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Abstract 

Diffusion equations arise in areas such as fluid mechanics, cellular biology, weather 

forecasting, electronics, mechanical engineering, atomic physics, environmental science, 

medicine, etc. This dissertation considers equations of this type that arise in mathematical 

finance. 

 

For over 40 years traders in financial markets around the world have used Black-Scholes 

equations for valuing financial options. These equations need to be solved quickly and 

accurately so that the traders can make prompt and accurate investment decisions. One way 

to do this is to use parallel numerical algorithms. This dissertation develops and evaluates 

algorithms of this kind that are based on the Laplace transform, numerical inversion 

algorithms and finite difference methods. Laplace transform-based algorithms have faced a 

legitimate criticism that they are ill-posed i.e. prone to instability. We demonstrate with 

reference to the Black-Scholes equation, contrary to the received wisdom, that the use of the 

Laplace transform may be used to produce reasonably accurate solutions (i.e. to two decimal 

places), in a fast and reliable manner when used in conjunction with standard PDE 

techniques. 

 

To set the scene for the investigations that follow, the reader is introduced to financial 

options, option pricing and the one-dimensional and two-dimensional linear and nonlinear 

Black-Scholes equations. This is followed by a description of the Laplace transform method 

and in particular, four widely used numerical algorithms that can be used for finding inverse 

Laplace transform values. Chapter 4 describes methodology used in the investigations 

completed i.e. the programming environment used, the measures used to evaluate the 

performance of the numerical algorithms, the method of data collection used, issues in the 

design of parallel programs and the parameter values used. 

 

To demonstrate the potential of the Laplace transform based approach, Chapter 5 uses 

existing procedures of this kind to solve the one-dimensional, linear Black-Scholes equation. 

Chapters 6, 7, 8, and 9 then develop and evaluate new Laplace transform-finite difference 

algorithms for solving one-dimensional and two-dimensional, linear and nonlinear Black-

Scholes equations. They also determine the optimal parameter values to use in each case i.e. 

the parameter values that produce the fastest and most accurate solutions. Chapters 7 and 9 

also develop new, iterative Monte Carlo algorithms for calculating the reference 

solutions needed to determine the accuracy of the LTFD solutions. 



 iii  

Chapter 10 identifies the general patterns of behaviour observed within the LTFD solutions 

and explains them. The dissertation then concludes by explaining how this programme of 

work can be extended. The investigations completed make significant contributions to 

knowledge. These are summarised at the end of the chapters in which they occur. Perhaps the 

most important of these is the development of fast and accurate numerical algorithms that can 

be used for solving diffusion equations in a variety of application areas.



 iv  

Contents 

1  Introduction  ....................................................................................................................1 

 1.0 Introduction  ................................................................................................................1 

 1.1 Background  ................................................................................................................1 

 1.2 Aims  ...........................................................................................................................3 

 1.3 Dissertation Structure ..................................................................................................3 

 1.4 Chapter Summary .......................................................................................................4 

 

2 The Black-Scholes Model and Equations .....................................................................5 

 2.0 Introduction  ................................................................................................................5 

 2.1 Historical Background ................................................................................................5 

 2.2 European Call Options  ...............................................................................................7 

 2.3 The Underlying Assumptions of the Black-Scholes Model .......................................8 

 2.4 The One-Dimensional, Linear Black-Scholes Equation  ............................................9 

  2.4.1 Itô's Lemma ........................................................................................................9 

  2.4.2 Development of the Equation ............................................................................9 

  2.4.3 The Analytical Solution ...................................................................................11 

 2.5 European Put Options  ..............................................................................................12 

 2.6 The Multi-Dimensional, Linear Black-Scholes Equation .........................................12 

  2.6.1 Itô's Lemma in Higher Dimensions .................................................................13 

  2.6.2 Development of the Equation  .........................................................................14 

 2.7 An Alternative Approach  ........................................................................................ 18 

 2.8 Nonlinear Black-Scholes Equations .........................................................................18 

  2.8.1 Volatility Models  ............................................................................................19 

   2.8.1.1 A Simulated Modified Volatility Model .................................................19 

   2.8.1.2 Leland  ....................................................................................................20 

   2.8.1.3 Boyle and Vorst  .....................................................................................21 

   2.8.1.4 Barles and Soner .....................................................................................21 

   2.8.1.5 The Risk Adjusted Pricing Methodology ...............................................21 

 2.9 Black-Scholes Equations with Stochastic Volatility.................................................22 

 2.10 Chapter Summary ...................................................................................................25 

 2.11 Contribution to Knowledge ................................................................................... 25 

 



 v  

3 The Laplace Transform Method .................................................................................26 

 3.0 Introduction  ..............................................................................................................26 

 3.1 Background  ..............................................................................................................26 

 3.2 Definition ..................................................................................................................26 

 3.3 The Method  ..............................................................................................................27 

 3.4 Advantages ................................................................................................................28 

 3.5 Disadvantage  ............................................................................................................28 

 3.6 Alternative Methods of Laplace Transform Inversion ..............................................29 

  3.6.1 Stehfest's Method  ............................................................................................29  

  3.6.2 The Shifted Legendre Polynomial Method  .....................................................30 

  3.6.3 The Jacobi Polynomial Method .......................................................................31 

  3.6.4 The Laguerre Polynomial Method  ..................................................................32 

 3.7 Chapter Summary .....................................................................................................33 

 3.8 Contribution to Knowledge ......................................................................................33 

 

4 Methodology ..................................................................................................................34 

 4.0 Introduction  ..............................................................................................................34 

 4.1 Programming Environment .......................................................................................34

 4.2 Measures of Performance .........................................................................................34 

  4.2.1 Measures of Speed  ..........................................................................................35 

  4.2.2 Measure of Accuracy  ......................................................................................35 

 4.3 Method of Data Collection ........................................................................................35 

 4.4 Parallel Program Design ...........................................................................................36 

  4.4.1 Inter-Processor Communication ......................................................................36 

  4.4.2 Functional Decomposition Verses Domain Decomposition  ...........................36 

   4.4.2.1 NRMSD Values  .....................................................................................37 

   4.4.2.2 Execution Speeds  ...................................................................................38 

   4.4.2.3 Conclusions  ............................................................................................42 

 4.5 Parameter Values Used in the Numerical Inversion Algorithms  .............................43 

 4.6 Number of Weights/Terms and Processors Used .....................................................43 

 4.7 Chapter Summary .....................................................................................................44 

 4.8 Contribution to Knowledge ......................................................................................44 

 



 vi  

5 Laplace Transform Solutions - Initial Investigations ................................................45 

 5.0 Introduction  ..............................................................................................................45 

 5.1 The Solution Domain  ...............................................................................................45 

 5.2 Parameter Values  .....................................................................................................46 

 5.3 Investigation 1 : The Laplace Transform of the Analytical Solution .......................46 

  5.3.1 Aim  .................................................................................................................46 

  5.3.2 The Laplace Transform Formula .....................................................................46 

  5.3.3 Performance Data.............................................................................................49 

   5.3.3.1 Optimal Sequential Programs Data  ........................................................49 

   5.3.3.2 Part 1 - Varying the Number of Weights/Terms Used  ..........................50 

   5.3.3.3 Part 2 - Varying the Number of Processors Used  ..................................51 

   5.3.3.4 Optimal Parallel Programs Data  ............................................................54 

 5.4 Investigation 2 : The Laplace Transforms Arising in the ODE BVP Form..............54 

  5.4.1 Aim ..................................................................................................................54 

  5.4.2 The Finite Difference Solution of the ODE BVP Form  .................................54 

  5.4.3 Performance Data.............................................................................................55 

   5.4.3.1 Optimal Sequential Programs Data  ........................................................56 

   5.4.3.2 Part 1 - Varying the Number of Weights/Terms Used  ..........................56 

   5.4.3.3 Part 2 - Varying the Number of Processors Used  ..................................57 

   5.4.3.4 Optimal Parallel Programs Data  ............................................................60 

 5.5 Conclusions  ..............................................................................................................60  

 5.6 Chapter Summary  ....................................................................................................61 

 5.7 Contribution to Knowledge ......................................................................................61   

 

6  The One-Dimensional, Laplace Transform-Finite Difference Algorithm ...............62 

 6.0 Introduction  ..............................................................................................................62 

 6.1 The Algorithm  ..........................................................................................................62 

 6.2 The Diffusion Equation Form  ..................................................................................64 

  6.2.1 The Computational Procedure  ........................................................................65 

  6.2.2 An Improved Procedure  ..................................................................................65 

 6.3 Finite Difference Methods  ...................................................................................... 66 

 6.4 Solving One-Dimensional, Linear Black-Scholes Equations  ..................................67 

  6.4.1 Parameter Values  ............................................................................................67 

  6.4.2 Aim  .................................................................................................................67 



 vii  

  6.4.3 Preliminary Notes  ...........................................................................................67 

  6.4.4 Performance Data ............................................................................................68 

   6.4.4.1 Sequential Program Data  .......................................................................68 

   6.4.4.2 Part 1 - Varying the Number of Weights/Terms Used  ..........................68 

   6.4.4.3 Part 2 - Varying the Number of Processors Used  ..................................70 

   6.4.4.4 Optimal Parallel Programs Data  ............................................................73 

  6.4.5 Conclusions  .....................................................................................................73 

 6.5 Chapter Summary  ....................................................................................................73 

 6.6 Contribution to Knowledge ......................................................................................73 

 

7  Solving One-Dimensional, Nonlinear Black-Scholes Equations ...............................75 

 7.0 Introduction   .............................................................................................................75 

 7.1 Parameter Values  .....................................................................................................75 

 7.2 Practical Difficulties When Solving the Nonlinear Form  ........................................75 

  7.2.1 Linearisation Techniques  ................................................................................76 

   7.2.1.1 Direct Iteration  .......................................................................................76 

   7.2.1.2 Semi-Direct Iteration  .............................................................................77 

   7.2.1.3 Taylor Series Iteration.............................................................................77 

   7.2.1.4 Termination  ............................................................................................78 

   7.2.1.5 Comparison of Methods  ........................................................................ 78 

   7.2.1.6 Accuracy in the Nonlinear Volatility Models  ....................................... 79 

  7.2.2 Monte Carlo Algorithms  .................................................................................80 

   7.2.2.1 History and Background  ........................................................................80 

   7.2.2.2 The Monte Carlo Algorithm for Solving One-Dimensional, Linear  

               Black-Scholes Equations  .......................................................................81 

   7.2.2.3 Random Number Generation  .................................................................82 

   7.2.2.4 Obtaining Standard Normal Values  .......................................................84 

   7.2.2.5 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear 

                              Black-Scholes Equations  .......................................................................84 

 7.3 The Laplace Transform-Finite Difference Algorithm  .............................................85 

 7.4 Solving One-Dimensional, Nonlinear Black-Scholes Equations  .............................87 

  7.4.1 Parameter Values  ............................................................................................87 

  7.4.2 Aim  .................................................................................................................88 

  7.4.3 Preliminary Notes  ...........................................................................................88 

  7.4.4 Performance Data ............................................................................................88 



 viii  

   7.4.4.1 Modified Volatility Function : Simulated Modified Volatility ..............89 

    7.4.4.1.1 Sequential Program Data  ..............................................................89 

    7.4.4.1.2 Part 1 - Varying the Number of Weights/Terms Used  .................89 

    7.4.4.1.3 Part 2 - Varying the Number of Processors Used  .........................91 

    7.4.4.1.4 Optimal Parallel Programs Data  ...................................................94 

   7.4.4.2 Modified Volatility Function : Leland  ...................................................94 

    7.4.4.2.1 Sequential Program Data  ..............................................................94 

    7.4.4.2.2 Part 1 - Varying the Number of Weights/Terms Used  .................94 

    7.4.4.2.3 Part 2 - Varying the Number of Processors Used  .........................96 

    7.4.4.2.4 Optimal Parallel Programs Data  ...................................................98 

   7.4.4.3 Modified Volatility Function : Boyle and Vorst  ....................................99 

    7.4.4.3.1 Sequential Program Data  ..............................................................99 

    7.4.4.3.2 Part 1 - Varying the Number of Weights/Terms Used  .................99 

    7.4.4.3.3 Part 2 - Varying the Number of Processors Used  .......................100 

    7.4.4.3.4 Optimal Parallel Programs Data  .................................................103 

   7.4.4.4 Modified Volatility Function : Barles and Soner  .................................103 

    7.4.4.4.1 Sequential Program Data  ............................................................103 

    7.4.4.4.2 Part 1 - Varying the Number of Weights/Terms Used  ...............104 

    7.4.4.4.3 Part 2 - Varying the Number of Processors Used  .......................105 

    7.4.4.4.4 Optimal Parallel Programs Data  .................................................108 

   7.4.4.5 Modified Volatility Function : Risk Adjusted Pricing Methodology  ..108 

    7.4.4.5.1 Sequential Program Data  ............................................................108 

    7.4.4.5.2 Part 1 - Varying the Number of Weights/Terms Used  ...............108 

    7.4.4.5.3 Part 2 - Varying the Number of Processors Used  .......................110 

    7.4.4.5.4 Optimal Parallel Programs Data  .................................................113 

  7.4.5 Conclusions  ...................................................................................................113 

  7.4.6 The Numerical Solutions  ..............................................................................114 

 7.5 Chapter Summary  ..................................................................................................115 

 7.6 Contribution to Knowledge ....................................................................................115 

  

8  The Two-Dimensional, Laplace Transform-Finite Difference Algorithm .............116 

 8.0 Introduction   ...........................................................................................................116 

 8.1 Background   ...........................................................................................................116 

 8.2 The Algorithm  ........................................................................................................117 



 ix  

 8.3 The Sequential LTFD Algorithm  ...........................................................................122 

 8.4 The Parallel LTFD Algorithm  ...............................................................................122 

 8.5 Calculating the Reference Solution  .......................................................................122 

  8.5.1 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear  

      Black-Scholes Equations  ..............................................................................122 

 8.6 Solving Two-Dimensional, Linear Black-Scholes Equations  ...............................125 

  8.6.1 Parameter Values  ..........................................................................................125 

  8.6.2 Aim  ...............................................................................................................125 

  8.6.3 Preliminary Notes  .........................................................................................125 

  8.6.4 Performance Data ..........................................................................................125 

   8.6.4.1 Sequential Programs Data  ....................................................................126 

   8.6.4.2 Parallel Programs Data  ........................................................................127 

  8.6.5 Conclusions  ...................................................................................................128 

 8.7 Chapter Summary  ..................................................................................................129 

 8.8 Contribution to Knowledge ....................................................................................129 

 

9 Solving Two-Dimensional, Nonlinear Black-Scholes Equations  ...........................130 

 9.0 Introduction  ............................................................................................................130 

 9.1 Practical Difficulties When Solving the Nonlinear Form  ......................................130 

 9.2 Solving Two-Dimensional, Nonlinear Black-Scholes Equations  ..........................132 

  9.2.1 Parameter Values  ..........................................................................................132 

  9.2.2 Aim  ...............................................................................................................132 

  9.2.3 Preliminary Notes  .........................................................................................132 

  9.2.4 Performance Data ..........................................................................................132 

   9.2.4.1 Modified Volatility Function : Simulated Modified Volatility  ...........133 

    9.2.4.1.1 Sequential Programs Data  ...........................................................133 

    9.2.4.1.2 Parallel Programs Data  ...............................................................134 

   9.2.4.2 Modified Volatility Function : Leland  .................................................135 

    9.2.4.2.1 Sequential Programs Data  ...........................................................135 

    9.2.4.2.2 Parallel Programs Data  ...............................................................136 

   9.2.4.3 Modified Volatility Function : Boyle and Vorst  ..................................138 

    9.2.4.3.1 Sequential Programs Data  ...........................................................138 

    9.2.4.3.2 Parallel Programs Data  ...............................................................139 

   9.2.4.4 Modified Volatility Function : Barles and Soner  .................................140 

    9.2.4.4.1 Sequential Programs Data  ...........................................................140 



 x  

    9.2.4.4.2 Parallel Programs Data  ...............................................................141 

   9.2.4.5 Modified Volatility Function : Risk Adjusted Pricing Methodology  ..143 

    9.2.4.5.1 Sequential Programs Data  ...........................................................143 

    9.2.4.5.2 Parallel Programs Data  ...............................................................144 

  9.2.5 Conclusions  ...................................................................................................145 

 9.3 Chapter Summary  ..................................................................................................146 

 9.4 Contribution to Knowledge ....................................................................................146 

 

10 Program Performance  ...............................................................................................147 

 10.0 Introduction  ..........................................................................................................147  

 10.1 The Effects of the Number of Weights/Terms Used  ...........................................147 

  10.1.1 On Execution Speeds and Parallel/Sequential Speed Ups  ..........................147 

  10.1.2 On Accuracies  .............................................................................................148 

 10.2 The Effects of the Number of Processors Used  ...................................................149 

  10.2.1 On Execution Speeds and Parallel/Sequential Speed Ups  ..........................149 

  10.2.2 On Accuracies  .............................................................................................149 

 10.3 Chapter Summary  ................................................................................................150 

 10.4 Contribution to Knowledge ..................................................................................150 

 

11 Conclusions and Future Work  ..................................................................................151 

 11.0 Introduction  ..........................................................................................................151 

 11.1 Overall Contribution to Knowledge .....................................................................151 

 11.2 Future Work  .........................................................................................................151 

 11.3 Chapter Summary  ................................................................................................153 

 

References  .........................................................................................................................154 

 



 xi  

Appendices 

A STRI Cluster Specification ...........................................................................................161 

B Performance Data for Laplace Transform Solutions - Initial Investigations  ...............162 

C Performance Data for the One-Dimensional, Linear Black-Scholes Equation  ............168 

D Performance Data for the One-Dimensional, Nonlinear Black-Scholes Equations  ....170 

E Performance Data for the Two-Dimensional, Linear Black-Scholes Equation  ...........180 

F Performance Data for the Two-Dimensional, Nonlinear Black-Scholes Equations  ....182 

G Computer Programs  .....................................................................................................192 



 xii  

List of Figures 

Chapter 2 

Figure 2.1 The Outline Solution Domain for the Two-Dimensional  

    Black-Scholes Equation ...................................................................................16 

Figure 2.2 The Detailed Solution Domain for the Two-Dimensional  

   Black-Scholes Equation  ..................................................................................17 

Figure 2.3 Historical Volatility for Apple Shares  ........................................................... 22 

Figure 2.4 Option Values for Apple Shares  .................................................................... 24 

Chapter 3 

Figure 3.1 The Bromwich Contour ...................................................................................27 

Chapter 4 

Figure 4.1 Minimum Wall Times for  

 Stehfest's Method .............................................................................................38 

Figure 4.2 Parallel/Sequential Speed Up for  

 Stehfest's Method .............................................................................................39 

Figure 4.3 Parallel/Sequential Speed Up Per Processor for  

 Stehfest's Method .............................................................................................39 

Figure 4.4 Minimum Wall Times for the  

 SLP Method .....................................................................................................39 

Figure 4.5 Parallel/Sequential Speed Up for the  

 SLP Method .....................................................................................................40 

Figure 4.6 Parallel/Sequential Speed Up Per Processor for the  

 SLP Method  ....................................................................................................40  

Figure 4.7 Minimum Wall Times for the  

 Jacobi Polynomial Method ..............................................................................40 

Figure 4.8 Parallel/Sequential Speed Up for the  

 Jacobi Polynomial Method ..............................................................................41 

Figure 4.9 Parallel/Sequential Speed Up Per Processor for the  

 Jacobi Polynomial Method ..............................................................................41 

Figure 4.10 Minimum Wall Times for the  

 Laguerre Polynomial Method ..........................................................................41 

Figure 4.11 Parallel/Sequential Speed Up for the  

 Laguerre Polynomial Method ..........................................................................42 

Figure 4.12 Parallel/Sequential Speed Up Per Processor for the  

 Laguerre Polynomial Method  .........................................................................42 



 xiii  

Chapter 5 

Figure 5.1 Domain Decomposition ...................................................................................45 

Figure 5.2 Normalised Root Mean Square Deviation, Parallel Programs  

 (Analytical LT) ................................................................................................50 

Figure 5.3 Minimum Wall Times, Parallel Programs  

 (Analytical LT) ................................................................................................50 

Figure 5.4 Parallel/Sequential Speed Up  

 (Analytical LT) ................................................................................................50 

Figure 5.5 Parallel/Sequential Speed Up Per Processor  

 (Analytical LT) ................................................................................................51 

Figure 5.6 Normalised Root Mean Square Deviation  

 (Analytical LT) (3-8 Processors) .....................................................................51 

Figure 5.7  Normalised Root Mean Square Deviation   

 (Analytical LT) (8-152 Processors) .................................................................52 

Figure 5.8  Minimum Wall Times   

 (Analytical LT) (3-8 Processors) .....................................................................52 

Figure 5.9 Minimum Wall Times   

 (Analytical LT) (8-152 Processors) .................................................................52 

Figure 5.10 Parallel/Sequential Speed Up   

 (Analytical LT) (3-8 Processors) .....................................................................53 

Figure 5.11 Parallel/Sequential Speed Up   

 (Analytical LT) (8-152 Processors) .................................................................53 

Figure 5.12 Parallel/Sequential Speed Up Per Processor   

 (Analytical LT) (3-8 Processors) .....................................................................53 

Figure 5.13 Parallel/Sequential Speed Up Per Processor   

 (Analytical LT) (8-152 Processors) .................................................................54 

Figure 5.14 Normalised Root Mean Square Deviation, Parallel Programs  

 (BVP LT) .........................................................................................................56 

Figure 5.15 Minimum Wall Times, Parallel Programs  

 (BVP LT) .........................................................................................................56 

Figure 5.16 Parallel/Sequential Speed Up  

 (BVP LT) .........................................................................................................57 

Figure 5.17 Parallel/Sequential Speed Up Per Processor  

 (BVP LT) .........................................................................................................57 

Figure 5.18 Normalised Root Mean Square Deviation   

 (BVP LT) (3-8 Processors) ..............................................................................57 

Figure 5.19 Normalised Root Mean Square Deviation   

 (BVP LT) (8-152 Processors) ..........................................................................58 

Figure 5.20 Minimum Wall Times 

 (BVP LT) (3-8 Processors) ..............................................................................58 



 xiv  

Figure 5.21 Minimum Wall Times   

 (BVP LT) (8-152 Processors) ..........................................................................58 

Figure 5.22 Parallel/Sequential Speed Up  

 (BVP LT) (3-8 Processors) ..............................................................................59 

Figure 5.23 Parallel/Sequential Speed Up  

 (BVP LT) (8-152 Processors) ..........................................................................59 

Figure 5.24 Parallel/Sequential Speed Up Per Processor  

 (BVP LT) (3-8 Processors) ..............................................................................59 

Figure 5.25 Parallel/Sequential Speed Up Per Processor  

 (BVP LT) (8-152 Processors) ..........................................................................60 

Chapter 6 

Figure 6.1 The Laplace Transform-Finite Difference Algorithm .....................................63 

Figure 6.2 Normalised Root Mean Square Deviation, Parallel Programs  ........................68 

Figure 6.3 Minimum Wall Times, Parallel Programs .......................................................69 

Figure 6.4 Parallel/Sequential Speed Up  ..........................................................................69 

Figure 6.5 Parallel/Sequential Speed Up Per Processor  ...................................................69 

Figure 6.6 Normalised Root Mean Square Deviation (3-8 Processors) ............................70 

Figure 6.7 Normalised Root Mean Square Deviation (8-152 Processors) ........................70 

Figure 6.8 Minimum Wall Times (3-8 Processors)  ..........................................................71 

Figure 6.9 Minimum Wall Times (8-152 Processors)  ......................................................71 

Figure 6.10 Parallel/Sequential Speed Up (3-8 Processors) ...............................................71 

Figure 6.11 Parallel/Sequential Speed Up (8-152 Processors) ...........................................72 

Figure 6.12 Parallel/Sequential Speed Up Per Processor (3-8 Processors)  ........................72 

Figure 6.13 Parallel/Sequential Speed Up Per Processor (8-152 Processors)  ....................72 

Chapter 7 

Figure 7.1 The Monte Carlo Algorithm for Solving One-Dimensional, Linear  

 Black-Scholes Equations  ................................................................................82 

Figure 7.2 The L'Ecuyer Combined Multiple Recursive Generator .................................83 

Figure 7.3 The Box-Muller Algorithm ..............................................................................84 

Figure 7.4 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear 

 Black-Scholes Equations  ................................................................................85 

Figure 7.5 The Algorithm for Calculating the Subsequent Initial Conditions  .................86  

Figure 7.6 The Algorithm for Calculating the Rows of Each Sub-Domain  .....................87 

Figure 7.7 Normalised Root Mean Square Deviation, Parallel Programs  

 (Simulated Modified Volatility)  .....................................................................89 

Figure 7.8 Minimum Wall Times, Parallel Programs  

 (Simulated Modified Volatility)  .....................................................................89 



 xv  

Figure 7.9 Parallel/Sequential Speed Up  

 (Simulated Modified Volatility)  .....................................................................90 

Figure 7.10 Parallel/Sequential Speed Up Per Processor  

 (Simulated Modified Volatility)  .....................................................................90 

Figure 7.11 Normalised Root Mean Square Deviation  

 (Simulated Modified Volatility) (3-8 Processors)  ..........................................91 

Figure 7.12 Normalised Root Mean Square Deviation  

 (Simulated Modified Volatility) (8-152 Processors)  ......................................91 

Figure 7.13 Minimum Wall Times  

 (Simulated Modified Volatility) (3-8 Processors) ...........................................92 

Figure 7.14 Minimum Wall Times  

 (Simulated Modified Volatility) (8-152 Processors)  ......................................92 

Figure 7.15 Parallel/Sequential Speed Up  

 (Simulated Modified Volatility) (3-8 Processors)  ..........................................92 

Figure 7.16 Parallel/Sequential Speed Up  

 (Simulated Modified Volatility) (8-152 Processors)  ......................................93 

Figure 7.17 Parallel/Sequential Speed Up Per Processor  

 (Simulated Modified Volatility) (3-8 Processors)  ..........................................93 

Figure 7.18 Parallel/Sequential Speed Up Per Processor  

 (Simulated Modified Volatility) (8-152 Processors)  ......................................93 

Figure 7.19 Normalised Root Mean Square Deviation, Parallel Programs  

 (Leland)  ...........................................................................................................94 

Figure 7.20 Minimum Wall Times, Parallel Programs  

 (Leland)  ...........................................................................................................95 

Figure 7.21 Parallel/Sequential Speed Up  

 (Leland)  ...........................................................................................................95 

Figure 7.22 Parallel/Sequential Speed Up Per Processor  

 (Leland)  ...........................................................................................................95 

Figure 7.23 Normalised Root Mean Square Deviation  

 (Leland) (3-8 Processors)  ................................................................................96 

Figure 7.24 Normalised Root Mean Square Deviation  

 (Leland) (8-152 Processors)  ............................................................................96 

Figure 7.25 Minimum Wall Times  

 (Leland) (3-8 Processors) .................................................................................96 

Figure 7.26 Minimum Wall Times  

 (Leland) (8-152 Processors)  ............................................................................97 

Figure 7.27 Parallel/Sequential Speed Up  

 (Leland) (3-8 Processors)  ................................................................................97 

Figure 7.28 Parallel/Sequential Speed Up  

 (Leland) (8-152 Processors)  ............................................................................97 



 xvi  

Figure 7.29 Parallel/Sequential Speed Up Per Processor  

 (Leland) (3-8 Processors)  ................................................................................98 

Figure 7.30 Parallel/Sequential Speed Up Per Processor  

 (Leland) (8-152 Processors)  ............................................................................98 

Figure 7.31 Normalised Root Mean Square Deviation, Parallel Programs  

 (Boyle and Vorst)  ............................................................................................99 

Figure 7.32 Minimum Wall Times, Parallel Programs  

 (Boyle and Vorst)  ............................................................................................99 

Figure 7.33 Parallel/Sequential Speed Up  

 (Boyle and Vorst)  ..........................................................................................100 

Figure 7.34 Parallel/Sequential Speed Up Per Processor  

 (Boyle and Vorst)  ..........................................................................................100 

Figure 7.35 Normalised Root Mean Square Deviation  

 (Boyle and Vorst) (3-8 Processors)  ...............................................................100 

Figure 7.36 Normalised Root Mean Square Deviation  

 (Boyle and Vorst) (8-152 Processors) ...........................................................101 

Figure 7.37 Minimum Wall Times  

 (Boyle and Vorst) (3-8 Processors) ................................................................101 

Figure 7.38 Minimum Wall Times  

 (Boyle and Vorst) (8-152 Processors) ...........................................................101 

Figure 7.39 Parallel/Sequential Speed Up  

 (Boyle and Vorst) (3-8 Processors)  ...............................................................102 

Figure 7.40 Parallel/Sequential Speed Up  

 (Boyle and Vorst) (8-152 Processors) ...........................................................102 

Figure 7.41 Parallel/Sequential Speed Up Per Processor  

 (Boyle and Vorst) (3-8 Processors)  ...............................................................102 

Figure 7.42 Parallel/Sequential Speed Up Per Processor  

 (Boyle and Vorst) (8-152 Processors) ...........................................................103 

Figure 7.43 Normalised Root Mean Square Deviation, Parallel Programs  

 (Barles and Soner) .........................................................................................104 

Figure 7.44 Minimum Wall Times, Parallel Programs  

 (Barles and Soner) .........................................................................................104 

Figure 7.45 Parallel/Sequential Speed Up  

 (Barles and Soner) .........................................................................................104 

Figure 7.46 Parallel/Sequential Speed Up Per Processor  

 (Barles and Soner) .........................................................................................105 

Figure 7.47 Normalised Root Mean Square Deviation  

 (Barles and Soner) (3-8 Processors)  .............................................................105 

Figure 7.48 Normalised Root Mean Square Deviation  

 (Barles and Soner) (8-152 Processors)  .........................................................105 



 xvii  

Figure 7.49 Minimum Wall Times  

 (Barles and Soner) (3-8 Processors) ..............................................................106 

Figure 7.50 Minimum Wall Times  

 (Barles and Soner) (8-152 Processors)  .........................................................106 

Figure 7.51 Parallel/Sequential Speed Up  

 (Barles and Soner) (3-8 Processors)  .............................................................106 

Figure 7.52 Parallel/Sequential Speed Up  

 (Barles and Soner) (8-152 Processors)  .........................................................107 

Figure 7.53 Parallel/Sequential Speed Up Per Processor  

 (Barles and Soner) (3-8 Processors)  .............................................................107 

Figure 7.54 Parallel/Sequential Speed Up Per Processor  

 (Barles and Soner) (8-152 Processors)  .........................................................107 

Figure 7.55 Normalised Root Mean Square Deviation, Parallel Programs  

 (RAPM) .........................................................................................................108 

Figure 7.56 Minimum Wall Times, Parallel Programs  

 (RAPM) .........................................................................................................109 

Figure 7.57 Parallel/Sequential Speed Up  

 (RAPM) .........................................................................................................109 

Figure 7.58 Parallel/Sequential Speed Up Per Processor  

 (RAPM) .........................................................................................................109 

Figure 7.59 Normalised Root Mean Square Deviation  

 (RAPM) (3-8 Processors)  .............................................................................110 

Figure 7.60 Normalised Root Mean Square Deviation  

 (RAPM) (8-152 Processors)  .........................................................................110 

Figure 7.61 Minimum Wall Times  

 (RAPM) (3-8 Processors) ..............................................................................111 

Figure 7.62 Minimum Wall Times  

 (RAPM) (8-152 Processors)  .........................................................................111 

Figure 7.63 Parallel/Sequential Speed Up  

 (RAPM) (3-8 Processors)  .............................................................................111 

Figure 7.64 Parallel/Sequential Speed Up  

 (RAPM) (8-152 Processors)  .........................................................................112 

Figure 7.65 Parallel/Sequential Speed Up Per Processor  

 (RAPM) (3-8 Processors)  .............................................................................112 

Figure 7.66 Parallel/Sequential Speed Up Per Processor  

 (RAPM) (8-152 Processors)  .........................................................................112 

Figure 7.67 Numerical Solutions of the Nonlinear Black-Scholes Equations  

 for  0,10   .................................................................................................114 

Figure 7.68 Numerical Solutions of the Nonlinear Black-Scholes Equations 

 for  0,100   ...............................................................................................114 



 xviii  

Chapter 8 

Figure 8.1 The Initial Solution Domain in Laplace Space for Two-Dimensional, Linear 

  Black-Scholes Equations  ..............................................................................118 

Figure 8.2 The Decomposed Solution Domain in Laplace Space for Two-Dimensional 

  Black-Scholes Equations  ..............................................................................121 

Figure 8.3 Calculating the Option Values in the Two-Dimensional LTFD Algorithm ..121 

Figure 8.4 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear  

 Black-Scholes Equations  ..............................................................................124 

Figure 8.5 Normalised Root Mean Square Deviation, Sequential Programs  .................126 

Figure 8.6 Minimum Wall Times, Sequential Programs ................................................126 

Figure 8.7 Normalised Root Mean Square Deviation, Parallel Programs  ......................127 

