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Abstract 

The flow of solid liquid mixtures (slurries) has attracted much attention in research 

work because of its importance to industry. Prediction of pressure losses associated 

with slurry flow helps pipe designers select the correct pipe sizes for optimum energy 

consumption, equipment sizing and reliable operation of the pipeline networks. 

Many workers developed empirical correlations, but due to the randomness of the 

problem they seem of limited use in design applications because they do not contain 

an assessment except by trial and error, which is costly. 

The existence of more than one particle size poses more complexities to the slurry 
flow problem but it is in need in practical applications. The aims of this work are 
justified under the light of the observations on the state of the art in slurry transport. 

An experimental program is designed to highlight the effects of this problem through 

a predetermined set of test runs. The variables are grouped to optimise the number of 

experiments and to remove the effect of dimensions on the prediction method 

The test rig is built to serve the aims of this exercise and test runs conducted, results 

grouped and discussed for polyfractional slurries. A mathematical model is 

developed in the form of an empirical correlation. Statistical tests are employed to 

verify the goodness of fit. 

Finally, conclusions and recommendations for further work are listed 
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I. I. Introduction: 

In the chemical process industries (CPI), solid materials are mixed with liquids and 

conveyed hydraulically in pipelines. The mixture of solids, in particle form, with a 
liquid medium is called slurry. The flow of slurries in pipelines is associated xý ith 

consumption of energy that is needed to overcome their resistance to flow. This 

resistance is translated in pressure losses across the length of the pipeline It is 

necessary to reliably estimate these losses in order to design pipelines so that the 

correct pipe diameter can be selected. The design procedure includes the selection of 

the pumping equipment and the corresponding power rating. Inadequate design may 

prove to be costly in terms of equipment cost, running cost and plant reliable 

operation. 

Prediction of pressure losses due to the flow of slurries is not an easy task because it 

contains many variables pertaining to the properties of the liquid, the geometrical and 

physical properties of the solids, the flow characteristics and the pipe geometry. In a 

pipeline conveying liquids only, the problem is relatively easier. The existence of 

solids brings in the complexities of the interaction between these solids themselves, 

with the liquid that carries them and with the pipeline boundaries. A more complex 

situation arises when the solids are of different sizes, shapes and concentrations. The 

flow regimes in slurry flow become more complex than the laminar-transition- 

turbulent patterns known in the clear liquid case. 

The standard procedures used in the prediction of the pressure losses in pipelines 

carrying liquid (for example water) use a pressure loss coefficient that relates the 

friction experienced at the pipe boundary to a flow regime number (Reynolds 

number) for a given pipe specification (relative roughness S/ D). 

In the case of slurries, the added solids affect the flow characteristics so that the 

pressure loss coefficient as defined for liquids alone becomes inapplicable. Because 

of the importance of slurry flow, significant work has been done to predict its 

behaviour mostly by deriving empirical correlations. Most of the research work has 

been experimental in nature. The prediction of pressure losses, in particular, 

1) 



occupied a significant part of research on slurries due to their importance in pipeline 
design. 

In order to reduce the number of variables. non-dimensional parameters were 

employed in various forms. As a result, numerous correlations emerged and the 

pipeline designer is faced with the problem of which one to choose. Further 

experimental work tried to depart from the pure empirical approach by introducing 

mechanistic models based on physical mechanisms taking place in slurry flow These 

models tried to analyse slurry flow under the effects of turbulent eddies, dispersion 

and granular collisions of solid particles. Due to the complexities of these flo\\ 

mechanisms, drastic simplifications were needed to develop working formulas. The 

resulting models, although employing physical principles, in theory, are empirical in 

nature. They are tedious to solve and could hardly be merited over the other 

correlations based on empirical approach. 

The state of knowledge is still far from rendering the slurry flow amenable to 

analytical solution. The best that can be done is to conduct further well thought 

experimental work to develop a justified correlation that may be applicable to a 

reasonably general slurry flow problem. 

1.2. Economical Considerations: 

The selection and implementation of a particular configuration of a pipe network, 

pumping equipment and associated valves and fittings incur a great impact on the 

expenditure of the budget allocated to build up a process plant. Furthermore, the 

operating cost of such a selection, thereafter, will affect the economics, profitability 

and reliable operation of such a process plant for its whole lifetime. 

Thus, the engineering stage in which the selection of pipe size and pumping power 

are fixed is very important. The pipeline designer needs to know with fair accuracy 

the pressure losses so that his determination of pipe/ pump sizes is correct. Failure to 

achieve correct design the first time will result in either a costly replacement of the 

non-performing equipment or living with the wrong selection on the expense of 



higher operating cost and/ or less reliable plant operation. This %\ ill be translated in 

higher running cost, more frequent plant shutdowns for maintenance and, 

consequently, loss of production and revenues. 

To illustrate the difficulties in designing a slurry pipeline, Appendix (B) shoNtis a 

relatively simple example that solves the problem for a 6" horizontal steel pipe for a 

mixture of water and sand of an assumed spherical diameter of 5 mm and volumetric 

concentration of sand content of 10%. Searching the literature, six correlations that 

are of wide use were tried and the friction factor (as a ratio of the friction factor for 

clear water) for each of them was plotted against Reynolds number, fig (B. I) The 

results show clearly the confusion as to which correlation to adopt. For the normal 

range of velocity of flow encountered in practice (in the neighbourhood of 2 m/s), the 

correlation of Zandi and Govatos 111 gives an average friction factor that is approx. 2' 

times the clear water friction factor, Durand 121 15 times, Fangary ci at 131 7 times 

while for the other three correlations (Chhabra and Richardson "'I, Turian ei al 1'1 and 

Swamee I°I) the range is from 6 down to 2 times. 

Furthermore, the operating cost was studied in terms of annual money value per unit 

of pipe length (PUC). Figure (B. 2) shows that this could be anywhere between 145 

and 10 $/m annually. Details of the calculations are covered in appendix (B). 

In case a design error takes place by using an improper correlation, a decision has to 

be made for plant optimisation that is costly and should have been avoided in the first 

place. It is not only the operational cost that is to be studied further but, also, the 

additional capital investment implications in replacements of equipment. These 

replacements may prove to be of major nature that necessitates a revision of the 

feasibility of the plant. The industrial practice for conducting feasibility studies 

centres the capital expenditure on the major part of the project [7] (i. e. main 

equipment purchase cost) and concludes the associated components as percentages of 

the main equipment. Table (1.1) below exhibits the capital cost elements incurred in 

a replacement of a system that has not been correct the first time. It is worth noting 

that it is quite common, in industrial practice, not to consider those incidental losses 

due to loss of production, service of capital and administration costs because they are 
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not good for obtaining bank loans but still they could a significant monetary burden. 

Table (1.1), Capital Expenditure for Equipment Replacement 

Cost Element /o of Equipment Price 

A) Direct Cost 

- Pumping Equipment 
(Purchase Price) 

100 

- Piping 
31 

- Installation 39 

- Instrumentation & Control 1, 

Direct Cost Total 

B) Indirect Cost 

170 

- Engineering &, Supervision 

- Contractors Fees (*) 30 

Total (Direct + Indirect) 232 

C) Contingencies (10% of A+B) 23) 

Grand Total of Replacement Cost 255 

(*) Sensitive to Project Scale 

If, for example, the installed power that needs to be replaced is in the range of I 

MW, then the cost of pumping equipment including electrical motors and switchgear 

could easily be in the range of quarter a million dollars. The total replacement cost 

may exceed double the equipment price. 

To conclude the economical considerations, although the pipeline designer work has 

a serious impact on the cost of a plant, he may only be left with much of guess and/ 

or trial and error work (or at best imitating similar application if he can find one). To 

the knowledge of the researcher, in a sister company, a one million plus pipeline and 

associated equipment project was never put into operation due to a design error of 

the kind described. 
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1.3. Classification of Slurries: 

Classification of slurries is an attempt to provide a rational basis for describing the 

physical appearance and flow behaviour of solid- liquid mixtures 1". Classification of 

slurries is important in delineating their flow patterns. Mainly, classification relies on 

visual observation 19hh 10]. The classification of slurries. in this manner, maps the 

observed flow pattern to the pressure drop- flow rate relation 1911"'1. 

At high flow velocities and for smaller particle sizes, the flow pattern (regime) is said 
to be homogeneous in which all particles are evenly dispersed in the fluid medium. 
All the solids in this regime are in suspension. Pressure losses in homogeneous 

regime are excessively high so that this regime is avoided in practice. 

As the velocity of flow decreases and (or) the particle size increases, the flo\ti 

pattern becomes heterogeneous. This pattern is marked with vertical concentration 

gradient increasing towards the pipe bottom. In practice, some form of heterogeneous 

pattern prevails because slurries normally contain mixed sizes of solids and flo\ý 

velocities fall within an acceptable range of pressure drop and reliable operation of a 

pipeline system. 

Other patterns are observed at lower flow velocities or significantly coarser solids. 

Moving bed and stationary bed patterns are observed as the flow velocities are 

lowered beyond the industrially acceptable limits. Moving beds appear as the fluid 

partially fails to suspend part of the particles. Instead, they crawl at the pipe bottom. 

Stationary bed marks the total failure of fluid to suspend particles. Thus, a permanent 

bed of solids settles at the pipe bottom. The solids density maps the flow patterns 

settling tendency in a reverse relationship. Higher densities give rise to settling 

tendencies while lower densities assist in suspension. Moving and stationary bed 

patterns are avoided in industry as they produce higher-pressure drops. pose the 

dangers of pipe blockage and render the system operation unstable. These patterns 

may only be tolerated, in industry, if they do not interfere xý ith the process 

continuity Most of the applications in which these patterns may exist are those of 

one single mode of hydraulic transport of solids (such as a point-to-point coal 
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transport, loading/ unloading of minerals and dredging applications). Also, they 

naturally occur in rivers and -gravitational flow applications. Hydraulic transport of 

solids in multi- modes between different unit operations cannot tolerate bed 

formations due to the necessity of changing the operating conditions of the separate 

production units to stabilize the yield and or the quality of the product (such as 

crystal growth, retention time for chemical/ physical processes, product washing and/ 

or purity). 

