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Abstract:  In order to explore the bursting oscillations and the formation mechanism of 

memristive non-smooth systems, a third-order memristor model and an external periodic excitation 

are introduced into a non-smooth dynamical system, and a novel 4D memristive non-smooth system 

with two-timescale is established. The system is divided into two different subsystems by a non-

smooth interface, which can be used to simulate the scenario where a memristor encounters a non-

smooth circuit in practical application circuits. Three different bursting patterns and bifurcation 

mechanisms are analyzed with the time series, the corresponding phase portraits, the equilibrium 

bifurcation diagrams, and the transformed phase portraits. It is pointed that not only the stability of 

the equilibrium trajectory but also the non-smooth interface may influence the bursting 

phenomenon, resulting in the sudden jumping of the trajectory and non-smooth bifurcation at the 

non-smooth interface. In particular, the coexistence of bimodule periodic oscillations at the non-

smooth interface can be observed in this system. Finally, the correctness of the theoretical analysis 

is well verified by the numerical simulation and Multisim circuit simulation. This paper is of great 

significance for the future analysis and engineering application of the memristor in non-smooth 

circuits. 
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1 Introduction 

 

Multi-timescale systems have a wide range of practical application backgrounds, such as neuron 

firing models, the coupling effect of different transmission wires, and the reaction rates of different 

substances in chemical reactions [1-5], etc. Bursting oscillations are complex dynamical behaviors 

prevalent in multi-timescale systems, which are characterized by alternating large-scale oscillations 

and micro-scale oscillations [6-8]. When the system trajectory shows a large-amplitude oscillation, 

it corresponds to the spiking state, and when the system trajectory shows a micro-amplitude 

oscillation or almost constant, it corresponds to the quiescent state. Then the special bursting 

oscillations are formed when the system trajectory transitions between the spiking state and the 

quiescent state. There has been a lack of theoretical analysis methods for multi-timescale systems 

                             
* corresponding author.  

E-mail address: minglin_ma@xtu.edu.cn 

 

mailto:minglin_ma@xtu.edu.cn


 

 

until Rinzel et al. [9] proposed the fast-slow analysis method, which elevates the bursting oscillation 

to the level of mechanism analysis. Therefore, the bursting oscillation system can be viewed as a 

dynamic system containing an internal variable governing its dynamic behavior. And similar 

systems also include Bouc-Wen type hysteresis responses [10], Dahl models [11], Saint-Venant 

elements [12], etc., and their internal variables represent different mechanisms. 

In recent years, scholars have carried out in-depth research on bursting oscillations of various 

dynamical systems by the fast-slow analysis method, and have achieved a series of results. For 

example, Bao et al. [13] revealed chaotic bursting oscillations and the generation mechanism of the 

two fast and one slow Morris-Lecar neuron model, and verified the correctness of the theoretical 

analysis from the hardware circuit; Proskurkin et al. [14] studied the bursting oscillation 

phenomenon in chemical reaction systems; Han et al. [15] studied the bursting behavior of the 

parameter-excited Lorenz system and reported the chaotic bursting phenomenon caused by the 

bifurcation delay and chaotic crisis; Ma et al. [16] revealed the complex bursting structure induced 

by delayed pitchfork bifurcation in the periodically excited Jerk circuit; Han et al. [17] revealed two 

novel bursting oscillation patterns induced by turnover-pitchfork-hysteresis and compound-

pitchfork by introducing multi-frequency parameter excitation in the Duffing oscillator; Wei et al. 