Figure 8.8 Minimum Wall Times, Parallel Programs  ....................................................127 

Figure 8.9 Parallel/Sequential Speed Up  ........................................................................127 

Figure 8.10 Parallel/Sequential Speed Up Per Processor  .................................................128 

Chapter 9 

Figure 9.1 The Laplace Transform-Finite Difference Algorithm for Solving 

 Two-Dimensional, Nonlinear Black-Scholes Equations ...............................130 

Figure 9.2 A Monte Carlo Algorithm for Solving Two-Dimensional Nonlinear  

 Black-Scholes Equations ...............................................................................131 

Figure 9.3 Normalised Root Mean Square Deviation, Sequential Programs  

 (Simulated Modified Volatility)  ...................................................................133 

Figure 9.4 Minimum Wall Times, Sequential Programs  

 (Simulated Modified Volatility)  ...................................................................133 

Figure 9.5 Normalised Root Mean Square Deviation, Parallel Programs  

 (Simulated Modified Volatility)  ...................................................................134 

Figure 9.6 Minimum Wall Times, Parallel Programs  

 (Simulated Modified Volatility)  ...................................................................134 

Figure 9.7 Parallel/Sequential Speed Up  

 (Simulated Modified Volatility)  ...................................................................134 

Figure 9.8 Parallel/Sequential Speed Up Per Processor  

 (Simulated Modified Volatility)  ...................................................................135 

Figure 9.9 Normalised Root Mean Square Deviation, Sequential Programs  

 (Leland)  .........................................................................................................135 

Figure 9.10 Minimum Wall Times, Sequential Programs  

 (Leland)  .........................................................................................................136 

Figure 9.11 Normalised Root Mean Square Deviation, Parallel Programs  

 (Leland)  .........................................................................................................136 

Figure 9.12 Minimum Wall Times, Parallel Programs  

 (Leland)  .........................................................................................................137 



 xix  

Figure 9.13 Parallel/Sequential Speed Up  

 (Leland)  .........................................................................................................137 

Figure 9.14 Parallel/Sequential Speed Up Per Processor  

 (Leland)  .........................................................................................................137 

Figure 9.15 Normalised Root Mean Square Deviation, Sequential Programs  

 (Boyle and Vorst)  ..........................................................................................138 

Figure 9.16 Minimum Wall Times, Sequential Programs  

 (Boyle and Vorst)  ..........................................................................................138 

Figure 9.17 Normalised Root Mean Square Deviation, Parallel Programs  

 (Boyle and Vorst)  ..........................................................................................139 

Figure 9.18 Minimum Wall Times, Parallel Programs  

 (Boyle and Vorst)  ..........................................................................................139 

Figure 9.19 Parallel/Sequential Speed Up  

 (Boyle and Vorst)  ..........................................................................................139 

Figure 9.20 Parallel/Sequential Speed Up Per Processor  

 (Boyle and Vorst)  ..........................................................................................140 

Figure 9.21 Normalised Root Mean Square Deviation, Sequential Programs 

 (Barles and Soner) .........................................................................................140 

Figure 9.22 Minimum Wall Times, Sequential Programs  

 (Barles and Soner) .........................................................................................141 

Figure 9.23 Normalised Root Mean Square Deviation, Parallel Programs  

 (Barles and Soner) .........................................................................................141 

Figure 9.24 Minimum Wall Times, Parallel Programs  

 (Barles and Soner) .........................................................................................142 

Figure 9.25 Parallel/Sequential Speed Up  

 (Barles and Soner) .........................................................................................142 

Figure 9.26 Parallel/Sequential Speed Up Per Processor  

 (Barles and Soner) .........................................................................................142 

Figure 9.27 Normalised Root Mean Square Deviation, Sequential Programs  

 (RAPM) .........................................................................................................143 

Figure 9.28 Minimum Wall Times, Sequential Programs  

 (RAPM) .........................................................................................................143 

Figure 9.29 Normalised Root Mean Square Deviation, Parallel Programs  

 (RAPM) .........................................................................................................144 

Figure 9.30 Minimum Wall Times, Parallel Programs  

 (RAPM) .........................................................................................................144 

Figure 9.31 Parallel/Sequential Speed Up  

 (RAPM) .........................................................................................................144 

Figure 9.32 Parallel/Sequential Speed Up Per Processor  

 (RAPM) .........................................................................................................145 

 



 xx  

List of Tables 

Chapter 4 

Table 4.1  NRMSD Values for Stehfest's Method  ...........................................................37 

Table 4.2  NRMSD Values for the SLP Method  .............................................................37 

Table 4.3  NRMSD Values for the Jacobi Polynomial Method .......................................37 

Table 4.4  NRMSD Values for the Laguerre Polynomial Method  ..................................38 

Table 4.5  Parameter Values Used in the Numerical Inversion Algorithms .....................43 

Chapter 5 

Table 5.1  Parameter Values Used in the One-Dimensional, Linear  

    Black-Scholes Equation  ..................................................................................46 

Table 5.2  Optimal Sequential Programs Data (Analytical LT)  ......................................49 

Table 5.3  Optimal Parallel Programs Data (Analytical LT)  ...........................................54 

Table 5.4  Optimal Sequential Programs Data (BVP LT)  ...............................................56 

Table 5.5  Optimal Parallel Programs Data (BVP LT)  ....................................................60 

Chapter 6 

Table 6.1 Parameter Values Used in the One-Dimensional, Linear  

 Black-Scholes Equation  ..................................................................................67 

Table 6.2  Sequential Finite Difference Program Data  ....................................................68 

Table 6.3  Optimal Parallel Programs Data  .....................................................................73 

Chapter 7 

Table 7.1  Parameter Values Used in the Modified Volatility Models .............................75 

Table 7.2  Parameter Values Used in the One-Dimensional, Nonlinear 

  Black-Scholes Equation  ..................................................................................87 

Table 7.3  Sequential, Finite Difference Program Data  

 (Simulated Modified Volatility)  .....................................................................89 

Table 7.4  Optimal Parallel Programs Data  

 (Simulated Modified Volatility)  .....................................................................94 

Table 7.5  Sequential, Finite Difference Program Data  

 (Leland)  ...........................................................................................................94 

Table 7.6  Optimal Parallel Programs Data  

 (Leland)  ...........................................................................................................98 

Table 7.7  Sequential, Finite Difference Program Data  

 (Boyle and Vorst)  ............................................................................................99 

Table 7.8  Optimal Parallel Programs Data  

 (Boyle and Vorst)  ..........................................................................................103 



 xxi  

Table 7.9  Sequential, Finite Difference Program Data  

 (Barles and Soner) .........................................................................................103 

Table 7.10 Optimal Parallel Programs Data  

 (Barles and Soner) .........................................................................................108 

Table 7.11 Sequential, Finite Difference Program Data  

 (RAPM) .........................................................................................................108 

Table 7.12 Optimal Parallel Programs Data  

 (RAPM) .........................................................................................................113 

Chapter 8 

Table 8.1  Parameter Values Used in the Two-Dimensional, Linear 

   Black-Scholes Equation  ................................................................................125 

Table 8.2  Optimal Sequential Programs Data ................................................................126 

Table 8.3  Optimal Parallel Programs Data  ...................................................................128 

Chapter 9 

Table 9.1  Parameter Values Used in the Two-Dimensional, Nonlinear 

   Black-Scholes Equation  ................................................................................132  

Table 9.2  Optimal Sequential Programs Data  

 (Simulated Modified Volatility)  ...................................................................133 

Table 9.3  Optimal Parallel Programs Data  

 (Simulated Modified Volatility)  ...................................................................135 

Table 9.4  Optimal Sequential Programs Data  

 (Leland)  .........................................................................................................136 

Table 9.5  Optimal Parallel Programs Data  

 (Leland)  .........................................................................................................138 

Table 9.6  Optimal Sequential Programs Data  

 (Boyle and Vorst)  ..........................................................................................138 

Table 9.7  Optimal Parallel Programs Data  

 (Boyle and Vorst)  ..........................................................................................140 

Table 9.8  Optimal Sequential Programs Data  

 (Barles and Soner) .........................................................................................141 

Table 9.9  Optimal Parallel Programs Data  

 (Barles and Soner) .........................................................................................143 

Table 9.10 Optimal Sequential Programs Data  

 (RAPM) .........................................................................................................143 

Table 9.11 Optimal Parallel Programs Data  

 (RAPM) .........................................................................................................145 



 xxii  

Appendix B 

Table B.1  Optimal Sequential Programs Data  

 (Analytical LT)  .............................................................................................162 

Table B.2  Optimal Weights/Terms Data, Parallel Programs  

 (Analytical LT)  .............................................................................................163 

Table B.3  Optimal Processors Data  

 (Analytical LT)  .............................................................................................164 

Table B.4  Optimal Sequential Programs Data  

 (BVP LT)  ......................................................................................................165 

Table B.5  Optimal Weights/Terms Data, Parallel Programs  

 (BVP LT)  ......................................................................................................166 

Table B.6  Optimal Processors Data  

 (BVP LT)  ......................................................................................................167 

Appendix C 

Table C.1  Optimal Weights/Terms Data, Parallel Programs  .........................................168 

Table C.2  Optimal Processors Data  ...............................................................................169 

Appendix D 

Table D.1  Optimal Weights/Terms Data, Parallel Programs  

 (Simulated Modified Volatility)  ...................................................................170 

Table D.2  Optimal Processors Data  

 (Simulated Modified Volatility)  ...................................................................171 

Table D.3  Optimal Weights/Terms Data, Parallel Programs  

 (Leland)  .........................................................................................................172 

Table D.4  Optimal Processors Data (Leland)  ................................................................173 

Table D.5  Optimal Weights/Terms Data, Parallel Programs  

 (Boyle and Vorst)  ..........................................................................................174 

Table D.6  Optimal Processors Data  

 (Boyle and Vorst)  ..........................................................................................175 

Table D.7  Optimal Weights/Terms Data, Parallel Programs  

 (Barles and Soner) .........................................................................................176 

Table D.8  Optimal Processors Data  

 (Barles and Soner) .........................................................................................177 

Table D.9  Optimal Weights/Terms Data, Parallel Programs  

 (RAPM) .........................................................................................................178 

Table D.10 Optimal Processors Data  

 (RAPM) .........................................................................................................179 



 xxiii  

Appendix E 

Table E.1  Optimal Sequential Programs Data  ...............................................................180 

Table E.2  Optimal Parallel Programs Data  ...................................................................181 

Appendix F 

Table F.1  Optimal Sequential Programs Data  

 (Simulated Modified Volatility)  ...................................................................182 

Table F.2  Optimal Parallel Programs Data  

 (Simulated Modified Volatility)  ...................................................................183 

Table F.3  Optimal Sequential Programs Data  

 (Leland)  .........................................................................................................184 

Table F.4  Optimal Parallel Programs Data  

 (Leland)  .........................................................................................................185 

Table F.5  Optimal Sequential Programs Data  

 (Boyle and Vorst)  ..........................................................................................186 

Table F.6  Optimal Parallel Programs Data  

 (Boyle and Vorst)  ..........................................................................................187 

Table F.7  Optimal Sequential Programs Data  

 (Barles and Soner) .........................................................................................188 

Table F.8  Optimal Parallel Programs Data  

 (Barles and Soner) .........................................................................................189 

Table F.9  Optimal Sequential Programs Data  

 (RAPM) .........................................................................................................190 

Table F.10 Optimal Parallel Programs Data  

 (RAPM) .........................................................................................................191 

 



  1 

Chapter 1 
 

Introduction 
 

 
1.0 Introduction 

The opening chapter of this dissertation provides the background information for this 

research programme. It explains that diffusion equations arise in a variety of application areas 

and gives some specific examples. The application area considered in this dissertation is 

mathematical finance. In the financial sector there is a need to find fast and accurate solutions 

of option pricing problems. One way to find these solutions is to use parallel numerical 

algorithms based on the Laplace transform. This chapter gives the aims of this research 

programme and states my thesis. It concludes by outlining the structure of this dissertation. 

 

1.1 Background 

Diffusion equations arise in many areas of science, engineering and commerce. For example, 

they are used to model : 

 

● the diffusion of one material into another e.g. smoke particles into air 

 

● the flow of heat from one part of an object to another 

 

● chemical reactions 

 

● electrical activity in the membranes of living organisms 

 

● the dispersion of populations 

 

● pursuit and evasion in predator-prey systems. 

 

In financial markets around the world traders use mathematical models to value financial 

options. In order to make prompt and accurate investment decisions traders need :  

 

● a range of solutions so that a variety of financial scenarios can be considered 

 

● fast and accurate numerical algorithms for solving the underlying equations.  

 

An efficient way to obtain these solutions is to use an algorithm in which the time domain is 

decomposed so that parallel computing methods can be used. One way to do this is to use an 

algorithm based on the Laplace transform, (Crann et al. 2007). However, a legitimate 
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criticism of these algorithms is that Laplace transform inversion is ill-posed
1
 

(Epstein and Schotland 2008). As a result, Laplace transform based algorithms have become 

unfashionable and most recent research into time domain decomposition (i.e. parallel) 

algorithms for solving option pricing problems has focused on the use of Fourier and Fast 

Fourier transforms. See Leentvaar et al. (2008) and Barua et al. (2004). However, Laplace 

transforms have a number of advantages over Fourier and Fast Fourier transforms. 

Beerends et al. (2003) state that Laplace transforms : 

 

● exist for a wider range of inputs and are more generally applicable 

 

● are usually easier to invert 

 

● are better suited for solving Causal LTC-systems
2
. Equations modelling financial options 

 fall into this category. 

 

●  are more computationally efficient. When using Laplace transforms the initial conditions 

 can be introduced into the solution at an early stage and this reduces the number of 

  subsequent calculations, especially for high-order equations. 

 

Furthermore, significant progress has been made into developing accurate numerical 

algorithms for inverting Laplace transforms, (Kuhlman 2012). Hence, Laplace transform 

based algorithms are due for reconsideration. 

 

In this research programme the accuracy of the solutions obtained using the Laplace 

transform based algorithms is validated by comparing them with solutions obtained using 

independent methods. This is either the analytical solution of the equation or a solution 

obtained using a Monte Carlo algorithm. It is left for future work to validate the accuracy of 

the solutions obtained using corresponding algorithms based on the use of Fourier and Fast 

Fourier transforms. See 11.2. 

 

In addition to Fourier, Fast Fourier and Laplace transform based methods many other time 

domain decomposition methods are available e.g. mortar methods, balancing domain 

decomposition methods, Schwarz methods, the Schur complement method and FETI-DP
3
  

methods. Detailed descriptions of these methods can be found in Quarteroni and Valli (1999). 

                                                 
1
  Hadamard (1923) states that a problem is well-posed if (1) a solution to the problem exists, (2) the 

 solution is unique and (3) the solution depends continuously on the problem data so that small changes in 

 the data produce small changes in the solution. It follows from this definition that a problem is ill-posed if 

 any of these conditions do not hold. 
2
  Linear, Time-invariant and Continuous. A system of this kind is said to be Causal if it remains at rest until 

 time 0t  .  
3
 Finite Element Tearing and Interconnect - Dual Primal. 
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1.2 Aims 

The aims of this research programme are to : 

 

● develop and evaluate sequential finite difference algorithms and sequential and parallel 

 Laplace transform based algorithms for solving one-dimensional and two-dimensional, 

 linear and nonlinear diffusion equations. In particular, Black-Scholes equations of these 

 types 

 

● determine the optimal numerical inversion algorithms to use in the Laplace transform 

 based algorithms for solving these equations and the optimal parameter values to use in 

  each case 

 

● provide the evidence to support my thesis i.e. to show that the Laplace transform based 

 algorithms produce fast and accurate solutions of the Black-Scholes equations mentioned 

 above. 

 

It is not an aim of this research programme to examine or to provide detailed descriptions of 

financial markets, products or trading strategies. Interested readers should consult a reference 

such as Wilmot et al. (1999) 

 

1.3 Dissertation Structure 

Chapters 2, 3 and 4 of this dissertation provide a review of the supporting literature. Chapter 

2 introduces financial options, option pricing and the Black-Scholes model and equations. 

Chapter 3 describes the Laplace transform method for solving differential equations. It 

considers the advantages and disadvantages of this method and describes four commonly 

used numerical algorithms that can be used for finding inverse Laplace transform values. 

Chapter 4 explains the methodology used. It describes the programming environment used, 

the measures used to evaluate the performance of the programs and algorithms and the 

method of data collection used. It then considers issues in the design of parallel programs and 

gives the parameter values used in the numerical inversion algorithms. 

 

Chapters 5, 6, 7, 8 and 9 provide the evidence to support my thesis. Chapter 5 describes 

initial investigations into Laplace transform solutions of the one-dimensional, linear  

Black-Scholes equation. Firstly, the equation is solved using the Laplace transform of its 

analytical solution. Secondly, the equation is converted into its ordinary differential equation 

(ODE) boundary-value problem (BVP) form and then solved using Laplace transform and 

finite difference methods. Chapter 6, 7, 8 and 9 develop and evaluate sequential finite 
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difference algorithms and sequential and parallel Laplace transform and finite difference 

algorithms for solving one-dimensional and two-dimensional, linear and nonlinear  

Black-Scholes equations. These chapters also determine the optimal numerical inversion 

algorithms to use with the Laplace transform based methods and the optimal parameter 

values to use in these algorithms. In the nonlinear cases Monte Carlo algorithms are also 

developed for calculating the reference solutions required for assessing the accuracy of the  

finite difference and the Laplace transform-finite difference solutions obtained. 

 

The final parts of this dissertation are Chapter 10 and Chapter 11. Chapter 10 identifies and 

explains the general patterns of behaviour observed when solving Black-Scholes equations. 

Chapter 11 gives the overall contribution to knowledge and describes how this research 

programme can be extended. 

 

1.4 Chapter Summary 

This chapter has set the scene for this research programme. The next stage will be to 

familiarise the reader with financial markets and in particular, the Black-Scholes equations 

that are used widely for calculating option prices. 



  5 

Chapter 2 

 

The Black-Scholes Model and Equations 
 

 
2.0 Introduction 

Financial markets have existed for hundreds of years and financial options have been traded 

for even longer. This chapter gives the historical background of this field and describes 

options of the types traded today. It continues by introducing the Black-Scholes model and by 

developing the one-dimensional and multi-dimensional, linear Black-Scholes equations. The 

linear equations assume that financial options can be traded without cost. In reality, each time 

a quantity of the underlying asset is bought or sold a transaction cost is incurred. When 

transaction costs are taken into consideration Black-Scholes equations become nonlinear i.e. 

contain non-constant volatilities. The most commonly used volatility models are described 

and this chapter concludes by describing Black-Scholes equations in which the volatility is 

modelled by a stochastic process. 

 

2.1 Historical Background 

Financial options have been traded for thousands of years. One of the earliest records dates 

back to the time of the Ancient Greeks. At this time it was common for someone wishing to 

invest in a commodity like olives, to pay the producer for the right to purchase a particular 

quantity, for an agreed price at a fixed time in the future, (Pliska 2010). Options of this type 

are still traded today. The first fully functional commodities exchange was established by the 

Japanese in the 17
th

 Century initially to enable the elite class, the Samurai, to earn money 

from the rice trade, (Abraham 2010). During these times the fair price of an option was 

usually determined by negotiation between the buyer and the seller. The first attempt in 

recent times to use mathematical methods to determine the value of an option dates back to 

1900. In his Ph.D dissertation the French mathematician Louis Bachelier derived a closed 

formula
4
 for calculating option prices, (Bachelier 1900). His formula was based upon similar 

assumptions to modern option pricing formulae and used the same dependent variables, 

(Benhamou 2008). However, his formula had two major faults. Firstly, it ignored discounting 

i.e. it did not give the present value of an option and secondly, it allowed option prices to be 

negative. As a result it was not used widely.  

                                                 
4
  A closed formula is one that is expressed in terms of a finite number of “well-known” functions. 



  6 

Over the next 70 years many other option pricing formulae were developed, many based on 

the Bachelier approach. A history of the development of these formulae can be found in 

Benhamou (2008). Unfortunately, all of these formulae had disadvantages. Some were 

complicated i.e. contained numerous parameters, many of which were difficult to estimate. 

Others did not give investors control over, or information about, the degree of risk involved 

in purchasing an option. A number failed to give a universal price for an option. The price 

given was related to the degree of risk the investor was prepared to accept. As a result, none 

of these formulae gained widespread popularity.  

 

The major breakthrough in option pricing came in 1973 when Fischer Black and Myron 

Scholes published their now famous paper
5
. In this, they introduced the Black-Scholes partial 

differential equation (PDE). Its solution is a closed formula for pricing options, similar to the 

one developed by Bachelier in 1900, but without the earlier formulas’ disadvantages. The 

advance made by Black and Scholes was to realise that the expected return of the option price 

should be the risk-free interest rate and that by holding a particular quantity of stock (called 

the delta), all risk in the investment could be eliminated, (Benhamou 2008). The  

Black-Scholes formula also has the following advantages over previous option pricing 

formulae : 

● it is a relatively easy formula to evaluate 

 

● it takes into account the five most important factors in option pricing. These are : 

 

 ● the current price of the asset on which the option is based 

 

 ● the price at which the option holder has the right to purchase the asset 

 

 ● the amount of time left until the contract expires 

 

 ● the variability
6
 of the asset price so that the investor can predict the value of the asset 

   on the expiry date 

 

 ● the current rates on offer for risk-free investments like Government bonds, 

  (Benhamou 2008) 

 

● it allows investors to manage their risk 

 

● it gives a universal option price i.e. the same price for all investors, whatever their degree 

  of risk aversion. 

                                                 
5
  See Black and Scholes (1973). 

6
  This variability is called the volatility of the option price. This term is defined in more detail in 2.3. 
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Shortly after its development an empirical study showed that the Black-Scholes formula 

predicted option prices that were very close to the actual price at which they were being 

traded. As a result the formula gained popularity and is now used in financial markets all over 

the world
7
. 

 

Fischer Black died in 1995. However, in 1997, Black, Scholes and Robert Merton, who 

provided a detailed mathematical understanding of the options pricing model, were awarded 

the Nobel Prize for Economics. 

 

2.2 European Call Options 

The simplest financial option is the European call option. This is a financial contract in which 

the holder may purchase a particular asset, called the underlying asset, for an agreed price, 

called the exercise price or the strike price, at some time in the future, called the expiry date. 

The term may here indicates that the holder has the right to purchase the underlying asset but 

does not have an obligation to do so. However, the other party to the contract, the seller, has 

an obligation to sell the asset if the holder chooses to buy it. The term European here 

indicates that the holder may not purchase the asset i.e. exercise the option, until the expiry 

date. Options in which the holder may exercise the option before the expiry date are called 

American options.  

 

The holder of a European call option will purchase the underlying asset if it is financially 

sensible to do so. That is, if the value of this asset is greater than the exercise price at the 

expiry date. However, if value of the underlying asset is less than the exercise price at the 

expiry date then the holder will not purchase the asset. This right, without obligation, 

combined with the need to compensate the seller for the obligation they have assumed, means 

that an option of this type has a value
8
. The seller must determine this value under the current 

market conditions so that the option can be sold for the appropriate price. 

 

The most commonly used mathematical model for determining the value of a European call 

option is the Black-Scholes equation. 

 

                                                 
7
  Black, Scholes and Merton worked as Professors at MIT. Here, they helped to train the next generation of 

 traders, many of whom would go on to work on the New York Stock Exchange on Wall Street. This helped 

 to increase the popularity of the Black-Scholes model further. 
8
  The value of an option is the non-refundable premium the holder must pay the seller in order to have the 

 right to buy the underlying asset at the expiry date. It does not include the exercise price of the option. 
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2.3 The Underlying Assumptions of the Black-Scholes Model 

Black and Scholes (1973) state that the underlying assumptions of their model are : 

 

1. The value of the underlying asset follows a lognormal random walk
9
. This behaviour is 

  described by the stochastic differential equation : 

 

( )dS Sdt SdW t       ---- (1) 

 Here : 

 

 Sdt  is the deterministic component of the equation 

 

   is called the drift. This is a measure of the average rate of growth of the 

   underlying asset value 

 

 S is the current value of the underlying asset 

 

 t  is time. dt  is a small change in time 

 

 ( )SdW t  is the stochastic component of the equation 

 

    is called the volatility. This is a measure of the variation in the price of the 

   underlying asset over time
10

  

 

 ( )W t  is called a Wiener process or Brownian motion. This is a continuous sequence 

  of random values drawn from a normal distribution with a mean of zero and a 

   variance of dt . ( )dW t  is a small change in ( )W t . 

 

2. The volatility   and the risk-free interest rate r are constants or known functions of time 

 

3. There are no transaction costs associated with hedging
11

 the portfolio 

 

4. The underlying asset pays no dividends during the life of the option 

 

5. There are no arbitrage opportunities i.e. it is not possible for an investor to make more 

 money by investing the value of the underlying asset in a risk-free, no cost investment 

  such as a high interest savings account 

 

                                                 
9
  The log of the asset price follows a normal distribution. 

10
 A commonly used measure of volatility is the annualised standard deviation of the daily logarithmic returns 

 i.e. S P   where S is standard deviation of the daily logarithmic returns and P is the time period of the 

 returns. Since there are 252 trading days in a year it is usual to assume that 1 252P  . The daily 

 logarithmic return is defined as  log ln n cr V V  where cV  is the current value of the option and nV  is the 

 next value of the option. 
11

  A hedge is an investment position used to offset potential losses in a companion investment. 



  9 

6. Trading in the underlying asset can take place continuously 

 

7. Short selling is permissible and the underlying asset is divisible. Short selling is selling a 

  stock or asset that the seller does not own in the hope that the value of that stock or asset 

 will go down. 

 

2.4 The One-Dimensional, Linear Black-Scholes Equation 

 

2.4.1 Itô's Lemma 

Let ( , )V S t  be a smooth function of a stochastic variable S and a deterministic variable t. 

Suppose that S and t vary by small amounts dS and dt respectively. Then, by Taylor series, 

neglecting the high-order terms, the corresponding small change in V is given by : 

 
2

2

2

1

2

V V V
dV dS dt dS

S t S

  
  
  

    ---- (2) 

From (1) it follows that : 

 
22 ( )dS Sdt SdW t    

 

i.e.  2 2 2 2 2 2 2 22 ( ) ( )dS S dt S dtdW t S dW t      

 

The changes in S and t occur over small intervals of time. Shreve (2010) shows that as 

0dt   in a Brownian motion, 2 0dt   and 2( )dW t dt . Hence : 

 
2 2 2dS S dt     ---- (3) 

 

Replacing dS with its value from (1) and 2dS  with its value from (3) the Taylor expansion (2) 

becomes : 

 
2

2 2

2

1
( )

2

V V V
dV Sdt SdW t dt S dt

S t S
  

  
   
  

 

 

i.e.  
2

2 2

2

1
( )

2

V V V V
dV S S dt S dW t

S t S S
  
    

    
    

 

 

This expression is called Itô's Lemma. It is the stochastic calculus equivalent of the total 

differential in ordinary calculus. 

 

2.4.2 Development of the Equation 

Consider a portfolio consisting of an option to short sell a number   of the underlying 

asset. The value   of the portfolio is : 

V S    
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where V is the value of the option and S is the current value of the underlying asset. The 

change in the value of this portfolio over a small interval in time dt is : 

 

d dV dS    

 

Replacing dV with its value from Itô's Lemma and dS with its value from (1) : 

 

 
2

2 2

2

1
( ) ( )

2

V V V V
d S S dt S dW t Sdt SdW t

S t S S
     

    
      

    
 

 

i.e.  
2

2 2

2

1
( )

2

V V V V
d S S S dt S S dW t

S t S S
     

     
        

     
 

 

The stochastic component in this expression can be eliminated by choosing 
V

S


 


. This is 

called delta hedging. In this case, the change in the value of the portfolio becomes : 

 
2

2 2

2

1

2

V V
d S dt

t S
 

  
  

  
    ---- (4) 

 

Suppose that the value of the portfolio   is invested in a risk-free, no cost investment that 

produces a return of r% per annum. Then, the change in the value of the investment over a 

small interval in time dt is : 

r dt     ---- (5) 

 

To prevent arbitrage opportunities the change in the value of the portfolio and the change in 

the value of the investment must be the same. Equating (4) and (5) : 

 
2

2 2

2

1

2

V V
r dt S dt

t S
 

  
  

  
 

 

Since V S    and 
V

S


 


, 

V
V S

S



 


. Hence : 

 
2

2 2

2

1

2

V V V
r V S dt S dt

S t S


    
    
     

 

 

i.e.  
2

2 2

2

1

2

V V V
rV rS S

S t S


  
  

  
 

 

i.e.  
2

2 2

2

1
0

2

  
   

  

V V V
S rS rV

t S S
     ---- (6) 
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The Black-Scholes equation (6) is a backward parabolic PDE
12

, (Smith 2004). Its solution 

gives the value of the option at the expiry time i.e. the future value of the option. To be able 

to solve this equation uniquely it is necessary to know the final condition and the boundary 

conditions. For a European call option these conditions are as follows. The final condition is 

given by the payoff at the expiry time, 

 

   , max ,0V S T S E      ---- (7) 

 

where T is the expiry time and E is the exercise price. If 0S   at the expiry time then the 

value of the option is zero. Hence, the first boundary condition is : 

 

 0, 0V t      ---- (8) 

 

As the current value of the underlying asset increases it becomes increasingly likely that the 

option will be exercised. In this case the value of the option will tend to the value of the asset. 

Hence, the second boundary condition is : 

 

 ,V S t S  as S      ---- (9) 

 

The seller will wish to know the current value of the option. To be able to determine this 

value using the Black-Scholes model, equation (6) must be rewritten as a forward parabolic 

PDE. This can be done by making the change of variable T t   , where   is the time to 

expiry. Using this transformation, the equation becomes : 

 
2

2 2

2

1
0

2

V V V
S rS rV

S S




  
    
  

    ---- (10) 

 

The final condition (7) is transformed into the initial condition : 

 

   ,0 max ,0V S S E      ---- (11) 

 

The boundary conditions (8) and (9) change to : 

 

 0, 0V       ---- (12)    and     ,V S S   as S      ---- (13) 

2.4.3 The Analytical Solution 

Using a technique called Similarity Reduction, Black and Scholes (1973) and Wilmot et al. 

(1999) show that the analytical solution of equation (10) is : 

                                                 
12

  A backward parabolic PDE is one in which the time derivative and the second spatial derivative have the 

 same sign when they are written on the same side of the equation. 
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   1 2, ( )rV S SN d Ee N d       ---- (14) 

 

where  N x  is the cumulative distribution function for a standardised normal random 

variable. This is defined as : 

 

 
21

2
1

2

x y

N x e dy






        or     
1

2 2

x
N x erfc

 
  

 
 

 

The terms 1d  and 2d  are defined as : 

 

   2

1

ln 1 2S E r
d

 

 

 
  

 

   2

2

ln 1 2S E r
d

 

 

 
  

 

2.5 European Put Options 

The Black-Scholes equation (10) can also be used for valuing a European put option. This is 

a financial contract in which the holder may sell a particular asset for an agreed price at some 

time in the future. However, when used to value an option of this type the equation has a 

different initial condition, different boundary conditions and a different analytical solution. 

Since the value of a European put option can always be calculated using the call-put parity 

equation i.e. 

 

 
0

1
t

E
C S P

r
  


 

 

where C is the call premium, P is the put premium and 0S  is the initial value of the 

underlying asset (Wilmot 2000), options of this type are not considered during this research 

programme. 

 

2.6 The Multi-Dimensional, Linear Black-Scholes Equation 

Financial options can be written on more than one underlying asset. Options of this type are 

called basket options or rainbow options, Geske (1979). The value of an option of this type 

can be found using the multi-dimensional version of the Black-Scholes equation (10). This is 

developed in the same way as the one-dimensional equation. 
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2.6.1 Itô's Lemma in Higher Dimensions 

Let  1 2, , . . ., ,dV S S S t  be a smooth function of d stochastic variables 1 2, , . . ., dS S S  and a 

deterministic variable t. Suppose that 
1 2, , . . ., dS S S  and t vary by small amounts 

1 2, , . . ., ddS dS dS  and dt  respectively. Then, by Taylor series, neglecting the high-order terms 

as before, the corresponding small change in V is given by : 

 
2

1 1 1

1

2
  

  
  

    
d d d

i i j

i i ji i j

V V V
dV dS dS dS dt

S S S t
    ---- (15) 

 

Extending assumption 1. of the Black-Scholes model, the change in the value of the ith 

stochastic variable iS  is given by : 

 

( ) i i i i i idS S dt S dW t      ---- (16) 

 

where i  and i  are the drift and the volatility of the ith asset respectively and ( )idW t  is a 

Brownian motion. 

 

Note 

In the multi-dimensional case ( )idW t  and ( )jdW t , i j , are correlated i.e. 