It is worth mentioning that the distribution of solid particles in a real pipeline cross 

section could hardly follow a so clearly defined pattern as described above. A simple 

pictorial representation 1111 (Figs. (1. I ), (1.2)) reflects the complexity and randomness 

of these patterns. In fig. (L I), the homogeneous pattern (a) represents small size 

particles at high velocity while (b) represents larger particle size and the last picture 

(c) represents a separated localized pattern. These patterns may well exist 

simultaneously in a real problem. Moreover, particles deposition is shown in fig, 

(1.2), it is apparent that the layer is forming in a crescent shape. The first picture 

shows a wider span of the sides towards the upper side of the pipeline cross section 

while the second picture shows a higher deposit at the bottom. Looking at 

longitudinal cross section of a pipeline (fig. (1.3)) 1121, the picture shows distribution 

of solid spheres set in motion from rest until inception of turbulence (more pictures 

were reported by Govier and Aziz 1 "1). Combining the different possible shapes of 

the particles distribution in a three dimensional space, an irregular shape will accrue 

having different wavy entities of solids. The complexity of these flow patterns has 

been experimentally established by several workers 1''1. Scarlett and Grimley [141 and 

Patanakar e1 al 1121 reported experimental results, using optical techniques, showing 

spatial heterogeneity of the concentration distribution of solids in a pipe cross- 

section. The complexity of these flow patterns is believed to result from the complex 

interaction between the properties of the suspension, the dynamic flow conditions 

and the pipe geometry (Rastiero 1141 cites numerous references on the subject, though 

no account is given on how to resolve these complexities). 
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1.4. Problem Statement 

Slurry, by definition, is a mixture of solid particles and liquid carrier. This mixture is 

set to motion by the energy supplied to the fluid stream by some form of pumping 

equipment. In turn, the fluid stream imparts some of its energy to the solids. If the 

energy supplied to the fluid stream is stopped, the stream will gradually become 

stagnant. At the same time, the solids will take some form of trajectory motion until 

they loose their energy and settle at the pipe bottom. A static liquid column cannot 

move nor suspend solids for a considerable period of time. Thus. the solid-liquid 

system is a dynamic one and can be physically defined by its variables. 

A single particle is dragged along by the fluid stream and is pulled downwards, due 

to gravity, by its submerged weight. In the existence of turbulent fluid, turbulent 

eddies produce upward forces that counteract part of, or all of, the settling effect of 

the submerged weight of the particle depending on the intensity of turbulence and 

size and shape of the solid particle. Thus, the particle experiences translational 

motion in some form of suspension. Due to the imperfections in the geometrical 

shape of the particle and the chaotic motion of the turbulent eddies, the particle starts 

to rotate and sway in a random manner. Statistically speaking, the combined motion 

of this single particle will lead it to sporadically collide with the pipe boundary and 

rebound away. The frequency and nature of collisions with pipe boundary under 

turbulent flow conditions is random. If one of these collisions is magnified, many 

probable patterns of contacts with the pipe wall may be observed. The particle may 

slide for some time on the boundary, may roll on it and (or) may just ricochet away 

from the pipe wall. Most probably, a combined form of contact may be observed. 

Furthermore, the particle has to squeeze away some of the liquid as it approaches the 

pipe wall. 

For multiple of particles, the picture is more complicated. The particles move in a 

nebular like pattern and randomly interact with themselves and the boundaries. They 

contact each other while sliding or rolling over or around themselves. The frequency 

of these collision contacts is increased among themselves and the pipe boundary 

They disperse and diffuse while dragged along with the fluid stream. Due to 
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increased number of particles, they experience motion in confined neighbourhood. 
Thus, introducing an even more complex motions and modifying the xý av they are 

dragged, uplifted, and collided within themselves and the boundaries 

Solids exist in various shapes and sizes in slurries. This further complicates the 

nature of contact collisions. Coarser and heavier particles will be reluctant to move 

after a collision in the same way that smaller and lighter particles would move. .A 
larger particle blocking the way of a smaller one may captivate the smaller particle 

and stay attached to it. On the other hand, a larger particle gaining higher momentum 

may rollover a smaller one making the path easier for the larger particle. In case of 

high concentration of mixed sizes, layer movements may be expected with intricate 

motions. Smaller particles may serve as a smoother boundary for the coarser ones. 

The smaller particles are more prone to be carried upwards by turbulence and, thus, 

may give leverage to increased upward motion of the neighbouring coarser ones. 

Added to this random state of motion are the effects of the fluid stream properties. 

Fluid experiences shear stresses of various intensities depending on its viscosity, 

velocity of flow, the disturbances due to solids and the roughness of the pipe 

boundaries. These stresses give rise to turbulence and the existence of solid particles 

disrupts the shape of an already random-turbulent fluid flow pattern. 

The random motions of solid particles and their interactions with themselves and the 

pipe boundary (just described) consume additional energy when compared with the 

fluid alone in the form of increased pressure drop across a given pipe length. The 

only source of energy supply is the fluid stream that must continually maintain some 

kind of a flow. Industrially, flow has to be made steady as much as practicable. 

The slurry flow problem just described is a multi variable extremely random one. As 

such, it is unthinkable to try to find an analytical solution. Instead, a well thought 

experimental work might offer a workable solution. 

The existence of small and large particle sizes in slurry simultaneously is common in 



industrial applications. As shown above, additional interactions take place due to the 

coexistence of more than one particle size. However, prediction of pressure losses for 

this kind of slurry (sometimes called polyfractional slurry) is much needed by 

pipeline designers. 

Under the given conditions, it is required to set up an experimental program that 

correlates the pressure losses with the solid liquid flow system variables for 

polyfractional slurries. This program must highlight the impact of the added 

complexity, due to the existence of more than one particle size, in slurry flow. 

1.5. The Aims 

The aims of this research exercise may be summarized as follows: 

a) To carry out a comprehensive literature review in order to understand the state of 

the art related to the problems of slurry flow. 

b) To examine, experimentally, the relation between the slurry system variables 

through carefully designed experiments. The experimental program includes the 

synthesis of polyfractional slurry containing finer and coarser fractions at 
different concentrations and the measurement of pressure losses across a given 

length of a horizontal pipe, of 6" diameter, for a measured range of flow rates (50 

to 200 cubic meters per hour). 

c) To utilize a combined methodology embracing the prescription of a preset 

program of experiments and the use of dimensional analysis to reduce the 

number of variables to a fairly manageable size. This combined approach is 

expected to reduce the amount of experimental work and highlights the 

interactions between different variables. 

d) To develop a pressure loss coefficient that leads to a more reliable prediction 

method for the pressure losses in horizontal pipelines for polyfractional slurry 

containing a finer fraction coexisting with a coarser fraction of solids. 
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2.1. Introduction: 

Literature on slurries may be broadly classified into those treating noun-'cII/irng 

slurries and those treating selling ones. The first categor% deals with rheolop, of 

pseudo liquids while the second category deals with mixture of solids of considerable 

particle size. The treatment of non-. willing slurries as a separate category is 

considered out of the scope of this work, as it does not sere e the goals of the 

sponsoring body of this research exercise. 

Analytical solution of the solid liquid flow system requires defining the many 

variables involved and their functional relationships. The state of knowledge is still 

far from being capable to render the solid liquid flow system amenable to analytical 

solution. This has been reported clearly in literature and has become a common 

knowledge. Previous work was, by a vast majority, experimental and empirical in 

nature. 

Much work was done for the prediction of pressure losses in slurry flow. The 

importance of the issue to industry, the complexity of the solid liquid flow problem 

and the various inconsistencies found in the developed empirical correlations could 

be enumerated as the main reasons for the continued interest in the pressure losses 

associated with slurry flow. It could be, theoretically, argued that empirical 

correlations have the shortcomings of their limited use to the experimental data for 

which they were developed, nevertheless, they still form the most convenient method 

for research work in the field of slurries. Dimensional analysis is, normally, used to 

reduce the number of variables to a reasonably manageable size and to correlate the 

pressure losses to physically meaningful parameters. Generally speaking, much of 

the reported experimental work on slurries pressure drop concentrated on single 

particle size, at various concentrations and of perfect particle shape (mostly perfect 

spheres). As such, polyfractional slurries (coexistence of more than one particle size) 

were not well represented in the previous work. Moreover, the general trend in 

research is invariably similar. 

14 



As a general observation, in a real hydraulic design problem of a pipe network 

conveying slurries, a designer is left to decide on a design velocity out of over sixty 

correlations 115]. Others reported similar comments about the diversity of results in 

obtaining pressure losses for slurries 116]. ("] 

2.2. Transport of Solids in Heterogeneous Regime: 

Heterogeneous regime is, statistically, the most suitable means of slurry transport in 

industry for the relatively coarser particles. It incurs reasonably lower pressure losses 

compared with bed flows on one extreme and homogeneous flows on the other. Bed 

flows need more energy to overcome the contact friction with the pipe boundaries 

and between the particles themselves while homogeneous flow requires high 

operating flow velocities, thus, higher energy to sustain particles in complete and 

evenly distributed pattern. Still, more importantly, bed flows pose the threat of 
blockages and operational instabilities in pipelines. Bed flows, in industry, may only 
be tolerated in the pure transport applications between a loading point and a 

reception/ piling facility of solids while in process applications where different 

production units are involved, solids can at best be allowed to flow heterogeneously. 

A collection of some empirical correlations for predicting pressure losses associated 

with heterogeneous flow is shown in table 2.2.1. Amon- many investigators, Zandi, 

Govier and Aziz I"' and later Pirie 141 and Turian et cil 151 reviewed and tabulated 

many of the empirical equations pertaining to heterogeneous flow regime. These 

correlations, mainly, apply to slurries containing solids of uniform shape (perfect 

spheres) and single particle size. 

To identify this flow pattern, a criterion was needed. Durand 121 took the particle size 

and defined an upper limit of particle size of 2 mm above which settling occurs while 

Zandi and Govatos 111 used the free falling velocity of the solid particle (terminal 

velocity) below 0.174 mm/sec instead. Further on, critical velocity was defined 

below which a crawling bed of solids appears at the pipe bottom indicating a change 

of flow pattern (regime). 
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The physical basis for these correlations attributed the excess pressure loss observed, 
due to the existence of solids, to the extra work needed to keep the solid particles in 

suspension (completely or partially). Thus, the pressure gradient in slurry is assumed 
to be that of liquid plus excess gradient due to solids, mathematically. 

lm=ll+l, (?. 1) 

Where i,,, is the pressure loss for the slurry (mixture), il is the pressure loss for liquid 

alone and is the excess due to solids (all in meter liquid per meter of pipe length). 

