processor : 6 0.33732804347

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.7 Optimal Weights/Terms Data, Parallel Programs (Barles and Soner)

 177

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 3 0.08733824007

Minimum Wall Time (s) : 24 0.46691107500

Parallel/Sequential Speed Up : 24 8.39237951252

Parallel/Sequential Speed Up/Processor : 6 0.79714300681

Optimal Processors Optimal Value

NRMSD : 72 0.08105728083

Minimum Wall Time (s) : 24 0.48729245500

Parallel/Sequential Speed Up : 24 8.04136181423

Parallel/Sequential Speed Up/Processor : 4 0.73557864637

Optimal Processors Optimal Value

NRMSD : 88 0.07783334599

Minimum Wall Time (s) : 24 0.53114756650

Parallel/Sequential Speed Up : 24 7.37741295855

Parallel/Sequential Speed Up/Processor : 4 0.67525103505

Optimal Processors Optimal Value

NRMSD : 3 0.09290810470

Minimum Wall Time (s) : 24 0.66324496270

Parallel/Sequential Speed Up : 24 5.90806588873

Parallel/Sequential Speed Up/Processor : 4 0.66626441644

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.8 Optimal Processors Data (Barles and Soner)

 178

Modified Volatility Function : RAPM

Part 1 : Optimal Weights/Terms Data

Optimal Weights Optimal Value

NRMSD : 24 0.03746163650

Minimum Wall Time (s) : 6 0.20508289340

Parallel/Sequential Speed Up : 6 5.73830454842

Parallel/Sequential Speed Up/Processor : 6 0.27325259754

Optimal Weights Optimal Value

NRMSD : 22 0.01711176881

Minimum Wall Time (s) : 8 0.21877288820

Parallel/Sequential Speed Up : 8 5.37922276239

Parallel/Sequential Speed Up/Processor : 8 0.25615346488

Optimal Terms Optimal Value

NRMSD : 18 0.00801089964

Minimum Wall Time (s) : 6 0.23860311510

Parallel/Sequential Speed Up : 6 4.93215731700

Parallel/Sequential Speed Up/Processor : 6 0.23486463414

Optimal Terms Optimal Value

NRMSD : 6 0.15699258450

Minimum Wall Time (s) : 6 0.35088992120

Parallel/Sequential Speed Up : 6 3.35383842310

Parallel/Sequential Speed Up/Processor : 6 0.15970659158

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.9 Optimal Weights/Terms Data, Parallel Programs (RAPM)

 179

Part 2 : Optimal Processors Data

Optimal Processors Optimal Value

NRMSD : 3 0.08667780605

Minimum Wall Time (s) : 24 0.19593906400

Parallel/Sequential Speed Up : 24 6.00609228183

Parallel/Sequential Speed Up/Processor : 3 0.63232795845

Optimal Processors Optimal Value

NRMSD : 56 0.08140492274

Minimum Wall Time (s) : 24 0.27529001240

Parallel/Sequential Speed Up : 24 4.27486667511

Parallel/Sequential Speed Up/Processor : 3 0.62214548859

Optimal Processors Optimal Value

NRMSD : 88 0.07725559308

Minimum Wall Time (s) : 24 0.31821552970

Parallel/Sequential Speed Up : 24 3.69821077277

Parallel/Sequential Speed Up/Processor : 3 0.64110825564

Optimal Processors Optimal Value

NRMSD : 3 0.09390578313

Minimum Wall Time (s) : 8 0.39627796010

Parallel/Sequential Speed Up : 8 2.96970363858

Parallel/Sequential Speed Up/Processor : 3 0.53086674771

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table D.10 Optimal Processors Data (RAPM)