 

 E ( ). ( ) i j ijdW t dW t dt  

 

where ij  is the correlation coefficient between the ith and jth random walks, ij ji   and 

1ii . The symmetric, positive definite or positive semi-definite matrix
13

 Σ  that has ij  in 

the ith row and the jth column is called the correlation matrix. For example, for an option 

written on five underlying assets, the correlation matrix is : 

 

12 13 14 15

21 23 24 25

31 32 34 35

41 42 43 45

51 52 53 54

1

1

1

1

1

 
 
 
 
 
 
  



   

   

   

   

   

 

From (16) it follows that : 

 

  ( ) ( )i j i i i i i j j j j jdS dS S dt S dW t S dt S dW t       

                                                 
13

  Let M be an xn n  real, symmetric matrix and y  be a column vector. Then M is positive definite if 

 0Ty My 0 y  and positive semi-definite if 0Ty My   0 y . 
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i.e.  2 ( ) ( ) ( ) ( )   i j i j i j i j i j j j i i j i i j i j i jdS dS S S dt S S dtdW t S S dtdW t S S dW t dW t        

 

In a Brownian motion 2 0dt   as 0dt  , (Shreve 2010). Hence : 

 

( ) ( )i j i j i j i jdS dS S S dW t dW t   

 

Since  E ( ). ( ) i j ijdW t dW t dt  it follows that : 

 

i j i j ij i jdS dS S S dt       ---- (17) 

 

Substituting (17) into (15), the multi-dimensional version of Itô's Lemma becomes : 

 
2

1 1 1

1

2
  

  
  

    
d d d

i i j ij i j

i i ji i j

V V V
dV dS S S dt dt

S S S t
    

 

i.e.  
2

1 1 1

1

2
  

   
   
    
 

 
d d d

i j ij i j i

i j ii j i

V V V
dV S S dt dS

t S S S
    

 

2.6.2 Development of the Equation 

Consider a portfolio consisting of an option to short sell a number i  of the ith underlying 

asset. The value   of the portfolio is : 

1

  
d

i i

i

V S  

 

where V is the value of the option and iS  is the current value of the ith underlying asset. The 

change in the value of this portfolio over a small interval in time dt is : 

 

1

  
d

i i

i

d dV dS  

 

Replacing dV with its value from Itô's Lemma : 

 

2

1 1 1 1

1

2
   

   
     
    
 

  
d d d d

i j ij i j i i i

i j ii j i i

V V V
d S S dt dS dS

t S S S
     

 

The stochastic component in this expression can be eliminated by delta hedging i.e. by 

choosing 


 


i

i

V

S
. The change in the value of the portfolio then becomes : 
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2

1 1

1

2
 

  
  
   
 


d d

i j ij i j

i ji j

V V
d S S dt

t S S
        ---- (18) 

 

Suppose that the value of the portfolio   is invested in a risk-free, no cost investment that 

produces a return of r% per annum. Then, as before, the change in the value of the investment 

over a small interval in time dt is : 

r dt     ---- (5) 

 

Using the arbitrage argument from 2.4.2, the change in the value of the portfolio and 

the change in the value of the investment must be the same. Equating (18) and (5) : 

 

2

1 1

1

2
 

  
  
   
 


d d

i j ij i j

i ji j

V V
r dt S S dt

t S S
     

 

i.e.  
2

1 1

1

2
 

 
 
  

d d

i j ij i j

i ji j

V V
r S S

t S S
        ----(19) 

 

Since 

1

  
d

i i

i

V S  and 


 


i

i

V

S
 : 

1


 


d

i

ii

V
V S

S
  

Substituting this into (19) : 

 
2

1 1 1

1

2
  

   
        
 

d d d

i i j ij i j

i i ji i j

V V V
r V S S S

S t S S
    

 

i.e.  
2

1 1 1

1
0

2
  

  
   

    
d d d

i j ij i j i

i j ii j i

V V V
S S r S rV

t S S S
    

 

This equation is the multi-dimensional version of the Black-Scholes equation (6). In the case 

where 2d , this equation becomes
14

 : 

 
2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

t S S S S S S
    

     
      

      
    ---- (20) 

 

                                                 
14

  Since V is a smooth function, the mixed partial derivatives are equal. 
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For a particular value of time t, the solution domain for equation (20) can be visualised as :  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The Outline Solution Domain for the Two-Dimensional Black-Scholes Equation 
 

Like its one-dimensional counterpart, equation (20) is a backward parabolic PDE. To be able 

to solve this equation uniquely it is necessary to know the final condition and the boundary 

conditions. For a European call option written on two assets these conditions are as follows.  

 

The final condition is the payoff at the expiry time. Hence, at each internal node within the 

solution domain : 

    1 2 1 2, , max max , ,0V S S t S S E      ---- (21) 

 

At all points on the bottom boundary 2 0S  . Hence, the value of V at each internal point on 

this boundary is the value of an option written on the first asset only. Similarly, at all points 

on the left boundary 1 0S   so that the value of V at each internal point on this boundary is 

the value of an option written on the second asset only. Hence : 

 

 1 1,0,V S t Vs t     ---- (22)         2 20, ,V S t Vs t     ---- (23) 

 

where 1Vs t  and 2Vs t  are the single asset solutions of the one-dimensional, linear  

Black-Scholes equation (6) subject to the initial condition (7) and the boundary conditions (8) 

and (9). 

 

As the values of 1S  and 2S  increase it becomes increasingly likely that the option will be 

exercised. In this case the value of the option will tend to the value of the most expensive 

asset i.e. the asset with the largest current value. Hence :  

 

1S  

2S  

1 2 0S S   
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 1 2 1, ,V S S t S  as 
1S      ---- (24) 

and : 

 1 2 2, ,V S S t S  as 2S      ---- (25) 

 

These conditions imply that at each internal point on the right boundary, 1V S  and at each 

internal point on the top boundary, 2V S .  

 

At the bottom left-hand corner of the solution domain 1 2 0S S  . Hence, at this point 

0V  . The other corner points of the solution domain are discontinuities
15

. A common way 

of dealing with points of this type is to let their value be the average of the adjacent values on 

the intersecting boundaries. Hence : 

● at the top left-hand corner, 2 2

2

Vs t S
V


  

● at the top right-hand corner, 1 2

2

S S
V


  

● at the bottom right-hand corner, 1 1

2

S Vs t
V


 . 

The final condition and the boundary conditions for equation (20) are summarised below in  

Figure 2.2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The Detailed Solution Domain for the Two-Dimensional Black-Scholes Equation 

                                                 
15

  For the Black-Scholes Equation and the solution technique we use, the discontinuities do not cause 

 problems. 

1V S  

2V S  

1S  

2S  

1V Vs t  

2V Vs t  

1 1

2

S Vs t
V


  

1 2

2

S S
V


  

0V   

2 2

2

Vs t S
V


  

    1 2 1 2, , max max , ,0V S S t S S E   
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The seller will wish to know the current value of the option. To determine this value using the 

Black-Scholes model, equation (20) must be rewritten as a forward parabolic PDE. As before, 

this can be done by making the change of variable T t   , where   is the time to expiry. 

Using this transformation, the equation becomes : 

 
2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

    ---- (26) 

 

The final condition (21) is transformed into the initial condition : 

 

    1 2 1 2, ,0 max max , ,0V S S S S E      ---- (27) 

 

The boundary conditions (22), (23), (24) and (25) change to : 

 

 1 1,0,V S Vs      ---- (28)         2 20, ,V S Vs      ---- (29) 

 

 1 2 1, ,V S S S   as 1S      ---- (30)         1 2 2, ,V S S S   as 2S      ---- (31) 

 

The easiest way to find the values of 1Vs   and 2Vs   is to use the analytical solution of the 

Black-Scholes equation (10) i.e. expression (14). 

 

2.7 An Alternative Approach 

Option prices can be calculated by solving the underlying stochastic differential equations 

rather than the corresponding Black-Scholes equations. However, Sauer (2012) shows that 

numerical methods for solving stochastic differential equations arising in finance must 

incorporate Monte Carlo methods for simulating the Brownian motion terms ( )dW t  and 

( )idW t . Monte Carlo methods are notoriously slow and are not competitive with numerical 

methods for solving parabolic PDEs e.g. finite difference methods. 

 

2.8 Nonlinear Black-Scholes Equations 

Assumption 6. of the Black-Scholes model allows investors to continuously buy and sell 

quantities of the underlying asset in order to offset potential losses they may incur due to 

variations in the price of that asset. Ankudinova and Ehrhardt (2008) describe this process as 

"continuous portfolio adjustment to hedge the position without risk". Assumption 3. of the 

Black-Scholes model assumes that this portfolio adjustment can be accomplished without 

additional costs. However, in practice each time a quantity of the underlying asset is bought 

or sold a transaction cost is incurred. Since these transaction costs occur continuously they 

effect the price of the underlying asset over time and hence the volatilities in the  



  19 

Black-Scholes equations. A number of volatility models incorporating transactions costs have 

been developed. This research programme considers those described by Lai et al. (2005) and 

Ankudinova and Ehrhardt (2008). It is not an aim of this research programme to give the 

theoretical development of these models or to evaluate their strengths and weaknesses. 

Interested readers should consult the references given with each model. 

 

The volatility models described below can all be written in the general form : 

 

 2 2 1 corr     

 

where   is called the modified volatility,   is the volatility without transaction costs and 

corr  is called the volatility correction, (Ankudinova and Ehrhardt 2008). In the absence of 

transaction costs 0corr  . The volatility correction can be a function of time t, the time to 

expiry  , the current value of the underlying asset S, the value of the option V, the first and 

second partial derivatives of V or the solution of an initial-value problem, (Lai et al. 2005). In 

these cases the Black-Scholes equation (10) becomes : 

 
2

2 2

2

1
0

2

V V V
S rS rV

S S

  
    
  




    ---- (32) 

 

Similarly, the Black-Scholes equation (26) becomes : 

 
2 2 2

2 2 2 2

1 1 1 1 1 2 12 1 2 1 22 2

1 1 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

    ---- (33) 

 

Equations (32) and (33) are nonlinear. Unfortunately, very few analytical solutions exist for 

equations of this type. Solutions must usually be found using numerical methods. 

 

2.8.1 Volatility Models 

 

2.8.1.1 A Simulated Modified Volatility Model 

Boyle and Vorst (1992) assume that the transaction cost is related to the option value V and 

follows a normal distribution. They propose a modified volatility model in the form : 

 

 2 2 1 a    

 

where a is the proportional transaction cost
16

 scaled by   and the transaction time. Lai et al.  

(2005) adopt the same approach but assume that the transaction cost follows a pulse-like 

                                                 
16

 A transaction cost that is proportional to the number of transactions made rather than a fixed transaction 

 cost. 
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distribution. They model the proportional transaction cost using a sine function in the form : 

 

sin
V

a
E

 
  

 
 

 

to produce a simulated modified volatility model. 

 

2.8.1.2 Leland 

Leland (1985) assumes that the transaction costs can be minimised if the transactions occur at 

discrete points in time rather than continuously. Leland's modified volatility model has the 

form : 

  2 2 1 signLe     

 

where Le  is called the Leland number. This is defined as : 

 

2 k
Le

t 

 
  

 
 

 

where k is the round trip transaction cost per unit dollar of the transaction
17

 and t  is the 

transaction frequency. This is the time interval between successive revisions of the 

portfolio
18

. The term   is the gamma of the underlying asset. This is defined as : 

 
2

2

V

S


 


 

 

and is a measure of how often or by how much the portfolio needs to be hedged to maintain a 

risk-free position. Wilmot (2000) shows that for a long option
19

 such as a European call, and 

in the absence of transaction costs, 0  . If the same assumption is made for a European call 

in the presence of transaction costs then Leland's modified volatility model becomes : 

 

 2 2 1 Le    

 

In this case, the modified volatility is a constant and the Black-Scholes equations (32) and 

(33) are linear. 

                                                 
17

  This is defined as : 

ask bid

mid

S S
k

S


  

 where 
askS  is the price the seller is willing to accept for the asset, 

bidS  is the highest price the bidder is 

 willing to pay for the asset and 
midS is the mid value of the asset. This is average of the current bid and ask 

 prices. 
18

  Since there are 252 trading days in a year, a transaction frequency of 1 day gives 1 252t  . 
19

 A option whose value is expected to increase over time. 



  21 

2.8.1.3 Boyle and Vorst 

Boyle and Vorst (1992) also assume that the transaction costs can be minimised if the 

transactions occur at discrete points in time rather than continuously. Their modified 

volatility model has the form : 

 

 2 2 1 sign
2

Le


 
 

    
 

 

 

However, the term t  in their definition of the Leland number is the mean length of time for 

a change in the value of the underlying asset. If it is again assumed that 0   for a European 

call in the presence of transaction costs then this modified volatility is also constant and the 

Black-Scholes equations (32) and (33) are linear. 

 

2.8.1.4 Barles and Soner 

Barles and Soner (1998) propose a modified volatility model in the form
20

 : 

 

  2 2 2 21 re S       

 

where r is the risk-free interest rate, 2 2Na  ,   is the risk aversion factor
21

, N is the 

number of assets bought or sold, a is the proportional transaction cost and  x  is the 

solution of the initial-value problem : 

 

 

 

1

2

xd

dx x x x









    0x      ,   0 0      ---- (34) 

 

To calculate the values of  x  in the Barles and Soner model equation (34) must be solved 

over a suitable range of values of x. Then, as each argument 2 2rx e S   is calculated, the 

corresponding value of  x  is found by interpolation. 

 

2.8.1.5 The Risk Adjusted Pricing Methodology 

The Risk Adjusted Pricing Methodology (RAPM) model was developed by Kratka (1998) 

and subsequently refined by Jandačka and Ševčovič (2005). Here, "the optimal time-lag 

t between transactions is chosen to minimise the sum of the rate of the transaction costs and 

the rate of risk from an unprotected portfolio", (Ankudinova and Ehrhardt 2008). The 

                                                 
20

  The presence of the exponential term in this model means that is can be used only for calculating the 

 modified volatility over short periods of time. 
21

  A common measure used for   is the standard deviation of the returns on the underlying asset. 
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modified volatility model in this case is : 

 
1

2 3
2 2 1 3

2

C M
S 



 
      
  

 

 

 

where C is the risk premium measure
22

 and M is the coefficient of transaction costs. This is 

defined as : 

1

2

k S
M

t




   

 

where k is the round trip transaction cost per unit dollar of the transaction. 

 

2.9 Black-Scholes Equations with Stochastic Volatility 

Volatility is not constant as required by the Black-Scholes model. Empirical studies show that 

volatility is highly variable, even in the absence of transaction costs. For example, consider 

the historical volatility data shown in Figure 2.3. This data was calculated by applying the 

formulae given in the footnote on page 8 to the NASDAQ
23

 share price data
24

 for the 

multimedia company Apple for the period 14th January 2013 to 14th January 2014 inclusive. 

 

Historical Volatility for Apple Shares

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 25 49 73 97 121 145 169 193 217 241

Day

V
o

la
ti

li
ty

 

Figure 2.3 Historical Volatility for Apple Shares 
 

Clearly, the volatility for Apple shares is not constant. In this situation it is natural to model 

the volatility as a stochastic process. Wilmot (2000) states that by modelling volatility in this 

                                                 
22

  A measure of the amount by which an assets expected rate of return exceeds the risk-free interest rate. 
23

  NASDAQ is an acronym for National Association of Securities Dealers Automated Quotations. It is 

 America's second largest stock exchange after the New York stock exchange on Wall Street. 
24

  The data used to calculate the volatilities was the daily closing share prices in $. 
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way, options can be valued more accurately. 

  

The general stochastic volatility model has the form : 

 

( , , ) ( , , ) ( )d p S t dt q S t dB t        ---- (35) 

 

where ( , , )p S t dt  is called the volatility of volatility, ( , , )q S t  is called the drift of volatility 

and ( )dB t  is a Brownian motion that is correlated with ( )dW t  in equation (1) with 

correlation coefficient  , (Wilmot 2000).  

 

A number of stochastic volatility models have been developed, each one using different 

formulae for the functions p and q. Interested readers should consult a reference such as 

Jäckel (2005). One of the most commonly used is the Heston model, (Heston 1993). His 

stochastic volatility model has the form : 

 

( ) ( )t t td dt dB t         

 

where t  is a function that models the variance of S, the current value of the underlying asset, 

  is the rate at which the volatility reverts towards its long-term mean,   is the mean long-

term volatility and   is the volatility of volatility. Heston (1993) derives a closed formula for 

the value of a European call option written on an asset with stochastic volatility modelled by 

this equation. However, analytical solutions of this type are rare. To find the value of an 

option with stochastic volatility three methods are commonly used i.e. 

 

1. Equation (35) can be used instead of equation (1) to derive the corresponding Black- 

 Scholes equation. Wilmot (2000) uses this approach to derive the equation : 

 
2 2 2

2 2 2

2 2

1 1
( ) 0

2 2

V V V V V V
S Sq q rS p q rV

t S S S
  

  

     
       

      
    ---- (36) 

 

 for a European call option
25

. Here, ( , , )S t   is a function called the market price of 

 volatility risk. Equation (36) is nonlinear and must be solved using numerical methods. 

 A parallel, Laplace transform based algorithm for solving problems of this type is 

  described in Chapter 9. 

 

2. Statistical procedures can be applied to historical volatility data to produce estimates for 

 the  functions ( , , )p S t  and ( , , )q S t  in the stochastic volatility model. These can then 

  be substituted into the Fokker-Planck equation : 

                                                 
25

  Equation (36) has the same initial and boundary conditions as the Black-Scholes equation (6). 
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2 2

2

1 ( ) ( )

2

p p p

t

 

 

  
 

  
 

 

 where   and   are the estimates of ( , , )p S t  and ( , , )q S t  obtained from the data. 

 This equation "describes the evolution over time of the probability density function of a 

 random variable described by a stochastic differential equation", (Wilmot 2000). In this 

 case the closed form solution of this equation
26

 is the probability density function for  . 

 This expression can be used to forecast the values of   at future points in time,  

 (Wilmot 2000).  

 

3. Time series methods can be applied to historical volatility data to forecast the values of 

   at future points in time.   

 

If method 2. or method 3. is used then a set of constant volatility values is available for 

calculating the required option values. A computer program can simply read the 

corresponding pairs of S and   values one at a time and then calculate the value of the option 

using the analytical solution (14). This procedure can be parallelised by assigning each 

processor a range of volatility values to process. When a program of this kind is used to 

calculate the values of a European call option written on a single share in Apple, the option 

value data shown in Figure 2.4 is obtained. The exercise price E is taken to be $380 , the  

risk-free interest rate r is taken to be 0.05 and the required values of   are calculated within 

the program. 
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Figure 2.4 Option Values for Apple Shares 

 

                                                 
26

  Details of how to solve the Fokker-Planck equation can be found in Risken (1996). 
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It can be seen that the option values follow an upward trend in line with the share price data 

and the boundary condition  ,V S S   as S  . Like the historical volatility data, the 

option values also exhibit time series like behaviour. 

 

Stochastic volatility is an important issue in option pricing and volatility has become a 

tradable asset in its own right. For example, a VIX option is a non-equity option in which the 

underlying asset is the volatility index, (McKhann 2006). 

 

2.10 Chapter Summary 

Background information has been provided on financial markets, financial options and the 

Black-Scholes equations that are used widely for valuing options in the financial sector. In 

Chapter 1 it was explained that one way to find fast and accurate solutions of these equations 

is to use parallel numerical algorithms that are based on the Laplace transform. Chapter 3 will 

therefore describe Laplace transform methods and to explain how these methods can facilitate 

parallel solutions. 

  

2.11 Contribution to Knowledge 

This chapter has developed and implemented a relatively simple procedure for calculating 

option values in the case where the volatility is stochastic and historical volatility data is 

available. 
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Chapter 3 
 

The Laplace Transform Method 
 

 
3.0 Introduction 

The Laplace transform method can be used for solving both ODEs and PDEs. This chapter 

describes this method and considers its advantages and disadvantages. The advantage most 

relevant to this research programme is that it allows the time domain in diffusion problems 

such as Black-Scholes equations to be decomposed so that parallel computing methods can 

be used for finding their solutions. The main disadvantages are that it can be difficult to find 

inverse Laplace transforms, especially when tables cannot be used and that Laplace transform 

inversion is ill-posed. This chapter considers alternative methods for overcoming these 

problems, in particular numerical inversion algorithms. 

 

3.1 Background 

Parabolic PDEs can be solved using a variety of analytical and numerical procedures. 

Authors such as Edwards and Penney (2008), Morton and Mayers (2008), Smith (2004) and 

Wilmot et al. (1999) describe the most commonly used methods. This research programme 

considers the Laplace transform method. A description of the history and development of this 

technique can be found in Deakin (1992). 

 

3.2 Definition 

Consider a function  x t . The Laplace transform of  x t  is defined as : 

 

     
0

tx t e x t dt x 


     L  

 

where   is the transform variable. Widder (1946) states that sufficient conditions for the 

existence of  x t  L  are that : 

 

● the defining integral converges as t   

 

● the function  x t  is piecewise continuous
27

 on the interval 0 t   

 

                                                 
27

  A function is piecewise continuous if it can be divided into a finite number of sections so that it is 

 continuous on the interior of each section and that its value remains bounded as its argument approaches the 

 end  points of the sections. 
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● the function  x t  is of exponential order i.e.   constants c, 0M   and 0T   such that  

   ctx t Me t T   . 

 

The inverse Laplace transform of  x   is given by the Bromwich contour integral : 

 

   
 1

01

2 0 0

j
t

j

x t t
x e x d

j t






  


 


 

 
     


L  

 

Widder (1946). To ensure that the contour path is within the region of convergence, the 

constant   is chosen so that the singularities
28

 is  of  x   lie to the left of the vertical line 

 Re    in the complex plane (Laverty 2003) i.e.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The Bromwich Contour 

 

3.3 The Method 

In outline, the procedure for solving a time-dependent ODE or PDE using the Laplace 

transform method is : 

 

● take the Laplace transform with respect to time. This reduces the number of independent 

 variables by one and simplifies the problem being solved e.g. ODEs become algebraic 

  equations, one-dimensional PDEs become ordinary differential equations, etc. 

 

● substitute the initial condition(s) 

 

● solve the simplified equation to obtain the Laplace transform of the solution  

                                                 
28

  A singularity of a function ( )f z  is a point a such that as z a , ( )f z  . 

Re 

Im 

Re 

Im 

 

4s  

 

3s  

 

2s  

 

1s  

  

 Re    



  28 

● find the inverse Laplace transform to give the solution of the original differential  

 equation in the time domain. The inverse Laplace transform of many standard functions 

 can be found from tables such as those given in Davies and Crann (2004). 

 

3.4 Advantages 

The Laplace transform method has a number of advantages over time-marching, finite 

difference methods for solving parabolic PDEs such as those described in Morton and 

Mayers (2008), Smith (2004) and Buetow and Sochacki (2000). The Laplace transform 

method : 

 

● avoids the restrictions described in Smith (2004) that must be imposed upon the step 

 length in the case of explicit time-marching methods in order to ensure accuracy and 

 stability, (Davies and Crann 2010) 

 

● is more computationally efficient when the solution is required at a single point in time. 

 The Laplace transform method does not require the solutions to be found at the 

 intermediate values, (Davies et al. 2007). This is particularly important in mathematical 

 finance where it is often required to calculate the value of an option at a particular time in 

 the future. By comparing the future value with the value at which the option is currently 

 being traded, dealers can determine whether the option value is likely to increase or 

 decrease in the future and formulate an appropriate trading strategy. The Black-Scholes 

 model is a relatively simple tool for calculating future values 

 

● allows the time domain to be decomposed so that the equation can be solved using 

 parallel computing methods, (Crann et al. 2007). 

 

3.5 Disadvantage 

The main disadvantage of the Laplace transform method is that, if tables cannot be used then 

it can be difficult to find the inverse Laplace transform. The Bromwich contour integral is a 

Fredholm integral equation of the first kind, (McWhirter and Pike 1978). Equations of this 

kind are ill-posed
29

 and hence Laplace transform inversion is prone to instability. Kano 

(2010) states that the ill-posedness of the Bromwich contour integral is caused by the 

exponential term in the integrand that magnifies any algorithmic or computational errors in  

the method being used to find the inverse. However, for a more rigorous explanation of why 

                                                 
29

  Fredholm integral equations of the first kind are ill-posed because they fail the third condition in the test 

 given by Hadamard. See the footnote at the bottom of page 1. With an equation of this kind, small changes 

 in the data produce large changes in the solution i.e. the solution does not depend continuously on the data. 

 Fredholm integral equations of the second kind are well-posed. 
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Laplace transform inversion is prone to instability see Epstein and Schotland (2008). 

 

3.6 Alternative Methods of Laplace Transform Inversion 

Authors such as Abate and Whitt (2006), Skachkov (2002) and Davies (2002) have proposed 

methods for finding the inverse Laplace transform that are based on evaluating the Bromwich 

contour integral. However, other authors have criticised this approach claiming that it is too 

difficult to be of practical value (Laverty 2003) and ill-posed, (Crann 2005) and (Wing 1991).  

An alternative approach is to use a numerical inversion algorithm. For a review of the most 

commonly used procedures, interested readers should consult references such as Kuhlman 

(2012), Craddock et al. (2000) and Davies and Martin (1979). Although numerical Laplace 

transform inversion is also ill-posed, this approach has been used successfully in a wide 

variety of application areas, (NanoDotTek 2007). Furthermore, Kano (2010) suggests that 

numerical Laplace transform inversion is safe provided that the inversion algorithms are 

implemented accurately e.g. using double precision arithmetic and that a range of algorithms 

are evaluated to find one that is fast and accurate for the application to which it is being 

applied. This advice is followed throughout the remainder of this research programme.  

 

To determine the fastest and most accurate numerical inversion algorithm for solving  

Black-Scholes equations four widely used methods that have been used successfully in other 

applications are evaluated. These methods are Stehfest’s method, Stehfest (1970), the shifted 

Legendre polynomial method, Zakian and Littlewood (1973), the Jacobi polynomial method, 

Miller and Guy (1966) and the Laguerre polynomial method, Piessens and Branders (1971) 

and Weeks (1966). The last of these methods is the one identified by Davies and Martin 

(1979) as being the best overall performer. A number of performance comparisons have been 

completed previously. However, this research programme extends this work by evaluating 

the numerical inversion algorithms in a financial context. 

 

3.6.1 Stehfest’s Method 

The Stehfest inversion method is based upon a stochastic inversion process described by 

Gaver (1966). Here, the numerical inverse Laplace transform is given by a weighted sum of 

the Laplace transform values : 

 
1

ln 2
m

j j

j

V V 




   

where m must be even. The values of the transform variable j  are calculated using : 

 

ln 2
1,2, . . . ,j j j m


   
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and the weights 
j  are given by :  

 

 
 
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



 

 
               (Stehfest 1970). 

 

3.6.2 The Shifted Legendre Polynomial Method 

The shifted Legendre polynomial (SLP) method is a member of a class of numerical 

inversion algorithms in which the inverse Laplace transform is given by a weighted sum of 

exponential functions : 

 
0

1
m

k k

k

V C P z




   

 

The values of the transform variable k  are calculated using : 

 

1
0,1, . . . ,k

k
k m




   

 

The Legendre polynomials  kP z  are given by :  
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1 2 . . . k

k ko k k kkP z a a z a z a z      
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The coefficients kC  are given by :  

   
0

2 1

k

k kj j

j

C k a V 


    

 

(Zakian and Littlewood 1973). The term   is an arbitrary parameter
30

. Aral and Gülçat 

(1977) discuss possible values for this parameter and suggest setting   to the value of the 

independent variable e.g.   . However, (Crann 2005) found that using 1   gave good 

results and that varying  made little difference to the accuracy of the results obtained. 

 

                                                 
30

  Aral and Gülçat (1977) and Crann (2005) use the symbol   to denote this parameter. The symbol   is 

 used here to avoid confusion with the use of   to denote the time to expiry. 
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3.6.3 The Jacobi Polynomial Method 

The Jacobi polynomial method is a member of a class of numerical inversion algorithms in 

which the inverse Laplace transform is given by a weighted sum of orthogonal polynomials
31

, 

(Laverty 2003) : 
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where   and   are arbitrary parameters. The values of the transform variable 
n  are 

calculated using : 
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The Jacobi polynomials 
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(Miller and Guy 1966, Laverty 2003). For computational purposes it is more convenient to 

use the formula for the Jacobi polynomials given in (Abramowitz and Stegum 1972) i.e. 
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Miller and Guy (1966) suggest that the most accurate results are obtained when the 

parameters   and   are assigned values in the ranges 0.5 5.0    and 0.05 2.0  . 

However, a preliminary investigation conducted during this research programme found that 

varying the values of   and   made little difference to the accuracy of the results obtained. 
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  Suppose that two polynomials f and g are evaluated at regular intervals to produce approximating vectors 

 f  and g  respectively. Then, f and g are orthogonal if these vectors are perpendicular i.e. if 0f g  . 
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3.6.4 The Laguerre Polynomial Method 

In the Laguerre polynomial method the Laplace transform is approximated using a bilinear 

transformation of a complex variable
32

 (Davies and Martin 1979) : 

 

 
0

!

!

N

ct

k k

k

k t
V t e a L

k T

 







 
  

  
  

 

where  , c , N  and T  are parameters. The Laguerre polynomials can be calculated using the 

recursive formulae : 
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The coefficients ka  can be calculated using : 
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The complex expression within the V  bracket in the formula for  h   is the transform 

variable for this algorithm. 
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  A bilinear transformation Z of an independent complex variable z is a relationship in the form : 

 

a bz
Z

c dz


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
 

 where , , ,a b c d  . 
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Authors such as Weeks (1966), Piessens and Branders (1971) and Davies and Martin (1979) 

make recommendations for the optimal values of the parameters  , c , N  and T . However, 

while investigating this algorithm it was found that the optimal parameter values i.e. the 

values that gave the most accurate numerical inverse, depended upon the function to which 

the method was being applied. For example, when inverting the Laplace transform of the 

exponential function te , the optimal parameter values were found to be 0  , 0.7c  , 

10N   and 3.1T  . When inverting the Laplace transforms arising in the solution of the 

Black-Scholes equation (10), the optimal parameter values were found to be 0  , 2.4c  , 

6N   and 0.1T 
33

. 

 

3.7 Chapter Summary 

This chapter has described the Laplace transform method, considered its advantages and 

disadvantages and described four numerical algorithms that can be used for finding inverse 

Laplace transform values. Before proceeding to use Laplace transform based methods for 

solving Black-Scholes equations, the methodology used in the investigations that follow will 

be described. 

 

3.8 Contribution to Knowledge 

This chapter has established the optimal parameter values to use in the Laguerre polynomial 

method when the algorithm is used to invert the Laplace transforms arising in the solution of 

the Black-Scholes equation (10). 
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  The optimal parameter values were determined by experimentation i.e. by calculating the numerical inverse 

 for parameter values in the ranges 0  ,  0.1 0.1 5.1c  ,  1 1 20N  ,  0.1 0.1 6.1T   and choosing the 

 combination that gave the most accurate solution. 
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Chapter 4 
 

Methodology 
 

 
4.0 Introduction 

The methodology explains how the investigations described later in this dissertation are 

conducted. It describes the programming environment used, the measures used to evaluate the 

performance of the algorithms developed, the method of data collection used, issues in the 

design of the parallel programs and the parameter values used in the numerical inversion 

algorithms. 

 

4.1 Programming Environment 

The numerical algorithms developed in this research program are implemented in Fortran 90. 

This programming language was chosen because :  

 

● it contains a range of built-in mathematical functions and provides facilities to support 

  accurate numerical computation e.g. double precision arithmetic, (Metcalf and Reid 2006) 

 

● it can be linked to parallel development environments (Snir et al. 1996). 

 

The numerical algorithms are implemented sequentially and/or in parallel. All programs are 

run on a 96-node cluster/blade system. The full specification of this system is given in 

Appendix A. 

   

Commonly used parallel development environments are PVM (Parallel Virtual Machine), 

Sunderam (1990) and the MPI (Message Passing Interface), Snir et al. (1996) and Gropp et 

al. (1999). Geist et al. (1996) compare the features, strengths and weaknesses of each system. 

They conclude that when using a cluster/blade system, the MPI should be used because it 

provides a larger set of communication functions in particular, asynchronous communication, 

faster inter-processor communication and produces code that is more portable across different 

platforms. The first two advantages are particularly important in the context of this research 

programme. MPI parallelism is illustrative and many other means of obtaining parallel 

computation exist. Some may be more or less apposite - for example GPU or the XEON PHI 

accelerator etc. 

 

4.2 Measures of Performance 

The numerical algorithms are evaluated in terms of their speed and accuracy.  
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4.2.1 Measures of Speed 

Three measures of speed are used. For a measure of absolute speed Burkardt (2010) 

recommends using the program wall time. This is the difference between the CPU time at the 

beginning of the program and the CPU time at the end of the program. The MPI provides a 

built-in function for collecting data of this type. The measures of relative speed used are : 

 

● the parallel/sequential speed up. Magoules(2010) defines this as : 

 

Execution Speed of Sequential Program
Parallel/Sequential Speed Up

Execution Speed of Parallel Program
  

 

● the parallel/sequential speed up per processor
34

. 

 

4.2.2 Measure of Accuracy 

For a measure of accuracy, the normalised root mean square deviation (NRMSD) between 

the numerical solutions in  and the analytical solutions ia  is used. This is defined as : 
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where m is the number of pairs of solutions. This is the measure of accuracy used by Davies 

and Martin (1979) and is a commonly used measure of the differences between the values 

predicted by a model and the values actually observed, (Schiller et al. 2008).  