Table (2.1) summarizes the empirical equations that were most frequently used. 
Universally, a pressure loss coefficient (0) was functionally related to a non- 
dimensional flow number (yr) (a combination of a modified form of Froude number 

and the coefficient of drag), thus: 

O=kVm (2.2) 

2,0.5 

Where 0=lm- 
JL 

And yi =D C,, 'L gD(S -1) 

Where C, is the void that solids occupy as a percentage of a measured volume of 

slurry (volumetric concentration), V is the mean velocity of flow, (: D the coefficient 

of drag for a particle, D the pipe diameter and S the specific density of solids. 

Experimental evidence showed poor degree of fit in these correlations. Zandi 1' 1 

compiled experimental data, calculated the pressure loss for the same conditions and 

concluded that a pipe designer may end up with a prediction of pressure losses that 

are too high or too low by as much as 67%. Another compilation by Pine j 'j indicated 

up to 83% 
_ error. In an attempt to enhance the fit of the Durand correlation, Zandi 

and Govatos III attributed the inaccuracies to the inability of Durand to separate the 

settled part of the particles from the suspended part and proposed a dimensionless 

number (NL) analogous to Reynolds as a separation criterion, thus: 
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Ný = tv for 
, \T - 40 all solids are in suspension 

for N1- 40 solids start settling (2 ;) 

On the same issue, Babcock "'I reported Nf of 10 as a separating criterion. In both 

cases improvements in prediction were reported. Later on. Pirie 141 and Khan ei u/ 

collected a great number of experimental data from the published literature for 

various particle sizes, pipe diameters, carrier liquids, solid materials and 

concentrations. They made log plots of dimensionless pressure gradient \ ersus a 

modified form of Froude number. The results showed poor fit indicating loss of 

correlation. According to Khan et at 1191, a variation of 4 fold Nti as observed. 
However, original data and their sources were not reported. 

Another issue, that seems to have not been adequately resolved, is how to predict 

pressure losses for slurries with more than one particle size. Recommendations were 

made to employ an average size characteristic based on the coefficient of drag, 

summarized in table (2.2). But still the accuracy of prediction of pressure losses falls 

within the accuracy limits of the individual correlation used and in the absence of 

fine solids 1' 1. Noting that averaging methods did not yield satisfactory results, Wasp 

el al 1201 used successive calculation of pressure drops for each size and sum up to 

obtain the total drop. The underlying assumption was that pressure drop due to each 

particle size is invariantly dependent on their corresponding sizes. Obviously, this 

assumption ignored the interaction that may exist between finer and coarser solids. 

Experimental observations of Sobota 121] and Fangary el 611131 in two separate works 

showed that fine particles, when existing along with coarse particles, cause a 

reduction (or increase) of pressure drop depending on their ratio in the mixture. 

However, definitive ratios were not reported. 

To resolve the discrepancy found in the their prediction method for the fine particles 

combining with liquid to form a pseudo liquid, Wasp et al 12"1 proposed a separating 

criterion in the form of a concentration distribution ('"1. The following equation that 

represents a logarithmic relation was proposed: 
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C= 
exp -1.8Uý 

C'4 z 
(, 4 

Where (' is concentration near the pipe top (homogeneous part), (4 is the 

concentration at the middle of the pipe (heterogeneous part). (I, the terminal velocity. 

k von Karman constant and U. ( (f, 2) 0.5 ) is the friction velocity (f is Fanning 

friction factor). No recommendations were given on how could the concentrations be 

measured or predicted or on what proximity of the pipe middle should the 

concentration (',, be considered. The work of 'asp et nl concentrated on excluding 

the effect of fines by simply combining them with the fluid. 

On the same lines, Charles and Charles 1221 reported pressure drop decrease due to 

China Clay (extremely fine material) in sand of around 35°° concentration while 

Kenchnington 1231 reported pressure drop increase for virtually same material and 

concentration. 

In a more recent review to delineate the different flow regimes, Turian el cr/ 151 

compiled published data and proposed an extended pressure drop correlation scheme 

that denotes a separate formula for each regime. 

For the flow with stationary bed: 

-1. Uo)( 

ff 12.127(0.7389{ 0.77»C -0.4054 (2 5) / ./ 11' ./ 11 D 
Dg(s 

- 
1) 

For saltation flow (starting of moving bed formation): 

0 1.018 1.040 
D -0.4213 

1,2 -1.354 
17 

. 
09( 

Dg(s -1) 
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For heterogeneous flow: 

ff 30.115("u8687f 1.2 -0.1677 
1, 

-)6938 

Dg(. ý -1) 

For homogeneous flow: 

=8.5380'U502 fill 1.428 CD 0.1516 F2 
A. 531 

Dg(. s -1) 

Where f and fH, are the Fanning friction factors for slurry and water, Cis the 

volumetric concentration of solids, (, D is the coefficient of drag. I' is the mean flow 

velocity, ID is the pipe diameter, g is the `gravitational acceleration and , ti' is the ratio 

of solids to liquid density. 

The study of these formulae reveals that, for the saltation regime, the numerical 

coefficient assumes a high value that decreases as the regime changes to 

heterogeneous and homogeneous (continued increase of flow rate) reflecting higher 

losses with bed formation. The exponent of solids concentration decreases indicating 

decreased effect at higher flow rates, which contradicts most of the correlations 

reported (see table 2.1). The exponents for the Fanning friction factor and the 

coefficient of drag show a marked increase with flow rate. Previous work 119, 

imposed limitations on the increase of the coefficient of drag. The coefficient of drag 

is less sensitive to flow changes for large particle size but this is not reflected in the 

above equations. Turian ei al 1'1 extracted data for their review from numerous 

sources that were not reported, which gives no means of knowing what the different 

experimental conditions were or how they were interpreted. 

Also, Turian el al 151 compiled correlations of critical velocities from many sources in 

tabulated form. The tabulated relations of critical velocity versus the different flo\ý 

parameters showed substantial variations. They concluded that critical velocity is not 

particle size dependent but it corresponds to the square root of the pipe diameter, 

increases with the increase of concentration and then decreases. This was attributed 
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to hindered settling. As the mass of the solids increases, the settling is hindered due 

to increased particle interaction with concentration. The independence of the critical 

velocity from the particle size does not agree with the results of other xý orkers. For 

example, Wilson 1241 proposed a relation in which the particle size xti as represented in 

terms of the terminal velocity and appeared in the exponent of the exponential: 

35d 

V, = 0.6U1 
?, 

exp D 

.f 

(2 9) 

Where L', is the critical velocity for suspension, U, is the terminal fall velocity 

and f is the fanning friction factor. 

It is worth noting that nothing was mentioned in the work of Turian ci a/ 151 about 

slurries with multi sizes (polyfractional slurries). Also, Pirie 141 restricted her 

investigations to slurries of single-sized particles. 

More recently, previous empirical correlations were challenged on the basis of an 

increasingly emerging experimental evidence of their inadequacy to provide an 

insight into the flow structure 1251. Wilson [26] reported that Durand famous equation 

overestimates pressure losses at the lower range of operating velocities while the 

same equation underestimates the losses at higher velocities. 
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2.3. Transport of Solids Containing Moving Beds: 

Slurry flow with moving beds was investigated by many workers. The reason is, 

partly, to distinguish this pattern by identifying the velocity below xýhich it is formed 

(critical or deposit velocity) so that the velocity of flow is kept reasonably higher 

than this value and partly because, in some applications not including centrifugal 

pumps as prime movers, it may be an economical alternative mode of slurry 

conveying for short distances if accompanied with extremely high solids 

concentration (single mode transport of solids in loading/ unloading and piling 

applications). To discern the existence of moving beds, many relations for the 

inception of bed formation were developed. Table 2.3 summarizes some of the 
[i] critical velocity relations cited in the literature ý'ýý I'1 Televantos t2ýJ reported 

results on moving beds at high solids concentration. Earlier works, reported by 

Televantos, [2x' based on the measurements of Condolios and Chapus related the 

mean velocity above the moving bed to the hydraulic diameter of the pipe area above 

the bed, thus: 

=It 
2gR/, 

(2 10) 

Where [" is the mean velocity above the bed, Rh the hydraulic radius of the area 

above the bed and K is a function of the particle size and concentration. Televantos 

work 12X1 reported a 65% error in this relation. The same equation was used to detect 

inception of settling by substituting the full radius of the pipe in place of the 

hydraulic radius. In a previous work by Newitt et al (reported by Televantos). the 

pressure drop for moving beds was developed from the balance between the work 

done on the particles and the energy dissipation due to the excess pressure gradient, 

thus: 

"ý -ýý =66(X-1) 
D (2.11) 
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Babcock 1181 reported a correlation constant of 60.6 instead of 66 for 1-inch pipe and 
6.6 for 6-inch pipe indicating dependence on pipe diameter. More recent 

experimental work on deposition by Gillies and Shook 1291 correlated the deposition 

velocity (shown in table 2.3) to the carrier liquid properties, modified by the 

existence of fines, and the coefficient of drag as a replacement of the %ý idely used 

Durand relation. 

Newitt e/ al 1301 were among the first to base their differentiation between solids 

contribution to pressure losses from that of liquid resistance on a physically based 

approach. Thus, pioneering what has come to be known as mechanistic modelling. 

Newitt et al divided the heterogeneous flow into two parts. The first is that of 

particles in suspension for which they attributed excess pressure gradient to re- 

suspension mechanism that overcomes the settling tendencies of solids as they 

approach their terminal fall velocity. Thus, their equation: 

1100 
i,,, C' gD(s -I) 1' 

(2.12) 

The second part is that of particles moving at the pipe bottom for which they 

attributed excess pressure gradient to the force required to overcome the friction of 

the solids at the pipe wall. This mechanism balances the submerged weight of 

particles assumed transmitted to the pipe wall with the pressure gradient required for 

driving them. Equation (2.12) above gave this relation combined for both parts. 

It was not until Wilson, and workers who followed, that mechanistic modelling took 

its shape. Wilson ["1 used a force balance model for the determination of the limit 

deposit velocity for stationary beds. Further on, Wilson [241 developed his famous 

two-layer model. The basic features of the model lie in the assumption that solids 

divide themselves into a portion suspended by liquid (suspended load) occupying the 

upper part of the pipeline and a portion contacting the pipe wall (contact load) 

comprising the solids moving in continuous contact with the pipe bottom (moving 

bed) and solids moving in sporadic contact with the pipe wall (saltating solids). The 

concentration of solids was arbitrarily divided into two constant parts. The upper 
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concentration defines the suspended load while the lower concentration, contains 

most of the solids in a loosely poured form, and defines the contact load. Figure (2 1) 

shows the geometrical representation of the two-layer model. The geometrical 

representation shows an abrupt change of concentration at a single dividing line. This 

simplification can only be physically justified when all the particles move as one bed 

cii bloc. 