 180

Appendix E

Performance Data for the Two-Dimensional, Linear Black-Scholes Equation

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 8 0.21517680360

Minimum Wall Time (s) : 6 20.80843711000

Optimal Weights Optimal Value

NRMSD : 26 0.06469810112

Minimum Wall Time (s) : 6 21.01788760000

Optimal Terms Optimal Value

NRMSD : 6 0.32694111930

Minimum Wall Time (s) : 6 23.67294897000

Optimal Terms Optimal Value

NRMSD : 12 2.26040329500

Minimum Wall Time (s) : 6 35.01823711000

Stehfest's Method

SLP Method

Laguerre Polynomial Method

Jacobi Polynomial Method

Table E.1 Optimal Sequential Programs Data

 181

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 8 (9) 0.21517680360

Minimum Wall Time (s) : 6 (7) 6.85409307500

Parallel/Sequential Speed Up : 26 (27) 7.34611276972

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43370199971

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.06469810112

Minimum Wall Time (s) : 6 (7) 7.29012602700

Parallel/Sequential Speed Up : 22 (23) 6.52842579693

Parallel/Sequential Speed Up/Processor : 8 (9) 0.43612267555

Optimal Terms (Processors) Optimal Value

NRMSD : 6 (7) 0.32694111930

Minimum Wall Time (s) : 8 (9) 7.83274439800

Parallel/Sequential Speed Up : 18 (19) 6.55196378857

Parallel/Sequential Speed Up/Processor : 8 (9) 0.53161789599

Optimal Terms (Processors) Optimal Value

NRMSD : 6 (7) 0.32345620810

Minimum Wall Time (s) : 6 (7) 10.14124416000

Parallel/Sequential Speed Up : 26 (27) 14.40714439882

Parallel/Sequential Speed Up/Processor : 18 (19) 0.60357633598

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table E.2 Optimal Parallel Programs Data

 182

Appendix F

Performance Data for the Two-Dimensional, Nonlinear Black-Scholes Equations

Modified Volatility Function : Simulated Modified Volatility

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 14 0.12686007900

Minimum Wall Time (s) : 8 4.55571794500

Optimal Weights Optimal Value

NRMSD : 26 0.02777761927

Minimum Wall Time (s) : 6 4.84069204300

Optimal Terms Optimal Value

NRMSD : 22 0.02772967769

Minimum Wall Time (s) : 6 6.28118519900

Optimal Terms Optimal Value

NRMSD : 20 2.09002997900

Minimum Wall Time (s) : 6 10.92732000000

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table F.1 Optimal Sequential Programs Data (Simulated Modified Volatility)

 183

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 14 (15) 0.12686007900

Minimum Wall Time (s) : 12 (13) 1.28097391100

Parallel/Sequential Speed Up : 18 (19) 6.31066925025

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43969769459

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.02777761927

Minimum Wall Time (s) : 10 (11) 1.41183612800

Parallel/Sequential Speed Up : 24 (25) 9.15900100771

Parallel/Sequential Speed Up/Processor : 8 (9) 0.49544555076

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02772967769

Minimum Wall Time (s) : 10 (11) 1.66243479100

Parallel/Sequential Speed Up : 20 (21) 8.62655461940

Parallel/Sequential Speed Up/Processor : 10 (11) 0.52162442114

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.09002997900

Minimum Wall Time (s) : 6 (7) 3.60725692600

Parallel/Sequential Speed Up : 26 (27) 20.15634733328

Parallel/Sequential Speed Up/Processor : 20 (21) 0.81481848339

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

Table F.2 Optimal Parallel Programs Data (Simulated Modified Volatility)

 184

Modified Volatility Function : Leland

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 6 0.10201155790

Minimum Wall Time (s) : 6 17.76280676000

Optimal Weights Optimal Value

NRMSD : 26 0.14420396170

Minimum Wall Time (s) : 6 18.00465510000

Optimal Terms Optimal Value

NRMSD : 14 0.23239645250

Minimum Wall Time (s) : 6 20.68151240000

Optimal Terms Optimal Value

NRMSD : 26 1.77848125200

Minimum Wall Time (s) : 6 32.82941570000

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.3 Optimal Sequential Programs Data (Leland)