 

4.3 Method of Data Collection 

The programs implementing the numerical algorithms are largely CPU-bound i.e. perform no 

input and minimal output. Hence, the load on the cluster should not have a significant effect 

upon the program wall times. However, to allow accurate performance comparisons to be 

made, all programs are run at the same time i.e. under the same load conditions. Each 

program is also run 100 times. The wall time data collected is then used to calculate summary 

statistics. As in all empirical research the data collected contains the occasional statistical 

outlier e.g. a program wall time for a complicated algorithm being smaller than the program 

wall time for a simple one. Values of this type should be ignored and only the general trends 

in the data should be considered. 
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  This is also a measure of the efficiency of a parallel numerical algorithm. 
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4.4 Parallel Program Design 

The most obvious reason for implementing a numerical algorithm in parallel is the potential 

for increased execution speed. This is particularly important in areas such as mathematical 

finance where rapid results can give traders a competitive edge over their rivals. However, 

this is not the only reason. Many algorithms can be described more naturally as a number of 

simultaneously executing tasks rather than as a sequence of individual steps, 

(Magoules 2010). 

 

The parallel programs are designed using the master/slave model. Here, each parallel 

program contains a master processor and a number of slave processors. The master processor 

is responsible for allocating work and data to the slave processors and for calculating and 

presenting the final results. The slave processors are each responsible for performing part of 

the overall computation and for returning their results to the master processor. Baldo et al. 

(2005) state that this is the most common way to design parallel programs implemented on 

shared data/message passing systems like the MPI and is the method that produces the fastest  

execution speeds. 

 

4.4.1 Inter-Processor Communication 

Communication between processors is achieved using synchronous and asynchronous calls as 

appropriate. If the receiving processor cannot proceed without the data being sent e.g. when it 

is waiting for the weights/parameters to use in the numerical inversion algorithm or the range 

of t  (or  ) values for which it is responsible then synchronous calls such as mpi_send, 

mpi_receive and mpi_bcast are used. However, if the receiving processor can be doing other 

work e.g. receiving and processing data from another processor then asynchronous calls such 

as mpi_reduce are used. 

 

4.4.2 Functional Decomposition Verses Domain Decomposition 

To parallelise a numerical algorithm a choice is available between a functional decomposition 

and a domain decomposition (Fitzharris et al. 2012), (Grama et al. 2003). In the context of  

numerical Laplace transform inversion this means a choice between assigning each slave 

processor part of the each inversion calculation e.g. the calculations associated with a 

particular weight/term in the inversion formula or assigning each slave processor part of the 

solution domain e.g. the calculations associated with a range of t  (or  ) values. To determine 

the best method to use in terms of speed and accuracy, the numerical inversion algorithms 

were implemented using each decomposition method. Performance data was then collected 

for the range of test functions and parameter values used by Davies and Martin (1979). The 
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number of weights/terms used in the numerical inversion algorithms was varied in the range 

6(2)(16). In the programs based upon a functional decomposition the number of processors 

used was 1n , where n is the number of weights/terms used in the numerical inversion 

algorithm. In the programs based upon a domain decomposition the number of processors 

used was always the same as the number used in the corresponding functional decomposition 

program. This ensured that an accurate performance comparison could be made between the 

two decomposition methods.  

 

The results presented below were obtained by numerically inverting the Laplace transform of 

the function ( ) tx t e  for values of t in the range 0(0.01)100. However, almost identical 

results were obtained for the other functions tested.  

 

4.4.2.1 NRMSD Values 

The tables below give the NRMSD values for each numerical inversion algorithm and each 

decomposition method. 

 

Stehfest’s Method  

Number of Weights : 6 8 10 12 14 16 

Sequential Program 0.0142322545 0.0036774285 0.0008157130 0.0002046827 0.0000594815 0.0000160370 

Functional Decomposition 0.0142308042 0.0036768908 0.0008156957 0.0002047592 0.0000595126 0.0000160453 

Domain Decomposition 0.0142242159 0.0036733632 0.0008146399 0.0002046388 0.0000594235 0.0000160071 

 

Table 4.1 NRMSD Values for Stehfest's Method 
 

The SLP Method  

Number of Weights : 6 8 10 12 14 16 

Sequential Program 0.0000000000 0.0000000000 0.0000000001 0.0000000001 0.0000000223 0.0000246744 

Functional Decomposition 0.0000000000 0.0000000000 0.0000000000 0.0000000001 0.0000000223 0.0000008250 

Domain Decomposition 0.0000000000 0.0000000000 0.0000000001 0.0000000001 0.0000000223 0.0000246229 

 

Table4.2 NRMSD Values for the SLP Method 

 

The Jacobi Polynomial Method  

Number of Terms : 6 8 10 12 14 16 

Sequential Program 0.0000000007 0.0000001333 0.0000265723 0.0024033179 0.1361245659 0.4325653824 

Functional Decomposition 0.0000000007 0.0000001333 0.0000265799 0.0024042109 0.1361903713 0.4326578113 

Domain Decomposition 0.0000000007 0.0000001332 0.0000265412 0.0024028027 0.1359877938 0.4317798724 

 

Table 4.3 NRMSD Values for the Jacobi Polynomial Method 
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The Laguerre Polynomial Method  

Number of Terms : 6 8 10 12 14 16 

Sequential Program 0.0655779344 0.0587723753 0.0498944950 0.0469411261 0.0476426049 0.0486373446 

Functional Decomposition 0.0655779344 0.0587723753 0.0498944950 0.0469411261 0.0476426049 0.0486373446 

Domain Decomposition 0.0655420217 0.0587101715 0.0498289249 0.0469159920 0.0475790506 0.0485350214 

 

Table 4.4 NRMSD Values for the Laguerre Polynomial Method 

 

The zero NRMSD values shown in Table 4.2 are numbers that are smaller than 1010 . It can 

be seen from these tables that the choice of decomposition method does not appear to 

significantly effect the accuracy of the inverse Laplace transform values obtained.  

 

The data in these tables suggest that the SLP method is the most accurate numerical inversion 

algorithm. However, this was not generally the case. For all other test functions Stehfest's 

method gave the most accurate results
35

. 

 

4.4.2.2 Execution Speeds 

The graphs below summarise the wall time data and the parallel/sequential speed up data 

collected. The minimum wall time is considered to be the most accurate measure of absolute 

speed. 

 

Stehfest’s Method 
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Figure 4.1 Minimum Wall Times for Stehfest's Method 
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 Zakian and Littlewood (1973) show that when ( )  tx t e , the truncation error in the SLP method is zero. 

 Hence highly accurate inverse Laplace transform values can be expected in this case. 
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Parallel/Sequential Speed Up
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Figure 4.2 Parallel/Sequential Speed Up for Stehfest's Method 
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Figure 4.3 Parallel/Sequential Speed Up Per Processor for Stehfest's Method 

 

The SLP Method 
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Figure 4.4 Minimum Wall Times for the SLP Method 
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Parallel/Sequential Speed Up
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Figure 4.5 Parallel/Sequential Speed Up for the SLP Method 
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Figure 4.6 Parallel/Sequential Speed Up Per Processor for the SLP Method 

 

The Jacobi Polynomial Method 
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Figure 4.7 Minimum Wall Times for the Jacobi Polynomial Method 
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Parallel/Sequential Speed Up
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Figure 4.8  Parallel/Sequential Speed Up for the Jacobi Polynomial Method 
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Figure 4.9 Parallel/Sequential Speed Up Per Processor for the Jacobi Polynomial Method 

 

The Laguerre Polynomial Method 
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Figure 4.10 Minimum Wall Times for the Laguerre Polynomial Method 
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Parallel/Sequential Speed Up
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Figure 4.11 Parallel/Sequential Speed Up for the Laguerre Polynomial Method 
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Figure 4.12 Parallel/Sequential Speed Up Per Processor for the Laguerre Polynomial Method 

 

It can be seen from these graphs that in all cases, domain decomposition gives the fastest 

execution speeds, the largest parallel/sequential speed up and the largest parallel/sequential 

speed up per processor. 

 

4.4.2.3 Conclusions 

When numerically inverting Laplace transforms in a distributed computing environment 

domain decomposition is the preferred method to use. Domain decomposition was found to : 

 

● minimise inter-processor communication. The only inter-processor communication 

 required was the initial transmission from the master processor to the slave processors of 

 the weight/term/interval data and the final transmission from the slave processors to the 

 master processor of the parameters used in the calculation of the normalised root mean 

 square deviation   
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● give the fastest execution speeds. Using domain decomposition much more work was 

 performed in parallel than with the functional decomposition approach and hence a 

 greater parallel/sequential speed up and parallel/sequential speed up per processor was 

  obtained  

 

● facilitate load balancing across the cluster. Barney (2010) defines load balancing as the 

 practice of distributing work among tasks so that all tasks are kept busy all of the time. 

 Load balancing is an important issue in parallel program design. If the workload is not 

 spread evenly over the cluster then the fastest processors will have to wait i.e. idle, until 

 the slowest one has completed. This means that the slowest processor will determine the 

 overall performance of the program. Furthermore, this idling time is a waste of system 

 resources. It is time that could be used for doing work, that is, time that could be used for 

 reducing the program execution time. In the parallel programs developed in this research 

 programme load balancing is achieved by allocating each slave processor an equal size 

 part of the solution domain. Load balancing can be achieved using a functional 

  decomposition. However, it is sometimes more difficult in this case. 

 

For these reasons all future parallel algorithms developed and described in this dissertation 

will use a domain decomposition.  

 

4.5 Parameter Values Used in the Numerical Inversion Algorithms 

The parameter values used in the numerical inversion algorithms are within the ranges 

recommended by the authors cited earlier, and in the case of the Laguerre polynomial 

method, they are the optimal values calculated. 

 

Algorithm Parameter Values Reference 

Stehfest’s Method - - 

The SLP Method 1   Crann (2005) 

The Jacobi Polynomial 

Method 
5  , 1   Miller and Guy (1966) 

The Laguerre Polynomial 

Method 
0  , 2.4c  , 100N  , 0.1T   - 

 

Table 4.5 Parameter Values Used in the Numerical Inversion Algorithms 

 

4.6 Number of Weights/Terms and Processors Used 

When solving one-dimensional, linear and nonlinear Black-Scholes equations : 
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● the number of weights/terms used in the numerical inversion algorithms is varied in the 

 range 6(2)26 in both sequential and parallel programs. While the optimal number of 

  weights/terms is being determined each parallel program uses 21 processors i.e. one 

  master processor and twenty slave processors 

 

● the number of processors used in the parallel programs is varied in the ranges 3(1)8 and 

 8(16)152
36

. While the optimal number of processors is being determined, the number of 

 weights/terms used is fixed at the optimal number determined in the investigations above. 

 This enables the optimal combination of weights/terms and processors for each numerical 

  inversion algorithm to be determined. This is an aim of this research programme.  

 

 An  alternative approach is to fix the number of weights/terms used in each numerical 

 inversion algorithm to the same value e.g. 6. In theory this should enable accurate speed 

 comparisons to be made. However, an investigation conducted using the codes developed 

 in Chapter 6 showed that although this approach produced minor differences in the data, 

 the relative speeds of the numerical inversion algorithms remained the same. The likely 

 reasons for this behaviour are explained in 10.1.1. 

 

When solving two-dimensional, linear and nonlinear Black-Scholes equations the number of 

weights/terms used in the numerical inversion algorithms is again varied in the range 6(2)26 

in both sequential and parallel programs. However, due to the nature of the two-dimensional 

algorithm, the number of processors used in the parallel version is always the number of 

values of the transform variable plus one (i.e. for the master processor). 

 

For both the one-dimensional and the two-dimensional Black-Scholes equations, the ranges 

of weights/terms and processors given above capture the optimal performance data. 

 

4.7 Chapter Summary 

The methodology used in the investigations that follow has been described. In the next 

chapter, initial investigations will be conducted to determine whether Laplace transform 

based algorithms are effective when they are used to solve the one-dimensional, linear  

Black-Scholes equation. 

  

4.8 Contribution to Knowledge 

This chapter has established the most efficient decomposition method to use when 

numerically inverting Laplace transforms in a distributed computing environment. 
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  Multiples of eight are used because each node on the cluster contains eight processors. 
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Chapter 5 
 

Laplace Transform Solutions - Initial Investigations 
 

 
5.0 Introduction 

In these initial investigations Laplace transform based algorithms are developed for solving 

the one-dimensional, linear Black-Scholes equation, firstly by using the Laplace transform of 

its analytical solution and secondly by solving its ODE BVP form. 

 

Since this equation has an analytical solution i.e. expression (14), it is not necessary to use 

Laplace transform based algorithms to find its solution. However, algorithms of this type are 

developed here for three reasons. Firstly, to demonstrate the potential of Laplace transform 

based algorithms for solving problems of this type, secondly, to develop and evaluate parallel 

implementations of the numerical inversion algorithms described in Chapter 3 i.e. Stehfest's 

method, the shifted Legendre polynomial method, the Jacobi polynomial method and the 

Laguerre polynomial method and thirdly, to develop and evaluate numerical procedures that 

will be used within the more advanced algorithms described later in this dissertation. 

 

5.1 The Solution Domain 

By looking at the Black-Scholes equation (10) it can be seen that the value of an option V 

depends upon the current value of the underlying asset S and the time to expiry . To ensure 

that each computer program performs a significant amount of work, the equation is solved for 

a variety of S and  values, that is, over an S- domain. In the parallel programs, each slave 

processor performs the calculations associated with a range of   values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Domain Decomposition 
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  

S 

etc. 
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5.2 Parameter Values 

The parameter values used in the Black-Scholes equation (10) in this chapter are : 

 

Parameter Values 

S 0.0(0.01)40.0 

E 10 

r 0.05 

  0.25 

  0.0(0.1)100.0
37

 

 
Table 5.1 Parameter Values Used in the One-Dimensional, Linear Black-Scholes Equation 

 

5.3 Investigation 1 : The Laplace Transform of the Analytical Solution 

5.3.1 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

implementations of the numerical inversion algorithms when they are used to invert the 

Laplace transform of the analytical solution of the one-dimensional, linear Black-Scholes 

equation (10) and use it to compare their relative performances.. 

 

5.3.2 The Laplace Transform Formula 

In Chapter 2 it was shown that the Black-Scholes equation (6) can be written as : 

 
2

2 2

2

1
0

2

V V V
S rS rV

S S




  
    
  

     ---- (10) 

 

with initial condition : 

 

   ,0 max ,0V S S E      ---- (11) 

 

and boundary conditions : 

 

 0, 0V       ---- (12)    and     ,V S S  as S      ---- (13) 

 

Taking Laplace transforms with respect to  , the Black-Scholes equation (10) can be written 

as : 

   
2

2 2

2

1
,0

2

d V dV
S rS r V V S

dSdS
       

 

Substituting the initial condition  ,0V S  i.e. (11) : 

 

                                                 
37

  Since   is measured in years, large values are unrealistic. However, large values are used because they 

 produce execution times that allow accurate timing comparisons to be made. Furthermore, if a numerical 

 algorithm is fast and accurate for a large value of  , it will also be fast and accurate for a small value of  . 
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 
 2

2 2

2

1

2 0

S E S Ed V dV
S rS r V

dSdS S E
 

  
    


    ---- (37) 

 

Taking Laplace transforms with respect to  , the boundary conditions (12) and (13) become : 

 

 0; 0V       ---- (38)     ;  as 
S

V S S


     ---- (39) 

 

In these equations V  is the Laplace transform of V and   is the transform variable. Equation 

(37) is the ODE BVP form of the one-dimensional, linear Black-Scholes equation.  

 

Equation (37) can be solved using the analytical method, (Edwards and Penney 2008). The  

complementary function (CF) can be found using the trial solution nV CS , ,C n .  

Substituting this solution into the homogeneous form of equation (37) : 

 

 2 2 21 1
0

2 2

nCS n r n r  
  

      
  

 

 

Dividing through by 21

2
 , substituting 

2

2r
k


  and solving for n : 

 

2

1 1 2

2 2

k k
n





 
    

Hence : 
2

1 2

1 2

3 4

CF
in n

n n

C S C S S E

C S C S S E

  
 

 

 

where : 

 

1 2 3 4, , ,C C C C  ,  1 2

1 1 2

2 2

k k
n





 
   ,  2 2

1 1 2

2 2

k k
n





 
     and  

2

2r
k


  

 

When S E  the particular integral (PI) has the general form : 

 

1 2V D D S   where 1 2,D D   

 

Substituting this into equation (37) and equating coefficients : 

 

PI
E S

r  
  


 

 

When S E , PI 0 . 

 

Combining the complementary functions and particular integrals : 
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2

1 2

1 2

3 4

in n

n n

E S
C S C S S E

V r

C S C S S E

 


   

 
  

 

 

To satisfy boundary condition (39), the complementary function 2

1 2
in n

C S C S  must tend to 

E

r 
 as S  . Since 1 0n   and 2 0n  , this will only happen if 1 0C  .  

 

To satisfy boundary condition (38), the complementary function 1 2

3 4

n n
C S C S  must tend to 

zero as 0S  . Since 
1 0n   and 

2 0n  , this will only happen if 
4 0C  . Substituting these 

values : 

2

1

2

3

n

n

E S
C S S E

V r

C S S E

 


  

 
 

    ---- (40) 

 

The values of 2C  and 3C  can be found by considering the behaviour of V  at the transition 

point i.e. the point where S E . Here, the expressions in (40) must give the same value of 

V  i.e. 

2 1

2 3

n nE S
C S C S

r  
  


 

 

Substituting S E  : 

2 1

2 3

n nE E
C E C E

r  
  


    ---- (41) 

 

Since V  varies continuously, the derivatives of the expressions in (40) with respect to S must 

also be equal i.e. 

2 11 1

2 2 1 3

1n n
n C S n C S



 
   

 

Substituting S E  : 

2 11 1

2 2 1 3

1n n
n C E n C E



 
      ---- (42) 

 

Solving (41) and (42) simultaneously : 

 

 

 

2

1

1

1 1
2

1 2

1

2 2
3

1 2

1

    ---- (43)
1

n

n

n n E
C

r n n

n n E
C

r n n

 

 





 
      


        
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Substituting the expressions for 2C  and 3C  in (43) into (40), the Laplace transform of the 

analytical solution of the Black-Scholes equation (10) becomes : 

 

 

 

2

2

1

1

1

1 1

1 2

1

2 2

1 2

1
 

1

n
n

n
n

n n E E S
S S E

r n n r
V

n n E
S S E

r n n

   

 





  
       

 
       

    ---- (44) 

 

where 1 2

1 1 2

2 2

k k
n





 
   ,  2 2

1 1 2

2 2

k k
n





 
    and 

2

2r
k


  

 

By looking at the initial condition (11) it can be seen that when S E , 0V   and hence 

0V  . 

 

5.3.3 Performance Data 

The graphs and tables below provide a summary of the data collected during this 

investigation. The graphs show visually, the relative performances of the numerical inversion 

algorithms. As before, only the graphs showing the minimum wall times are included. 

Detailed results are given in Appendix B. 

 

5.3.3.1 Optimal Sequential Programs Data 
 

Optimal Optimal Optimal

Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.00760937300

Minimum Wall Time (s) : Stehfest 6 7.40825700800  

Table 5.2 Optimal Sequential Programs Data (Analytical LT) 
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5.3.3.2 Part 1 - Varying the Number of Weights/Terms Used 

NRMSD
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6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 5.2 Normalised Root Mean Square Deviation, Parallel Programs (Analytical LT) 
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Figure 5.3 Minimum Wall Times, Parallel Programs (Analytical LT)
38

 

 

Parallel/Sequential Speed Up
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Figure 5.4 Parallel/Sequential Speed Up (Analytical LT) 

                                                 
38

  The minimum wall times for Stehfest’s method and the Jacobi polynomial method follow slight upward 

 trends. 
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Parallel/Sequential Speed Up Per Processor
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Figure 5.5 Parallel/Sequential Speed Up Per Processor (Analytical LT) 
 

5.3.3.3 Part 2 - Varying the Number of Processors Used 
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Figure 5.6 Normalised Root Mean Square Deviation (Analytical LT) (3-8 Processors)
39 

 

                                                 
39

  The NRMSD values for Stehfest’s method, the Jacobi polynomial method and the Laguerre polynomial 

 method follow slight oscillating trends. 
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Figure 5.7 Normalised Root Mean Square Deviation (Analytical LT) (8-152 Processors)
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Figure 5.8 Minimum Wall Times  (Analytical LT) (3-8 Processors)
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Figure 5.9 Minimum Wall Times (Analytical LT) (8-152 Processors)
42

 

                                                 
40

  The NRMSD values for Stehfest’s method follow a slight oscillating trend. 
41

  The minimum wall times for Stehfest’s method and the Jacobi polynomial method follow oscillating trends. 
42

  The minimum wall times for Stehfest’s method follow an oscillating trend. 
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Parallel/Sequential Speed Up
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Figure 5.10 Parallel/Sequential Speed Up (Analytical LT) (3-8 Processors) 
 

Parallel/Sequential Speed Up

1.00

6.00

11.00

16.00

21.00

26.00

31.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 5.11 Parallel/Sequential Speed Up (Analytical LT) (8-152 Processors) 
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Figure 5.12 Parallel/Sequential Speed Up Per Processor (Analytical LT) (3-8 Processors) 
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Parallel/Sequential Speed Up Per Processor
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Figure 5.13 Parallel/Sequential Speed Up Per Processor (Analytical LT) (8-152 Processors)
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5.3.3.4 Optimal Parallel Programs Data 

 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Stehfest 6 21 0.00753181310

Minimum Wall Time (s) : Stehfest 6 40 0.50650691880

Parallel/Sequential Speed Up : Laguerre 6 136 30.08960574915

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 1.05105894946  

Table 5.3 Optimal Parallel Programs Data (Analytical LT) 
 

5.4 Investigation 2 : The Laplace Transforms Arising in the ODE BVP Form 

5.4.1 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

implementations of the numerical inversion algorithms when they are used to invert the 

Laplace transforms arising in the finite difference solution of the ODE BVP form of the  

one-dimensional, linear Black-Scholes equation (10) and use it to compare their relative 

performances. 

 

5.4.2 The Finite Difference Solution of the ODE BVP Form 

In 5.3.2 it was shown that the Black-Scholes equation (10) can be written as : 

 

 
 2

2 2

2

1

2 0

S E S Ed V dV
S rS r V

dS dS S E
 

  
    


    ---- (37) 

with boundary conditions : 

 0; 0V       ---- (38)     ;  as 
S

V S S


     ---- (39) 

                                                 
43

  The parallel/sequential speed up per processor values for the Laguerre polynomial method follow a slight 

 oscillating trend. 



  55 

An alternative way to solve the Black-Scholes equation (10) is to solve the ODE BVP form 

(37) using an appropriate numerical method and then to invert the V  values obtained using a 

numerical inversion algorithm. Crann et al. (1998) used this approach and solved the ODE 

BVP form using the finite volume method. In this investigation the ODE BVP form is solved 

using the finite difference method, that is, by replacing the derivatives with central difference 

approximations. Smith (2004) shows that if h is the step length in the x-direction then : 

 

1 1

2

i iy ydy

dx h

 
     and    

2

1 1

2 2

2i i iy y yd y

dx h

  
  

 

Applying these results to equation (37) : 

 

 
 2 2 1 1 1 1

2

21

2 2 0

ii i i i i
i i i

S E S EV V V V V
S rS r V

h h S E
    

        
       

    
 

 

      
 2

2 2 2 2 2 2 2

1 1

2
2

0

i

i i i i i i i i

h S E S E
S hrS V S h r V S hrS V

S E
    

  
       



 

 

where h is now the step length in the S-direction. This expression produces a tridiagonal 

system of linear equations for each value of . To solve the Black-Scholes equation (10) 

using this method the   values used in the numerical inversion algorithm are calculated and 

the corresponding systems of linear equation are formed and solved. The numerical inversion 

algorithm is then applied to the solutions. Each system is stored within a compact storage 

scheme. Only the leading diagonal, the principal sub-diagonal, the principal super-diagonal 

and the right-hand side vector are stored. Following (Chapra and Canale 2010) we solve the 

tridiagonal system using the Thomas algorithm, which is a computationally efficient method 

for solving the tridiagonal systems arising from diffusion equations.
44

 

 

5.4.3 Performance Data 

The graphs and tables below provide a summary of the data collected during this 

investigation. Once again, the graphs show visually, the relative performances of the 

numerical inversion algorithms. As before, the minimum wall time is considered to be the 

most accurate measure of absolute speed. Detailed results are given in Appendix B. 

                                                 
44

  An alternative, more general approach would be to use the routine DGTSV from LAPACK 

 (http://www.netlib.org/lapack/) 
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5.4.3.1 Optimal Sequential Programs Data 
 

Optimal Optimal Optimal

Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.04177589251

Minimum Wall Time (s) : Stehfest 6 2.13941407200  

Table 5.4 Optimal Sequential Programs Data (BVP LT) 
 

5.4.3.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 5.14 Normalised Root Mean Square Deviation, Parallel Programs (BVP LT) 
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Figure 5.15 Minimum Wall Times, Parallel Programs (BVP LT)
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  The minimum wall times for Stehfest's method and the SLP method follow increasing trends. 
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Parallel/Sequential Speed Up
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Figure 5.16 Parallel/Sequential Speed Up (BVP LT) 
 

Parallel/Sequential Speed Up Per Processor
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Figure 5.17 Parallel/Sequential Speed Up Per Processor (BVP LT) 

 

5.4.3.3 Part 2 - Varying the Number of Processors Used 
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Figure 5.18 Normalised Root Mean Square Deviation (BVP LT) (3-8 Processors)
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  The NRMSD values for Stehfest's method, the SLP method and the Jacobi polynomial method follow slight 

 oscillating trends. 
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Figure 5.19 Normalised Root Mean Square Deviation (BVP LT) (8-152 Processors) 
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Figure 5.20 Minimum Wall Times (BVP LT) (3-8 Processors) 
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Figure 5.21 Minimum Wall Times (BVP LT) (8-152 Processors) 
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Parallel/Sequential Speed Up
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Figure 5.22 Parallel/Sequential Speed Up (BVP LT) (3-8 Processors) 
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Figure 5.23 Parallel/Sequential Speed Up (BVP LT) (8-152 Processors) 
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Figure 5.24 Parallel/Sequential Speed Up Per Processor (BVP LT) (3-8 Processors) 
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Parallel/Sequential Speed Up Per Processor
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Figure 5.25 Parallel/Sequential Speed Up Per Processor (BVP LT) (8-152 Processors)
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5.4.3.4 Optimal Parallel Programs Data 

 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 26 21 0.03302565905

Minimum Wall Time (s) : Stehfest 6 21 0.19930100440

Parallel/Sequential Speed Up : Laguerre 20 21 18.95694137668

Parallel/Sequential Speed Up/Processor : Laguerre 6 8 1.47589113525  

Table 5.5 Optimal Parallel Programs Data (BVP LT) 
 

5.5 Conclusions 

Tables 5.2, 5.3, 5.4 and 5.5 above give the optimal number of weights/terms and processors 

to use in/with sequential and parallel programs for solving the one-dimensional, linear  

Black-Scholes equation (10) using each of the Laplace transform based approaches 

considered. In these initial investigations : 

 

● the parallel programs are faster and more accurate than the corresponding sequential 

 programs. However, the differences in accuracy are negligible 

 

● the most accurate way to solve the Black-Scholes equation (10) using the Laplace 

  transform method is to use the Laplace transform of the analytical solution approach 

 

● the fastest way to solve the Black-Scholes equation (10) using the Laplace transform 

  method is to use the ODE BVP approach 

 

● the best all-round numerical inversion algorithm is Stehfest's method. The Laguerre 

 polynomial method only features  in the parallel/sequential speed up categories because it 

                                                 
47

  The parallel/sequential speed up per processor values for all numerical inversion algorithms follow 

 decreasing trends. 
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  is significantly slower than the other numerical inversion algorithms tested. 

 

Speed and accuracy are equally important when solving mathematical problems using 

numerical methods. However, since the ODE BVP approach can be used for solving both 

linear and nonlinear equations, this will be the method used in the parallel, Laplace transform 

based algorithms described in Chapter 6 and Chapter 7. 

 

5.6 Chapter Summary 

These initial investigations have shown that despite the disadvantages of Laplace transform 

based algorithms described in Chapter 3, methods of this type can be used for solving the 

one-dimensional, linear Black-Scholes equation (10). The next chapter will develop and 

evaluate a parallel algorithm for solving this equation that combines Laplace transform 

methods with finite difference techniques. 

 

5.7 Contribution to Knowledge 

This chapter has : 

 

● shown that Laplace transform based algorithms can produce fast and accurate solutions of 

 the one-dimensional, linear Black-Scholes equation (10) 
 

● evaluated parallel implementations of Stehfest's method, the shifted Legendre polynomial 

 method, the Jacobi polynomial method and the Laguerre polynomial method when these 

 algorithms are used to invert the Laplace transforms arising in the solution of the  

 one-dimensional, linear Black-Scholes equation (10) 

 

● determined the optimal number of weights/terms and processors to use with the 

 numerical inversion algorithms in this financial context. The optimal values are the ones 

 that give the most accurate solution (i.e. the smallest NRMSD value) and the fastest 

 solution (i.e. the minimum program wall time, the largest parallel/sequential speed up and 

 the largest parallel/sequential speed up per processor). 
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Chapter 6 
 

The One-Dimensional, Laplace Transform-Finite 

Difference Algorithm 
 
 

6.0 Introduction 

One-dimensional, linear Black-Scholes equations are often solved using finite difference 

methods. The solutions along the first time row are given by the initial condition of the 

equation. The solutions along the remaining time rows are then calculated using a time-

marching algorithm. The following investigation will show how Laplace transform methods 

can be incorporated into this procedure to produce a parallel algorithm that will find the 

solutions as accurately as its sequential counterpart but much more quickly. 

 

Since one-dimensional, linear Black-Scholes equations can be solved using the analytical 

solution (14), it is not necessary to solve these equations using numerical methods
48

. A 

parallel, Laplace transform-finite difference (LTFD) algorithm is developed and evaluated 

here : 

 

● to demonstrate the potential of the Laplace transform based approach 

 

● as the first stage in the development of an algorithm that can be used for solving 

 one-dimensional, nonlinear Black-Scholes equations i.e. Black-Scholes equations for 

  which very few analytical solutions exist 

 

● because some nonlinear Black-Scholes equations become linear under the financial 

  assumptions described in 2.3.2 and 2.3.3 

 

● to create a fast and robust
49

 algorithm for those who need to use numerical methods to 

 solve diffusion equations in other application areas
50

. This will the case when no 

  analytical solutions of these equations exist. 

 

6.1 The Algorithm 

Using the Laplace transform method the time domain of a one-dimensional, parabolic PDE 

can decomposed so that the problem can be solved using parallel computing methods,  

                                                 
48

  Numerical methods are used for simplicity. The analytical solution (14) contains the complementary error 

 function. Some computing environments do not provide a built-in procedure for evaluating this function. 
49

  A numerical algorithm is said to be robust if it produces accurate solutions for a variety of parameter values 

 and these solutions are reproducible. 
50

  See Chapter 1 for possible application areas. 
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(Crann et al. 2007). The solutions along the first row of the first sub-domain (i.e. the first 

time row) can be found using the initial condition of the equation. The solutions along the 

first row of the second and all following sub-domains can be found using the Laplace 

transform method. The solutions within each sub-domain can be found using a finite 

difference method i.e. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.1 The Laplace Transform-Finite Difference Algorithm 

 

Domain decomposition based algorithms of this type have been developed previously. For 

example, Tagliani and Milev (2012), Wang et al. (2009), Natkunam (2009), Lai et al. (2005) 

and Chen and Lin (1991) have developed similar Laplace transform and finite difference 

based algorithms
51

. Crann et al. (2007) and Davies et al. (2007) have developed algorithms 

that use Laplace transform methods for finding the initial values required and then the finite 

volume method or the boundary element method for finding the solutions within each sub-

domain. Another well known domain decomposition based algorithm is the predictor-

corrector version of the Parareal
52

 algorithm. This was developed by Bal and Maday and 

described in their 2002 paper. This algorithm uses an iterative finite difference procedure for 

finding the initial values required
53

 and then uses a time-marching finite difference algorithm  

                                                 
51

  The main difference between these algorithms and the LTFD algorithm presented here is that the authors 

 have not applied finite difference methods to the dimensionless, forward diffusion equation form of the 

 PDE being solved. Hence, they have not used a computational procedure like the one described in 6.2.2. 
52

  Parallel in time. 
53

  In outline, the procedure is as follows. Firstly, the initial values are predicted by solving the PDE over the 

 entire solution domain using a finite difference method with a relatively large time step i.e. using a coarse 

 grid. These calculations must be performed sequentially. Secondly, the initial values are corrected by 

 solving the PDE over part of each sub-domain using a finite difference method with a relatively small time 

 step i.e. using a fine grid. The predicted values are used as initial conditions. These calculations are 

 performed in parallel. If necessary, the corrector stage can be repeated iteratively until the initial values are 

 sufficiently accurate. 
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for finding the solutions within each sub-domain. 