S1= D (n-H) 

Al 

ýý ý 

ý 

(ý1 

u1 / 

C2 

S2 = Do 
A2 

Si = D. Sing 

Fig. (2.1), Wilson Two-Layer Model Geometry 

By conducting a force balance for the two layers, Wilson obtained the pressure drop 

for each layer in terms of the shear stresses experienced at the pipe perimeter of each 

area and at the virtual interface between layers. The set of equations are: 

For the upper layer: -PA, = r1S, + 7-; S; (2 1 3) 
dx 

For the lower layer: - 
dP 

A, = r2S-, - z; S; +, uF F (114) 
dx 

For the whole pipe: - 
-P 

A= r1S1 + z-, S-, + PF IF (' 15 ) 
dx ` 

Where A is the area, T is the shear stress, S is the perimeter and PF F is the sum 

of the normal forces exerted normally on the pipe wall leading to Coloumbic friction 

resistance and the subscripts denote the perimeters shown on fig. (- 1). The shear 

stresses are calculated using Fanning friction factor except for the shear stress at 
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transition that is calculated using rough boundary configuration. The normal forces 

are calculated from the submerged weight of the particles and the hydrostatic 

pressure of the fluid column. 

The geometry of the two layers is determined by an empirical formula that 
determines the contact portion first and then the suspended portion is found by 

subtraction from the total solids concentration. The formula takes the form of a 

power law: 

d T Cc 22 ýý' (J[06exP452 
(2 16) 

Where U, is the velocity of incipient suspension and U, is the terminal velocity and J 

is Fanning friction factor. Further on, Gillies et al ""' proposed a logarithmic 

empirical relation: 

exp(-O. O 184 (2 17) 

Alternatively, Matousek 1321 proposes to calculate the suspended fraction first and 

gave yet another formula. Khan and Richardson 1331 report further formulas indicating 

disagreement between different authors on the method to separate the contact from 

the suspended load. 

The second main flaw with the two-layer model is the calculation of the shear stress 

at the interface. The interface could not be as sharp as configured by Wilson but 

more realistically shall assume a gradual shape, which casts much doubt on this 

simplification physical significance. Also, the shear stress at the interface cannot be 

measured experimentally. Thus, the assumption of its friction behaviour cannot be 

based on measurable physical means. The only way possible for Wilson to overcome 

the inability to measure shear stresses at interface was through carrying out iterations 

of \ elocities of flow in both layers until an agreement between the pressure drops 

bet\veen lavers was obtained. The process included the pre-assumption of a certain 
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friction factor at the interface (apparently for the sake of obtaining a converging 

solution of the iteration scheme rather than some solid physical justification) In an 

effort to assess the validity of the friction factor assumption at the interface, Riet e'i u/ 
1341 and Miedema et cil [351 repeated the numerical iterations to solve the Mo layer 

model and concluded that the friction factor at the interface gives different results for 

different model input variables. In a recent work, Matousek 1361 established 

experimentally in a series of lab tests on sand water mixtures the sensitiv its, of the 

friction factors at the pipe wall and interface to the suspension mechanism and 

concentration of solids. A closing remark on the two layer model, the flow velocity 

range in pipelines is well in the turbulent region, at least in industrial applications 

where considerable settling can not be tolerated and economical factors dictate 

smaller pipe sizes, thus the assumption of maintaining distinct layers is much in 

doubt. However, in open channel flow the layered model may gain more 

significance. Also, by definition, the two-layer model is for a flow with bed while in 

industry the pattern is more or less heterogeneous. 

Doron el al 110'Iß'1, in a series of papers, proposed a layered model based on that of 

Wilson's. The same problems apply to the division of the contact and the suspended 

load and the configuration of the transition layer (a layer added to the two layer 

model in an effort to extend the interface to a region rather than a line). Even more, 

Pirie [4] noted that Doron model was unstable when iterations were carried out. 
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2.4. Transport of Multi- Sized Solids as Pol. 'fractional Slurries: 

Literature reviewed so far did not -Jive sufficient credit to polvfractional slurries 

Normally, the total concentration of solids is taken into consideration for only one 

particle size obtained by some averaging method. Several workers 1; 11201122 1112211231125 1 

noted that mixed sizes of solids give rise to unexpected effects on pressure drop but. 

unfortunately, few made further investigations 131 1211. However, Matousek [381 puts it 

clearly that little is known about the flow behaviour of mixtures composed of t\vo or 

more sand fractions that differ in size. 

Fangary e1 al 131 obtained experimental results that clearly showed that for the same 

total concentration, varying the ratio of coarse to fine particles gave different 

pressure drops. Their main observations were that increasing the content of finer 

particles increases the pressure drop while a mix of both fine and coarse tends to the 

behaviour of coarse particles. It is not to underestimate this experimental work, but it 

is difficult to infer reasonably accurate conclusions out of these results because the 

materials used in the experiments are widely graded, the finer particles were below 

74 microns that, usually, combine with the fluid to form a fluid like behaviour, the 

upper range of particle sizes was limited to 250 microns (relatively fine size), the 

comparisons between different mixes were carried out at different total 

concentrations (ignoring the effect of the total solid content), the plots presented in 

the original paper of the experimental data and the proposed correlations are wide 

apart (correlations no. 7 in table 2.1). 

Sobota 1211 compiled data collected by others on polyfractional slurries and 

concluded that the fines combine with the liquid to form a carrier liquid of which the 

pressure drop is calculated by a fluid like model with modified density and viscosity 

According to Sobota [21 ] coarse particles give an additional pressure drop 

contribution that is a function of their submerged weight, their concentration and the 

squared ratio of the flow to terminal velocities. 
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Thus: 

I, 
2 

AP =f PS(S -1ý C, 
U (?. 18) 

Where A1, is the pressure drop due to coarse particles, C is the concentration of 

coarse particles and all other properties defined for coarse particles. 

Algebraic form of the pressure drop relation was not reported. The division of 

particles in this manner separates only between the particles that combine with the 
fluid (usually smaller than 74 micron) and assumes the same characteristics to all the 

sizes above (reported particle sizes varied from 1 micron up to 50 nom). 
Experimental conditions and procedures were not mentioned. 

Kazanskij el al 1391 observed that the addition of fines to coarse dredged materials 

showed decrease of pressure drop but then an increase was observed at higher 

velocities. At lower velocities in the heterogeneous regime, they attributed the 

decrease to "lubrication effect" of the fine particles on the coarse particles. At higher 

velocities, they assumed that a pseudo-fluid was formed increasing the pressure drop. 

Only comments and a set of curves were given. No correlation or modelling was 

reported. 

In a relatively more elaborate laboratory investigation on the economy of 

transporting broadly graded sand- water mixtures, Matousek and Ni [401 concluded 

that the addition of finer solids to the mixture decreases pressure losses in mixtures 

exhibiting partial stratification while increases the pressure losses in those having 

negligible stratification. Unlike other workers who attributed the behaviour of finer 

particles to either increased density of the carrier liquid or their lubrication effect, 

Matousek and Ni 14"1 divided the effect of fine particles between a reduction of 

mechanical friction and an increase in the viscous friction taking place at the same 

time. No quantitative relationships were shown. Deeper examination of their work 

reveals that two mixtures were tested (fine- medium and fine- coarse mixtures), the 

hydraulic gradient only decreased at lower flow velocities and increased markedly 
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higher with the fine- medium mixture at higher flo\\ velocities. the concentration 

profiles showed more uniform distribution for the fine- medium slurry and the 
deposition velocity gave contradicting trends (lo%ti er for fine- medium and hiuher for 

fine- coarse slurries). On the same lines, Matousek 1381 reported that near the pipeline 

wall, a liquid lift was observed that seemed to affect the coarser particles only. 

Many researchers avoided dealing, with the coexistence of finer and coarser particles 
in slurries. Ijadi and Streat [41] noted that the existence of fines in coarse coal resulted 
in head loss over prediction and left it as a safety margin in pipeline design 

calculations. Gillies of al [2'] reported similar situation in which clay was removed 
from the mixture to avoid complicating their model unnecessarily. Pinie 1'1 limited her 

investigations to slurries having coarse single particle size. 

2.5. Main Observations on the Reviewed Literature: 

a) The vast majority of the literature reviewed conducted experimental work on 

single particle size slurries. Even when multi sizes existed, averaging of 

properties was carried out without supporting experimental evidence. 

b) In the few examples, observed in the literature, the treatment of the interactions 

between the different sizes and their effect on the pressure drop was not the main 

aim of research. Instead, the separation of the sub 70-micron fraction was 

targeted so that it can be combined with the fluid. 

c) It has been repeatedly reported that the existing empirical correlations suffered 

from the lack of fit while the improvements sought through mechanistic 

modelling did not yield reliable predictions due to the inherent difficulties in the 

prediction of shear stresses at the interface transition region and the drastic 

simplifications of the shape of the concentration distribution profile. 

d) The physical understanding of the turbulent processes is still lacking and, thus. a 

reliable solution based on physical laws is not foreseen in the near future 
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2.6. Justification of Aims: 

a) The literature review revealed many observations on the previous work 

that casts more light on the complexity and the random nature of slurry 
flow. Under virtually similar conditions, numerous outcomes of pressure 
drops emerge when using different formulas reported in the literature (in 

the part on economical considerations, ch. 1, these differences hay e been 

clearly illustrated through solving a typical example). 

b) It is necessary to address the polyfractional slurry flow as it is not 

sufficiently covered in the previous work and because it bears significant 

importance in industrial applications. 

c) A suitable method is needed to enable separation of the different 

interactions encountered in polyfractional slurry. 

d) A fairly reliable design tool is still lacking due to the confusion on which 

prediction method to use. The available correlations to the pipeline 

designer are numerous without any means to select any particular one. 
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Chapter 3 

Theoretical Background 

3.1. Introduction 

3.2. The Principle of Continuity (Mass Conservation) 

3.3. The Force Balance on a Control Volume for a Clear Liquid 

3.4. The Force Balance on a Control Volume for Solid- Liquid Flow 

3.5. Physical Description of Solid- Liquid Flow 
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3.1. Introduction: 

The governing relations controlling fluid flow in general and slurry flow in particular 

are elucidated by theories that explain their nature. A representative control volume 
is chosen on which mass and momentum balances are derived. Due to the complex 

nature of fluid flow problems, simplifying assumptions are unavoidable. Also, 

alternative physical representations are sometimes employed to further simplify' the 

problem. Moreover, empirical correlations become necessary to develop functional 

relations for pressure losses associated with flow. Under all cases, a theory is needed 

to form the ground of work. 