[18] studied the bursting dynamics behavior of mechanical systems under the combination of 

parametric excitation and external excitation, and revealed the complex cascaded bursting pattern 

caused by Hopf bifurcation and homoclinic bifurcation. On the other hand, bursting oscillations and 

their formation mechanism in non-smooth systems based on fast-slow analysis methods have also 

received extensive attention. For example, Li et al. [19] explored the existing conditions and 

generation mechanism of the possible bursting phenomenon in piecewise mechanical systems with 

different time scales. Zhang et al. [20] and Peng et al. [21] discussed the bursting oscillation 

behavior and its generation mechanism in the non-smooth Filippov system, and found the periodic 

smooth Fold/non-smooth Fold bursting, symmetric point-point type Fold/Fold-sliding bursting, 

symmetric point-cycle-cycle type Hopf/Hopf/Fold-sliding bursting. Then, Qu et al. [22] further 

investigated a more complex double excitation non-smooth Filippov system and discovered the 

multi-sliding bifurcation oscillation phenomenon. And Zhang et al. [23] found that introducing a 

non-smooth factor into the chaotic geomagnetic field model can lead to the phenomenon of grazing-

sliding bifurcation and cross-sliding bifurcation. In addition, Leutcho et al. [24,25] studied chaotic 

hyperjerk circuits and revealed the phenomenon of mixed-mode bursting oscillations and various 

coexisting Feigenbaum remerging trees. 

Furthermore, the use of memristors to simulate biological synapses in neural network hardware 

circuits has also received extensive attention due to its unique nonlinearity and memory effects in 

recent years [26-29]. For example, Ding et al. [30] investigated cortical signal propagation and the 

resulting spatiotemporal patterns in memristor-based neuronal network; Chen et al. [31] studied the 

bursting mechanism of memristive FitzHugh-Nagum circuits by using a graphical method; Lin et 

al. [32, 33] studied the multi-stable memristor and its application in neural network circuits; and in 

the review of the literature [34], the research progress of memristors in the chaos, memory and 

neural network circuits is briefly described. Wen et al. [35] introduced a smooth memristor model 

in the Jerk circuit and studied the bursting oscillation patterns under periodic parameter excitation. 

To the best of our knowledge, few studies have been reported on the bursting oscillations in the 

memristor-based non-smooth dynamical system. 

Although the nonlinear dynamics based on the memristive system has attracted widespread 



 

 

attention in the world in recent years, the study of bursting oscillation in the memristive non-smooth 

dynamical system still needs further exploration. Due to the existence of various non-smooth 

interfaces in the non-smooth system, the trajectory of the memristive non-smooth dynamical system 

has some special traversing forms when it passes through the non-smooth interfaces, which leads to 

the complex dynamic behavior of the system. Thus, the bursting oscillation behavior in memristor-

based non-smooth dynamical systems is worth investigating. In order to reveal the bursting 

dynamics of memristive non-smooth system, this paper establishes a two-timescale 4D memristive 

non-smooth system according to the theoretical basis of [36]. This system can be used to simulate 

the scenario where a memristor encounters a non-smooth circuit in practical application circuits. 

Bursting oscillations of the system can be observed when an order gap exists between the excitation 

frequency and the natural frequency. Furthermore, the bursting oscillation and its formation 

mechanism are revealed in this study according to the differential inclusion theory. It is found that 

the sudden jumping of the system trajectory and non-smooth bifurcation at the non-smooth interface 

can cause the bursting oscillations of the system. And the coexistence of bimodule periodic 

oscillations at the non-smooth interface can be observed in this system.  

The rest of this paper is organized as follows. In Sect. 2, a mathematical model of memristive 

non-smooth system is constructed. Sect. 3 analyzes the stability and bifurcation of the system. Sect. 

4 discusses three different bursting oscillations and the corresponding bifurcation mechanism under 

different parameters. In Sect. 5, circuit simulation results are obtained. Finally, the conclusion of the 

paper is summarized in Sect. 6.  

 

2 Mathematical model 

 

This paper uses a third-order magnetron memristor, its model is obtained as 
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where i is the current of the memristor, v is the input voltage of the memristor, φ represents the 

internal state variable of the memristor, k is the coupling coefficient of the memristor and m, n, p 

are three memristive parameters. In this paper, we set m = 1, n = 7 and p = 5. 