 185

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 6 (7) 0.10201155790

Minimum Wall Time (s) : 6 (7) 5.85089260600

Parallel/Sequential Speed Up : 26 (27) 7.45135324540

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43370199963

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.14420396170

Minimum Wall Time (s) : 6 (7) 7.05418005300

Parallel/Sequential Speed Up : 26 (27) 6.54876426281

Parallel/Sequential Speed Up/Processor : 10 (11) 0.37210124750

Optimal Terms (Processors) Optimal Value

NRMSD : 14 (15) 0.23239645250

Minimum Wall Time (s) : 6 (7) 7.75259545700

Parallel/Sequential Speed Up : 24 (25) 7.16688033736

Parallel/Sequential Speed Up/Processor : 10 (11) 0.45982989223

Optimal Terms (Processors) Optimal Value

NRMSD : 8 (9) 0.12429605370

Minimum Wall Time (s) : 6 (7) 10.03207229000

Parallel/Sequential Speed Up : 22 (23) 10.78343361760

Parallel/Sequential Speed Up/Processor : 20 (21) 0.47000707041

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.4 Optimal Parallel Programs Data (Leland)

 186

Modified Volatility Function : Boyle and Vorst

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 22 0.13956131970

Minimum Wall Time (s) : 6 18.27469492000

Optimal Weights Optimal Value

NRMSD : 26 0.18538908410

Minimum Wall Time (s) : 6 20.03498296000

Optimal Terms Optimal Value

NRMSD : 26 0.09513891832

Minimum Wall Time (s) : 6 22.91150455000

Optimal Terms Optimal Value

NRMSD : 20 0.71707085730

Minimum Wall Time (s) : 6 34.48718029000

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.5 Optimal Sequential Programs Data (Boyle and Vorst)

 187

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 22 (23) 0.13956131970

Minimum Wall Time (s) : 6 (7) 5.83855523400

Parallel/Sequential Speed Up : 26 (27) 7.34697347177

Parallel/Sequential Speed Up/Processor : 6 (7) 0.44714327402

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.18538908410

Minimum Wall Time (s) : 6 (7) 7.16717707300

Parallel/Sequential Speed Up : 26 (27) 7.48280603716

Parallel/Sequential Speed Up/Processor : 6 (7) 0.39933999031

Optimal Terms (Processors) Optimal Value

NRMSD : 26 (27) 0.09513891832

Minimum Wall Time (s) : 6 (7) 7.42525433300

Parallel/Sequential Speed Up : 26 (27) 6.85768528732

Parallel/Sequential Speed Up/Processor : 6 (7) 0.44080268928

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 0.71707085730

Minimum Wall Time (s) : 6 (7) 9.77245628100

Parallel/Sequential Speed Up : 26 (27) 11.56211680346

Parallel/Sequential Speed Up/Processor : 10 (11) 0.50765187507

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.6 Optimal Parallel Programs Data (Boyle and Vorst)

 188

Modified Volatility Function : Barles and Soner

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 10 0.11209377880

Minimum Wall Time (s) : 6 0.88142395020

Optimal Weights Optimal Value

NRMSD : 26 0.06046745961

Minimum Wall Time (s) : 6 1.04478973300

Optimal Terms Optimal Value

NRMSD : 22 0.02922910136

Minimum Wall Time (s) : 6 1.15965708400

Optimal Terms Optimal Value

NRMSD : 20 2.13122478900

Minimum Wall Time (s) : 6 2.02804581800

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.7 Optimal Sequential Programs Data (Barles and Soner)

 189

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 10 (11) 0.11209377880

Minimum Wall Time (s) : 6 (7) 0.12844991680

Parallel/Sequential Speed Up : 6 (7) 6.86200483549

Parallel/Sequential Speed Up/Processor : 6 (7) 0.98028640507

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.06046745961

Minimum Wall Time (s) : 6 (7) 0.14122467350

Parallel/Sequential Speed Up : 8 (9) 8.43622492843

Parallel/Sequential Speed Up/Processor : 6 (7) 1.05686685226

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02922910136

Minimum Wall Time (s) : 6 (7) 0.15491573980

Parallel/Sequential Speed Up : 18 (19) 7.83658191133

Parallel/Sequential Speed Up/Processor : 6 (7) 1.06938970777

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.13122478900

Minimum Wall Time (s) : 6 (7) 0.26955010150

Parallel/Sequential Speed Up : 20 (21) 7.82297027179

Parallel/Sequential Speed Up/Processor : 6 (7) 1.07483109645

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.8 Optimal Parallel Programs Data (Barles and Soner)