The following treatment summarizes some of the more general theoretical issues, 

critically discusses the underlying assumptions, highlights the difficulties from a 

physical point of view and ends up with a working physical description that forms 

the basis for experimental work. 

3.2. The Principle of Continuity (Mass Conservation) : 

The flow of a liquid in a horizontal pipeline is described by the properties of liquid 

(density and viscosity), flow velocity and pipeline boundary (pipe diameter and pipe 

roughness). The basic assumption in this flow problem is that flow is continuous. 

Taking a control volume and following a flow path in space and time, the continuity 

principle (mass conservation) can be described mathematically: 

at 
(3.1) 

The rate of change of mass per unit volume (ap) is described by the mass flow rate 
at 

per unit area in space (V pV) . 
For liquids, it can be safely assumed that the control 

volume is inelastic and the density is constant (incompressible under normal working 

velocities). Under steady flow conditions, transient pressure surges are assumed 

nonexistent. 
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Thus, the continuity equation reduces to: 

(VV)=0 (3 2) 

The representation of flow as a continuum is basic to the solution of flo%\ problems 
for single fluids. For slurries (liquids carrying solids under motion). the continuity' 

assumption holds physically true for the carrying liquid only. The solid particles 
travel as discrete entities within the body of the liquid continuum (they have their 

own density and do not deform the same way as liquids). However, as the interest is 

concentrated on the global effect of slurry flow on the pipeline (as a pressure drop), it 

can be assumed that slurry is, also, a continuum. Thus, the continuity equation per 

unit volume for constant densities of liquid and solids becomes: 

For Liquid fraction: 

ät(1-C)+v[(i-C)VL]=0 (3.3. a) 

For Solids fraction: 

ac+o(cvs)=o (3.3. b) 

Where C, VL, VS and (V) are the fractional volumetric concentration of solids (solids 

fraction), the velocity vectors for liquid and solids and \7 is the three-dimensional 

space operator respectively. Under the assumption that the rate of change of 

concentration is time invariant, the time related differential vanishes. 

3.3. The Force Balance on a Control Volume for a Clear Liquid: 

The next step in the description of the physical nature of the control volume, 

following the path of liquid flow, is considering the forces acting on it. The control 

volume gains energy from the flow and expends it to overcome the pressure and 
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viscous forces as experienced on its boundaries and, still, the control volume tails 

under the effect of its own weight. 

Mathematically, the force balance follows the steps of Newton's second la\ý of 
motion: 

Rate of Change 
pressure viscous gravity of . 

Momentum =--+ force force force 

Dv 

Dt = -V p-(V r) +p. g (3.4) 

For steady flow conditions, external forces (accelerating and decelerating flow) do 

not exist under the assumption that the flow is fully developed, thus, 

Vp+(VT) = pg (3.5) 

This indicates that the force balance within the flow is a competing mechanism 

between the pressure forces experienced across a pipe length and viscous forces 

developed within the flowing medium. Turbulent flow regime is marked by the 

formation of turbulent eddies, that are random in nature. The intensity of turbulence 

depends on the effect of viscosity on velocity of flow. This is translated in velocity 

variation in a given pipe cross section. Also, due to inertia, the flow continuum is 

reluctant to velocity changes. Under turbulent conditions, the relationship between 

the velocity distribution and viscous shear stress (z) cannot be found analytically 

due to the random nature of turbulence and the complexities with the inertial- viscous 

interactions. Thus, analytical solution does not exist for this basic and relatively 

simple flow problem. Instead, Reynolds developed his famous inertial to viscous 

forces empirical relationship that uniquely marks the flow number expressing the 

changes from laminar to turbulent, 

pVD Re = 
P 

(3.6) 
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Where Re is Reynolds number, p is the liquid density, V is the average flow 

velocity, D is the pipe diameter and u is the liquid viscosity. 

Furthermore, the interaction of liquid with the pipe boundary results in pressure loss 

expended on the account of the kinetic energy of the flow. This, in turn, can only be 

empirically determined through the formulation of a pressure loss coefficient as a 
non-dimensional parameter f (commonly known as Fanning friction factor), thus, 

ApAC 
f (3.7) = 

Alp. VZ 
2 

Where A, is the wetted surface area for a given pipe length 

If the pipe boundary enclosing the liquid is not completely smooth, the effect of 

surface texture roughness of the pipe wall (E) will further complicate the friction 

factor. 

Summing up, an empirical relation (Colebrook-White equation) 
1*1 is drawn up to 

relate the turbulent flow regime in terms of Reynolds number and the friction factor 

so that the pressure losses can be predicted for a pure liquid (water) under turbulent 

conditions, thus, 

1= 
-4lo 

6+1.26 
V-f g 3.71D ReV-ff 

(3.8) 

Munson, B. R., Young, D. F. and Okiishi, T. H. "Fundamentals of Fluid 

Mechanics". Third Ed. John Wiley and Sons. Pp. 494 (1998) 

As Reynolds number tends to infinity, friction factor becomes a function of the pipe 

diameter D and pipe wall roughness (e) only and the friction factor becomes less 

dependent on Reynolds number. For design purposes, Moody constructed a log-log 
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plot of the friction factor against Reynolds number for clear water at different pipe 
roughness to diameter ratios. 

Up to this point, only the empirical advent of Reynolds number (marking the flow 

regimes), the formulation of the pressure loss friction factor and their coupling for 

turbulent conditions made it possible to empirically solve the problem of clear liquid 

flow. 

In a pipeline design problem, usually, either the flow rate or the permissible pressure 

drop is given; liquid properties and pipe geometry are known. Then Reynolds 

number is calculated and the friction factor is found iteratively from Colebrook- 

White equation. Thus, pressure drop (or flow rate) is determined and hydraulic 

power is found. The final design may include optimisation between the cost of the 

pipe size and power consumption. 

3.4. The Force Balance on a Control Volume for Solid- Liquid Flow: 

Following the assumption that slurry flows as a continuum, momentum balance 

formally describes its motion in the form of a force balance on a given control 

volume. The main assumption, apriori, is that mass is conserved in the control 

volume. Momentum balance per unit volume is carried out for the liquid fraction and 

then for solids fraction. Mathematical representation using Cauchy [27], [421, [431, [441, [451 

momentum equation is as follows: 

For Liquid Continuum is: 

PL 
a (1- C)VL - PLVL 0[(1- C)VL ]- 7[(1- C)PL ]- s[(1- CýL ]+ (1- C)PLg + ML 
at 

Convective pressure VISCOUS Gravity inte ar ctio 
Rate of change of term force force force term 
Momentum 

(3.8. a) 
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For Solid Continuum is: 

PS at cvs =- p5 v[cvs]- v[cps ]- v[ J]+ c, osg + tiro 

rate of chap e of 
Convective pressure viscous Gravity interactioAl 

g term force force force term 
momentum 

(3.8. b) 

For steady flow conditions, the rate of change of momentum with respect to time is 

zero. 

Interaction terms represent the transmission of forces between liquid and solid 

particles, which are equal in magnitude and opposite in direction. Viscous force 

terms represent the shear stresses due to liquid viscous friction, particles collisions 

and particles friction with each other and with the boundaries. Body forces reflect the 

effects of gravity. 

The momentum balances, given above, treat solids as if they are of the same nature 

as the liquid carrying them. Thus, in literature, they are termed liquid phase for the 

liquid fraction and solid phase for the solids fraction. Physically, such terminology 

applies to the same matter in different states (e. g. ice is the solid phase of water and 

steam is its gaseous phase). More correctly, instead of phases components should be 

used, thus, liquid component and solids component . 
The difference is not in 

terminology but in the physical nature of liquids and solids. Liquid is a pack of 

molecules having the same microscopic size , cohesive bonding and dynamic 

characteristics in terms of resistance to shear forces and influence of turbulence. 

Solids have totally different molecular structure ; their cohesive bonding is much 

higher than liquids and can stand much higher shear forces when compared to 

liquids. In particle form, solids keep a certain granular size and shape while liquids 

keep size and shape on molecular scale only. Obviously, the scale of measurement is 

totally different. Also, when examining a control volume to study the behaviour of 

slurries it is assumed that this control volume is homogeneous in representing the 

various properties of flow. In reality, a control volume in slurries is composed of two 
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components that possess substantial differences in their properties. The momentum 
balances do not give credit to these differences, instead solid particles are treated as 
if they were of the same nature as liquids (molecules of the same size, shape and 
dynamic properties). 

Thus, momentum balance equations for slurries do not give information about the 
interactions of solid particles as separate (discrete) entities and liquid as a continuum 

and do not account for momentum exchange between the particles themsely es. These 

issues greatly affect how shear stresses are viewed. 

As stated earlier, the random nature of flow renders the equations of motion 

unsolvable analytically under turbulent conditions. Introducing solids into flow 

problems makes the analytical solution even more distant. To solve equations (3.8. a) 

and (3.8. b) it is necessary to know the concentration distribution, velocity 

distribution and pressure distribution as functions of space coordinates under effects 

of viscosity and turbulence. The distribution functions must take into account the 

effects of solid particle size and shape, their interactions with liquid and their 

collisions. These tasks can only be fulfilled under drastic simplifications (like 

assuming a certain concentration distribution, turbulence model and velocity 

distribution). Apart from the random nature of turbulence, which is closely related to 

liquid properties, energy imparted to solid particles most probably produces even 

more randomness in modelling turbulence. Also, the profiles that concentration 

distribution may assume are strongly dependent on the difference in densities 

between liquid and solids, the size(s) and shape(s) of the particles. Except under 

totally dispersed solid particles (homogeneous slurries of very low solid fraction) or 

mostly settled particles (bed flows), an assumption of a certain concentration 

distribution profile could hardly be justified from a physical point of view. 

In the special cases where solids can be viewed as freely moving within the liquid 

continuum, the kinetic theory is employed to describe the motion of solid particles. 