And the classical three-dimensional non-smooth Filippov model [37, 38] is 

3

1

0 0

1

( ) (

dx
uy y

dt

dy
x a y

dt

dz
u x k y a y z k

dt





 


  




 



      


                (2) 

where u = [1+sign(z)]/2 represents the dimensionless switch controller, and α, β, a, a1, k0 are 

regarded as system parameters. 

   Then by introducing the third-order magnetron memristor into the above three-dimensional non-

smooth dynamic system, a novel 4D memristive non-smooth dynamical system is constructed and 

can be described as 
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where x, y, z are system state variables, w is the internal state variable of the memristor, u = 

[1+sign(z)]/2 is the segmented control item, and α, β, a, k0 are regarded as system parameters. A 

slowly changing sinusoidal excitation is introduced into the control parameter γ, that is, γ= Asin(Ωt), 

where A and Ω represent the amplitude and frequency of the parameter excitation, respectively. 

   When 0 < Ω  1, there is a magnitude difference between the natural frequency of the system 

and the parameter excitation frequency in the system (3), which leads to the emergence of fast-slow 

effect. Therefore, the system (3) can be regarded as a classic fast-slow system and can be 

transformed into two subsystems: the slow subsystem (SS) is described by the γʹ= AΩcos(Ωt) and 

the fast subsystem (FS) is described by the system (3). When the SS is used to modulate the FS and 

the appropriate coupling coefficient k0 is selected, the memristive non-smooth dynamic system will 

generate a variety of different bursting oscillation patterns. In the following, bursting oscillation 

patterns and the corresponding bifurcation mechanism will be discussed by using XPPAUT and 

MATLAB in detail. 

 

3 Bifurcation and stability 

 

 According to the fast-slow analysis method, the periodic AC excitation γ = Asin(Ωt) can be 

regarded as a slow-varying parameter in the FS. Due to the existence of the segmented control item 

u, the system is divided into two different subsystems, denoted as FSand FS+, respectively 

described as   
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  Suppose the equilibrium points of the two subsystems are set as E = (x1, y1, z1, w1), E = (x2, y2, 

z2, w2) respectively, and the FS is linearized at the equilibrium point E, then the corresponding 

Jacobian matrix is obtained as 
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Thus, the characteristic equation corresponding to the Jacobian matrix J may be written as 
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According to the Routh-Hurwitz theory, the equilibrium points E are stable for 

              1 1 2 3 3 3 0 1 2 00,  ( ) 0,  0P PP P P P P PP P                           (8) 

When the slow-varying parameter γ changes periodically, the stable conditions of the 

equilibrium point E are invalid, leading to the fold bifurcation [39, 40] and Hopf bifurcation. 

(1) Fold bifurcation 
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(2) Hopf bifurcation 
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Similarly, the FS is linearized at the equilibrium point E, then the corresponding Jacobian 

matrix is obtained as 
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Thus, the characteristic equation corresponding to the Jacobian matrix J+ may be written as 
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According to the Routh-Hurwitz theory, the equilibrium points E are stable for 
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When the slow-varying parameter γ changes periodically, the stable conditions of the equilibrium 

point E are invalid, leading to the following two different bifurcations. 

(1) Fold bifurcation 
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(2) Hopf bifurcation 

0 1 2 30,  Q =0Q Q Q 
                                  

(15) 

At the non-smooth interface {NS: Z=0}, the equilibrium point of the system is set as E = (x0, y0, 

0, w0), and the characteristic equation corresponding to the generalized Jacobian matrix is  
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According to the differential inclusion theory [41], the auxiliary parameter q (q  [0, 1]) is 

introduced to combine the two subsystems FS- and FS+ and Ni = qQi + (1q)Pi, i = 0, 1, 2, 3 can be 

obtained. As the auxiliary parameter q varies, the associated eigenvalues may pass across the real 

axis or the pure imaginary axis, leading to possible non-smooth bifurcations. Therefore, the 

following two different bifurcations may be produced.  