 

This research programme extends previous work in this area by using the Laplace transform-

finite difference approach to solve a variety of one-dimensional, linear and nonlinear Black- 

Scholes equations. 

 

6.2 The Diffusion Equation Form 

When solving the one-dimensional, linear Black-Scholes equation (10) using finite difference 

methods it is usual to apply the numerical algorithms to the diffusion equation form. Wilmot 

et al. (1999) state that this is the simplest way to solve these equations. 

 

In Chapter 2 it was shown that the one-dimensional, backward Black-Scholes equation is : 

 
2

2 2

2

1
0

2

  
   

  

V V V
S rS rV

t S S
     ---- (6) 

with the final condition : 

   , max ,0V S T S E      ---- (7) 

and the boundary conditions : 

 

 0, 0V t      ---- (8)         ,V S t S  as S      ---- (9) 

 

Wilmot et al. (1999) show that by using the changes of variable : 

xS Ee     ---- (45)        
2

2
t T




      ---- (46)         ,xV Ee u x       ---- (47)  

this problem can be written as the dimensionless
54

, forward diffusion equation : 

 
2

2

u u

x 

 


 
    x  ,  0      ---- (48) 

 

with the initial condition : 

    1
,0 max ,0

x xu x e e
        ---- (49) 

and the boundary conditions : 

 

 , 0u x    as x     ---- (50)           1
,

x
u x e

 


 
  as x     ---- (51) 

 

Here, S, E, t, T, r and  are as before,   is now the non-dimensional time to expiry, 

                                                 
54

  Non-dimensionalisation is the partial or full removal of the units from an equation involving physical 

 quantities using suitable changes of variable. The technique is used to simplify and parameterise problems. 

 Once the simplified problem has been solved, the values of the original variables can be recovered using the 

 changes of variable used. 
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 
1

1
2

k    ,  
21

1
4

k     and 
2

2r
k


 . 

 

6.2.1 The Computational Procedure 

Using the diffusion equation form, the solution of the forward Black-Scholes equation (10) 

i.e. the value of  ,V S t  for particular values of S and t can be found by : 

● calculating the corresponding  -value using (46) i.e.  
2

2
t T


    

 

● solving equation (48) for  ,u x  . This can be done by choosing step lengths x  and  , 

 choosing large values of N   and  N   to simulate the infinite spatial domain and then 

 solving equation (48) over the region  , x 0,N x N x      . The u-values in the first row 

 of this region can be calculated using the initial condition (49). The u-values at the ends 

  of this region can be calculated using the boundary conditions (50) and (51). The u-values 

  in the remaining part of this region can be calculated using a finite difference method 

 

● converting the x-values into S-values using (45) i.e. xS Ee  

 

● converting the  ,u x   values into V-values using (47) i.e.  ,xV Ee u x    

 

● calculating  ,V S t  by interpolation. The most accurate way to do this is to fit a cubic 

  spline to the S and V-values and to interpolate the required value using this. 

 

6.2.2 An Improved Procedure 

A practical difficulty with this algorithm is choosing appropriate values for N   and N  . 

These values must be sufficiently large to ensure that the required x-value (i.e. S-value) is 

within the solution domain. However, choosing large values for N   and N   increases the 

amount of calculations that must be performed. During this investigation it was discovered 

that a better algorithm for calculating  ,V S t  is to : 

● calculate the corresponding  -value using (46) i.e.  
2

2
t T


    

● calculate the corresponding x-value using (45) i.e. ln
S

x
E

 
  

 
 

 

● solve equation (48) over a region  , x 0,N x N x       as before. The difference here is 

 that the x-value is placed in the centre of this region 
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● calculate  ,V S t  using (47) i.e.    , ,xV S t Ee u x   . 

 

The advantages of this modified procedure are that since the x-value is guaranteed to be 

within the solution domain, smaller values of N   and N   can be used. This increases the 

computation speed and reduces the storage requirements. Furthermore, since the exact 

position of the x-value (i.e. S-value) is known, there is no need to calculate  ,V S t  using 

interpolation. This modified procedure is the one that will be used. 

 

6.3 Finite Difference Methods 

Significant effort has been put into developing sophisticated finite difference schemes that 

can be used for solving diffusion equations. Interested readers should consult references such 

as Düring et al. (2012), Hirsa (2012), Wang et al. (2011), Jeong et al. (2009), Liao et al. 

(2001), Buetow and Sochacki (2000), Wood (1990) and Hull and White (1990). However, the 

question arises, do these methods offer significant advantages over simple finite difference 

schemes ?  

 

To support our thesis that good results may be obtained using Laplace transforms we choose 

the simplest scheme available to us, the explicit method. 

 

In the explicit method the spatial derivative is replaced with a central difference 

approximation and the time derivative is replaced with a forward difference approximation. 

Hence, the diffusion equation (48) is approximated at the point (i, j)  by : 

 

 

1, , 1, , 1 ,

2

2i j i j i j i j i ju u u u u

x 

    
  

This can be transposed to give : 

 

, 1 1, , 1,(1 2 )i j i j i j i ju Ru R u Ru       

where 
 

2
R

x




  is the mesh ratio. Smith (2004) shows that the explicit method is stable

55
 

only for values of R in the range 0 0.5R  . 

 

For very high accuracy a small spatial step may be needed and this may impose a very severe 

restriction on the time step. If this were prohibitive it would then be appropriate to reconsider 

the use of implicit methods. 

6.4 Solving One-Dimensional, Linear Black-Scholes Equations 

                                                 
55

 A numerical method is said to be stable if a small change in the data produces a small change in the 

 solution. 
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6.4.1 Parameter Values 

The parameter values used in the Black-Scholes equation (10) are : 

 

Parameter Values 

S 0.0(0.1)40.0 

E 10 

r 0.05 

  0.25 

  0.0(0.1)100.0 

 
Table 6.1 Parameter Values Used in the One-Dimensional, Linear Black-Scholes Equation 

 

6.4.2 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

algorithms for solving the one-dimensional, linear Black-Scholes equation (10) and use it to  

compare their relative performances.  

 

6.4.3 Preliminary Notes 

When using the LTFD approach to solve the Black-Scholes equation (10) : 

 

● the solutions along the first row of the first sub-domain (i.e. the first time row) are found 

  using the initial condition of the equation 

  

   ,0 max ,0V S S E   

 

● the solutions along the first row of the second and all following sub-domains are found 

  using the Laplace transform method i.e. by solving the ODE BVP form : 

 

   
2

2 2

2

1
,0

2

d V dV
S rS r V V S

dSdS
          ---- (37) 

 0; 0V       ---- (38)        ;  as 
S

V S S


     ---- (39) 

 using the procedure described in 5.4.2 

 

 In each case the initial values of V are converted into the u-values required by the finite 

 difference method using the change of variable : 

 

   
,

xV
u x e

E

 


 
  

 

● the remaining solutions within each sub-domain are calculated by solving the diffusion 

  equation (48), using the procedure described in 6.2.2 
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● by looking at the ODE BVP form (37) it can be seen that the term on the right-hand side 

 of the equation is always (the negative of) the solution in the first time row. This means 

 that the solutions along the first rows of the second and all following sub-domains can be 

 calculated in parallel i.e. that each slave processor can calculate its own initial condition 

  and then proceed to calculate the remaining solutions within its sub-domain. 

 

6.4.4 Performance Data 

The graphs and tables below provide a summary of the data collected.  Once again, the 

graphs show visually, the relative performances of the numerical inversion algorithms. As 

before, only the graphs showing the minimum wall times are included. Detailed results are 

given in Appendix C. 

 

6.4.4.1 Sequential Program Data 

Table 6.2 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.03543374850

Minimum Wall Time (s) : 6.81629490900  

Table 6.2 Sequential, Finite Difference Program Data  
 

6.4.4.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 6.2 Normalised Root Mean Square Deviation, Parallel Programs 
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Minimum Wall Times (s)
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Figure 6.3 Minimum Wall Times, Parallel Programs 

 

Parallel/Sequential Speed Up
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Figure 6.4 Parallel/Sequential Speed Up 
 

Parallel/Sequential Speed Up Per Processor
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Figure 6.5 Parallel/Sequential Speed Up Per Processor 
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6.4.4.3 Part 2 - Varying the Number of Processors Used 

NRMSD
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Figure 6.6 Normalised Root Mean Square Deviation (3-8 Processors)
56 
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Figure 6.7 Normalised Root Mean Square Deviation (8-152 Processors)
57 

 

                                                 
56

  The NRMSD values for Stehfest's method, the SLP method and the Jacobi Polynomial method follow slight 

 oscillating tends. 
57

  The NRMSD values for the Laguerre polynomial method follow a slight oscillating tend. 
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Minimum Wall Times (s)
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Figure 6.8 Minimum Wall Times (3-8 Processors) 
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Figure 6.9 Minimum Wall Times (8-152 Processors) 
 

Parallel/Sequential Speed Up
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Figure 6.10 Parallel/Sequential Speed Up (3-8 Processors) 
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Parallel/Sequential Speed Up

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

8 24 40 56 72 88 104 120 136 152

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 6.11 Parallel/Sequential Speed Up (8-152 Processors) 
 

Parallel/Sequential Speed Up Per Processor
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Figure 6.12 Parallel/Sequential Speed Up Per Processor (3-8 Processors) 
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Figure 6.13 Parallel/Sequential Speed Up Per Processor (8-152 Processors) 
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6.4.4.4 Optimal Parallel Programs Data 
 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 10 4 0.00088366262

Minimum Wall Time (s) : Stehfest 6 40 1.20931506200

Parallel/Sequential Speed Up : Stehfest 6 40 5.63649219561

Parallel/Sequential Speed Up/Processor : Stehfest 6 4 0.59781910392  

Table 6.3 Optimal Parallel Programs Data 
 

6.4.5 Conclusions 

Table 6.3 above gives the optimal number of weights/terms and processors to use in/with the 

LTFD algorithm when it is used to solve the Black-Scholes equation (10). 

 

It can be seen from the data collected that the LTFD program is faster and more accurate than 

the sequential finite difference program. The reason for the improved accuracy is that the 

Laplace transform solution at the beginning of the second and all following sub-domains is 

more accurate than the corresponding time-marched result in the sequential finite difference 

solution. The Laplace transform approach appears to pull the finite difference solution back 

towards the analytical solution at the beginning of each sub-domain. The reason that the 

accuracy of the LTFD solution generally decreases as the number of processors increases is 

explained in Chapter 10. 

 

Further information about the behaviour observed in this investigation is given in 7.4.5. 

 

Once again, the best all-round numerical inversion algorithm is Stehfest's method. 

 

6.5 Chapter Summary 

The one-dimensional, Laplace transform-finite difference algorithm can accurately and 

quickly solve one-dimensional, linear Black-Scholes equations. Chapter 7 will determine 

whether this algorithm will be equally successful when it is used to solve nonlinear Black- 

Scholes equations of this type. 

 

6.6 Contribution to Knowledge 

This chapter has : 

● introduced an improved computational procedure for solving the diffusion equation 

  form of the one-dimensional, linear Black-Scholes equation 

 

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for 

 solving the Black-Scholes equation (10) and shown that this algorithm produces fast  

 and accurate solutions 
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● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi 

 polynomial method and the Laguerre polynomial method when these methods are used to 

 invert the Laplace transforms arising in the LTFD algorithm 

 

● determined the optimal number of weights/terms and processors to use with each of  

 the numerical inversion algorithms when they are used in the LTFD algorithm 

 

● demonstrated the potential of the LTFD approach and established the advantages of using 

 this algorithm for solving the one-dimensional linear Black-Scholes equation. 
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Chapter 7 

 

Solving One-Dimensional, Nonlinear Black-Scholes 

Equations 
 

 

7.0 Introduction 

In 2.7 it was explained that when transaction costs are taken into account, Black-Scholes 

equations become nonlinear. Very few equations of this type have an analytical solution. 

Here, it is shown how the basic LTFD algorithm described in Chapter 6 can be modified to 

deal with the nonlinear terms and how, in the absence of analytical solutions, accurate 

reference solutions can be calculated. 

 

7.1 Parameter Values 

The parameter values used in the modified volatility models described in Chapter 2 are 

given in Table 7.1 below.  

 

Modified Volatility Model Parameter Values 

Simulated Modified Volatility - 

Leland 1 252t 
58

, 0.0072k 
59

 i.e. 5.7907Le  

Boyle and Vorst 1 6048t 
60

, 0.0072k   

Barles and Soner 0.25  61
, 1N  , 0.01a 

62
 

Risk Adjusted Pricing Methodology 0.01C  , 1 252t  , 0.0072k   

 
Table 7.1 Parameter Values Used in the Modified Volatility Models 

 

7.2 Practical Difficulties When Solving the Nonlinear Form 

The one-dimensional, nonlinear Black-Scholes equation (32) is a much more complicated 

problem to solve than the linear equation (10). Before a corresponding LTFD algorithm can 

be developed for solving this equation, methods must be found for dealing with the nonlinear 

volatility term 2  and for calculating accurate reference solutions. 

 

                                                 
58

 1 day 
59

 Estimated from the BP share price data on 18/9/2012 
60

 1 hour 
61

 Estimated from the Chicago Board Options Exchange (CBOE) Volatility Index on 31/12/2012. This index 

 shows the expected volatility for a 30-day period. 
62

 1% 
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7.2.1 Linearisation Techniques 

The Laplace transform is a linear operator and cannot be applied to a nonlinear PDE directly, 

(Crann 2005). This problem can sometimes be overcome by linearising the nonlinear terms in 

the equation before this operator is applied. The most commonly used linearisation 

techniques are direct iteration (Crann 2005), semi-direct iteration (Zhu 1999) and Taylor 

series iteration, (Zhu 1999).  These methods will be illustrated using the second-order ODE 

BVP : 
2

2

2
1

5

d x t
x t

dt

 
   
 

    (1) 2x  ,    (3) 1x       ---- (52) 

 

To solve this equation using the finite difference method, incorporating a linearisation 

technique : 

 

● divide the interval  1,3  into n+1 equally spaced points 0 1, , . . . , nx x x  where 1i ix x h    

 

● linearise the 2x  term using one of the techniques mentioned above 

 

● replace the first and second derivatives with finite difference approximations e.g. 

 

1 1

2

i ix xdx

dt h

 
     and    

2

1 1

2 2

2i i ix x xd x

dt h

  
  

 

● approximate the boundary-value problem at each of the  internal points 1 2 1, , . . . , nx x x  .  

 This operation produces a tridiagonal system of linear equations 

 

● solve this system of linear equations iteratively to obtain the values of 1 2 1, , . . . , nx x x  . The 

 values of 0x  and nx  are obtained from the boundary conditions. The initial values of 

 1 2 1, , . . . , nx x x   are obtained by interpolation i.e. by fitting a straight line to the  boundary 

 conditions and then estimating their values from this. For equation (52) this straight line 

  is 3.5 1.5x t  . 

 

7.2.1.1 Direct Iteration 

In direct iteration the nonlinear term is converted into a constant by using its value at the 

previous iteration, (Crann 2005). For example, at the rth iteration the nonlinear term 2

ix  

would be written as  
2

( 1)r

ix  . Hence, using the procedure described in 7.2.1 with direct 

iteration, equation (52) becomes : 
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 
( ) ( ) ( )

2
( 1)1 1

2

2
1

5

r r r
ri i i i

i i

x x x t
x t

h

    
   
 

 

 

and the expression used to approximate the boundary-value problem at each of the internal 

points 
1 2 1, , . . . , nx x x 

 is : 

 

 
2

( ) ( ) ( ) 2 ( 1)

1 12 1
5

r r r ri
i i i i i

t
x x x h t x 

 

  
      

  
 

 

7.2.1.2 Semi-Direct Iteration 

Semi-direct iteration can be used for linearising algebraic terms. Zhu (1999) shows that at the 

rth iteration a nonlinear term in the form n

ix  can be linearised by writing it as  
( 1)

( 1) ( )
n

r r

i ix x


 . 

Hence, using semi-direct iteration with the procedure given in 7.2.1, equation (52) becomes : 

 
( ) ( ) ( )

( 1) ( )1 1

2

2
1

5

r r r

r ri i i i

i i i

x x x t
x x t

h

    
   
 

 

 

and the expression used to approximate the boundary-value problem at each of the internal 

points 1 2 1, , . . . , nx x x   is : 

 

( ) 2 ( 1) ( ) ( ) 2

1 12 1
5

r r r ri

i i i i i

t
x h x x x h t

 

  
      

  
 

 

7.2.1.3 Taylor Series Iteration 

Zhu (1999) also suggests that at the rth iteration a nonlinear term in the form  ( )r

if x  can be 

linearised by replacing it in the equation with a first-order Taylor series in the form : 

 

      ( ) ( 1) ( 1) ( ) ( 1)r r r r r

i i i i if x f x f x x x      

 

Hence, incorporating Taylor series iteration into the procedure described in 7.2.1, equation 

(52) becomes : 

    
( ) ( ) ( )

2
( 1) ( 1) ( ) ( 1)1 1

2

2
1 2

5

r r r
r r r ri i i i

i i i i i

x x x t
x x x x t

h

      
     
 

 

 

and the expression used to approximate the boundary-value problem at each of the internal 

points 1 2 1, , . . . , nx x x   is : 

 

 
2

( ) 2 ( 1) ( ) ( ) 2 ( 1)

1 12 1 1 1
5 5

r r r r ri i
i i i i i i

t t
x h x x x h t x 

 

      
            

      
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7.2.1.4 Termination 

All three linearisation techniques are terminated when an accuracy criterion is satisfied. A 

commonly used condition is : 

 

  
  

( 1) ( )

( 1) ( )

max abs

max abs

r r

i i

r r

i i

x x

x x










    ---- (53) 

 

where ( )r

ix  denotes the value of 
ix  at the rth iteration and   is a small positive number. 

 

7.2.1.5 Comparison of Methods 

Crann (2005) evaluates these techniques by using them to solve a nonlinear Poisson 

equation
63

 whose analytical solution is known. She found that all three methods were able to 

produce solutions that were close to those calculated using the analytical solution and that 

they had similar rates of convergence. Using 0.001   in termination condition (53), the 

average number of iterations required for convergence was five. The limitations of these 

methods are that they require a good initial approximation to the solution, they are not 

guaranteed to converge and that they do not always linearise the equation being solved. For 

example, consider the second-order ODE BVP : 

 
2

2

2
1

5

d x t dx
x t

dtdt

 
   
 

    (1) 2x  ,    (3) 1x       ---- (54) 

 

Applying direct iteration to this equation, together with the procedure given in 7.2.1 gives : 

 

 
( ) ( ) ( ) ( ) ( )

2
( 1)1 1 1 1

2

2
1

5 2

r r r r r
ri i i i i i

i i

x x x t x x
x t

h h

   
    

    
   

 

and hence : 

 

   
2 2

( 1) ( ) ( ) ( 1) ( ) 2

1 11 1 2 1 1
2 5 2 5

r r r r ri i
i i i i i i

t th h
x x x x x h t 

 

      
            

      
 

 

In this case equation (54) has been linearised as required. However, using the same procedure 

with semi-direct iteration produces : 

 
( ) ( ) ( ) ( ) ( )

( 1) ( )1 1 1 1

2

2
1

5 2

r r r r r

r ri i i i i i

i i i

x x x t x x
x x t

hh

   
    

    
   

 

and hence : 

                                                 
63

  A Poisson equation is a type of elliptic PDE. Equations of this type arise frequently in engineering and 

 physics. 
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( 1) ( ) ( ) ( ) ( 1) ( ) ( ) 2

1 11 1 2 1 1
2 5 2 5

r r r r r r ri i

i i i i i i i i

t th h
x x x x x x x h t 

 

      
            

      
    ---- (60) 

 

Using the same procedure with Taylor series iteration produces : 

 

    
( ) ( ) ( ) ( ) ( )

2
( 1) ( 1) ( ) ( 1)1 1 1 1

2

2
1 2

5 2

r r r r r
r r r ri i i i i i

i i i i i

x x x t x x
x x x x t

h h

     
    

      
   

 

and hence : 

 

    
2

( 1) ( 1) ( ) ( 1) ( ) ( )

11 1 2 2
2 5

r r r r r ri
i i i i i i

th
x x x x x x  



  
       

  
 

                                               
2

( 1) ( 1) ( ) ( 1) ( ) 2

11 1 2
2 5

r r r r ri
i i i i i i

th
x x x x x h t  



  
      

  
    ---- (61) 

 

The presence of the ( ) ( )

1

r r

i ix x 
 and ( ) ( )

1

r r

i ix x 
 terms in expressions (60) and (61) indicates that 

these expressions produce systems of nonlinear equations. Hence, semi-direct iteration and 

Taylor series iteration have failed to linearise equation (54). These methods also fail to 

linearise the Black-Scholes equations (32) and (33) when they contain the modified volatility 

models proposed by Lai et al., Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing 

Methodology model). Since direct iteration is a simple method can be used in all of these 

cases it will be the linearisation technique used in all future sequential and parallel nonlinear 

algorithms. Other linearisation techniques are available. It is left for future work to 

investigate and evaluate alternative methods of this kind. See 11.2.  

 

7.2.1.6 Accuracy in the Nonlinear Modified Volatility Models 

The modified volatility models proposed by Lai et al., Barles and Soner and Kratka (i.e. the 

Risk Adjusted Pricing Model) are functions of the value of the option V, either directly or 

indirectly via the gamma of the underlying asset. These models forecast the volatility used in 

the Black-Scholes equations.  

  

By looking at the algorithms used for solving the one-dimensional, nonlinear Black-Scholes 

equation (32) shown in Figures 7.5 and 7.6 it can be seen that at the start of each iterative 

step, the modified volatility is calculated using the option values from the previous iteration. 

Hence, throughout the iterative procedure there is a close correspondence between the 

accuracy of the option values and the accuracy of the volatility forecast. Since the option 

values calculated using these forecasts are measured in monetary units, predicted volatilities 

accurate to two decimal places are sufficient. 
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7.2.2 Monte Carlo Algorithms 

When solving the linear Black-Scholes equation (10) the accuracy of the numerical solution 

can be assessed by comparing it with a solution produced using the analytical solution (14). 

However, for nonlinear Black-Scholes equations very few analytical solutions exist. To 

generate accurate reference solutions in these cases numerical methods must be used. Ideally, 

the methods used should be independent i.e. not involve Laplace transforms or finite 

differences. This not only allows the accuracy of the solutions to be assessed but also ensures 

that the LTFD algorithm is not being compared with itself. A common method used for 

solving PDEs arising in mathematical finance is the Monte Carlo method. 

 

7.2.2.1 History and Background 

Monte Carlo methods were developed by the Polish mathematician Stanislaw Ulam at the 

Los Alamos laboratory in New Mexico during World War Two for evaluating the  

high-dimension integrals that arose during the development of the first atomic bomb
64

 . The 

methods were first used for option pricing by Phelim Boyle in the 1970's, (Boyle 1977). In 

general, these methods obtain solutions by calculating and then averaging estimates for the 

quantity being calculated using random values drawn from appropriate statistical 

distributions. They have the advantage that they can be used to solve problems that are 

impossible to solve using other methods. However, they have the disadvantage that millions 

of random values are sometimes required to produce accurate results and hence these 

methods can be slow. A range of methods is available for speeding up the rate of 

convergence of Monte Carlo algorithms such as antithetic variables, control variate 

techniques, leapfrog methods, variance reduction techniques, overrelaxation, simulated 

annealing and Hamiltonian methods. Consideration of these method is beyond the scope of 

this research programme and interested readers should consult a reference such as 

Glasserman (2003) or Mackay (2004). 

 

                                                 
64

  For further information on the history and development of these methods see Ulam (1983). 
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7.2.2.2 The Monte Carlo Algorithm for Solving One-Dimensional, Linear Black-Scholes  

 Equations 

In the forward, linear Black-Scholes model, the future value of the underlying asset is 

given by the stochastic differential equation : 

 

 dS rSd SdW         ---- (62) 

 

where r is the risk-free interest rate, S is the current value of the underlying asset,  is the 

time to expiry,   is the volatility and  W   is a Brownian motion. The solution of equation 

(62) is : 

 21
exp

2
S S r W    

  
    

  
 

 

(Wilmot et al. 1999). Glasserman (2003) shows that the Brownian motion  W   is normally 

distributed with a mean of zero and a variance of d . The term Z , where Z is a standard 

normal random variable
65

, has the same distribution. Hence, the future value of the 

underlying asset can be written as : 

 

21
exp

2
S S r Z    

  
    

  
    ---- (63) 

 

The payoff of a European call option at the expiry time is : 

 

 max ,0S E      ---- (64) 

 

where E is the exercise price. The seller of the option will wish to know the current value of 

the option. This can be calculated by pre-multiplying expression (64) by the discount factor 

re  . Hence, the current value of the option V is : 

 

 max ,0rV e S E



      ---- (65) 

 

Expressions (63) and (65) form the basis of the Monte Carlo algorithm. Given a mechanism 

for generating standard normal random variables Z, expressions (63) and (65) can be used to 

produce sample values of V that can be averaged to give an estimate of the current value of 

the option. More formally, the algorithm can be written as : 

                                                 
65

  A normally distributed random variable with a mean of 0 and a variance of 1. 
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` loop i = 1 to n 

  generate 
iZ  

  21
exp

2
iS S r Z    

  
    

  
 

   max ,0r

iV e S E



   

 end loop 

 
 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
    

  
 

Figure 7.1 The Monte Carlo Algorithm for Solving One-Dimensional, Linear Black-Scholes Equations
66

 

 

Glasserman (2003)  shows that by the strong law of large numbers
67

, the estimator V̂  is 

unbiased i.e.  ˆE V V  and strongly consistent i.e. as n , V̂ V  with a probability of 

one. 

 

7.2.2.3 Random Number Generation 

Most Monte Carlo algorithms are based upon a sequence of pseudo-random numbers iu
68

. 

The iu  values must be : 

● uniformly distributed between 0 and 1 

 

● mutually independent i.e. iu  must not be predictable from 1iu  .  

 

A variety of algorithms is available for generating values of this type. Glasserman (2003) 

states that the attributes of a good pseudo-random number generator are : 

 

● a long period length. The algorithm must generate a long sequence of random values 

  before that sequence repeats 

 

● reproducability. The algorithm must be able to reproduce a particular sequence of 

  random values in case it is required to re-run a simulation with the same inputs 

 

● speed. Since millions of random values may be required the algorithm must be fast 

 

                                                 
66

  This algorithm is due to Wilmot et al. (1999) and Glasserman (2003). 
67

  The average of the results obtained from a large number of trials will become closer to the expected value 

 as the number of trials increases. 
68

 A sequence of random numbers generated by an algorithm. 
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● portability. The algorithm must produce the same sequence of random values on all 

  computing platforms 

 

● randomness. The algorithm must produce random values 
iu  with the properties listed 

 above. 

 

An algorithm that possesses all of these properties is the multiple recursive generator (MRG). 

This has the general form : 

 

 1 1 2 2 . . . modi i i k i kx a x a x a x m       

 

i
i

x
u

m
  

 

where ia i   and m . The initial (i.e. seed) values of 1 2, , . . . ,i i i kx x x    are usually 

assigned using a simple algorithm such as the intrinsic random number generator available in 

a programming language. Research has shown that the period length of the sequence iu  can 

be increased significantly if two or more MRGs are combined. The combination is usually 

performed by summing the ix  values and then dividing this sum by the largest value of m. 

The pseudo-random number generator used in this investigation is the combined MRG shown 

in Figure 7.2. This is due to L'Ecuyer (1999). He combines two MRGs to produce an 

algorithm that has a period of 3192 . Details of the parameter values used in this algorithm can 

be found in Glasserman (2003). 

 

 

  1, 1 1, 1 2 1, 2 1, 1. . . modi i i k i kx a x a x a x m       

  2, 1 2, 1 2 2, 2 2, 2. . . modi i i k i kx b x b x b x m       

  1 2max ,m m m  
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Figure 7.2 The L'Ecuyer Combined Multiple Recursive Generator 
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7.2.2.4 Obtaining Standard Normal Values 

To implement the Monte Carlo algorithm described in Figure 7.1 the 
iu  values must be 

converted into standard normal values. One of the most commonly used algorithms for doing 

this is the Box-Muller method, (Box and Muller 1958). This algorithm is based upon the 

following property. Let 
1z  and 

2z  be univariate
69

 standard normal values. Then, 
1z  and 

2z  

are the coordinates of a point on the circumference of a circle, centred at the origin with 

radius R , where R is a random value from an exponential distribution with a mean of 2. Let 

1u  and 
2u  be uniformly distributed random numbers between 0 and 1. Then, the Box-Muller 

algorithm is : 

 

● generate a random exponential value R         12lnR u   

 

● generate a random angle V in the interval  0,2         22V u  

 

● map the angle V to a point  1 2,z z  on the circumference of a circle, centred at the origin 

  with radius R         1 cosz R V , 2 sinz R V  

 

This procedure is summarised in Figure 7.3. 

 

  

 Generate 1u  and 2u  

  12lnR u   

 22V u  

 Return 1 cosz R V , 2 sinz R V  

 

 
Figure 7.3 The Box-Muller Algorithm 

 

7.2.2.5 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear  

 Black-Scholes Equations 

Jackel (2002) states that to solve nonlinear Black-Scholes equations using Monte Carlo 

methods least squares techniques must be used. A more straightforward approach is to 

incorporate the direct iteration technique from 7.2.1.1 into the basic Monte Carlo algorithm 

given in Figure 7.1. The proposed algorithm is given in Figure 7.4. 

                                                 
69

  A univariate distribution is a distribution of a single variable. A distribution of a combination of two 

 variables e.g. 1 2z z  is called a bivariate distribution. 



  85 

 

 initialise   

 repeat 

  loop i = 1 to n 

   generate iZ  

   21
exp

2
iS S r Z    

  
    

  
 

    max ,0r

iV e S E



   

  end loop 

  
 1 2 3

1

. . . 1ˆ
n

n

i

i

V V V V
V V

n n


   
    

  recalculate   

 until 
  
  

( 1) ( )

( 1) ( )

ˆ ˆmax abs

ˆ ˆmax abs

r r

r r

V V

V V










 

  
 

Figure 7.4 A Monte Carlo Algorithm for Solving One-Dimensional, Nonlinear Black-Scholes Equations
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Here   is the modified volatility, ( )ˆ rV denotes the value of V̂  at the rth iteration and   is a 

small positive number. This algorithm is simpler than the procedure given by Jackel  and 

converges for the modified volatility models considered in this research programme. 

 

The Monte Carlo reference solutions are stored in data files. The relevant file is then read into 

a two-dimensional array at the beginning of the Laplace transform-finite difference program 

so that accurate comparison data is available for calculating the normalised root mean square 

deviation values. 

 

7.3 The Laplace Transform-Finite Difference Algorithm 

The Laplace-transform-finite difference algorithm for solving one-dimensional, nonlinear 

Black-Scholes equations is a more complicated and computationally expensive procedure 

than the algorithm for solving the corresponding linear equations. The main reason for this is 

the need to incorporate a linearisation technique into the basic algorithm described in  

Chapter 6. 

                                                 
70

  This algorithm was invented by the author i.e. is a contribution to knowledge. It is based upon the algorithm 

 for solving one-dimensional, linear Black-Scholes equations developed by Wilmot et al. (1999) and 

 Glasserman (2003). 
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As before, the solutions along the first row of the first sub-domain are found using the initial 

condition of the equation (11). The solutions along the first row of the second and all 

following sub-domains are found using the Laplace transform method i.e. by solving the 

ODE BVP form of the Black-Scholes equation (32) : 

 

   
2

2 2

12

1
,

2
i

d V dV
S rS r V V S

dS dS
            ---- (66) 

 

subject to the boundary conditions : 

 

 0; 0V            ;  as 
S

V S S


  

 

In equation (66) the function on the right-hand side is the solution of the equation in the 

previous time row. This gives a good initial approximation to the required solution and helps 

to ensure that the linearisation technique converges. However, the consequence of this is that 

in the nonlinear case, the initial conditions cannot be calculated in parallel. Instead, they must 

be calculated one at a time at the beginning of the program and then passed to the slave 

processors as parameters. Equation (66) is solved using the finite difference method for BVPs 

incorporating the direct iteration linearisation technique described in 7.2.1.1. This is a 

computationally expensive procedure since the inverse Laplace transform of the V  values 

must be found at each iterative step in order to update the modified volatility  . The 

algorithm used to calculate the solutions along the first row of the second and all following 

sub-domains is summarised in Figure 7.5. 

 

 initialise V  using initial condition (11) 

 repeat 

  solve equation (66) (using V to calculate the 2  values) to obtain V  

  invert V  obtain V  

 until 
  
  

( 1) ( )

( 1) ( )

max abs

max abs

r r

r r

V V

V V










 

 

Figure 7.5 The Algorithm for Calculating the Subsequent Initial Conditions 
 

Here, ( )rV denotes a value in V at the rth iteration and   is a small positive number. 