The kinetic theory, as originally applied on gases, defines the equilibrium state of gas 

molecules as the statistical average state of balanced collisions among the molecules 

themselves 1431 14(, j By analogy, equilibrium state has been extended to slurries to 
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include balanced collisions among the solid particles themselves and their 
interactions with liquid fraction (in statistical average sense). Adapting Boltzman 

equation to slurries, their motion can be mathematically expressed'' j' ý`' 
. 

af(v) +v af(v) + a(P f(v)) af(v) 
at ax, av, at 

(3.9) 

Where f(V) describes a velocity distribution vector function for the solid particles 

with respect to time and space, vi is the stochastic velocity, xi is the position vector in 

space and FF is a particle body force vector per unit mass representing the combined 

gravity and liquid effects on a particle. The r. h. s. represents the collisions between 

the particles themselves. Wang and Ni 1431 [461 suggested to ignore the collision term 
for dilute suspensions (assuming a particle path free from particle collisions) and 

proposed a numerical solution that combines the theory of continuum for the 

carrying liquid and the kinetic theory for solids. 

The physical analogy between the motion of slurries and gases on the basis of the 

kinetic theory emphasizes the dynamic difference between the liquid as a continuum 

and the particles as separate entities obeying the laws of solid mechanics. In the 

analogy shortcomings arise, firstly, from the fact that liquid modifies the motion of 

the particles greatly (due to the viscosity turbulence interaction). Secondly, the no- 

particle collisions assumption cannot be physically justified (most slurries have 

solids fraction that is too high to avoid inter particle collisions). 

In an effort to simplify the momentum balances under the theory of continuum, a 

partial explanation of the motion of slurries is given by the settling dispersion model. 

The model states that particles fall under two competing mechanisms; their tendency 

to settle due to gravity on one side and disperse from higher to lower concentration 

regions due to random motion on the other side (settling- dispersion model)1141. 
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Mathematically the equation is: 

V(- Dvc)+ 
Dispersion 
term 

ovac =0 
Convection 
term 

(3.10) 

Where dispersion vector D and velocity vector V are found empirically in terms of 

concentration at boundaries. The applicability of this model is limited to finely 

dispersed particles (homogeneous fine particles at relatively low concentrations). 
Fundamentally, this model treats slurry motions from kinematical point of view 
(nothing in the model gives insight into the dynamics of the problem. ) 

To conclude, solid liquid flows may be successfully described by a set of partial 

differential equations that reflect the physical reality to a certain extent. Also, these 

equations may be formulated to embed even more terms (e. g. shape, size ... etc). 

Nevertheless, the lack of adequate physical models that describe the random nature 

of slurry flows under the effects of turbulence makes an analytical solution 

unthinkable and drives research work to simplifying assumptions mainly needed for 

numerical solutions. In principle, all the dynamically changing physical quantities 

(e. g. velocities and stresses in vector form) have a steady component and a 

fluctuating component, thus, in the absence of their analytical form empirical 

correlations are needed and then an averaging method must be employed to quantify 

them in preparation to a solution numerically. 

It is not to underestimate this direction of research, but the degree of accuracy of 

numerical solutions cannot be readily estimated for a real solid liquid flow problem 

(especially when noting the successive simplifications in each step of these 

solutions). 

42 



3.5. Physical Description of Solid- Liquid Flow: 

In horizontally oriented pipelines, slurry is set in motion by an external enerpy 
source, in fully developed steady flow; liquid drag imparts energ`' to solid particles 
along the pipeline axis. Liquid density counteracts solid particles %ýeight by, their 
buoyancy. Liquid turbulence interacts with drag to form a complex and random 
mechanism by which solids are sustained in partial suspension. As solid 

concentration (volumetric fraction) increases, inter-particle collisions increase. 

Liquid drag, liquid turbulence and particle collisions form an extremely random 

momentum exchange mechanism that contributes to suspension and possibly 
diffusion of solids fraction. Particle shape and size further modifies this mechanism. 
Coexistence of particles of different sizes and shapes produces heterogeneity in the 

way each size and shape is dynamically affected and possibly in their disposition 

within the liquid carrier. 

As the term random implies, isotropic dynamic effects are expected in time and 

space. Thus, solid liquid interaction (as a global resistance to flow) can be safely 

assumed to be evenly distributed when transmitted to the pipe wetted boundaries. 

The assumption of isotropy of random motion shall be restricted to the effects rather 

than the properties of slurries. This can be physically justified due to the macro scale 

of effects (the pressure drop experienced on the pipeline boundary) while the case is 

different on micro scale. The latter is related to the structure of turbulence-drag- 

diffusion mechanisms. 

Dynamic effects (drag, turbulence, diffusion due to collisions... etc) can be viewed, in 

a global sense, as resistances to flow. Existence of solids in various sizes, densities 

and shapes add more resistances to flow than it would be experienced for liquid 

flowing alone. For fully developed steady flow, resistance increases with pipe length. 

In a thermodynamically isothermal system for incompressible fluid, the energy 

balance for a horizontally oriented pipeline manifests resistance to flow as a pressure 

loss on the account of kinetic energy available due to the action of an external 

deg ice. A minimum energy is expected below which solids cease to be carried 

hydraulically by the liquid. 
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Although, the above theoretical representation may well describe the motion of 

slurries, in the absence of analytical solution, the best that can be done is to carry out 

experimental work. Experimental work has to reflect a real slurry flow problem and 

that is not easy. For pressure losses associated with slurry flow in a horizontally 

oriented pipeline, functional relation must be established, mathematically: 

AP = .f 
(OL, Ps, V, L, D, s, C, PSD, g, ji, particleshape) (3.11) 

Where AP , pL, ps, V, L, D, £, C, PSD, g�u, are the slurry pressure drop, liquid and 

solids densities, average velocity of flow, pipe length, pipe diameter, pipe wall 

roughness, volumetric concentration (solids fraction as the percentage that particles 

occupy in a given slurry volume), particle size distribution, gravitational 

acceleration, liquid viscosity and particle shape respectively. It is difficult to run 

experiments with all the variables in equation (3.11). In order to reduce the number 

of variables to a manageable size, non-dimensional parameters have to be introduced. 

Pressure drop can be safely assumed to distribute evenly along a given pipe length 

for fully developed turbulent flow due to isotropy of random motion. If slurry 

pressure drop can be assumed to be a sum of resistances to flow, then it can be 

decomposed to liquid and solids resistances respectively. Because it is difficult to 

measure these resistances separately, a pure additive relation has to be assumed. 

Various interactions in a slurry containing more than one particle size (multi- 

fractional slurries) may possibly distort the assumed mathematical sum relation. 

However, in the absence of alternative method, it will be left to the other terms in the 

correlation to mitigate any possible inaccuracies. Pressure loss coefficient can be 

formulated: 

- 
1', 

oef. - 
'm IL 

1LC 
(3.12) 

Where 'n, = ZS + IL lm = flurry *V2' 'L = f' V2D, 
(i) is the pressure 

gD g 

drop in metres liquid per meter of pipe length and subscripts T, s and L denote slurry. 

solids and liquid respectively. 
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Liquid drag force on particles can be formulated through a coefficient that balances 

the apparent weight of a particle against resisting forces due to viscosity and particle 

shape at the state of equilibrium in a stagnant liquid column. This has the advantage 

of defining Reynolds number in terms of particle diameter. Ho« ever, due to the 

existence of more than one particle size, some average method must be employed. In 

practice, coefficient of drag is normally defined for perfect spheres. These 

assumptions, if adopted, are too simplistic. First, the equilibrium state at free fall 

velocity in a stagnant liquid column does not translate the dynamic nature of drag in 

slurry. Second, averaging of drag coefficient is not mathematically justified. Third, 

significant effects of shape are difficult to quantify. Finally, drag may be affected by 

the total solids content. To account for these discrepancies, a relation must be 

established that takes away the possible inaccuracies that may affect calculating the 

drag coefficient. The candidate physical quantity that allows for such correction is 

the terminal fall velocity. Thus, the terminal fall velocity must be determined 

experimentally to reflect the combined effects of mass, shape and concentration. 

Consequently, drag calculation will emerge (in the form of a drag coefficient). For 

the purpose of accounting for shape and mass imperfections before concluding drag 

coefficient, mass ratios equating masses of particles to equivalent spheres have to be 

deduced and equivalent diameters of particles (sand particles in this exercise) have to 

be obtained depending on how they are packed as compared with perfect spheres. 

Then, drag coefficient can be formulated: 

.f 
(PL 

, PS, PSD, P, g, Ut (3.13) 

It is commonly assumed that particle transport in slurries is due to drag and lift 

forces. This statement needs deeper examination, as lift will take place only under 

certain conditions. Alternatively, it can be stated that, physically, drag in slurry flow 

is the driving force that eventually transfers a particle from one point to another. 

Collectively, this includes the effects of turbulence, weight in fluid, collisions and 

diffusion. Unlike an aerofoil in air, for example, lift cannot be physically separated 

as a perpendicular companion to drag for smaller particles practically encountered in 

real solid liquid flow. For lift to develop pressure difference must be experienced 

across the lifted body in the direction of the lift and a singular point must exist that 

acts as a wall to prevent venting of this pressure difference. In particular, pressure 
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difference is disrupted due to turbulence leading to venting the aerofoil and 

eventually failure of lift. In slurries, the existence of solids by itself is a source of 

turbulence and practically laminar regime is not a feasible means for hydraulic 

transport due to increased friction factor, inability to develop suspension for particles 

at low velocities of flow and economical considerations of cost of pipelines and 

pumping devices. Thus, in a turbulent stream of fluid, it is the drag that imparts 

energy to solid particles without distinctive existence of lift (turbulence, collisions of 

particles and possibly diffusion are the possible accomplices to prevent lift forces 

taking place). Thus for the type of particles considered, lift is likely to be 

insignificant. 