(1) Non-smooth fold bifurcation (NSFB) 
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(2) Non-smooth Hopf bifurcation (NSHB) [42, 43] 
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When the system parameters are fixed at α = 2, β = 8, a = 2, k0 = 4; A = 2, Ω = 0.005, and the 

coupling coefficient k is variable, the bursting oscillation patterns of the system are studied. And the 

corresponding Lyapunov exponent spectrum of the system state variable is illustrated in Fig. 1. The 

Jacobian matrix algorithm is applied for computing the Lyapunov exponent spectrum (LEs) and the 

number of time series for computing LEs is 40,000. It can be clearly seen that in the whole varying 

range of k, the maximum LE of system is negative, indicating that the system is in a stable state and 

there is no chaotic state. 



 

 

 

4 Bursting oscillations mechanisms 

 

In this section, we consider the situation that the coupling coefficient k is variable and all the other 

system parameters are fixed. The following three typical bursting oscillation patterns with the 

parameter k = 0.2, 0.3, 0.4 are studied respectively. In order to explore the bursting phenomena and 

the corresponding formation mechanism of the memristive non-smooth dynamical system, the effect 

of the coupling coefficient k on bursting dynamics is analyzed by the time series, the corresponding 

phase portraits, the equilibrium bifurcation diagrams, and the transformed phase portraits. 

 

4.1 Case 1: k = 0.2  

 

Taking the parameter k = 0.2, and the slow-varying parameter γ varies between 2 and 2. In this 

case, when γ reaches the critical value of the bifurcation point, the corresponding dynamic behavior 

may occur. To reveal the bifurcation mechanism of bursting oscillation, the equilibrium bifurcation 

diagram and the transformed phase portrait on γ-z plane are shown in Fig. 2(a) and (b), respectively.  

  Due to the existence of segmented control item u = [1+sign(z)]/2, the system is divided into 

two sub-regions: FS (z<0) and FS+ (z>0). In each sub-region, the trajectory of the system is 

separately controlled by the respective subsystem. In the area D, the equilibrium points E plays a 

control role, and the E is divided into E1

and E2


due to the existence of the interface NS. Similarly, 

the equilibrium points E+ is divided into E1
, E2

, E3
 and E4

. In Fig. 2(a), the red curves represent 

the achievable equilibrium points, namely E1
, E2

, E3
 and E1

, the black curves represent the 

unachievable equilibrium points, namely E4
 and E2

, the solid lines represent the stable equilibrium 

points, the dashed line represents the unstable equilibrium points. The NH1 and NH2 represent the 

non-smooth Hopf bifurcation points at the interface, the green LCs represents the stable limit cycle 

generated by the fold limit cycle, and the blue LCu represents the unstable limit cycle. Then, the 

transformed phase portrait on the γ-z plane is shown in Fig. 2(b). It can be seen that the trajectory 

includes three quiescent states (QSs) and three spiking states (SPs) in one motion cycle. 

Fig. 1. LEs of the system state variable with α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005 and different k = [, 

0.9] . 



 

 

 

 Fig. 3(a) shows the phase portrait on the x-z plane when k = 0.2. It can be clearly seen that the 

trajectory of the system includes two periodic oscillations and a part that rapidly converges to the 

equilibrium point, where the red arrows are the motion directions of the trajectory between different 

attractors. Fig. 3(b) is the time series diagram of the state variable z, Fig. 3(c) is a local enlarged 

view of the periodic oscillation on the left side of Fig. 3(b), and Fig. 3(d) is a local enlarged view of 

the periodic oscillation on the right side of Fig. 3(b). It can be intuitively seen that the motion 

trajectory has obvious non-smooth characteristics when it crosses the interface NS. That is, there is 

the coexistence of dual-mode periodic oscillations at the non-smooth interface. In addition, it should 

be pointed out that the mechanism of the two non-smooth bifurcations is different. The phenomenon 

in Fig. 3(c) is due to the limit cycle generated by the non-smooth Hopf bifurcation at the interface 

NS, while the phenomenon in Fig. 3(d) is due to fold limit cycle generated by the alternate control 

of the two subsystems when the trajectory of the system crosses the interface NS back and forth.  