 190

Modified Volatility Function : RAPM

Optimal Sequential Programs Data

Optimal Weights Optimal Value

NRMSD : 14 0.11578045140

Minimum Wall Time (s) : 6 0.83622002600

Optimal Weights Optimal Value

NRMSD : 26 0.14152665260

Minimum Wall Time (s) : 6 0.90784164570

Optimal Terms Optimal Value

NRMSD : 22 0.02922910136

Minimum Wall Time (s) : 8 0.96888566930

Optimal Terms Optimal Value

NRMSD : 20 2.13104093100

Minimum Wall Time (s) : 6 1.66152111900

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.9 Optimal Sequential Programs Data (RAPM)

 191

Optimal Parallel Programs Data

Optimal Weights (Processors) Optimal Value

NRMSD : 14 (15) 0.11578045140

Minimum Wall Time (s) : 6 (7) 0.09848403931

Parallel/Sequential Speed Up : 10 (11) 9.52713916082

Parallel/Sequential Speed Up/Processor : 6 (7) 1.21298846545

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.14152665260

Minimum Wall Time (s) : 6 (7) 0.10474230040

Parallel/Sequential Speed Up : 12 (13) 9.98875642001

Parallel/Sequential Speed Up/Processor : 6 (7) 1.23819758757

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02922910136

Minimum Wall Time (s) : 8 (9) 0.11454052710

Parallel/Sequential Speed Up : 10 (11) 9.71161666231

Parallel/Sequential Speed Up/Processor : 6 (7) 1.24914529301

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.13104093100

Minimum Wall Time (s) : 6 (7) 0.19660789130

Parallel/Sequential Speed Up : 10 (11) 10.90384985034

Parallel/Sequential Speed Up/Processor : 6 (7) 1.20727687118

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Table F.10 Optimal Parallel Programs Data (RAPM)

 192

Appendix G

Computer Programs

General Notes

● The correctness of the sequential and parallel programs developed was established in two

 ways :

 ● Firstly, a visual inspection of the solutions produced showed that they behaved as

 predicted by the boundary conditions of the equation being solved. In the one

 dimensional case :

 0, 0V   and  ,V S S  as S  .

 In the two-dimensional case :

 1 1,0,V S Vs   2 20, ,V S Vs 

 1 2 1, ,V S S S  as 1S   1 2 2, ,V S S S  as 2S 

 where 1Vs t and 2Vs t are the single asset solutions of the one-dimensional, linear

 Black-Scholes equation

 ● Secondly, the solutions produced were in close agreement with those obtained using

 independent methods. This was either the analytical solution of the equation or a

 solution obtained using a Monte Carlo algorithm

● All programs contained ‘implicit none’ statements

● The compiler used was the Fortran 90 compiler provided in the MPICH2 suite. Version

 1.4.1p1. No compiler optimisation was performed. All programs were compiled in the

 same way

● In all codes the main program and all subprograms were contained in the same file. No

 linking was necessary. If this file was called prog.f90, the program was compiled using

 the command :

mpif90 prog.f90 -o prog

 If prog.f90 contained a sequential program, it was run using the command :

mpiexec -np 1 prog

 If prog.f90 contained a parallel program to be run using 8 processors, it was run using the

 command :

mpiexec -np 8 prog etc.

 193

Parallel Program Templates

The following program templates are written in general terms so that they can be used by

anyone wishing to develop parallel, Laplace transform based programs for solving

one-dimensional and two-dimensional, linear and nonlinear diffusion equations. The

implementation details for the Black-Scholes equations are given in the main chapters of this

dissertation. Authors who are not interested in the NRMSD of the errors or the program wall

time can omit the corresponding steps. In each template it is assumed that :

● the parallel development environment being used is the MPI. Minor adjustments may be

 needed for other platforms

● the PDE being solved does not have an analytical solution.