Some form of Froude number may best describe the relation of inertial forces with 

gravitational forces on particles. Defining Froude number based on solids weight in 

liquid, basically, defines the densimetric disturbances of solids on liquid. Thus 

Froude Number: 

Fr 

Where S is specific weight of particles and D pipe diameter 

A tentative functional relation that is suitable for conducting experiments may be 

summarized: 

-'L __ f(C, Frr, CD ) 
'L 

(3.15) 

The existence of mixed particle sizes in slurries necessitates the design of 

experiments to find out the effect on pressure drop. Most suitably by selection of 

particle sizes that are closely graded, classification of different populations. In this 

work, two different populations of particles are employed. Coarser and finer 

populations that have particle size distribution that are wide apart are intentionally 

selected. The main aim is to compare their behaviour for the same concentration. If 

the pressure losses in slurries vary only due to variation in total concentration 
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(regardless of the particle size distribution and shape) then the pressure losses 

correlation shall be invariantly the same for any particle size population as far as the 

total concentration is maintained constant. The theoretical basis of this work is that 

pressure losses associated with slurry flow are affected by the differences of the 

particle sizes proportions, nature (shape, mass and distribution) as \\ , ell as the total 

concentration and the other system variables (fluid and geometrical boundary 

properties). The experimental program will examine the possible differences in 

pressure losses due to variations of shapes and sizes as populations of poly-fractions 

for virtually similar total concentrations. 
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Chapter 4 

Design of Experiments 

4.1. Introduction 

4.2. Experimental Programme 

4.3. Offline Experiments 

4.4. Non Dimensional groups 
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4.1. Introduction: 

In view of the literature review and the examination of the underlying theoretical 

considerations, it is unthinkable that a reliable analysis whether theoretical or semi 

theoretical (that is analytical in nature) can be produced for slurry flow. The reason is 

that slurry flow is a multi variable and highly random problem. Slurries cannot be 

defined by the properties of fluid alone and cannot be considered multiphase in 

which the same matter takes different states. It is a multi component mixture 

comprising liquid and different sizes of solids. Each has its own physical properties. 

The result, under dynamic flow conditions, is an extremely complex flow pattern. 

An empirical approach is the best can be done. The author does not under estimate 

the difficulties related to the proposal of the empirical approach in data acquisition 

and interpreting results to build up a pressure loss model in slurries. This program of 

experiments aims at highlighting some of the ambiguities related to slurry flow and 

produces yet another empirical correlation. 

In particular, a carefully designed experimental program shall be developed that 

highlights the effects of the existence of two particle size fractions (two distinct 

populations) on the pressure losses. 

4.2. Experimental Programme: 

Experiments outlined below are designed to measure the pressure drop across a 

horizontally oriented pipe length (6" diameter and 14.59 m test length) at various 

flow rates. Mainly, they are divided into two sets (the first is for the coarser 

population Sand (A) and the second is for the finer population Sand (B)). The reason 

for this strategy is to enable the author carry out comparisons (paired comparisons) 

between these two populations. Each comparison shall take one pair of trend lines 

from each set of experiments under the condition that they have the same 

concentration. So that the comparison does not measure the effect of concentration 

but the structure of each pair of curves in terms of the constituting particle size 

distribution and its effects on pressure losses. Table 3.1 illustrates this strategy 
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Table 3.1. Program of Experiments 

Coarser Population (Sand (A)) 

% Volumetric 

Concentration 

1 

2 

3 

1 

2 

3 

4 

5 

Repeat same as for concentration (1) 

Finer Population (Sand (B)) 

1 

2 

3 

4 

5 

Repeat same as above 

Paired comparisons are repeated for all concentrations in the program in the same 

manner. 

4.3. Offline Experiments: 

Offline experiments were conducted to: 

- Separate sufficient quantities of sand populations in preparation for 

carrying out the main experimental program. This included the selection 

of the suitable screeners and meshes to exclude the unwanted sizes. The 

purpose was to obtain two sand populations. Each of them is closely 

graded while their particle size distribution is not the same or near to each 

Experimental Measurement Points 

Differential Pressure Across 6" pipe 

length of 14.59m (in mm H20) 

Flow Rates In m3/Hr 

(Max. 200 m/Hr) 3 
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other (the cut sizes are wide apart). 

- Terminal velocity measurements were carried out in preparation for the 

coefficient of drag calculation. Care has been taken to time the fall of 

each particle in a liquid column without interaction with its boundaries 

- Viscosity measurement of the carrier liquid. Although viscometer 

calibration was carried out successfully on a standard fluid (as shown in 

chapter 5), the viscosity measurements of the carrier liquid ww ere not 

satisfactory and had to be discarded. The reason is that separation of 

liquid from small sized particles of solids proved to be much of an 

arbitrary selection rather than physical behaviour. Leaving what is 

supposed to be carrier liquid including some portion of fine particles for 

different time periods gave different carrier liquids containing different 

amounts of particles. In the absence of a physical means to assess which 

combination of liquid solid carrier to be the correct carrier liquid, the best 

that can be done is to take the properties of the pure liquid as it is 

invariantly definitive in properties. Moreover, viscosity can only be 

defined for liquids and liquid like fluids. In the latter case, the fluid must 

possess a consistent and time invariant viscosity. 

- Calibration experiments of the differential pressure transducer, the 

magnetic flow meter, the chart recorder and the viscometer. 

It is important to mention that an introductory part in the experimental work is 

dedicated for solids characterization (particle size distribution PSD, mass of particles 

equivalent to perfect spheres to pronounce the shape imperfections and measurement 

of terminal velocities for actual sand particles). 

This introductory part proved to be useful in achieving the main aims of this 

exercise, because it paved the way to quantify the basic corrections needed to 

improve the prediction of the drag coefficient and consequently the pressure loss 

correlation. It is more often than not that these basic corrections have not been given 
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due attention in the literature. Instead, they «ere considered minor leaving a 

significant source of error unsolved. 

4.4. Non Dimensional groups: 

The number of variables in a solid liquid mixture flow is too much to conduct an 

experimental program without reducing to a manageable size. The grouping in non- 

dimensional parameters serves this purpose. Moreover, non-dimensioning sere es to 

remove the effect of dimensions so that the non-dimensional groups are more 

general. The variables are divided into separate categories that all contribute to the 

prediction of the pressure drop: 

- Fluid properties (density pi and viscosity ,u) 

- Solid properties (density p,. , particle diameters d1, d,, d i, etc. and 

concentrations C 1, C2, etc and total concentration Cl) 

- Flow velocity V 

- Pipe geometry (pipe diameter D, pipe roughness F- and pipe length) 

Other properties such as compressibility, chemical activity and electrical properties 

are not accounted for because they are not considered to significantly exist for the 

solids (sand) and liquid (water) used in this exercise. In a functional form: 

OP =. f(Pr,, u, p, d, d,,.., C,, C,,.., C, I", D, E, L) ( I) 

It is convenient to put the pressure drop in a more compact form as a pressure 

gradient so that the pressure drop is found as meters of fluid per metre of pipe length: 

AP 
_ 

Ah Denoting 
Ah 

=i (4.2) 
LLL 

Where i is the pressure gradient in meters of water per meter of pipe length. 

Further, the pressure gradient for water or other Newtonian fluid is a function of 
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Fanning friction factor, pipe diameter, pipe roughness and flow Reynolds number. 

Thus, the pressure drop for the mixture can be put in the following form: 

lnh -iw 
-0 

lw 
(4.3) 

Where m and w denote mixture and water and 0 is a function of non-dimensional 

parameters to be defined below. 

Physical definition of particle motion may be considered as taking place in a gravity 
field, dragged by the viscous nature of the flow and affected by the inertia field due 

to fluid velocity. Archimedes fluidisation number (Ar) [*] 
summarizes these 

competing effects on a particle. It is a measure of keeping the particles suspended. 
Thus, in a standard form for a perfect spherical particle: 

Ar =3d39 
01(0,2 Pr) 

= CD Reg (4.4) 

Douglas, J. F., Gasiorek, J. M. and Swaffield, J. A. "Fluid Mechanics". 

Third Ed. Longman. Pp 371 (1996). 

Where Ar is defined for a particle of diameter d, solid and liquid properties 
(p1, p, , p), gravitational acceleration g, and Reynolds number defined for a particle. 

It is apparent from equation (4.4) that a direct relation can be established between 

Archimedes number and the coefficient of drag. However, the coefficient of drag is a 

function of the terminal fall velocity of a particle (defined as the velocity which a 

particle resumes under equilibrium of forces acting on the particle when falling in a 

column of fluid). Thus: 

CD =4 dg 
(Ps 

- PL) Appendix (A), (A. 1) 
3 U, PL 

Where U, is the terminal fall velocity. 
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In experiments, it is relatively easier to measure the terminal fall velocity as 

compared to the coefficient of drag due to the small particle size used in this 

experimental work. Moreover, the above functional relationship indicates that the 

terminal velocity is the only variable resembling all the dynamic effects of drag 

mechanism (shape imperfections and turbulence). In this work. terminal fall \ elocitvv 

will be measured experimentally and, subsequently, the coefficient of drag calculated 

as a function of the experimentally obtained data. The terminal fall velocity for an 

actual particle can be obtained in a non-dimensional form (as a ratio of the 

corresponding terminal velocity of a perfect sphere) and related functionally to 

Archimedes number. Thus: 

U` 
_ (Ar) 

Uts 
(4.5) 

Also, interaction between the flow and the solids can be defined by an additional 

non-dimensional parameter that reflects the competing effects of fluid flow inertia 

and the submerged weight of solids. A modified form of Froude number (E) is used 

for this purpose: 

Fr =U (4.6) 
gD(s -1) 

Where S is the specific gravity of solids. 

Thus, the final relationship for pressure losses associated with slurry flow in a 

horizontally oriented pipeline may be developed with all the variables included. 

Thus: 

In, 1N 
= f(C, F 

, 
CD) 

1 
Ch. 3 (3.15) 
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An algebraic form for the above relationship would be: 

ln1 ýlw 
= K"l., a 

. 
Fr' 

l 
ti, ý 

(4.7) 

Where K, a, b and c are curve fitting constants. By carrying out the tests in the 

experimental programme and including the results in the non-dimensional 

relationship (4.7), a model will be developed that covers the aims of this work. 

Statistical testing for curve fitting adequacy is employed (details are in chapter (6)). 
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Chapter 5 

Design of the Test Rig 

5.1. Introduction 

5.2. Sand Screening Rig 

5.3. Test Loop Description 

5.4. Instruments Description and Calibration 

5.5. Terminal Fall Velocity Test Rig 

56 



I. Introduction: 

The test rig was designed to be of industrial scale size in an effort to reflect the 

results of the experiments directly to industrial applications. The test ri`º comprises 

slurry holding tank (15 cubic meter capacity). a centrifugal circulating pump 
(nominal capacity 0- 200 cubic meter per hour flo\\ rate) and a long, pipe loop 

leading to a horizontal pipe test section (152 mm diameter and 14.59 meters long). 