(a)                                         (b) 

Fig. 2. When k = 0.2, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the equilibrium bifurcation diagram, (b) 

the transformed phase portrait on the γ-z plane. 
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In order to further illustrate the transition mechanism of these trajectories between different 

equilibrium points, Fig. 4 shows the superimposed diagram of the equilibrium bifurcation diagram 

and the transformed phase portrait on the γ-z plane. Assuming that the trajectory starts from the 

point P1, the slow variable takes the minimum value γ= 2 at this time. Since the stable equilibrium 

point curve E1
+ and the control subsystem FS+ are both located in D+, the trajectory strictly follows 

the movement of E1
+, forming the quiescent state QS1. Then it moves to the fold bifurcation point 

FB1, jumps down from the FB1, bounces back to D+ due to the excessive jump amplitude, and then 

jumps back and forth to form the spiking state SP1. When the trajectory crosses the interface NS, 

the stability of the two subsystems is exchanged, and the system is controlled by the subsystem FS 

in the D. Due to the large jump at FB1, the trajectory traverses back and forth at the interface and 

is controlled alternately by the two subsystems to generate the fold limit cycle bifurcation, that is, 

the non-smooth periodic bursting oscillation around NS. After the end of this oscillation, the 

trajectory quickly converges to the stable equilibrium point E1
of the control subsystem FSin the 

D, forming the quiescent state QS2. Then it moves along E1
until the slow variable reaches the 

maximum value γ= 2, which is the point P2 in Fig. 4. Then the slow variable starts to decrease in 

the opposite direction, and the trajectory moves along E1
again until it generates the non-smooth 

Hopf bifurcation at the interface NS, and the trajectory forms a non-smooth periodic bursting 

(a)                                         (b) 

(c)                                         (d) 

Fig. 3. When k = 0.2, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the phase portrait on the x-z plane, (b) the 

time series diagram of the state variable z, (c) a local enlarged view on the left side of the state variable z, (d) a 

local enlarged view on the right side of the state variable z. 



 

 

oscillation around the interface, namely SP2. At the end of this oscillation, the system trajectory 

jumps directly to E1
+ controlled by FS+ and slowly converges to E1

+, forming the spiking state SP3. 

Then it moves along E1
+ to form the quiescent state QS3. Until the slow variable returns to the 

minimum value again, that is, the trajectory returns to the point P1, a cycle of movement is completed. 

In particular, the coexistence phenomenon of two periodic oscillations at the interface can be 

observed throughout the cyclic motion. Namely, the coexistence of bimodule periodic oscillations 

has been discovered at the interface of the memristor-based non-smooth system. According to the 

type of bifurcation, the dynamical behavior can be called as periodic fold/fold limit cycle/non-

smooth Hopf bifurcation bursting. Geometrically, this bursting pattern is also the cycle-point-cycle-

point type. 

 

 

4.2 Case 2: k = 0.3    

 

Now we consider the parameter k = 0.3, and the slow-varying parameter γ varies between 2 and 

2. To reveal the bifurcation mechanism of bursting oscillation, the equilibrium bifurcation diagram 

and the transformed phase portrait on γ-z plane are shown in Fig. 5(a) and (b), respectively. In this 

case, the trajectory includes three quiescent states (QSs) and three spiking states (SPs) in one motion 

cycle. 

  

Fig. 4. When k = 0.2, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, the superimposed diagram of the equilibrium 

bifurcation diagram and the transformed phase portrait on the γ-z plane. 
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Fig. 6(a) shows the phase portrait on the x-z plane when k = 0.3. It can be clearly seen that the 

trajectory of the system includes three parts: one periodic oscillation and two parts that rapidly 

converges to the equilibrium point, where the red arrows are the motion directions of the trajectory 

between different attractors. Fig. 6(b) is the time series diagram of the state variable z, and Fig. 6(c) 

is a local enlarged view of the rapid convergence of Fig. 6(b) after crossing the interface. It can be 

intuitively seen that the motion trajectory has obvious non-smooth characteristics when it crosses 

the interface NS.  