The remaining solutions within each sub-domain are calculated using the explicit finite 

difference method. This procedure does not involve tridiagonal matrices. Hence, the 
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computational advantages of applying this technique to a diffusion equation form of the 

equation disappear. In this algorithm the explicit method is therefore applied to the nonlinear  

Black-Scholes equation (32) directly. This produces the iterative formula : 

 

2 2 2 2 2 2

, 1 1, , 1,2 2

1 1
1

1 2 2
i j i j i j i j

k krS k k
V S V S V S rS V

kr h h h h h
    

    
         

     
    ---- (67) 

 

where k is the  -step and h is the S-step. The rows within each sub-domain are calculated in 

sequence. The algorithm used to calculate each row V  is summarised in Figure 7.6. 

 

 initialise V  using the previous row in the sub-domain 

 repeat 

  calculate the 2  values using V  

  use expression (67) to calculate V  

 until 
  
  

( 1) ( )

( 1) ( )

max abs

max abs

r r

r r

V V

V V










 

  

Figure 7.6 The Algorithm for Calculating the Rows of Each Sub-Domain 
 

Here, ( )rV and   are as defined before. 

 

7.4 Solving One-Dimensional, Nonlinear Black-Scholes Equations 

7.4.1 Parameter Values 

The parameter values used in the Black-Scholes equation (32) are : 

 

Parameter Values 

S 0.0(0.1)5.0
71

 

E 10 

r 0.05 

  0.25 

  0.0(0.1)100.0 

 
Table 7.2 Parameter Values Used in the One-Dimensional, Nonlinear Black-Scholes Equation 

 

                                                 
71

  The S-range is reduced for the nonlinear modified volatility models because of the slow speed of the 

 Monte Carlo algorithm for calculating the reference solutions. Using the range used with the linear equation 

 the Monte Carlo algorithm failed to produce sufficiently accurate solutions after 150 hours of processing 

 time. 
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For a European call option the modified volatilities proposed by Leland and Boyle and Vorst 

become constants. The data for these functions is therefore collected using the LTFD 

program for the one-dimensional, linear Black-Scholes equation (10) and the parameter 

values given in Table 6.1. 

 

7.4.2 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

algorithms for solving one-dimensional, nonlinear Black-Scholes equations and use it to 

compare their relative performances. 

 

7.4.3 Preliminary Notes 

● Düring et al. (2003) recommend estimating the gamma term in the Barles and Soner and 

 Risk Adjusted Pricing Methodology modified volatility models using the finite 

  difference approximation : 

2 2

2

2

4

i i iV V V

h

  
   

 

 where h is the spatial step. They claim that this expression gives a better approximation to 

  the second spatial derivative than the usual central difference approximation
72

 

 

● the reference solutions used to determine the NRMSD values for the nonlinear Black- 

 Scholes equations are calculated using the Monte Carlo algorithm given in Figure 7.4 

 

● in 4.3 it was explained that the load on the cluster should not have a significant effect 

 upon the program wall times. However, this does not mean that it will not have any 

 effect at all. While all the codes for a particular nonlinear equation were run at the same 

 time i.e. under the same load conditions, the codes for other equations were run on 

 different days. Hence, when comparing the performances of the numerical inversion 

  algorithms it is important to do so only for the same modified volatility model. 

 

7.4.4 Performance Data 

The graphs and tables below provide a summary of the data collected.  Once again, the 

graphs show visually, the relative performances of the numerical inversion algorithms. As 

before, only the graphs showing the minimum wall times are included. Detailed results are 

given in Appendix D. 

 

                                                 
72

  Their experiments showed that if the usual central difference approximation is used, the resulting finite 

 difference scheme becomes unstable for small values of the spatial step unless small values of the time step 

 are also used. 
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7.4.4.1 Modified Volatility Model : Simulated Modified Volatility
73

 

7.4.4.1.1 Sequential Program Data 

Table 7.3 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.08588035887

Minimum Wall Time (s) : 0.53442788120  

Table 7.3 Sequential, Finite Difference Program Data (Simulated Modified Volatility) 
 

7.4.4.1.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 7.7 Normalised Root Mean Square Deviation, Parallel Programs (Simulated Modified Volatility)
74
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Figure 7.8 Minimum Wall Times, Parallel Programs (Simulated Modified Volatility)
75 
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  See Lai et al. (2005). 
74

  The NRMSD values for all numerical inversion algorithms follow oscillating trends. 
75

  The minimum wall times for Stehfest’s method follow a slight upward trend.  
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Parallel/Sequential Speed Up
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Figure 7.9 Parallel/Sequential Speed Up (Simulated Modified Volatility) 
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Figure 7.10 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) 
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7.4.4.1.3 Part 2 - Varying the Number of Processors Used 
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Figure 7.11 Normalised Root Mean Square Deviation (Simulated Modified Volatility) (3-8 Processors)
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Figure 7.12 Normalised Root Mean Square Deviation (Simulated Modified Volatility) (8-152 Processors)
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  The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method the NRMSD 

 values oscillate slightly. 
77

  The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi 

 polynomial method the NRMSD values oscillate slightly. 
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Minimum Wall Times (s)
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Figure 7.13 Minimum Wall Times (Simulated Modified Volatility) (3-8 Processors) 
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Figure 7.14 Minimum Wall Times (Simulated Modified Volatility) (8-152 Processors) 
 

Parallel/Sequential Speed Up

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 7.15 Parallel/Sequential Speed Up (Simulated Modified Volatility) (3-8 Processors) 
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Parallel/Sequential Speed Up
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Figure 7.16 Parallel/Sequential Speed Up (Simulated Modified Volatility) (8-152 Processors) 
 

Parallel/Sequential Speed Up Per Processor

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 7.17 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) (3-8 Processors) 
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Figure 7.18 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) (8-152 Processors) 
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7.4.4.1.4 Optimal Parallel Programs Data 

 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 24 21 0.01175761424

Minimum Wall Time (s) : Stehfest 6 21 0.12257361320

Parallel/Sequential Speed Up : Stehfest 6 21 4.36005651827

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 0.54030901625  

Table 7.4 Optimal Parallel Programs Data (Simulated Modified Volatility) 
 

7.4.4.2 Modified Volatility Model : Leland 

7.4.4.2.1 Sequential Program Data 

Table 7.5 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.01402741597

Minimum Wall Time (s) : 8.32147940000  

Table 7.5 Sequential, Finite Difference Program Data (Leland) 
 

7.4.4.2.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 7.19 Normalised Root Mean Square Deviation, Parallel Programs (Leland)
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  The NRMSD values for Stefhest's method and the SLP method follow slight oscillating trends. 



  95 

Minimum Wall Times (s)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 7.20 Minimum Wall Times, Parallel Programs (Leland) 
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Figure 7.21 Parallel/Sequential Speed Up (Leland) 
 

Parallel/Sequential Speed Up Per Processor
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Figure 7.22 Parallel/Sequential Speed Up Per Processor (Leland) 
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7.4.4.2.3 Part 2 - Varying the Number of Processors Used 
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Figure 7.23 Normalised Root Mean Square Deviation (Leland) (3-8 Processors)
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Figure 7.24 Normalised Root Mean Square Deviation (Leland) (8-152 Processors) 
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Figure 7.25 Minimum Wall Times (Leland) (3-8 Processors) 
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  The NRMSD values for Stehfest’s method follow a slight oscillating trend. For the SLP method and the 

 Jacobi polynomial method the NRMSD values follow a slight upward trend. 
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Figure 7.26 Minimum Wall Times (Leland) (8-152 Processors) 
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Figure 7.27 Parallel/Sequential Speed Up (Leland) (3-8 Processors) 
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Figure 7.28 Parallel/Sequential Speed Up (Leland) (8-152 Processors) 
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Parallel/Sequential Speed Up Per Processor
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Figure 7.29 Parallel/Sequential Speed Up Per Processor (Leland) (3-8 Processors) 
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Figure 7.30 Parallel/Sequential Speed Up Per Processor (Leland) (8-152 Processors) 

 

7.4.4.2.4 Optimal Parallel Programs Data 

 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Laguerre 20 21 0.00769955575

Minimum Wall Time (s) : Stehfest 6 40 1.24268794100

Parallel/Sequential Speed Up : Stehfest 6 40 6.45417539463

Parallel/Sequential Speed Up/Processor : Stehfest 6 6 0.62382862880  

Table 7.6 Optimal Parallel Programs Data (Leland) 
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7.4.4.3 Modified Volatility Model : Boyle and Vorst 

7.4.4.3.1 Sequential Program Data 

Table 7.7 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.04648613774

Minimum Wall Time (s) : 7.50991988200  

Table 7.7 Sequential, Finite Difference Program Data (Boyle and Vorst) 
 

7.4.4.3.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 7.31 Normalised Root Mean Square Deviation, Parallel Programs (Boyle and Vorst)
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Figure 7.32 Minimum Wall Times, Parallel Programs (Boyle and Vorst) 
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  The NRMSD values for Stehfest's method follow a slight oscillating trend. 
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Parallel/Sequential Speed Up
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Figure 7.33 Parallel/Sequential Speed Up (Boyle and Vorst) 
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Figure 7.34 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) 

 

7.4.4.3.3 Part 2 - Varying the Number of Processors Used 
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Figure 7.35 Normalised Root Mean Square Deviation (Boyle and Vorst) (3-8 Processors)
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  The NRMSD values for Stehfest’s method and the SLP method follow slight decreasing trends. 
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Figure 7.36 Normalised Root Mean Square Deviation (Boyle and Vorst) (8-152 Processors)
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Figure 7.37 Minimum Wall Times (Boyle and Vorst) (3-8 Processors) 
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Figure 7.38 Minimum Wall Times (Boyle and Vorst) (8-152 Processors) 
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  The NRMSD values for Stehfest’s method follow a slight decreasing trend. 
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Parallel/Sequential Speed Up
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Figure 7.39 Parallel/Sequential Speed Up (Boyle and Vorst) (3-8 Processors) 
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Figure 7.40 Parallel/Sequential Speed Up (Boyle and Vorst) (8-152 Processors) 
 

Parallel/Sequential Speed Up Per Processor

0.35

0.40

0.45

0.50

0.55

0.60

3 4 5 6 7 8

Number of Processors

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 7.41 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) (3-8 Processors) 
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Figure 7.42 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) (8-152 Processors) 
 

7.4.4.3.4 Optimal Parallel Programs Data 
 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : SLP 20 136 0.01167072834

Minimum Wall Time (s) : Stehfest 6 21 1.36069107100

Parallel/Sequential Speed Up : Stehfest 6 21 5.65549822220

Parallel/Sequential Speed Up/Processor : Stehfest 6 5 0.56982627545  

Table 7.8 Optimal Parallel Programs Data (Boyle and Vorst) 
 

7.4.4.4 Modified Volatility Model : Barles and Soner 

7.4.4.4.1 Sequential Program Data 

Table 7.9 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.08974615390

Minimum Wall Time (s) : 3.91849494000  

Table 7.9 Sequential, Finite Difference Program Data (Barles and Soner) 
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7.4.4.4.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 7.43 Normalised Root Mean Square Deviation, Parallel Programs (Barles and Soner)
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Figure 7.44 Minimum Wall Times, Parallel Programs (Barles and Soner) 
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Figure 7.45 Parallel/Sequential Speed Up (Barles and Soner) 
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  The NRMSD values for all numerical inversion algorithms follow oscillating trends. 
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Parallel/Sequential Speed Up Per Processor
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Figure 7.46 Parallel/Sequential Speed Up Per Processor (Barles and Soner) 
 

7.4.4.4.3 Part 2 - Varying the Number of Processors Used 
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Figure 7.47 Normalised Root Mean Square Deviation (Barles and Soner) (3-8 Processors)
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Figure 7.48 Normalised Root Mean Square Deviation (Barles and Soner) (8-152 Processors)

85
 

                                                 
84

  The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi 

 polynomial method the NRMSD values oscillate slightly. 
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Figure 7.49 Minimum Wall Times (Barles and Soner) (3-8 Processors) 
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Figure 7.50 Minimum Wall Times (Barles and Soner) (8-152 Processors) 
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Figure 7.51 Parallel/Sequential Speed Up (Barles and Soner) (3-8 Processors) 

                                                                                                                                                        
85

  The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi 

 polynomial method the NRMSD values oscillate slightly. 
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Figure 7.52 Parallel/Sequential Speed Up (Barles and Soner) (8-152 Processors) 
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Figure 7.53 Parallel/Sequential Speed Up Per Processor (Barles and Soner) (3-8 Processors) 
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Figure 7.54 Parallel/Sequential Speed Up Per Processor (Barles and Soner) (8-152 Processors) 
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7.4.4.4.4 Optimal Parallel Programs Data 
 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 16 21 0.00743902902

Minimum Wall Time (s) : Stehfest 6 21 0.42293095590

Parallel/Sequential Speed Up : Stehfest 6 21 9.26509371172

Parallel/Sequential Speed Up/Processor : Stehfest 6 6 0.79714300681  

Table 7.10 Optimal Parallel Programs Data (Barles and Soner) 
 

7.4.4.5 Modified Volatility Model : Risk Adjusted Pricing Methodology 

7.4.4.5.1 Sequential Program Data 

Table 7.11 below gives the data collected using the sequential, finite difference program.  

 

Value

NRMSD : 0.08908669343

Minimum Wall Time (s) : 1.17682810000  

Table 7.11 Sequential, Finite Difference Program Data (RAPM) 
 

7.4.4.5.2 Part 1 - Varying the Number of Weights/Terms Used 
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Figure 7.55 Normalised Root Mean Square Deviation, Parallel Programs (RAPM)
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  The NRMSD values for all numerical inversion algorithms follow oscillating trends. 
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Figure 7.56 Minimum Wall Times, Parallel Programs (RAPM) 
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Figure 7.57 Parallel/Sequential Speed Up (RAPM) 
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Figure 7.58 Parallel/Sequential Speed Up Per Processor (RAPM) 
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7.4.4.5.3 Part 2 - Varying the Number of Processors Used 
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Figure 7.59 Normalised Root Mean Square Deviation (RAPM) (3-8 Processors)
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Figure 7.60 Normalised Root Mean Square Deviation (RAPM) (8-152 Processors)
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  The NRMSD values for Stehfest’s method follow a slight upward trend. For the SLP method and the Jacobi 

 polynomial method the NRMSD values oscillate slightly. 
88

  The NRMSD values for Stehfest’s method, the SLP method and the Jacobi polynomial method follow slight 

 oscillating trends. 
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Figure 7.61 Minimum Wall Times (RAPM) (3-8 Processors) 
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Figure 7.62 Minimum Wall Times (RAPM) (8-152 Processors) 
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Figure 7.63 Parallel/Sequential Speed Up (RAPM) (3-8 Processors) 
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Figure 7.64 Parallel/Sequential Speed Up (RAPM) (8-152 Processors) 
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Figure 7.65 Parallel/Sequential Speed Up Per Processor (RAPM) (3-8 Processors) 
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Figure 7.66 Parallel/Sequential Speed Up Per Processor (RAPM) (8-152 Processors) 
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7.4.4.5.4 Optimal Parallel Programs Data 

 

Optimal Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Processors Value

NRMSD : Jacobi 18 21 0.00801089964

Minimum Wall Time (s) : Stehfest 6 24 0.19593906400

Parallel/Sequential Speed Up : Stehfest 6 24 6.00609228183

Parallel/Sequential Speed Up/Processor : Jacobi 6 3 0.64110825564  

Table 7.12 Optimal Parallel Programs Data (RAPM) 
 

7.4.5 Conclusions 

Tables 7.4, 7.6, 7.8, 7.10 and 7.12 above give the optimal number of weights/terms and 

processors to use in/with the LTFD algorithm when it is used to solve one-dimensional 

nonlinear Black-Scholes equations containing the modified volatility models proposed by Lai 

et al., Leland, Boyle and Vorst, Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing 

Methodology model). 

 

It can be seen from the graphs and tables in this chapter that :  

 

● the LTFD algorithm is faster and generally more accurate, relative to the analytical or 

 reference solutions, than the sequential finite difference algorithm. Whenever the LTFD 

 solutions are less accurate than the finite difference solutions, the differences are 

  small 

 

● the nonlinear data exhibits behaviour seen in earlier investigations. This behaviour is 

 described and explained in Chapter 10 

 

● the best all-round numerical algorithm for inverting the Laplace transforms arising in the 

 solution of one-dimensional, nonlinear Black-Scholes equations is Stehfest's method. 

 Whenever another inversion algorithm performs better than Stehfest, the difference is 

 marginal. 
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7.4.6 The Numerical Solutions 

Figure 7.67 and Figure 7.68 show the numerical solutions of the nonlinear Black-Scholes 

equations in the case when 1S  . The solutions were calculated using the LTFD algorithm. 

The inverse Laplace transform values were calculated using Stehfest's method with 6 weights 

and 21 processors.  
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Figure 7.67 Numerical Solutions of the Nonlinear Black-Scholes Equations for  0,10  
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Figure 7.68 Numerical Solutions of the Nonlinear Black-Scholes Equations for  0,100  

 

The behaviour shown is the same for all other values of S i.e. as   , V S . With the 

exception of the graph for Boyle and Vorst, the solutions exhibit similar behaviour. Initially, 

the graphs have the characteristic hockey stick shape associated with European call options 

(Wilmot, 2000) and as the expiry date of the option approaches, the value of the option 

approaches the value of the underlying asset (as predicted by the boundary condition of the 

Black-Scholes equation (32)). In the case of the Boyle and Vorst solution the value of the 

option appears to approach the value of the underlying asset much more quickly. The likely 
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reason for this is that the volatility in this case is much larger than in the other solutions. 

When the volatility is large the second derivative in the Black-Scholes equation (32) becomes 

dominant so that it behaves like the diffusion equation. It is known that when the diffusivity 

in equations of this type is large, the dependent variable increases quickly over time. It 

appears that the same behaviour is occurring here. 

 

7.5 Chapter Summary 

This chapter has shown that a modified version of the  LTFD algorithm described earlier can 

be used to solve one-dimensional, nonlinear Black-Scholes equations and that accurate 

reference solutions can be calculated using Monte Carlo methods. The next question to be 

answered is can Laplace transform - finite difference algorithms be used to solve  

two-dimensional Black-Scholes equations ?  

 

7.6 Contribution to Knowledge 

This chapter has : 

● explained how Monte Carlo methods can be used for calculating accurate reference 

  solutions of one-dimensional, nonlinear Black-Scholes equations 

 

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for 

 solving one-dimensional, nonlinear Black-Scholes equations and shown that this 

  algorithm produces fast and accurate solutions 

 

● used the LTFD algorithm for solving one-dimensional nonlinear Black-Scholes equations 

 containing the modified volatility models proposed by Leland, Boyle and Vorst, Barles 

  and Soner and Kratka (i.e. the Risk Adjusted Pricing Methodology model) 

 

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi 

 polynomial method and the Laguerre polynomial method when these methods are used to 

 invert the Laplace transforms arising in the LTFD algorithm 

 

● determined the optimal number of weights/terms and processors to use with each of  

 the numerical inversion algorithms when they are used in the LTFD algorithm 

 

● established the advantages of using the LTFD algorithm for solving one-dimensional 

 nonlinear Black-Scholes equations. 
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Chapter 8 
 

The Two-Dimensional, Laplace Transform-Finite 

Difference Algorithm 

 

 

8.0 Introduction 

The previous investigative chapters of this dissertation have shown that LTFD algorithms can 

be used for solving one-dimensional, linear and nonlinear Black-Scholes equations. For two-

dimensional Black-Scholes equations, i.e. equations that model financial options written on 

two underlying assets, the solution domain, for a range of   values, is three-dimensional. 

However, this chapter will show that the Laplace transform-finite difference approach can 

also be used for calculating option prices in this more complicated case. 

 

8.1 Background 

Black-Scholes equations that model financial options written on more than two underlying 

assets must be solved using Monte Carlo methods, Wilmot (2000). However, in the two- 

dimensional case a range of numerical methods can be used for finding the solution. 

  

A legitimate criticism of finite difference methods for solving two-dimensional diffusion 

equations is that they can be inaccurate. To avoid this inaccuracy very small step lengths 

must be used and this increases the amount of computational effort required to find the 

solution. For example, suppose that the explicit finite difference method is used to solve the 

two-dimensional heat equation : 

2 2

2 2

u u u
a

t x y

   
  

   
,    a  

 

on an unit square defined by 0 1x  , 0 1y  . Sharcnet (2008) shows that to produce an 

accurate solution, the time step t  must be chosen so that : 

 
2 2

2 2

1

2

x y
t

a x y

 


 

 
  

 
 

 

Here, x  and y  are the step lengths in the x and y directions respectively. For example, if  

0.05x y    then the maximum value of t  is 0.000625. 

 

The advantage of using Laplace transform based algorithms for solving problems of this type 

is that the time domain is removed from the equation. This eases the restrictions that must be 
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placed upon the step lengths. For example, Morton and Mayers (2008) show that if the time 

domain is removed from the two-dimensional heat equation above, the explicit finite 

difference solution is accurate provided that 0.25x   and 0.25y  . However, the 

disadvantages of Laplace transform based algorithms are that additional computational effort 

is required to find the inverse Laplace transforms and that Laplace transform inversion is 

itself, ill-posed. 

 

Parallel, Laplace transform based algorithms for solving two-dimensional, linear  

Black-Scholes equations have been developed previously. For example, Lee and Sheen 

(2009) describe an algorithm in which Laplace transform/contour integral methods are used 

to decompose an equation of this type into an equivalent system of elliptic PDEs. These 

equations are independent and can therefore be solved on separate processors. However, their 

algorithm is complicated and is unlikely to be competitive with the LTFD algorithm 

described here. Furthermore, the authors have not shown how their algorithm can be used for 

solving two-dimensional, nonlinear Black-Scholes equations i.e. those involving transaction 

costs. 

 

8.2 The Algorithm 

The forward, two-dimensional, linear Black-Scholes equation is : 

 
2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 2 1 2

1 1
0

2 2

V V V V V V
S S S S rS rS rV

S S S S S S
    



     
       
      

    ---- (26) 

 

Subject to the initial condition : 

    1 2 1 2, ,0 max max , ,0V S S S S E      ---- (27) 

and the boundary conditions : 

 

 1 1,0,V S Vs      ---- (28)         2 20, ,V S Vs      ---- (29) 

 1 2 1, ,V S S S   as 1S      ---- (30)         1 2 2, ,V S S S   as 2S      ---- (31) 

 

To solve this equation using the Laplace transform-finite difference algorithm : 

 

● take Laplace transforms with respect to  . Equation (26) then becomes : 

 
2 2 2

2 2 2 2

0,0 1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 21 2

1 1
0

2 2

V V V V V
V V S S S S rS rS rV

S S S SS S
     

    
        

    
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i.e. 
2 2 2

2 2 2 2

1 1 2 2 1 2 12 1 2 1 22 2

1 2 1 21 2

1 1
0

2 2

V V V V V
V S S S S rS rS rV

S S S SS S
     

    
       

    

89
 

---- (68) 

 The initial condition (27) becomes : 

  1 2

1 2, ,0 max max , ,0
S S E

V S S
  

  
   

  
 

 and the boundary conditions (28), (29), (30) and (31) become : 

 

 1 1,0,V S Vs           2 20, ,V S Vs   

  1

1 2, ,
S

V S S 


  as 1S            2

1 2, ,
S

V S S 


  as 2S   

 where   is the transform variable and 
1Vs   and 

2Vs   are the Laplace transforms of the 

 solutions of the one-dimensional, linear Black-Scholes equation (10) written on the first 

 and second assets respectively. See Chapter 2 for further details. The easiest way to find 

  these values is to use the Laplace transform of the analytical solution i.e. expression (44) 

 

● create and initialise the solution domain in Laplace space. For a particular value of  , 

 the initial solution domain for equation (68) is : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 The Initial Solution Domain in Laplace Space for the Two-Dimensional, Linear  

Black-Scholes Equation 
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● use finite difference methods to calculate the internal V  values 

  

 In Chapter 6 it was shown that the most computationally efficient finite difference 

 method for solving the one-dimensional, linear Black-Scholes equation (10) is the explicit 

 method. This procedure will also be used in the two-dimensional case. In this method first 

 partial derivatives are replaced with forward difference approximations and second partial 

 derivatives are replaced with central difference approximations. Hence, if h is the step 

  length in the 1S  and 2S directions then : 

 

1, ,

1

i j i jV VV

S h

 



        

, 1 ,

2

i j i jV VV

S h

 



 

 
2

1, , 1,

2 2

1

2i j i j i jV V VV

S h

  



        

2
, 1 , , 1

2 2

2

2i j i j i jV V VV

S h

  
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
 

 

 Smith (2004) also shows that the mixed partial derivative can be approximated as : 

 
2

1, 1 1, 1 1, 1 1, 1

2

1 2 4

i j i j i j i jV V V VV

S S h

         

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 Substituting these approximations into equation (68) : 

 

 
1, , 1, , 1 , , 12 2 2 2

1 1 2 22 2

2 21 1

2 2

i j i j i j i j i j i jV V V V V V
V S S

h h
  

   
      

         
   

 

                                              
1, 1 1, 1 1, 1 1, 1

1 2 12 1 2 24

i j i j i j i jV V V V
S S

h
  

       
   

  
 

 

                                                            
1, , , 1 ,

1 2 0
i j i j i j i jV V V V

rS rS rV
h h

 
    

        
   

    ---- (69) 

 

 One way of calculating the internal V  values is to use expression (69) to form a system 

 of linear equations and to solve this system using an appropriate numerical method. In the 

 case where 12 0  , the matrix of coefficients in the system of equations is tridiagonal 

 and the system can be solved efficiently using the Thomas algorithm. However, this 

 approach has two major disadvantages. Firstly, it requires the solution domain to be 

 square, which is not always the case, and secondly, if 12 0  , the tridiagonal structure is 

 lost and the system of equations becomes more difficult and time-consuming to solve. To 

 overcome these problems the approach used by authors such as Horak and Gruber (2002) 
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 can be used. When solving two-dimensional diffusion equations of this type they use an 

 iterative procedure, similar to the Jacobi method for solving systems of linear equations, 

 to calculate the values of the dependent variables i.e. a procedure in which the new values 

  of these variables are calculated using their values at the previous iteration.  

 

 Rearranging expression (69) the required iterative formula in this case becomes : 

 

 
 

   
, 1, 1 1, , 1 , 1

1

2 2i j i j i j i i j i jnew old old old oldV cV a d V cV b e V
a b d e r      

      
     

 

                                                                   
, 1 1, 1 1, 1, 1i j i j i j i jold old old oldbV cV aV cV
     

        ---- (70) 

 

  i.e.  new oldV f V  where : 
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 The iterative formula (70) is applied until the accuracy criterion : 

 

  
  

, ,

, ,

max abs

max abs

i j i j

i j i j

new old

new old

V V

V V






 

 

 is satisfied. Here, i and j increment the values of 1S  and 2S  and   is a small positive 

  number 

 

● find the inverse Laplace transforms of the V  values to give the option values. 

 

  If the inverse Laplace transforms are found using a numerical inversion algorithm, the 

 solution domain in Laplace space will be three-dimensional i.e. initially, there will be a 

 grid i.e. rank in the form of Figure 8.1 for each value of the transform variable. For 

 example, using Stehfest’s method with 6m   this solution domain will have the form : 
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Figure 8.2 The Decomposed Solution Domain in Laplace Space for Two-Dimensional  

Black-Scholes Equations 
 

 The option values are found by applying the numerical inversion algorithm to the 

 corresponding V values in each rank. Using the example in Figure 8.2 above, this 

 operation can be visualised as follows : 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3 Calculating the Option Values in the Two-Dimensional LTFD Algorithm 
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8.3 The Sequential LTFD Algorithm 

In the sequential LTFD algorithm the ranks within the solution domain are processed in 

order. Once the final rank has been solved in Laplace space, the numerical inversion 

algorithm is used to calculate the option values. Finally, the sequential algorithm reads in the 

reference solution, calculates the NRMSD value and then calculates and stores the program 

wall time. 

 

8.4 The Parallel LTFD Algorithm 

In the parallel LTFD algorithm each slave processor is responsible for processing one rank 

within the solution domain. Each rank is then passed back to the master processor. Once all 

ranks have been received, the master processor uses the numerical inversion algorithm to 

calculate the option values and then calculates and stores the speed and accuracy data. 

 

8.5 Calculating the Reference Solution 

No analytical solutions are available for solving two-dimensional Black-Scholes equations. 

To calculate the accurate reference solutions required for calculating the NRMSD in the two- 

dimensional case Monte Carlo algorithms must be used. 

 

8.5.1 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear Black-Scholes 

         Equations 

Suppose that the basket option contains d underling assets. Then, the future value of the ith 

underlying asset is given by the stochastic differential equation : 

 

 ,i i i i idS rS d S dW         ---- (71) 

 

where r is the risk-free interest rate, iS  is the current value of the ith underlying asset,  is the 

time to expiry, i  is the volatility of the ith underlying asset and  iW   is a Brownian 

motion. The solution of equation (71) is : 

 

 2

,

1
exp

2
i i i i iS S r W    

  
    

  
    ---- (72) 

 

In the multi-dimensional case it is assumed that the future value of the basket option depends 

upon the average of the future values of the underlying assets i.e.  

,

1

1
d

j

j

S
d





 90
 

                                                 
90

  If some underlying assets have more influence on the future value of the option than others, a weighted 

 average of the future values is used. 
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The payoff of a basket option at the expiry time is : 

 

,

1

1
max ,0

d

j

j

S E
d




 
 

 
     ---- (73) 

 

where E is the exercise price. The seller of the option will wish to know the current value of 

the option. This can be calculated by pre-multiplying expression (73) by the discount 

factor re  . Hence, the current value of the basket option V is : 

 

,

1

1
max ,0

d
r

j

j

V e S E
d









 
  

 
     ---- (74) 

 

The problem in the multi-dimensional case is that the values of  i i ix W   in expression 

(71) are correlated i.e. 

 E i j ijx x   

 

where ij  is the correlation coefficient between the ith and jth underlying assets. To calculate 

the option values in this case correlated standard normal values must be used. To find these 

values : 

 

● decompose the correlation matrix into a product : 

 
TMM  

 where M is a lower triangular matrix 

 

● let y  be a column vector containing d uncorrelated standard normal random variables iZ  

 

● let   be a column vector defined as My  . 

Then, the vector   contains the correlated standard normal random variables required. 

 

Proof 

     E E ET T T T T T TMy y M M y y M MIM MM       

 

Glasserman (2003). 

 

Using the vector    the future value of the ith underlying asset is given by : 

 

2

,

1
exp

2
i i i iS S r   

  
    

  
    ----(75) 

 

The decomposition of the correlation matrix is non-unique. The most commonly used method 
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is to decompose   into its Cholesky factors i.e. to write : 

 
TLL  

 

Expressions (74) and (75) form the basis of the Monte Carlo algorithm. Given a mechanism 

for generating correlated standard normal random variables 
i , expressions (74) and (75) can 

be used to produce sample values of V that can then be averaged to give an estimate of the 

current value of the basket option. More formally, the algorithm can be written as : 

 

 decompose TLL  

 loop i = 1 to n 

  loop j=1 to d 

   generate j jy Z
91

 

  end loop 

  Ly   

  loop k=1 to d 

   2

,

1
exp

2
k k k kS S r   

  
    

  
 

  end loop 

  ,
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1
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d
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i j

j

V e S E
d









 
  

 
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 end loop 
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Figure 8.4 The Monte Carlo Algorithm for Solving Two-Dimensional, Linear Black-Scholes Equations
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Glasserman (2003)  shows that by the strong law of large numbers
93

, the estimator V̂  is 

unbiased i.e.  ˆE V V  and strongly consistent i.e. as n , V̂ V  with a probability of 

one. 

                                                 
91

  The jZ  values can be generated in the same way as the standard normal random values in the  

 one- dimensional Monte Carlo algorithm. 
92

  This algorithm was developed by Wilmot et al. (1999) and Glasserman (2003). 
93

  The average of the results obtained from a large number of trials will become closer to the expected value 

 as the number of trials increases. 
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8.6 Solving Two-Dimensional, Linear Black-Scholes Equations 

 

8.6.1 Parameter Values 

The parameter values used in the Black-Scholes equation (26) are : 

 

Parameter Values 

1 2,S S  0.0(0.1)20.0 

E 1.0 

r 0.05 

1 2,   0.25 

12  0.1 

  1.0 

 
Table 8.1 Parameter Values Used in the Two-Dimensional, Linear Black-Scholes Equation 

 

8.6.2 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

algorithms for solving the two-dimensional, linear Black-Scholes equation (26) and use it 

to compare their relative performances.  

 

8.6.3 Preliminary Notes 

The linear equation is solved to demonstrate the potential of the LTFD approach and also 

because some nonlinear, two-dimensional Black-Scholes equations become linear under the 

financial assumptions described in 2.3.2 and 2.3.3. 