 194

Template for the One-Dimensional, Linear Program

begin program

 - constant, variable and array declarations (including the solution domain)

 - initialise the MPI

 - take the program wall time

 - read in the reference solution

 if master then

 - calculate the weights/terms required by the numerical inversion algorithm

 - send the weights/terms to the slaves

 - send each slave details of the sub-domain for which it is responsible

 - receive the NRMSD data from the slaves

 - calculate the NRMSD

 - calculate the program wall time

 - display/store the NRMSD and the program wall time

 - display/store the numerical solution of the PDE

 else slave

 - receive the weights/terms required by the numerical inversion algorithm from the master

 - receive the details of the sub-domain to be processed from the master

 if first sub-domain then

 - calculate the initial condition using the initial condition of the PDE

 else

 - calculate the initial condition by solving the ODE BVP form of the PDE

 end if

 - use the reference solution to update the NRMSD data for the sub-domain

 for all following rows in the sub-domain :

 - calculate the solution using a finite difference method

 - use the reference solution to update the NRMSD data for the sub-domain

 end for

 - send the NRMSD data for the sub-domain to the master

 end if

 - finalise the MPI

end program

 195

Template for the One-Dimensional, Nonlinear Program

begin program

 - constant, variable and array declarations (including the solution domain)

 - initialise the MPI

 - take the program wall time

 - read in the reference solution

 if master then

 - send each slave details of the sub-domain for which it is responsible

 - calculate the weights/terms required by the numerical inversion algorithm

 - calculate the initial conditions required by the slaves

 - the first initial condition is calculated using the initial condition of the PDE

 - the other initial conditions are calculated by solving the ODE BVP form of the PDE

 - send each slave the initial condition for its sub-domain

 - receive the NRMSD data from the slaves

 - calculate the NRMSD

 - calculate the program wall time

 - display/store the NRMSD and the program wall time

 - display/store the numerical solution of the PDE

 else slave

 - receive the details of the sub-domain to be processed from the master

 - receive the initial condition for the sub-domain from the master

 - use the reference solution to update the NRMSD data for the sub-domain

 for all following rows in the sub-domain :

 oldsolution = solution in previous row

 repeat

 - calculate the nonlinear terms in the row using oldsolution

 - calculate newsolution using the nonlinear terms and a finite difference

 method

 - oldsolution = newsolution

 until the numerical solution of the PDE is sufficiently accurate

 - use the reference solution to update the NRMSD data for the sub-domain

 end for

 - send the NRMSD data for the sub-domain to the master

 end if

 - finalise the MPI

end program

 196

Template for the Two-Dimensional, Linear Program

begin program

 - constant, variable and array declarations (including the solution domains)

 - initialise the MPI

 - take the program wall time

 if master then

 - calculate the weights/terms required by the numerical inversion algorithm

 - receive the ranks of the solution domain in Laplace space from the slaves

 - calculate the numerical solution of the PDE

 - read in the reference solution

 - calculate the NRMSD

 - calculate the program wall time

 - display/store the NRMSD and the program wall time

 - display/store the numerical solution of the PDE

 else slave

 - initialise the allocated rank of the solution domain in Laplace space

 - calculate the solution in the allocated rank of the solution domain in Laplace space using a

 finite difference method

 - send the allocated rank of the solution domain in Laplace space to the master

 end if

 - finalise the MPI

end program

 197

Template for the Two-Dimensional, Nonlinear Program

begin program

 - constant, variable and array declarations (including the solution domains)

 - initialise the MPI

 - take the program wall time

 - initialise the nonlinear terms

 if master then

 - calculate the weights/terms required by the numerical inversion algorithm

 repeat

 - send the nonlinear terms to the slaves

 - receive the ranks of the solution domain in Laplace space from the slaves

 - calculate the numerical solution of the PDE

 - update the nonlinear terms

 until the numerical solution of the PDE is sufficiently accurate

 - read in the reference solution

 - calculate the NRMSD

 - calculate the program wall time

 - display/store the NRMSD and the program wall time

 - display/store the numerical solution of the PDE

 else slave

 - receive the nonlinear terms from the master

 - initialise the allocated rank of the solution domain in Laplace space

 - calculate the solution in the allocated rank of the solution domain in Laplace space using the

 nonlinear terms and a finite difference method

 - send the allocated rank of the solution domain in Laplace space to the master

 end if

 - finalise the MPI

end program

 198

Sample Parallel Programs

Sample parallel programs will be put here in the version to be placed in the UHRA. These

will be the one-dimensional, linear program, a one-dimensional, nonlinear program, the two-

dimensional, linear program and a two-dimensional, nonlinear program. Kathy Lee from the

UH Research Office will confirm to Professor Christianson and Dr Sayers that this has been

done.