(a)                                             (b) 

Fig. 5. When k = 0.3, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the equilibrium bifurcation diagram, (b) 

the transformed phase portrait on the γ-z plane. 
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In order to further illustrate the transition mechanism of these trajectories between different 

equilibrium points, Fig. 7 shows the superimposed diagram of the equilibrium bifurcation diagram 

and the transformed phase portrait on the γ-z plane. It is still assumed that the trajectory starts from 

the point P1, which corresponds to the minimum value of the slow variable γ= 2. Since the stable 

equilibrium point curve E1
+ and the control subsystem FS+ are both located in D+, the trajectory 

strictly follows the movement of E1
+, forming the quiescent state QS1. Then it moves to the fold 

bifurcation point FB1, and jumps from the fold bifurcation to form the spiking state SP1. When the 

trajectory crosses the interface NS, the trajectory quickly converges to the stable equilibrium point 

E1
of the control subsystem FSin the D, forming the quiescent state QS2. Then it moves along 

E1
until the slow variable reaches the maximum value γ= 2, which is the point P2 in Fig. 7. As the 

slow variable begins to decrease, the trajectory moves along E1
 again until it encounters the NH2 

point at the interface NS, resulting in a non-smooth Hopf bifurcation, and the trajectory forms a 

non-smooth periodic bursting oscillation around the interface, namely SP2. As the oscillation ends, 

the system trajectory jumps directly to E1
+ controlled by FS+, forming the spiking state SP3. Then it 

moves along E1
+ to form the quiescent state QS3. Until the slow variable returns to the minimum 

value again, the trajectory returns to the point P1 to complete a cycle of movement. According to 

the type of bifurcation, the dynamical behavior can be called as periodic fold/non-smooth Hopf 

bifurcation bursting. Geometrically, this bursting pattern is also the point-cycle-point type.        

(a)                                         (b) 

(c)                                        

Fig. 6. When k = 0.3, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the phase portrait on the x-z plane, (b) the 

time series diagram of the state variable z, (c) a local enlarged view on the right side of the state variable z.  



 

 

 

 

4.3 Case 3: k = 0.4    

 

Finally, we consider the parameter k = 0.4, and the slow-varying parameter γ varies between 2 

and 2. To reveal the bifurcation mechanism of bursting oscillation, the equilibrium bifurcation 

diagram and the transformed phase portrait on γ-z plane are shown in Fig. 8(a) and (b), respectively. 

In this case, the trajectory includes four quiescent states (QSs) and three spiking states (SPs) in one 

motion cycle. 

 

Fig. 9(a) shows the phase portrait on the x-z plane when k = 0.4. It can be clearly seen that the 

trajectory of the system includes three parts: one periodic oscillation and two parts that rapidly 

converges to the equilibrium point, where the red arrows are the motion directions of the trajectory 

between different attractors. Fig. 9(b) is the time series diagram of the state variable z, and Fig. 9(c) 

is a local enlarged view of the non-smooth periodic oscillation of Fig. 9(b). It can be intuitively seen 

that the motion trajectory has obvious non-smooth characteristics when it crosses the interface NS. 

Fig. 7. When k = 0.3, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, the superimposed diagram of the equilibrium 

bifurcation diagram and the transformed phase portrait on the γ-z plane. 
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Fig. 8. When k = 0.4, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the equilibrium bifurcation diagram, (b) 

the transformed phase portrait on the γ-z plane. 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

FB2

FB1

NH2

NH1

E
-
2

E
-
1

E
+
3

E
+
2

E
+
1

E
+
4

E-

E+

NS

D-

D+

··
·

·

z





 

 

Here, the black arrows indicate the direction of the motion trajectory going up through the NS, and 

the red arrows indicate the direction of the motion trajectory going down through the NS. 