 

8.6.4 Performance Data 

The graphs and tables below provide a summary of the data collected. Once again, the graphs 

show visually, the relative performances of the numerical inversion algorithms. As before, 

only the graphs showing the minimum wall times are included. Detailed results are given in 

Appendix E. 
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8.6.4.1 Sequential Programs Data 

NRMSD

0.0

0.4

0.8

1.2

1.6

2.0

2.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 8.5 Normalised Root Mean Square Deviation, Sequential Programs
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Figure 8.6 Minimum Wall Times, Sequential Programs 
 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : SLP 26 0.06469810112

Minimum Wall Time (s) : Stehfest 6 20.80843711000  

Table 8.2 Optimal Sequential Programs Data 
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  The NRMSD values for all of the numerical inversion algorithms follow oscillating trends. 
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8.6.4.2 Parallel Programs Data 
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Figure 8.7 Normalised Root Mean Square Deviation, Parallel Programs
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Figure 8.8 Minimum Wall Times, Parallel Programs 
 

Parallel/Sequential Speed Up
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Figure 8.9 Parallel/Sequential Speed Up 
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 The NRMSD values for the Laguerre polynomial method follow an upward trend. The NRMSD values for 

 the other numerical inversion algorithms follow oscillating trends. 
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Parallel/Sequential Speed Up Per Processor
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Figure 8.10 Parallel/Sequential Speed Up Per Processor 

 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : SLP 26 (27) 0.06469810112

Minimum Wall Time (s) : Stehfest 6 (7) 6.85409307500

Parallel/Sequential Speed Up : Laguerre 26 (27) 14.40714439882

Parallel/Sequential Speed Up/Processor : Laguerre 18 (19) 0.60357633598  

 Table 8.3 Optimal Parallel Programs Data 

 

8.6.5 Conclusions 

Tables 8.2 and 8.3 above give the optimal number of weights/terms and processors to use 

in/with the LTFD algorithms when they are used to solve the two-dimensional, linear  

Black-Scholes equation (26). 

 

It can be seen from the data collected that : 

 

● the parallel programs are as accurate as the corresponding sequential programs but faster 

 

● overall, the solutions obtained are not as accurate as those obtained in the one-

 dimensional case, particularly when the inverse Laplace transforms are found using the 

 Laguerre polynomial method. However, the solutions are still sufficiently accurate for 

 their purpose. See 11.1. More work is needed to determine the reason for the reduced 

  accuracy in the two-dimensional case and establish what can be done to improve it. This 

  is left for future work. See 11.2. 

 

● as the number of weights/terms used in the numerical inversion algorithm increases 

 the measures of speed and accuracy used oscillate, sometimes with an upward trend 

  and sometimes with a downward trend. The likely reasons for this behaviour is explained 

  in Chapter 10. 
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8.7 Chapter Summary 

The two-dimensional, Laplace transform-finite difference algorithms can accurately and 

quickly solve two-dimensional, linear Black-Scholes equations. Chapter 9 will determine 

whether these algorithms will be equally successful when they are used to solve nonlinear 

Black-Scholes equations of this type. 

 

8.8 Contribution to Knowledge 

This chapter has : 

● explained how Monte Carlo methods can be used for calculating accurate reference 

  solutions of two-dimensional, linear Black-Scholes equations 

 

● developed and evaluated sequential and parallel, Laplace transform-finite difference 

 algorithms for solving two-dimensional, linear Black-Scholes equations and shown that 

 these algorithms produce fast and sufficiently accurate solutions
96

 

 

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi 

 polynomial method and the Laguerre polynomial method when these methods are used to 

 invert the Laplace transforms arising in the LTFD algorithms 

 

● determined the optimal number of weights/terms and processors to use with each of  

 the numerical inversion algorithms when they are used in the LTFD algorithms 

 

● established the advantages of using the LTFD algorithm for solving two-dimensional 

 linear Black-Scholes equations. 

                                                 
96

  See 11.1 



  130 

Chapter 9 

 

Solving Two-Dimensional, Nonlinear Black-Scholes 

Equations 

 

 
9.0 Introduction 

Two-dimensional, nonlinear Black-Scholes equations are more difficult to solve than linear 

equations of this type. However, this chapter will show that even problems of this complexity 

can be solved using the Laplace transform-finite difference approach. 

 

9.1 Practical Difficulties When Solving the Nonlinear Form 

The problems encountered when solving two-dimensional, nonlinear Black-Scholes 

equations are the same as those encountered in the one-dimensional case i.e. dealing with the 

nonlinear modified volatility terms and calculating accurate reference solutions. Both 

problems can be dealt with in the same way as before i.e. by incorporating a linearisation 

technique into the basic algorithms described in Chapter 8 and by using a Monte Carlo 

algorithm. In Chapter 7 it was shown that the simplest linearisation technique is direct 

iteration. This technique is also used in the two-dimensional case. Please see 7.2.1.1 and 

7.2.1.4 for a description of this method and its termination. Please see 7.2.1.6 for details of 

the relationship between the accuracy of the option values and the accuracy of the volatility 

forecasts. Using direct iteration in the two-dimensional case : 

 

● the LTFD algorithm for solving the nonlinear equation (33) becomes : 

 

 

  initialise 1  and 2  

  repeat 

   use the 2-d linear LTFD algorithm to calculate the V values 

   use the V values to recalculate 1  and 2  

  until 
  
  

( 1) ( )

( 1) ( )

max abs

max abs

r r

r r

V V

V V










 

 

 
Figure 9.1 The Laplace Transform-Finite Difference Algorithm for Solving Two-Dimensional, 

Nonlinear Black-Scholes Equations 
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Here, ( )rV denotes the value of V at the rth iteration and   is a small positive number 

 

● the proposed Monte Carlo algorithm for calculating the reference solutions is : 

 

 decompose TLL  

 initialise 
1  and 

2  

 repeat 

  loop i = 1 to n 

   loop j=1 to d 

    generate j jy Z    

   end loop 

   Ly   

   loop k=1 to d 

    2

,

1
exp

2
k k k kS S r   

  
    

  
 

   end loop 

   ,

1

1
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d
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i j

j

V e S E
d









 
  

 
  

  end loop 
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. . . 1ˆ
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

   
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  recalculate 1  and 2  

 until 
  
  
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( 1) ( )

ˆ ˆmax abs
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
 

  

 
Figure 9.2 A Monte Carlo Algorithm for Solving Two-Dimensional, Nonlinear Black-Scholes Equations
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Here 1  and 2  are the modified volatilities, ( )ˆ rV denotes the value of V̂  at the rth iteration 

and   is a small positive number. 
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  This algorithm was invented by the author i.e. is a contribution to knowledge. It is based upon the algorithm 

 for solving two-dimensional, linear Black-Scholes equations developed by Wilmot et al. (1999) and 

 Glasserman (2003). 
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9.2 Solving Two-Dimensional, Nonlinear Black-Scholes Equations 
 

9.2.1 Parameter Values 

The parameter values used in the Black-Scholes equation (33) are : 

 

Parameter Values 

1 2,S S  0.0(0.1)5.0
98

 

E 1.0 

r 0.05 

12  0.1 

  1.0 

 
Table 9.1 Parameter Values Used in the Two-Dimensional, Nonlinear Black-Scholes Equation 

 

The parameter values used in the modified volatility models are the same as those given in 

Table 7.1. For a European call option the modified volatilities proposed by Leland and Boyle 

and Vorst become constants. The data for these functions is therefore collected using the 

LTFD program for the two-dimensional, linear Black-Scholes equation (26) and the 

parameter values given in Table 8.1. 

 

9.2.2 Aim 

The aim of this investigation is to collect speed and accuracy data for sequential and parallel 

algorithms for solving two-dimensional, nonlinear Black-Scholes equations and use it to 

compare their relative performances.  

 

9.2.3 Preliminary Notes 

● the gamma term in the Barles and Soner and Risk Adjusted Pricing Methodology 

 modified volatility models is calculated using the finite difference approximation given 

  in 7.4.3 

 

● the reference solutions used to determine the NRMSD values for the nonlinear Black- 

 Scholes equations are calculated using the Monte Carlo algorithm given in Figure 9.2. 

 

9.2.4 Performance Data 

The graphs and tables below provide a summary of the data collected.  Once again, the 

graphs show visually, the relative performances of the numerical inversion algorithms. As 

before, only the graphs showing the minimum wall times are included. Detailed results are 

given in Appendix F. 
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  As in the one-dimensional case, the S-range is reduced for the nonlinear modified volatility models because 

 of the slow speed of the Monte Carlo algorithm for calculating the reference solutions. 
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9.2.4.1 Modified Volatility Model : Simulated Modified Volatility
99

 
 

9.2.4.1.1 Sequential Programs Data 
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Figure 9.3 Normalised Root Mean Square Deviation, Sequential Programs (Simulated Modified Volatility)
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Figure 9.4 Minimum Wall Times, Sequential Programs (Simulated Modified Volatility) 
 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02772967769

Minimum Wall Time (s) : Stehfest 8 4.55571794500  

Table 9.2 Optimal Sequential Programs Data  (Simulated Modified Volatility) 

 

 

 

                                                 
99

  See Lai et al. (2005). 
100

  The NRMSD values for all methods follow oscillating trends. 
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9.2.4.1.2 Parallel Programs Data 
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Figure 9.5 Normalised Root Mean Square Deviation, Parallel Programs (Simulated Modified Volatility)
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Figure 9.6 Minimum Wall Times, Parallel Programs (Simulated Modified Volatility) 
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Figure 9.7 Parallel/Sequential Speed Up (Simulated Modified Volatility) 
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  The NRMSD values for all methods follow oscillating trends. 
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Parallel/Sequential Speed Up Per Processor
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Figure 9.8 Parallel/Sequential Speed Up Per Processor (Simulated Modified Volatility) 

 
Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02772967769

Minimum Wall Time (s) : Stehfest 12 (13) 1.28097391100

Parallel/Sequential Speed Up : Laguerre 26 (27) 20.15634733328

Parallel/Sequential Speed Up/Processor : Laguerre 20 (21) 0.81481848339  

 Table 9.3 Optimal Parallel Programs Data (Simulated Modified Volatility)  

 

9.2.4.2 Modified Volatility Model : Leland 

 

9.2.4.2.1 Sequential Programs Data 
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Figure 9.9 Normalised Root Mean Square Deviation, Sequential Programs (Leland)
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 The NRMSD values for all methods follow oscillating trends.  
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Figure 9.10 Minimum Wall Times, Sequential Programs (Leland) 
 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Stehfest 6 0.10201155790

Minimum Wall Time (s) : Stehfest 6 17.76280676000  

Table 9.4 Optimal Sequential Programs Data (Leland) 

 

9.2.4.2.2 Parallel Programs Data 
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Figure 9.11 Normalised Root Mean Square Deviation, Parallel Programs (Leland) 
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Figure 9.12 Minimum Wall Times, Parallel Programs (Leland) 
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Figure 9.13 Parallel/Sequential Speed Up (Leland) 

 

Parallel/Sequential Speed Up Per Processor
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Figure 9.14 Parallel/Sequential Speed Up Per Processor (Leland) 
 



  138 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Stehfest 6 (7) 0.10201155790

Minimum Wall Time (s) : Stehfest 6 (7) 5.85089260600

Parallel/Sequential Speed Up : Laguerre 22 (23) 10.78343361760

Parallel/Sequential Speed Up/Processor : Laguerre 20 (21) 0.47000707041  

 Table 9.5 Optimal Parallel Programs Data (Leland) 

 

9.2.4.3 Modified Volatility Model : Boyle and Vorst 

 

9.2.4.3.1 Sequential Programs Data 
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Figure 9.15 Normalised Root Mean Square Deviation, Sequential Programs (Boyle and Vorst)
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Figure 9.16 Minimum Wall Times, Sequential Programs (Boyle and Vorst) 
 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 26 0.09513891832

Minimum Wall Time (s) : Stehfest 6 18.27469492000  

Table 9.6 Optimal Sequential Programs Data (Boyle and Vorst) 
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  The NRMSD values for the Laguerre polynomial method follow an almost constant trend. 
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9.2.4.3.2 Parallel Programs Data 
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Figure 9.17 Normalised Root Mean Square Deviation, Parallel Programs (Boyle and Vorst) 
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Figure 9.18 Minimum Wall Times, Parallel Programs (Boyle and Vorst) 
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Figure 9.19 Parallel/Sequential Speed Up (Boyle and Vorst) 

 



  140 

Parallel/Sequential Speed Up Per Processor
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Figure 9.20 Parallel/Sequential Speed Up Per Processor (Boyle and Vorst) 

 
Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 26 (27) 0.09513891832

Minimum Wall Time (s) : Stehfest 6 (7) 5.83855523400

Parallel/Sequential Speed Up : Laguerre 26 (27) 11.56211680346

Parallel/Sequential Speed Up/Processor : Laguerre 10 (11) 0.50765187507  

Table 9.7 Optimal Parallel Programs Data (Boyle and Vorst) 

 

9.2.4.4 Modified Volatility Model : Barles and Soner 

 

9.2.4.4.1 Sequential Programs Data 
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Figure 9.21 Normalised Root Mean Square Deviation, Sequential Programs (Barles and Soner)
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  The NRMSD values for the Laguerre polynomial method follow a slight oscillating trend. 
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Figure 9.22 Minimum Wall Times, Sequential Programs (Barles and Soner) 

 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02922910136

Minimum Wall Time (s) : Stehfest 6 0.88142395020  

Table 9.8 Optimal Sequential Programs Data (Barles and Soner) 

 

9.2.4.4.2 Parallel Programs Data 

NRMSD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method

 

Figure 9.23 Normalised Root Mean Square Deviation, Parallel Programs (Barles and Soner) 
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Minimum Wall Times (s)
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Figure 9.24 Minimum Wall Times, Parallel Programs (Barles and Soner) 
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Figure 9.25 Parallel/Sequential Speed Up (Barles and Soner) 
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Figure 9.26 Parallel/Sequential Speed Up Per Processor (Barles and Soner) 
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Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02922910136

Minimum Wall Time (s) : Stehfest 6 (7) 0.12844991680

Parallel/Sequential Speed Up : SLP 8 (9) 8.43622492843

Parallel/Sequential Speed Up/Processor : Laguerre 6 (7) 1.07483109645  

Table 9.9 Optimal Parallel Programs Data (Barles and Soner) 

 

9.2.4.5 Modified Volatility Model : Risk Adjusted Pricing Methodology 

9.2.4.5.1 Sequential Programs Data 
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Figure 9.27 Normalised Root Mean Square Deviation, Sequential Programs (RAPM)
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Figure 9.28 Minimum Wall Times, Sequential Programs (RAPM) 
 

Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms Value

NRMSD : Jacobi 22 0.02922910136

Minimum Wall Time (s) : Stehfest 6 0.83622002600  

Table 9.10 Optimal Sequential Programs Data (RAPM) 
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  The NRMSD values for all methods follow oscillating trends.  
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9.2.4.5.2 Parallel Programs Data 
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Figure 9.29 Normalised Root Mean Square Deviation, Parallel Programs (RAPM)
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Figure 9.30 Minimum Wall Times, Parallel Programs (RAPM) 
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Figure 9.31 Parallel/Sequential Speed Up (RAPM) 
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  The NRMSD values for all methods follow oscillating trends.  
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Parallel/Sequential Speed Up Per Processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6 8 10 12 14 16 18 20 22 24 26

Number of Weights/Terms

Stehfest's Method SLP Method

Jacobi Polynomial Method Laguerre Polynomial Method
 

Figure 9.32 Parallel/Sequential Speed Up Per Processor (RAPM) 

 
Optimal Optimal Optimal

 Inversion Algorithm Weights/Terms (Processors) Value

NRMSD : Jacobi 22 (23) 0.02922910136

Minimum Wall Time (s) : Stehfest 6 (7) 0.09848403931

Parallel/Sequential Speed Up : Laguerre 10 (11) 10.90384985034

Parallel/Sequential Speed Up/Processor : Jacobi 6 (7) 1.24914529301  

 Table 9.11 Optimal Parallel Programs Data (RAPM) 

 

9.2.5 Conclusions 

Tables 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 and 9.11 above give the optimal number of 

weights/terms and processors to use in/with sequential and parallel programs for solving  

two-dimensional, nonlinear Black-Scholes equations containing the modified volatility 

models proposed by Lai et al., Leland, Boyle and Vorst, Barles and Soner and Kratka (i.e. the 

Risk Adjusted Pricing Methodology model). 

 

It can be seen from the graphs and tables in this chapter that : 

   

● as in the two-dimensional, linear case the solutions obtained are not as accurate as those 

 obtained in the one-dimensional case, particularly when the inverse Laplace transforms 

 are found using the Laguerre polynomial method. The likely reasons for this are 

  explained in 8.6.5 

 

● the parallel programs are as accurate as the corresponding sequential programs but faster 
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● as seen in previous investigations, the Laguerre polynomial method only features in the 

 parallel/sequential speed up categories because it is significantly slower than the other 

  numerical inversion algorithms tested. 

 

9.3 Chapter Summary 

This chapter has shown that the Laplace transform-finite difference algorithm can be used to 

solve two-dimensional, nonlinear Black-Scholes equations. The investigative chapters of this 

dissertation have identified consistent patterns of behaviour within the numerical solutions. 

Chapter 10 identifies these patterns and explains how they are related to the number of 

weights/terms used in the numerical inversion algorithms and the number of processors used 

with the parallel Laplace transform based algorithms. 

 

9.4 Contribution to Knowledge 

This chapter has : 

● explained how Monte Carlo methods can be used for calculating accurate reference 

  solutions of two-dimensional, nonlinear Black-Scholes equations 

 

● developed and evaluated a parallel, Laplace transform-finite difference algorithm for 

 solving two-dimensional, nonlinear Black-Scholes equations and shown that this 

  algorithm produces fast and sufficiently accurate solutions
107

 

 

● used the LTFD algorithm for solving two-dimensional nonlinear Black-Scholes equations 

 containing the modified volatility models proposed by Lai et al., Leland, Boyle and 

  Vorst, Barles and Soner and Kratka (i.e. the Risk Adjusted Pricing Methodology model) 

 

● evaluated Stehfest's method, the shifted Legendre polynomial method, the Jacobi 

 polynomial method and the Laguerre polynomial method when these methods are used to 

 invert the Laplace transforms arising in the LTFD algorithm 

 

● determined the optimal number of weights/terms and processors to use with each of  

 the numerical inversion algorithms when they are used in the LTFD algorithm 

 

● established the advantages of using the LTFD algorithm for solving two-dimensional 

 nonlinear Black-Scholes equations.
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  See 11.1 
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Chapter 10 

 

Program Performance 
 

 
10.0 Introduction 

In the investigative chapters of this dissertation a significant amount of performance data was 

collected for the Laplace transform based algorithms for solving one-dimensional and two-

dimensional, linear and nonlinear Black-Scholes equations. It was seen from this data that the 

execution speeds and accuracies of the algorithms were related to the number of weights/ 

terms used in the numerical inversion algorithms and the number of processors used on the 

cluster. This chapter attempts to explain this behaviour. 

 

10.1 The Effects of the Number of Weights/Terms Used 

10.1.1 On Execution Speeds and Parallel/Sequential Speed Ups 

Increasing the number of weights/terms used in a numerical inversion algorithm increases the 

number of calculations that must be performed. This in turn, increases the execution time of 

the procedure. The size of the increase depends upon the computational intensity of the 

algorithm. The computational intensity of a numerical inversion algorithm depends upon : 

 

● the nature of the calculations that must be performed. All four algorithms require the 

 calculation of recursive coefficients/weights. However, the Laguerre polynomial method 

 requires significantly more calculations of this type than the Jacobi polynomial method. 

 This method in turn, requires significantly more recursive calculations than the SLP 

 method and Stehfest's method. Although the recursive coefficients/weights are calculated 

 (and broadcast) at the beginning of each program, recursive calculations are notoriously 

 slow compared with iterative calculations, even on modern computer systems. This is due 

 to the need to maintain the stack i.e. the need to push intermediate values onto the stack 

  and then pop these values from the stack as the recursion unwinds
108

, (Lantzman 2007) 

 

● the frequency with which those calculations must be performed. 
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  Lantzman (2007) compares the speeds (in clock ticks) of iterative and recursive implementations of a 

 number of standard algorithms. He shows that the recursive implementations are between 3 and 30 times 

 slower than their iterative counterparts. 
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 Consider the one-dimensional case. In the Laguerre polynomial method the coefficients 

 ka  must be calculated for each value of S and the polynomials kL  must be calculated for 

 each value of  . In the Jacobi polynomial method the coefficients 
nc  must be calculated 

 for each value of S and the polynomials 
   0,

2 1nP e
    must be calculated for each 

 value of  . In the SLP method the coefficients kC  must be calculated for each value of S 

 and the polynomials  kP z  must be calculated for each value of  .  However, in 

 Stehfest's method no additional coefficients, polynomials or weights need to be calculated 

  for each value of S and  . In the two-dimensional case the frequencies are exactly the 

 same. Here, the corresponding calculations must be performed for each pair of 1S  and 2S  

 values and for each value of  . 

 

Hence, in ascending order of computational intensity, the four numerical inversion algorithms 

can be ranked as Stehfest’s method, the SLP method, the Jacobi polynomial method and the 

Laguerre polynomial method. This order corresponds with the minimum program wall time 

data shown on the graphs within this dissertation. 

 

The relationship between the number of weights/terms used and the parallel/sequential speed 

up obtained is less clear. For example, Figure 5.4 and Figure 5.16 show that when the 

numerical inversion algorithms are used to invert the Laplace transform of the analytical 

solution of the one-dimensional, linear Black-Scholes equation (10) and the Laplace 

transforms arising in the finite difference solution of the ODE BVP form of this equation, the 

parallel/sequential speed up values oscillate as the number of weights/terms used increases. 

However, Figure 8.9 shows that in the two-dimensional linear case, the parallel/sequential 

speed up values increase monotonically as the number of weights/terms used increases. 

 

10.1.2 On Accuracies 

Increasing the number of weights/terms should increase the accuracy of the solution. 

However, as stated above, increasing the number of weights/terms increases the number of 

calculations that must be performed i.e. increases the rounding errors in the solution. Hence, 

for each numerical inversion algorithm there is an optimal number of weights/terms i.e. a 

number beyond which the inaccuracy lost due to rounding errors (and the ill-posed nature of 

numerical Laplace transform inversion) exceeds the accuracy gained by increasing the 

number of weights/terms. This behaviour can be seen in the Optimal Parallel Program Data 

tables included in this dissertation. 
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10.2 The Effects of the Number of Processors Used 

10.2.1 On Execution Speeds and Parallel/Sequential Speed Ups 

Before any performance data was collected it was reasonable to assume that the minimum 

program wall time in both the one-dimensional and the two-dimensional cases would be 

obtained when the number of processors used was the maximum number available. However, 

in reality this was not the case. The tables giving the optimal parallel programs data show that 

the minimum program wall time was usually obtained when the number of processors used 

was significantly lower than this maximum number. The likely reason for this is that beyond 

a certain number of processors, the communication overhead, that is, the time required to 

manage the parallel tasks, starts to increase the execution time. Barney (2010) states that the 

factors contributing to the communication overhead are : 

 

● task start-up times 

 

● task termination times 

 

● the software overhead imposed by parallel compilers, libraries, operating systems, etc. 

 

● inter-task communication times i.e.  

 

 ● the times taken to send and receive data 

 

 ● synchronisations between tasks such as those associated with blocking 

   communications. These can result in tasks waiting instead of doing useful work 

 

 ● lack of network bandwidth. This can result in tasks waiting until the required 

   communication resources become available. 

 

Naturally, as the execution time of a parallel program increases, the parallel/sequential speed 

up obtained decreases. 

 

10.2.2 On Accuracies 

By looking at the graphs showing the normalised root mean square deviation values in both 

the one-dimensional and the two-dimensional cases it can be seen that beyond a certain 

number of processors, the accuracy of the numerical solutions usually decreases. More work 

is needed to establish the reason for this behaviour and determine what can be done to correct 

it. This is left for future work. See 11.2. 
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10.3 Chapter Summary 

The explanations given in this chapter are correct in theory and explain the behaviour shown 

on/in the graphs and tables summarising the performance data in both the one-dimensional 

and the two dimensional cases. While the relative execution speeds of the numerical 

inversion algorithms was consistent in all investigations completed, the algorithms took turns 

at giving the most accurate results. This confirms the assertion made by Davies and Martin in 

their 1979 review paper that "there is no single best numerical inversion algorithm". The 

final chapter of this dissertation will give the overall contribution to knowledge made by this 

research programme and to explain how it can be extended further. 

 

10.4 Contribution to Knowledge 

This chapter has provided detailed explanations of how the performances of the sequential 

and parallel programs used to solve one-dimensional and two-dimensional Black-Scholes 

equations are effected by the number of weights/terms used in the numerical inversion 

algorithms by the number of processors used on the cluster. 
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Chapter 11 

 

Conclusions and Future Work 
 

 
11.0 Introduction 

The final chapter of this dissertation gives the overall contribution to knowledge made by this 

research programme and explains how those interested can extend it further. 

 

11.1 Overall Contribution to Knowledge 

This research programme has achieved the aims given in Chapter 1 i.e. it has : 

 

● developed and evaluated sequential finite difference algorithms and sequential and 

 parallel Laplace transform based algorithms for solving one-dimensional and two-

 dimensional, linear and nonlinear diffusion equations. In particular, Black-Scholes 

  equations of these types 

 

● determined the optimal numerical inversion algorithms to use in the Laplace transform 

 based algorithms for solving these equations and the optimal number of weights/terms 

  and processors to use in each case 

 

● provided the evidence to support my thesis i.e. shown that Laplace transform based 

 algorithms produce fast and accurate solutions of the Black-Scholes equations  mentioned 

 above. In financial markets the solutions of Black-Scholes equations are used by traders 

 as guide prices for the values of financial options. Even the least accurate solutions 

 produced by the Laplace transform based algorithms e.g. those produced using the 

  Laguerre polynomial method in the two-dimensional case, are adequate for this purpose. 

 

11.2 Future Work 

Those wishing to extend this research programme could : 

 

● investigate the performance of the Laplace transform based algorithms when they are 

 used to solve Black-Scholes equations in which the volatility is modelled by a stochastic 

 process 

 

● perform an error analysis of the numerical inversion algorithms. One way to do this is to 

 use rounded interval arithmetic. This is an accepted and widely used error bounding 

 method that has been in use since the early 1960's, (Moore et al. 2009). In this method 
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 numerical values are stored as intervals and rules are available for adding, subtracting, 

 multiplying and dividing intervals. Whenever an upper/lower end point of an interval 

 does not have an exact binary representation (i.e. is not an integral power of 2), it is 

 rounded up/down to the nearest representable value. A common rounding system is to 

 add/subtract a small constant to/from the end point called the unit-in-the-last-place, 

 (Abrams et al. 1998). Computer programs implementing the numerical inversion 

  algorithms in this way could be used to : 

 

 ● obtain error bounds on the inverse Laplace transform values calculated 

 

 ● identify the types of problems for which numerical Laplace transform inversion is 

  ill-posed 

 

 ● determine where the ill-posedness occurs in the inversion process 

 

 ● investigate how or if the ill-posedness can be controlled 

 

● Validate the accuracy of the solutions obtained using the Laplace transform based 

 algorithms using corresponding algorithms based on the use of Fourier and Fast Fourier 

  transforms 

 

● Investigate and evaluate other linearisation techniques. Possible methods are exact 

 linearisation, direct linearisation, Newton's method, Picard iteration and explicit time 

 integration 

 

● Investigate methods for accelerating the convergence of linearisation techniques. 

 Possible methods are Richardson extrapolation, the Aitken delta-squared process, 

  Wynn's epsilon algorithm, the Levin u-transform and the Wilf-Zeilberger-Ekhad method 

 

● Determine the reason for the reduced accuracy in the two-dimensional case and establish 

  what can be done to improve it 

 

● Establish why the accuracy of a parallel numerical solution usually decreases as the 

  number of processors used increases and determine what can be done to correct this 

  behaviour 

 

● Investigate whether Automatic Differentiation can be used for obtaining highly accurate 

 solutions of option pricing problems such as those described in this dissertation. Solutions 

 of this kind may be required for calculating the ‘Greeks’. 
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11.3 Chapter Summary 

This chapter has shown that this research programme has made significant contributions to 

knowledge and that there is scope for it to be extended further. Most importantly for me, it 

has shown that my thesis, stated in Chapter1, is correct and I can now return to looking out of 

the window and watching other boys playing football ! Having had tea with Mrs Catherall 

recently I know that I can now do this with her permission. 
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Appendix A 
 

STRI Cluster Specification 

  

Hardware 

An 96-node cluster/blade system in which 80 nodes each contain two Xeon E5520, 2.27 

GHz, quad-core processors and 16 nodes each contain two Xeon X5650, 2.67 GHz, 6-core 

processors. The PAM sub-system contains 52 nodes. The CAIR sub-system contains 44 

nodes. 

 

Memory 

24Gb RAM running over Infini band High Speed Interconnect (to provide low latency/fast 

inter-node communications). 