 

Similarly, Fig. 10 shows the superimposed diagram of the equilibrium bifurcation diagram and 

the transformed phase portrait on the γ-z plane in order to further illustrate the transition mechanism 

of these trajectories between different equilibrium points. It is still assumed that the trajectory starts 

from the point P1, which corresponds to the minimum value of the slow variable γ= 2. And the 

trajectory strictly follows the movement of E1
+ to form the quiescent state QS1. Then it moves to 

the fold bifurcation point FB1, and jumps from the fold bifurcation to form the spiking state SP1. 

When the trajectory crosses the interface NS, the trajectory quickly converges to the stable 

equilibrium point E1
of the control subsystem FSin the D, forming the quiescent state QS2. Then 

it moves along E1
until the slow variable reaches the maximum value γ= 2, which is the point P2 

in Fig. 10. As the slow variable begins to decrease, the trajectory moves along E1
 again until it 

encounters the NH2 point at the interface NS, resulting in a non-smooth Hopf bifurcation, and the 

trajectory forms a non-smooth periodic bursting oscillation around the interface, namely SP2. As the 

oscillation ends, the system trajectory converges directly to the stable equilibrium point E3
+ 

controlled by FS+, forming the quiescent state QS3. When it moves to the fold bifurcation point FB2, 

the trajectory turns to E1
 to form the spiking state SP3. Then it gradually converges to the stable 

equilibrium point E1
, forming the quiescent state QS4. Until the slow variable returns to the 

minimum value again, the trajectory returns to the point P1 to complete a cycle of movement. And 

(a)                                           (b) 

(c)                                        

Fig. 9. When k = 0.4, α = 2, β = -8, a = 2, k0 = 4, A = 2, Ω = 0.005, (a) the phase portrait on the x-z plane, (b) the 

time series diagram of the state variable z, (c) a local enlarged view on the left side of the state variable z.  



 

 

the dynamical behavior can be called as periodic fold/non-smooth Hopf bifurcation/fold bifurcation 

bursting. From the geometric structure, this bursting pattern is also the point-cycle-point-point type. 

In addition, it should be pointed out that this bursting pattern is caused by the different memristive 

coupled parameter values. It is shown that after the non-smooth Hopf periodic oscillation, the 

trajectory does not directly transfer to E1
 through a large jump like k = 0.3, but instead converges 

to a nearby stable equilibrium point E2
 when k = 0.4.   

 

 

 

5 Multisim circuit verification 

 

Although a lot of research has been carried out to reveal the dynamics of bursting and explore the 

corresponding bifurcation mechanism numerically, there is little experimental validation on this 

issue. Furthermore, experimentally generating bursting oscillations from physical circuits is a 

meaningful topic because the generated bursting signals can be used to simulate biological signals 

in artificial devices such as pacemakers or neurons. In this section, the analog circuit of the 

memristive non-smooth dynamical system under periodic external excitation is designed to verify 

the bursting oscillations and the formation mechanism. As shown in Fig. 11, the complete circuit is 

constructed by the modular design method, and the system is driven by an external excitation V0 = 

Asin(2πft), where A is the excitation amplitude and f is the excitation frequency. In the circuit, the 

device used for the operational amplifiers is TL082CD and the device used for the multipliers is 

AD633AN. All active devices in the circuit are powered with ±12V supply voltages. 
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Fig. 10. When k = 0.4, α = 2, β = -8, a = 2, k
0
 = 4, A = 2, Ω = 0.005, the superimposed diagram of the equilibrium 

bifurcation diagram and the transformed phase portrait on the γ-z plane. 



 

 

 

The memristive dynamical system we want to implement by the circuit in Fig.11 as example is 

given in (19).   
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Applying Kirchhoff’s circuit laws and setting the time conversion factor τ = 100, the obtained 

circuit equation can be written as 
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                  (20) 

where Vx, Vy, Vz, and Vw represent system variables x, y, z, and w, respectively. Therefore, by 

matching the circuit equation (20) with the expected equation (19), the values of circuit elements 

Fig. 11. Multisim simulation circuit of the memristive non-smooth dynamical system. 
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can be obtained as illustrated in Table 1. It is worth noting that the system can be adapted to different 

cases by adjusting the value of resistor R10. 

Table 1  

Circuit parameters of the proposed memristor-based circuit 

Parameters Significations Values 

R0,3,8,9,23,24,29 Resistance 100kΩ 

R1,4,5,7,11,12,13,15,18,19,30,31 Resistance 10kΩ 

R2 Resistance 0.5kΩ 

R6,16 Resistance 12.5kΩ 

R14 Resistance 2.5kΩ 

R17 Resistance 25kΩ 

R20 Resistance 20kΩ 

R21 Resistance 14.28kΩ 

R22,26 Resistance 1kΩ 

R25 Resistance 13.5kΩ 

R27,28 Resistance 50kΩ 

R10 Resistance Adjustable 

C1-4 Capacitance 10nF 

V0 Sinusoidal signal Adjustable 

 

Then, the circuit simulation results of the memristive non-smooth dynamical system are shown 

in Fig. 12. In Fig. 12 (a), (c), (e), the horizontal axis is 100ms per grid and the vertical axis is 500mV 

per grid. Then in Fig. 12 (b), (d), (f), the horizontal axis is 100mV per division and the vertical axis 

is 500mV per division. From Fig. 12, it can be found that the circuit simulation results are well 

consistent with the numerical simulation results shown in Fig. 3, Fig. 6 and Fig. 9. Thus, it is a good 

proof that the memristive non-smooth dynamical system does exhibit complex bursting dynamics 

when an order gap exists between the excitation frequency and the natural frequency. 



 

 

 

 

6 Conclusion 

 

In this paper, a third-order memristor model and an external periodic excitation are introduced into 

a three-dimensional non-smooth dynamic system, and a novel 4D memristive non-smooth system 

is constructed to simulate the scenario where the memristor encounters a non-smooth circuit in 

practical application circuits. When the external periodic excitation frequency is much smaller than 

(a)                                           (b) 

(e)                                          (f)                                    

Fig. 12. Circuit simulation results of the memristive non-smooth dynamical system with α = 2, β = -8, a = 2, k0 

= 4, A = 2, Ω = 0.005 (a) the time series diagram of the state variable z with k = 0.2, (b) the phase portrait on the 

x-z with k = 0.2, (c) the time series diagram of the state variable z with k = 0.3, (d) the phase portrait on the x-z 

with k = 0.3, (e) the time series diagram of the state variable z with k = 0.4, (f) the phase portrait on the x-z with 

k = 0.4. 

(c)                                          (d) 



 

 

the natural frequency of the system, the system can be regarded as a typical fast-slow system with 

two-timescale. The system is divided into two different sub-regions, and each sub-region has a 

corresponding control subsystem. When the trajectory of the system passes through the non-smooth 

interface of the two sub-regions, special dynamic behaviors will be generated. Based on MATLAB 

and XPPAUT numerical simulation and Multisim circuit simulation, three different bursting 

oscillation patterns and bifurcation mechanisms caused by different system parameter k are revealed. 

In addition, the coexistence of bimodule periodic oscillations at non-smooth interface is reported in 

this system. It should be noted that the mutual motion of the system between the spiking states and 

the quiescent states is not caused by the inherent bifurcation of the system like the continuous system, 

but is formed by the non-smooth bifurcation at the non-smooth interface and the change of the 

critical condition. In conclusion, the coexistence of bimodule periodic bursting oscillations at the 

non-smooth interface in the memristive non-smooth dynamical system is investigated for the first 

time in this paper, which further enriches the bursting oscillation path of the memristive dynamic 

system. And the next work should be bursting oscillations of non-smooth memristive systems with 

multiple slow variable excitations and their practical application. 
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