 

Operating System 

64-bit Red HAT Linux 

 

User Software 

Fortran 90 and MPI CH2. 
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Appendix B 
 

Performance Data for Laplace Transform Solutions - Initial Investigations 

 

Analytical LT 

 

Optimal Sequential Programs Data 

 

Optimal Weights Optimal Value

NRMSD : 6 0.00760937300

Minimum Wall Time (s) : 6 7.40825700800

Optimal Weights Optimal Value

NRMSD : 26 0.02683993270

Minimum Wall Time (s) : 6 24.54517198000

Optimal Terms Optimal Value

NRMSD : 16 0.09222718870

Minimum Wall Time (s) : 6 8.39083504700

Optimal Terms Optimal Value

NRMSD : 12 0.08118930914

Minimum Wall Time (s) : 6 124.50031500000

SLP Method

Stehfest's Method

Laguerre Polynomial Method

Jacobi Polynomial Method

 

Table B.1 Optimal Sequential Programs Data (Analytical LT) 
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Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 6 0.00753181310

Minimum Wall Time (s) : 6 0.64976596830

Parallel/Sequential Speed Up : 14 16.28454153804

Parallel/Sequential Speed Up/Processor : 14 0.77545435895

Optimal Weights Optimal Value

NRMSD : 24 0.12780485760

Minimum Wall Time (s) : 6 1.76125001900

Parallel/Sequential Speed Up : 22 19.52100606309

Parallel/Sequential Speed Up/Processor : 22 0.92957171729

Optimal Terms Optimal Value

NRMSD : 16 0.09132087274

Minimum Wall Time (s) : 6 0.73899102210

Parallel/Sequential Speed Up : 24 22.16991136229

Parallel/Sequential Speed Up/Processor : 24 1.05571006487

Optimal Terms Optimal Value

NRMSD : 12 0.08118930914

Minimum Wall Time (s) : 6 7.27635908100

Parallel/Sequential Speed Up : 22 19.36801828272

Parallel/Sequential Speed Up/Processor : 22 0.92228658489

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Jacobi Polynomial Method

 

Table B.2 Optimal Weights/Terms Data, Parallel Programs (Analytical LT) 
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Part 2 : Optimal Processors Data 

 

Optimal Processors Optimal Value

NRMSD : 24 0.00756876468

Minimum Wall Time (s) : 40 0.50650691880

Parallel/Sequential Speed Up : 40 14.62617139673

Parallel/Sequential Speed Up/Processor : 5 1.05105894946

Optimal Processors Optimal Value

NRMSD : 6 0.12879715500

Minimum Wall Time (s) : 8 3.20535020800

Parallel/Sequential Speed Up : 8 7.65756325744

Parallel/Sequential Speed Up/Processor : 8 0.95719540718

Optimal Processors Optimal Value

NRMSD : 40 0.09168081284

Minimum Wall Time (s) : 56 1.38076806100

Parallel/Sequential Speed Up : 56 6.07693303749

Parallel/Sequential Speed Up/Processor : 4 0.94456032006

Optimal Processors Optimal Value

NRMSD : 136 0.07924151668

Minimum Wall Time (s) : 136 4.13765192000

Parallel/Sequential Speed Up : 136 30.08960574915

Parallel/Sequential Speed Up/Processor : 7 0.79203734133

Stehfest's Method

Laguerre Polynomial Method

SLP Method

Jacobi Polynomial Method

 

Table B.3 Optimal Processors Data (Analytical LT) 
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BVP LT 

 

Optimal Sequential Programs Data 

 

Optimal Weights Optimal Value

NRMSD : 6 0.04177589251

Minimum Wall Time (s) : 6 2.13941407200

Optimal Weights Optimal Value

NRMSD : 14 0.08125714247

Minimum Wall Time (s) : 8 2.91407489800

Optimal Terms Optimal Value

NRMSD : 10 0.12070521050

Minimum Wall Time (s) : 6 3.27581691700

Optimal Terms Optimal Value

NRMSD : 24 0.03691509723

Minimum Wall Time (s) : 6 25.10763097000

Stehfest's Method

SLP Method

Laguerre Polynomial Method

Jacobi Polynomial Method

 

Table B.4 Optimal Sequential Programs Data (BVP LT) 
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Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 6 0.04181540563

Minimum Wall Time (s) : 6 0.19930100440

Parallel/Sequential Speed Up : 16 12.78437411915

Parallel/Sequential Speed Up/Processor : 16 0.60877971996

Optimal Weights Optimal Value

NRMSD : 26 0.03302565905

Minimum Wall Time (s) : 6 0.33695888520

Parallel/Sequential Speed Up : 6 15.88224930417

Parallel/Sequential Speed Up/Processor : 6 0.75629758591

Optimal Terms Optimal Value

NRMSD : 10 0.12082799120

Minimum Wall Time (s) : 6 0.43632006650

Parallel/Sequential Speed Up : 16 15.78114067238

Parallel/Sequential Speed Up/Processor : 16 0.75148288916

Optimal Terms Optimal Value

NRMSD : 24 0.03692263067

Minimum Wall Time (s) : 6 1.69342899300

Parallel/Sequential Speed Up : 20 18.95694137668

Parallel/Sequential Speed Up/Processor : 20 0.90271149413

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table B.5 Optimal Weights/Terms Data, Parallel Programs (BVP LT) 
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Part 2 : Optimal Processors Data 

 

Optimal Processors Optimal Value

NRMSD : 136 0.04078000884

Minimum Wall Time (s) : 24 0.29325103760

Parallel/Sequential Speed Up : 24 7.29550384377

Parallel/Sequential Speed Up/Processor : 5 0.93928715166

Optimal Processors Optimal Value

NRMSD : 24 0.08084034111

Minimum Wall Time (s) : 40 0.46209406850

Parallel/Sequential Speed Up : 40 6.30623740196

Parallel/Sequential Speed Up/Processor : 6 1.00435101795

Optimal Processors Optimal Value

NRMSD : 24 0.12008411140

Minimum Wall Time (s) : 40 0.73716402050

Parallel/Sequential Speed Up : 40 4.44381009640

Parallel/Sequential Speed Up/Processor : 5 0.70881039099

Optimal Processors Optimal Value

NRMSD : 7 0.03812053239

Minimum Wall Time (s) : 136 1.58626890200

Parallel/Sequential Speed Up : 136 15.82810514557

Parallel/Sequential Speed Up/Processor : 8 1.47589113525

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table B.6 Optimal Processors Data (BVP LT) 
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Appendix C 

 

Performance Data for the One-Dimensional, Linear Black-Scholes Equation 

 

Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 6 0.03282266316

Minimum Wall Time (s) : 6 1.21327510800

Parallel/Sequential Speed Up : 6 5.61809507510

Parallel/Sequential Speed Up/Processor : 6 0.26752833691

Optimal Weights Optimal Value

NRMSD : 14 0.06796623244

Minimum Wall Time (s) : 10 1.32123372700

Parallel/Sequential Speed Up : 10 5.15903792774

Parallel/Sequential Speed Up/Processor : 10 0.24566847275

Optimal Terms Optimal Value

NRMSD : 10 0.02524845549

Minimum Wall Time (s) : 8 1.35029285600

Parallel/Sequential Speed Up : 8 5.04801227283

Parallel/Sequential Speed Up/Processor : 8 0.24038153680

Optimal Terms Optimal Value

NRMSD : 20 0.00247189988

Minimum Wall Time (s) : 6 1.38424802200

Parallel/Sequential Speed Up : 6 4.92418612898

Parallel/Sequential Speed Up/Processor : 6 0.23448505376

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table C.1 Optimal Weights/Terms Data, Parallel Programs 
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Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 4 0.03190892874

Minimum Wall Time (s) : 40 1.20931506200

Parallel/Sequential Speed Up : 40 5.63649219561

Parallel/Sequential Speed Up/Processor : 4 0.59781910392

Optimal Processors Optimal Value

NRMSD : 3 0.03834257471

Minimum Wall Time (s) : 72 1.43498492200

Parallel/Sequential Speed Up : 72 4.75008120608

Parallel/Sequential Speed Up/Processor : 3 0.58250843613

Optimal Processors Optimal Value

NRMSD : 4 0.00088366262

Minimum Wall Time (s) : 56 1.35022829500

Parallel/Sequential Speed Up : 56 5.04825364291

Parallel/Sequential Speed Up/Processor : 4 0.54960908927

Optimal Processors Optimal Value

NRMSD : 24 0.00275564186

Minimum Wall Time (s) : 88 1.80055131100

Parallel/Sequential Speed Up : 88 3.78567101496

Parallel/Sequential Speed Up/Processor : 3 0.57348748911

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table C.2 Optimal Processors Data 
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Appendix D 
 

Performance Data for the One-Dimensional, Nonlinear Black-Scholes Equations 

 

Modified Volatility Function : Simulated Modified Volatility 

 

Part 1 : Optimal Weights/Terms Data 

 

Optimal Weights Optimal Value

NRMSD : 24 0.02799328572

Minimum Wall Time (s) : 6 0.12257361320

Parallel/Sequential Speed Up : 6 4.36005651827

Parallel/Sequential Speed Up/Processor : 6 0.20762173897

Optimal Weights Optimal Value

NRMSD : 24 0.01175761424

Minimum Wall Time (s) : 6 0.13552594180

Parallel/Sequential Speed Up : 6 3.94336223827

Parallel/Sequential Speed Up/Processor : 6 0.18777915420

Optimal Terms Optimal Value

NRMSD : 20 0.01464839485

Minimum Wall Time (s) : 6 0.15520596500

Parallel/Sequential Speed Up : 6 3.44334627345

Parallel/Sequential Speed Up/Processor : 6 0.16396887016

Optimal Terms Optimal Value

NRMSD : 6 0.15206770190

Minimum Wall Time (s) : 6 0.31046605110

Parallel/Sequential Speed Up : 6 1.72137301102

Parallel/Sequential Speed Up/Processor : 6 0.08197014338

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.1 Optimal Weights/Terms Data, Parallel Programs (Simulated Modified Volatility) 
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Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 3 0.08441731708

Minimum Wall Time (s) : 8 0.14818406110

Parallel/Sequential Speed Up : 8 3.60651393431

Parallel/Sequential Speed Up/Processor : 5 0.54030901625

Optimal Processors Optimal Value

NRMSD : 72 0.07853856512

Minimum Wall Time (s) : 8 0.15288754380

Parallel/Sequential Speed Up : 8 3.49556195303

Parallel/Sequential Speed Up/Processor : 5 0.52253271423

Optimal Processors Optimal Value

NRMSD : 88 0.07562827257

Minimum Wall Time (s) : 8 0.15593290330

Parallel/Sequential Speed Up : 8 3.42729385454

Parallel/Sequential Speed Up/Processor : 4 0.50692215624

Optimal Processors Optimal Value

NRMSD : 3 0.09052401633

Minimum Wall Time (s) : 8 0.21030807500

Parallel/Sequential Speed Up : 8 2.54116672030

Parallel/Sequential Speed Up/Processor : 4 0.46816060980

Laguerre Polynomial Method

Stehfest's Method

SLP Method

Jacobi Polynomial Method

 

Table D.2 Optimal Processors Data (Simulated Modified Volatility) 
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Modified Volatility Function : Leland 

 

Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 6 0.01974218390

Minimum Wall Time (s) : 6 1.59266995400

Parallel/Sequential Speed Up : 6 5.03589956717

Parallel/Sequential Speed Up/Processor : 6 0.23980474129

Optimal Weights Optimal Value

NRMSD : 12 0.02785605212

Minimum Wall Time (s) : 6 1.61791706100

Parallel/Sequential Speed Up : 6 4.95731587566

Parallel/Sequential Speed Up/Processor : 6 0.23606266075

Optimal Terms Optimal Value

NRMSD : 10 0.03238814544

Minimum Wall Time (s) : 6 1.70022711800

Parallel/Sequential Speed Up : 6 4.71732620136

Parallel/Sequential Speed Up/Processor : 6 0.22463458102

Optimal Terms Optimal Value

NRMSD : 20 0.00769955575

Minimum Wall Time (s) : 6 1.71153502500

Parallel/Sequential Speed Up : 6 4.68615939192

Parallel/Sequential Speed Up/Processor : 6 0.22315044723

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.3 Optimal Weights/Terms Data, Parallel Programs (Leland) 
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Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 6 0.01043302431

Minimum Wall Time (s) : 40 1.24268794100

Parallel/Sequential Speed Up : 40 6.45417539463

Parallel/Sequential Speed Up/Processor : 6 0.62382862880

Optimal Processors Optimal Value

NRMSD : 3 0.01656271483

Minimum Wall Time (s) : 40 1.28281211900

Parallel/Sequential Speed Up : 40 6.25229978202

Parallel/Sequential Speed Up/Processor : 4 0.60435156532

Optimal Processors Optimal Value

NRMSD : 3 0.00869205162

Minimum Wall Time (s) : 24 1.29155802700

Parallel/Sequential Speed Up : 24 6.20996173949

Parallel/Sequential Speed Up/Processor : 4 0.58678285572

Optimal Processors Optimal Value

NRMSD : 3 0.07142338569

Minimum Wall Time (s) : 24 1.31553101500

Parallel/Sequential Speed Up : 24 6.09679729368

Parallel/Sequential Speed Up/Processor : 4 0.58272848756

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.4 Optimal Processors Data (Leland) 
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Modified Volatility Function : Boyle and Vorst 

 

Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 18 0.03814824315

Minimum Wall Time (s) : 6 1.36069107100

Parallel/Sequential Speed Up : 6 5.65549822220

Parallel/Sequential Speed Up/Processor : 6 0.26930943915

Optimal Weights Optimal Value

NRMSD : 20 0.04437350128

Minimum Wall Time (s) : 6 1.42684006700

Parallel/Sequential Speed Up : 6 5.39330658774

Parallel/Sequential Speed Up/Processor : 6 0.25682412323

Optimal Terms Optimal Value

NRMSD : 14 0.03398463438

Minimum Wall Time (s) : 6 1.44844105700

Parallel/Sequential Speed Up : 6 5.31287475994

Parallel/Sequential Speed Up/Processor : 6 0.25299403619

Optimal Terms Optimal Value

NRMSD : 16 0.01247211126

Minimum Wall Time (s) : 6 1.48429989800

Parallel/Sequential Speed Up : 6 5.18452230804

Parallel/Sequential Speed Up/Processor : 6 0.24688201467

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.5 Optimal Weights/Terms Data, Parallel Programs (Boyle and Vorst) 
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Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 7 0.03483109684

Minimum Wall Time (s) : 40 1.43203806900

Parallel/Sequential Speed Up : 40 5.37373000033

Parallel/Sequential Speed Up/Processor : 5 0.56982627545

Optimal Processors Optimal Value

NRMSD : 136 0.01167072834

Minimum Wall Time (s) : 40 1.44086366710

Parallel/Sequential Speed Up : 40 5.34081475487

Parallel/Sequential Speed Up/Processor : 5 0.56499791628

Optimal Processors Optimal Value

NRMSD : 3 0.02169106686

Minimum Wall Time (s) : 40 1.50040064800

Parallel/Sequential Speed Up : 40 5.12888736969

Parallel/Sequential Speed Up/Processor : 3 0.55831331777

Optimal Processors Optimal Value

NRMSD : 3 0.05148669002

Minimum Wall Time (s) : 40 1.53728062900

Parallel/Sequential Speed Up : 40 5.00584329746

Parallel/Sequential Speed Up/Processor : 3 0.55399455492

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.6 Optimal Processors Data (Boyle and Vorst) 



  176 

Modified Volatility Function : Barles and Soner 

 

Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 24 0.03671890285

Minimum Wall Time (s) : 6 0.42293095590

Parallel/Sequential Speed Up : 6 9.26509371172

Parallel/Sequential Speed Up/Processor : 6 0.44119493865

Optimal Weights Optimal Value

NRMSD : 22 0.01325309981

Minimum Wall Time (s) : 6 0.45432901380

Parallel/Sequential Speed Up : 6 8.62479573388

Parallel/Sequential Speed Up/Processor : 6 0.41070455876

Optimal Terms Optimal Value

NRMSD : 16 0.00743902902

Minimum Wall Time (s) : 6 0.47075891490

Parallel/Sequential Speed Up : 6 8.32378276008

Parallel/Sequential Speed Up/Processor : 6 0.39637060762

Optimal Terms Optimal Value

NRMSD : 16 0.14538297780

Minimum Wall Time (s) : 6 0.55315589900

Parallel/Sequential Speed Up : 6 7.08388891284

Parallel/Sequential Speed Up/Processor : 6 0.33732804347

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.7 Optimal Weights/Terms Data, Parallel Programs (Barles and Soner) 
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Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 3 0.08733824007

Minimum Wall Time (s) : 24 0.46691107500

Parallel/Sequential Speed Up : 24 8.39237951252

Parallel/Sequential Speed Up/Processor : 6 0.79714300681

Optimal Processors Optimal Value

NRMSD : 72 0.08105728083

Minimum Wall Time (s) : 24 0.48729245500

Parallel/Sequential Speed Up : 24 8.04136181423

Parallel/Sequential Speed Up/Processor : 4 0.73557864637

Optimal Processors Optimal Value

NRMSD : 88 0.07783334599

Minimum Wall Time (s) : 24 0.53114756650

Parallel/Sequential Speed Up : 24 7.37741295855

Parallel/Sequential Speed Up/Processor : 4 0.67525103505

Optimal Processors Optimal Value

NRMSD : 3 0.09290810470

Minimum Wall Time (s) : 24 0.66324496270

Parallel/Sequential Speed Up : 24 5.90806588873

Parallel/Sequential Speed Up/Processor : 4 0.66626441644

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.8 Optimal Processors Data (Barles and Soner) 
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Modified Volatility Function : RAPM 

 

Part 1 : Optimal Weights/Terms Data 
 

Optimal Weights Optimal Value

NRMSD : 24 0.03746163650

Minimum Wall Time (s) : 6 0.20508289340

Parallel/Sequential Speed Up : 6 5.73830454842

Parallel/Sequential Speed Up/Processor : 6 0.27325259754

Optimal Weights Optimal Value

NRMSD : 22 0.01711176881

Minimum Wall Time (s) : 8 0.21877288820

Parallel/Sequential Speed Up : 8 5.37922276239

Parallel/Sequential Speed Up/Processor : 8 0.25615346488

Optimal Terms Optimal Value

NRMSD : 18 0.00801089964

Minimum Wall Time (s) : 6 0.23860311510

Parallel/Sequential Speed Up : 6 4.93215731700

Parallel/Sequential Speed Up/Processor : 6 0.23486463414

Optimal Terms Optimal Value

NRMSD : 6 0.15699258450

Minimum Wall Time (s) : 6 0.35088992120

Parallel/Sequential Speed Up : 6 3.35383842310

Parallel/Sequential Speed Up/Processor : 6 0.15970659158

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.9 Optimal Weights/Terms Data, Parallel Programs (RAPM) 



  179 

Part 2 : Optimal Processors Data 
 

Optimal Processors Optimal Value

NRMSD : 3 0.08667780605

Minimum Wall Time (s) : 24 0.19593906400

Parallel/Sequential Speed Up : 24 6.00609228183

Parallel/Sequential Speed Up/Processor : 3 0.63232795845

Optimal Processors Optimal Value

NRMSD : 56 0.08140492274

Minimum Wall Time (s) : 24 0.27529001240

Parallel/Sequential Speed Up : 24 4.27486667511

Parallel/Sequential Speed Up/Processor : 3 0.62214548859

Optimal Processors Optimal Value

NRMSD : 88 0.07725559308

Minimum Wall Time (s) : 24 0.31821552970

Parallel/Sequential Speed Up : 24 3.69821077277

Parallel/Sequential Speed Up/Processor : 3 0.64110825564

Optimal Processors Optimal Value

NRMSD : 3 0.09390578313

Minimum Wall Time (s) : 8 0.39627796010

Parallel/Sequential Speed Up : 8 2.96970363858

Parallel/Sequential Speed Up/Processor : 3 0.53086674771

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table D.10 Optimal Processors Data (RAPM) 
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Appendix E 

 

Performance Data for the Two-Dimensional, Linear Black-Scholes Equation 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 8 0.21517680360

Minimum Wall Time (s) : 6 20.80843711000

Optimal Weights Optimal Value

NRMSD : 26 0.06469810112

Minimum Wall Time (s) : 6 21.01788760000

Optimal Terms Optimal Value

NRMSD : 6 0.32694111930

Minimum Wall Time (s) : 6 23.67294897000

Optimal Terms Optimal Value

NRMSD : 12 2.26040329500

Minimum Wall Time (s) : 6 35.01823711000

Stehfest's Method

SLP Method

Laguerre Polynomial Method

Jacobi Polynomial Method

 

Table E.1 Optimal Sequential Programs Data 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 8 (9) 0.21517680360

Minimum Wall Time (s) : 6 (7) 6.85409307500

Parallel/Sequential Speed Up : 26 (27) 7.34611276972

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43370199971

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.06469810112

Minimum Wall Time (s) : 6 (7) 7.29012602700

Parallel/Sequential Speed Up : 22 (23) 6.52842579693

Parallel/Sequential Speed Up/Processor : 8 (9) 0.43612267555

Optimal Terms (Processors) Optimal Value

NRMSD : 6 (7) 0.32694111930

Minimum Wall Time (s) : 8 (9) 7.83274439800

Parallel/Sequential Speed Up : 18 (19) 6.55196378857

Parallel/Sequential Speed Up/Processor : 8 (9) 0.53161789599

Optimal Terms (Processors) Optimal Value

NRMSD : 6 (7) 0.32345620810

Minimum Wall Time (s) : 6 (7) 10.14124416000

Parallel/Sequential Speed Up : 26 (27) 14.40714439882

Parallel/Sequential Speed Up/Processor : 18 (19) 0.60357633598

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table E.2 Optimal Parallel Programs Data 
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Appendix F 

 

Performance Data for the Two-Dimensional, Nonlinear Black-Scholes Equations 

 

Modified Volatility Function : Simulated Modified Volatility 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 14 0.12686007900

Minimum Wall Time (s) : 8 4.55571794500

Optimal Weights Optimal Value

NRMSD : 26 0.02777761927

Minimum Wall Time (s) : 6 4.84069204300

Optimal Terms Optimal Value

NRMSD : 22 0.02772967769

Minimum Wall Time (s) : 6 6.28118519900

Optimal Terms Optimal Value

NRMSD : 20 2.09002997900

Minimum Wall Time (s) : 6 10.92732000000

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table F.1 Optimal Sequential Programs Data (Simulated Modified Volatility) 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 14 (15) 0.12686007900

Minimum Wall Time (s) : 12 (13) 1.28097391100

Parallel/Sequential Speed Up : 18 (19) 6.31066925025

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43969769459

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.02777761927

Minimum Wall Time (s) : 10 (11) 1.41183612800

Parallel/Sequential Speed Up : 24 (25) 9.15900100771

Parallel/Sequential Speed Up/Processor : 8 (9) 0.49544555076

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02772967769

Minimum Wall Time (s) : 10 (11) 1.66243479100

Parallel/Sequential Speed Up : 20 (21) 8.62655461940

Parallel/Sequential Speed Up/Processor : 10 (11) 0.52162442114

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.09002997900

Minimum Wall Time (s) : 6 (7) 3.60725692600

Parallel/Sequential Speed Up : 26 (27) 20.15634733328

Parallel/Sequential Speed Up/Processor : 20 (21) 0.81481848339

Stehfest's Method

SLP Method

Jacobi Polynomial Method

Laguerre Polynomial Method

 

Table F.2 Optimal Parallel Programs Data (Simulated Modified Volatility) 
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Modified Volatility Function : Leland 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 6 0.10201155790

Minimum Wall Time (s) : 6 17.76280676000

Optimal Weights Optimal Value

NRMSD : 26 0.14420396170

Minimum Wall Time (s) : 6 18.00465510000

Optimal Terms Optimal Value

NRMSD : 14 0.23239645250

Minimum Wall Time (s) : 6 20.68151240000

Optimal Terms Optimal Value

NRMSD : 26 1.77848125200

Minimum Wall Time (s) : 6 32.82941570000

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.3 Optimal Sequential Programs Data (Leland) 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 6 (7) 0.10201155790

Minimum Wall Time (s) : 6 (7) 5.85089260600

Parallel/Sequential Speed Up : 26 (27) 7.45135324540

Parallel/Sequential Speed Up/Processor : 6 (7) 0.43370199963

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.14420396170

Minimum Wall Time (s) : 6 (7) 7.05418005300

Parallel/Sequential Speed Up : 26 (27) 6.54876426281

Parallel/Sequential Speed Up/Processor : 10 (11) 0.37210124750

Optimal Terms (Processors) Optimal Value

NRMSD : 14 (15) 0.23239645250

Minimum Wall Time (s) : 6 (7) 7.75259545700

Parallel/Sequential Speed Up : 24 (25) 7.16688033736

Parallel/Sequential Speed Up/Processor : 10 (11) 0.45982989223

Optimal Terms (Processors) Optimal Value

NRMSD : 8 (9) 0.12429605370

Minimum Wall Time (s) : 6 (7) 10.03207229000

Parallel/Sequential Speed Up : 22 (23) 10.78343361760

Parallel/Sequential Speed Up/Processor : 20 (21) 0.47000707041

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.4 Optimal Parallel Programs Data (Leland) 
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Modified Volatility Function : Boyle and Vorst 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 22 0.13956131970

Minimum Wall Time (s) : 6 18.27469492000

Optimal Weights Optimal Value

NRMSD : 26 0.18538908410

Minimum Wall Time (s) : 6 20.03498296000

Optimal Terms Optimal Value

NRMSD : 26 0.09513891832

Minimum Wall Time (s) : 6 22.91150455000

Optimal Terms Optimal Value

NRMSD : 20 0.71707085730

Minimum Wall Time (s) : 6 34.48718029000

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.5 Optimal Sequential Programs Data (Boyle and Vorst) 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 22 (23) 0.13956131970

Minimum Wall Time (s) : 6 (7) 5.83855523400

Parallel/Sequential Speed Up : 26 (27) 7.34697347177

Parallel/Sequential Speed Up/Processor : 6 (7) 0.44714327402

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.18538908410

Minimum Wall Time (s) : 6 (7) 7.16717707300

Parallel/Sequential Speed Up : 26 (27) 7.48280603716

Parallel/Sequential Speed Up/Processor : 6 (7) 0.39933999031

Optimal Terms (Processors) Optimal Value

NRMSD : 26 (27) 0.09513891832

Minimum Wall Time (s) : 6 (7) 7.42525433300

Parallel/Sequential Speed Up : 26 (27) 6.85768528732

Parallel/Sequential Speed Up/Processor : 6 (7) 0.44080268928

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 0.71707085730

Minimum Wall Time (s) : 6 (7) 9.77245628100

Parallel/Sequential Speed Up : 26 (27) 11.56211680346

Parallel/Sequential Speed Up/Processor : 10 (11) 0.50765187507

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.6 Optimal Parallel Programs Data (Boyle and Vorst) 
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Modified Volatility Function : Barles and Soner 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 10 0.11209377880

Minimum Wall Time (s) : 6 0.88142395020

Optimal Weights Optimal Value

NRMSD : 26 0.06046745961

Minimum Wall Time (s) : 6 1.04478973300

Optimal Terms Optimal Value

NRMSD : 22 0.02922910136

Minimum Wall Time (s) : 6 1.15965708400

Optimal Terms Optimal Value

NRMSD : 20 2.13122478900

Minimum Wall Time (s) : 6 2.02804581800

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.7 Optimal Sequential Programs Data (Barles and Soner) 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 10 (11) 0.11209377880

Minimum Wall Time (s) : 6 (7) 0.12844991680

Parallel/Sequential Speed Up : 6 (7) 6.86200483549

Parallel/Sequential Speed Up/Processor : 6 (7) 0.98028640507

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.06046745961

Minimum Wall Time (s) : 6 (7) 0.14122467350

Parallel/Sequential Speed Up : 8 (9) 8.43622492843

Parallel/Sequential Speed Up/Processor : 6 (7) 1.05686685226

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02922910136

Minimum Wall Time (s) : 6 (7) 0.15491573980

Parallel/Sequential Speed Up : 18 (19) 7.83658191133

Parallel/Sequential Speed Up/Processor : 6 (7) 1.06938970777

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.13122478900

Minimum Wall Time (s) : 6 (7) 0.26955010150

Parallel/Sequential Speed Up : 20 (21) 7.82297027179

Parallel/Sequential Speed Up/Processor : 6 (7) 1.07483109645

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.8 Optimal Parallel Programs Data (Barles and Soner) 
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Modified Volatility Function : RAPM 

 

Optimal Sequential Programs Data 
 

Optimal Weights Optimal Value

NRMSD : 14 0.11578045140

Minimum Wall Time (s) : 6 0.83622002600

Optimal Weights Optimal Value

NRMSD : 26 0.14152665260

Minimum Wall Time (s) : 6 0.90784164570

Optimal Terms Optimal Value

NRMSD : 22 0.02922910136

Minimum Wall Time (s) : 8 0.96888566930

Optimal Terms Optimal Value

NRMSD : 20 2.13104093100

Minimum Wall Time (s) : 6 1.66152111900

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.9 Optimal Sequential Programs Data (RAPM) 
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Optimal Parallel Programs Data 
 

Optimal Weights (Processors) Optimal Value

NRMSD : 14 (15) 0.11578045140

Minimum Wall Time (s) : 6 (7) 0.09848403931

Parallel/Sequential Speed Up : 10 (11) 9.52713916082

Parallel/Sequential Speed Up/Processor : 6 (7) 1.21298846545

Optimal Weights (Processors) Optimal Value

NRMSD : 26 (27) 0.14152665260

Minimum Wall Time (s) : 6 (7) 0.10474230040

Parallel/Sequential Speed Up : 12 (13) 9.98875642001

Parallel/Sequential Speed Up/Processor : 6 (7) 1.23819758757

Optimal Terms (Processors) Optimal Value

NRMSD : 22 (23) 0.02922910136

Minimum Wall Time (s) : 8 (9) 0.11454052710

Parallel/Sequential Speed Up : 10 (11) 9.71161666231

Parallel/Sequential Speed Up/Processor : 6 (7) 1.24914529301

Optimal Terms (Processors) Optimal Value

NRMSD : 20 (21) 2.13104093100

Minimum Wall Time (s) : 6 (7) 0.19660789130

Parallel/Sequential Speed Up : 10 (11) 10.90384985034

Parallel/Sequential Speed Up/Processor : 6 (7) 1.20727687118

Jacobi Polynomial Method

Laguerre Polynomial Method

Stehfest's Method

SLP Method

 

Table F.10 Optimal Parallel Programs Data (RAPM) 
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Appendix G 
 

Computer Programs 

  

General Notes 

● The correctness of the sequential and parallel programs developed was established in two 

  ways : 

 

 ● Firstly, a visual inspection of the solutions produced showed that they behaved as  

  predicted by the boundary conditions of the equation being solved. In the one  

  dimensional case :  

 0, 0V    and  ,V S S   as S  . 

  In the two-dimensional case : 

 1 1,0,V S Vs       2 20, ,V S Vs   

 

 1 2 1, ,V S S S   as 1S       1 2 2, ,V S S S   as 2S   

  where 1Vs t  and 2Vs t  are the single asset solutions of the one-dimensional, linear  

  Black-Scholes equation 

 

 ● Secondly, the solutions produced were in close agreement with those obtained using 

  independent methods. This was either the analytical solution of the equation or a 

  solution obtained using a Monte Carlo algorithm 

 

● All programs contained ‘implicit none’ statements 

 

● The compiler used was the Fortran 90 compiler provided in the MPICH2 suite. Version 

  1.4.1p1. No compiler optimisation was performed. All programs were compiled in the 

  same way 

 

● In all codes the main program and all subprograms were contained in the same file. No 

 linking was necessary. If this file was called prog.f90, the program was compiled using 

  the command : 

mpif90 prog.f90 -o prog 

 

 If prog.f90 contained a sequential program, it was run using the command : 

mpiexec -np 1 prog 

 If prog.f90 contained a parallel program to be run using 8 processors, it was run using the 

  command : 

mpiexec -np 8 prog                                                    etc. 
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Parallel Program Templates 

The following program templates are written in general terms so that they can be used by 

anyone wishing to develop parallel, Laplace transform based programs for solving  

one-dimensional and two-dimensional, linear and nonlinear diffusion equations. The 

implementation details for the Black-Scholes equations are given in the main chapters of this 

dissertation. Authors who are not interested in the NRMSD of the errors or the program wall 

time can omit the corresponding steps. In each template it is assumed that : 

 

● the parallel development environment being used is the MPI. Minor adjustments may be 

 needed for other platforms 

  

● the PDE being solved does not have an analytical solution.  

 



  194 

Template for the One-Dimensional, Linear Program 

begin program 

 - constant, variable and array declarations (including the solution domain) 

 - initialise the MPI 

 - take the program wall time 

 - read in the reference solution 

 if master then 

  - calculate the weights/terms required by the numerical inversion algorithm 

  - send the weights/terms to the slaves 

  - send each slave details of the sub-domain for which it is responsible 

  - receive the NRMSD data from the slaves 

  - calculate the NRMSD 

  - calculate the program wall time 

  - display/store the NRMSD and the program wall time 

  - display/store the numerical solution of the PDE 

 else slave 

  - receive the weights/terms required by the numerical inversion algorithm from the master 

  - receive the details of the sub-domain to be processed from the master 

  if first sub-domain then  

   - calculate the initial condition using the initial condition of the PDE 

  else 

   - calculate the initial condition by solving the ODE BVP form of the PDE 

  end if 

  - use the reference solution to update the NRMSD data for the sub-domain 

  for all following rows in the sub-domain : 

   - calculate the solution using a finite difference method 

   - use the reference solution to update the NRMSD data for the sub-domain 

  end for 

  - send the NRMSD data for the sub-domain to the master 

 end if 

 - finalise the MPI 

end program  
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Template for the One-Dimensional, Nonlinear Program 

begin program 

 - constant, variable and array declarations (including the solution domain) 

 - initialise the MPI 

 - take the program wall time 

 - read in the reference solution 

 if master then 

  - send each slave details of the sub-domain for which it is responsible 

  - calculate the weights/terms required by the numerical inversion algorithm 

  - calculate the initial conditions required by the slaves  

   - the first initial condition is calculated using the initial condition of the PDE 

   - the other initial conditions are calculated by solving the ODE BVP form of the PDE 

  - send each slave the initial condition for its sub-domain 

  - receive the NRMSD data from the slaves 

  - calculate the NRMSD 

  - calculate the program wall time 

  - display/store the NRMSD and the program wall time 

  - display/store the numerical solution of the PDE 

 else slave 

  - receive the details of the sub-domain to be processed from the master 

  - receive the initial condition for the sub-domain from the master 

  - use the reference solution to update the NRMSD data for the sub-domain  

  for all following rows in the sub-domain :  

   oldsolution = solution in previous row 

   repeat 

    - calculate the nonlinear terms in the row using oldsolution 

    - calculate newsolution using the nonlinear terms and a finite difference 

       method 

    - oldsolution = newsolution 

   until the numerical solution of the PDE is sufficiently accurate 

   - use the reference solution to update the NRMSD data for the sub-domain 

  end for 

  - send the NRMSD data for the sub-domain to the master 

 end if 

 - finalise the MPI 

end program
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Template for the Two-Dimensional, Linear Program 

begin program 

 - constant, variable and array declarations (including the solution domains) 

 - initialise the MPI 

 - take the program wall time 

 if master then 

  - calculate the weights/terms required by the numerical inversion algorithm 

  - receive the ranks of the solution domain in Laplace space from the slaves 

  - calculate the numerical solution of the PDE 

  - read in the reference solution 

  - calculate the NRMSD 

  - calculate the program wall time 

  - display/store the NRMSD and the program wall time 

  - display/store the numerical solution of the PDE 

 else slave 

  - initialise the allocated rank of the solution domain in Laplace space 

  - calculate the solution in the allocated rank of the solution domain in Laplace space using a 

    finite difference method 

  - send the allocated rank of the solution domain in Laplace space to the master  

 end if 

 - finalise the MPI 

end program 
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Template for the Two-Dimensional, Nonlinear Program 

begin program 

 - constant, variable and array declarations (including the solution domains) 

 - initialise the MPI 

 - take the program wall time 

 - initialise the nonlinear terms  

 if master then 

  - calculate the weights/terms required by the numerical inversion algorithm   

  repeat 

   - send the nonlinear terms to the slaves 

   - receive the ranks of the solution domain in Laplace space from the slaves 

   - calculate the numerical solution of the PDE 

   - update the nonlinear terms 

  until the numerical solution of the PDE is sufficiently accurate 

  - read in the reference solution 

  - calculate the NRMSD 

  - calculate the program wall time 

  - display/store the NRMSD and the program wall time 

  - display/store the numerical solution of the PDE 

 else slave 

  - receive the nonlinear terms from the master 

  - initialise the allocated rank of the solution domain in Laplace space 

  - calculate the solution in the allocated rank of the solution domain in Laplace space using the 

     nonlinear terms and a finite difference method 

  - send the allocated rank of the solution domain in Laplace space to the master  

 end if 

 - finalise the MPI 

end program 
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Sample Parallel Programs 

Sample parallel programs will be put here in the version to be placed in the UHRA. These 

will be the one-dimensional, linear program, a one-dimensional, nonlinear program, the two-

dimensional, linear program and a two-dimensional, nonlinear program. Kathy Lee from the 

UH Research Office will confirm to Professor Christianson and Dr Sayers that this has been 

done. 

 

 

 