The test loop was so designed to allow for the possibility of varying, flow rate 

through adjusting isolating valves at the discharge side of the test section. 
Controlling the flow rate at the downstream of test section allowed for minimal 
disturbances before the pressure test points. The whole system is drainable to allo\\ 
for cleaning and dumping of any slurry mix at the end of a series of experimental 

runs. Air venting is facilitated at the cardinal points of the system to prevent 
fluctuations of measurements due to air entrapment. The instruments for pressure 

drop and flow rate measurement are lead to a chart recorder for simultaneous 

recording of both the pressure drop and the flow rate. Yet the test loop configuration 

is simple and easy to manipulate. Figure (5.1) is a pictorial view of the test rid 

In the course of preparation for conducting experiments, the need arose for sand 

preparation in accordance with the specifications required for achieving the 

objectives of this research exercise. The screening and classification of sand proved 

to be indispensable in obtaining the required sand sizes that are not readily available. 

The selection of sand for this research work is partly due to its availability, its shape 

characteristics (non spherical) and its fairly good resistance to attrition 

(disintegration during conducting experiments). 

5.2. Sand Screening Rig: 

A multi deck vibrating screening machine was built to classify the raw sand used in 

this exercise (valley sand) into reject cut sizes and desired size distributions. It is 

required that two sand populations be prepared that are wide apart in their range of 

sizes (details of sands particle distributions, their benefits to experimental work and 
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results obtained are extensively illustrated in chapter 6). The main aim of the 
separation of these sand populations is to reveal the differences in pressure losses 

associated with slurry flow due to differences in solids particle distribution while 

maintaining the same concentrations. 

Figure (5.2) shows the details of the screening machine. At the top entr , raNý sand of 

wide particle size distribution is led to the top of an inclined screen mesh to scalp the 

particle sizes of sand exceeding 4.75 mm sieve size. Scalped sizes are piled in a 

reject pile. Particle sizes below 4.75 mm sieve size pass through the top screen mesh 

to the second screen deck that is of 1.7 mm sieve size. A second pile is formed for 

sizes ranging from 4.75 mm to 1.75 mm as a product of the sizes retained on the top 

of mesh of sieve size of 1.75 mm (denoted Sand (A) that is the first and coarser 

population to be used in experimental work). Remaining sand of size less than 1.7 

mm passes through to the top of a third stage screening deck having a mesh size of 

0.6 mm. Sand size range from 1.7 mm to 0.6 mm is retained on the top of the 0.6 mm 

mesh and piled separately to a second reject pile. The last screening deck has a mesh 

size of 0.15 mm and retains at its top sizes between 0.6 mm to . 
15 mm (denoted Sand 

(B) that is the finer population to be used in experimental work). Sand particle less 

than 0.15 mm are piled below the last stage of screening as a reject pile (full 

investigation of sand characteristics forms the introductory part of chapter 6). 

5.3. Test Loop Description: 

Figure (5.3) shows the process and instrumentation diagram of the test rig. The 

circulating pump (Denver HG 100/100) circulates slurry from the slurry holding tank 

into a 4" inch discharge pipe. The slurry is kept under agitation to prevent settling in 

the holding tank. The bottom of the tank is conical in shape and is dished at its 

bottom end to ensure smooth and homogenous flow. Reliability of this tank 

configuration was proven to be adequate during experimental work (i. e. pulsating 

flow at low frequencies indicated frequent choking of tank discharge with improperly 

mixed slurry which was observed each time the system was started but disappeared 

shortly afterwards). 
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The circulating pump discharge is led to a 152 mm pipe that is vertically oriented to 

allow correct installation of a 152 mm magnetic flow meter (Pulsmau V' D\11 6S 32). 

The selection of this pipe size was dictated by the size of the magnetic flow meter so 

that a correct matching of size is obtained to prevent abrupt size changes in the 

neighbourhood of the flow meter. A straight vertical run exceeding ten times the pipe 
diameter was maintained to allow correct operation of the flow meter. The pipe size 
is then reduced after the flow meter to 100 mm diameter to eliminate the possibility 

of solids settling and system instability. At the top end of the 100 mm pipe, an air 

vent was installed to purge the system of entrapped air. The pipe connects to the test 

section through a steep inclination to reduce the possibility of solids settling and 

ensure adequate air purging. 

The pipe test section is enlarged to 152 mm diameter to allow for relatively gradual 

change of flow velocity. A straight uninterrupted horizontal run of approximately 3 

meters from the last pipe enlargement is maintained before the upstream test point 

(piezometric ring) to eliminate end effects on the pressure signal at test point. The 

pipe test section length was maximized to a length of 14.59 m to obtain higher 

differential pressure readings. The down stream test point is kept 2 meters from the 

next pipe direction and pipe size change. An inverted U- shaped final 100 mm pipe 

section is led back into the slurry-holding tank. This configuration ensures 

backpressure on the test section to prevent it from running partially filled 

The flow rate is changed by a pair of valves at the discharge end of the test section. 

The slurry is prepared by measuring a quantity of water and a quantity of solids to 

give the desired concentration. Short test runs are conducted to minimize attrition of 

the sand particles due to repeated circulation in the pump and piping. Every time the 

concentration was changed, the slurry tank was emptied and thoroughly washed. A 

by pass is provided for discharge of the used slurry and introducing a fresh charge 

Figure (5.4) shows the instrumentation arrangement on the test rig. The magnetic 

flow meter signals are directly led to the chart recorder. The chart recorder allows for 

recording on 4 channels simultaneously. The Differential pressure transducer 

(Rosemount 1151 DR) takes pressure signals from two piezometric rings that are 
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14.59 meters apart. Both the flow rate (0-200 meter cubes per hour) and the pressure 
drop (0-3500 mmH2O) are recorded on a separate channel on the chart recorder. 
Readings of corresponding signals of flow rate and differential pressure are marked 

on the recorder chart paper. 

Figure (5.5) shows the details of the testing points (piezometric rings). The pipe test 

section is surrounded with a 250 mm pipe section welded to it to form a plenum 
between the test section and the outer boundary of the larger cross section. Three 

holes are drilled on the circumference of the test section of 5 mm diameter at equal 

spacing. The reason for drilling these holes was to ensure non-blockage of the test 

point and to absorb small pressure surges that helps in obtaining steady pressure 

signals and reduces ripples. The spacing (plenum) between the inner and outer pipe 

sections served well in collecting any escaping particles that may otherwise hay e 

entered into the pressure test tubing and may have blocked it. Air vent and drain 

cocks are installed to allow frequent cleaning and air release. This configuration of 

test pressure points operated up to expectation and helped much in obtaining fairly 

stable pressure signals. On many occasions when abnormal signal pulsations were 

observed, draining and venting of the test points restored the pressure signals back to 

acceptable limits. 

The test rig was first commissioned on plain water to verify stable operation and 

capability to control of flow rate as needed. 

5.4. Instruments Description and Calibration: 

It was decided to include the instrument description and calibration procedures and 

results in an appendix (Appendix (D) at the end of this work). 

5.5. Terminal Fall Velocity Test Rig: 

A separate test ri was built to measure the terminal fall velocity of the sand 

particles. This is important to distinguish the drag behaviour of the sand particles 
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The test rig comprises a 2' diameter transparent tube of 10 meters length. The tube 

was vertically fixed and the terminal velocity measured by noting the time taken by a 

particle to pass through the last meter of the tube length. The measurement of 

terminal velocity at the end of the tube length ensures that an equilibrium state is 

reached. Visual observation of the falling particles during conducting the 

experiments verified equilibrium state by comparing the results wt ith the results 

obtained for the next one-meter length up the measurement length (results obtained 

from this rig are reported in chapter 6). 
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Chapter 6 
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6.1. Introduction: 

The experimental results, reported hereinafter, start with an examination of the solids 

specifications used in experimental work, obtaining their drag characteristics as 

compared with standard spheres on the basis of equal mass. and then reporting the 

experimental results of the pressure drop in the selected pipe dimensions Finally. the 

pressure drop correlations are derived and results discussed. 

Due to the importance of drag mechanism in a slurry system, it is a prerequisite (for 

obtaining a pressure drop correlation) to evaluate critically the existing correlations 

and compare them with the experimental data obtained in this work. Appendix (A) 

reviews the drag characteristics for standard spheres, their terminal fall velocity and 

notes the differences in the reported predictions. For this purpose three of the mostly 

used correlations were examined. Special emphasis is given in this chapter to the 

deduction of the coefficient of drag as it embraces the combined effects of 

turbulence, diffusion and viscous drag of liquid on solids. Although these flow 

mechanisms are physically inseparable in a real slurry flow problem, they can be best 

described by a global coefficient of drag. The most important parameter in the 

deduction of the coefficient of drag is the free fall terminal velocity because it can be 

readily measured. 

However, because the solids used in experiments are not perfect spheres and contain 

more than one particle size it was necessary to devise a procedure by which the 

effects of shape and multi- sizes are accounted for. This twofold procedure assigns a 

weighted average diameter for the multi fractions of solids used in experiments and 

then extends the treatment to mitigate the differences in masses and compares the 

shape imperfections to the standard spherical shape. 

Experimentally obtained results for the pressure drop are for an industrial scale test 

rig so that they can be readily applicable for hydraulic design of piping systems of 

similar nature. 
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6.2. Carrier Liquid Specifications: 

Carrier liquid is plain water at 30 C, having density of 995.7 Kg' m' and dynamic 

viscosity of 0.000798 N/r2. Water is known for its Newtonian viscosity relationship 
It is taken as such in this work because of the absence of extremely fine solid 
material (e. g mud, silt etc. ) that may modify viscosity 

6.3. Solid Material specifications: 

Solids employed in the experiments are washed natural sands of roughly prismatic 

shape. The prismatic shape is due to the attrition process on natural sand by the 

passing of time. Sands are intentionally selected in two distinctive populations 
(mixes of various sizes proportions). The first is fairly coarse mix of sand (Sand A). 

while the second is fairly fine mix (Sand B). 

The sand populations were selected to be wide apart so that their behaviour in slurry 

may be distinct from each other. A standard sieve shaker was used to separate the 

different particle sizes. A certain particle size is that size passing the bigger mesh 

square opening and retained on the next smaller one below it. By this way, a particle 

retained above a certain sieve is assumed to have a sphere diameter equal to that 

sieve opening dimension. Thus, two issues have to be resolved, first, an average 

diameter (for an equivalent perfect sphere) has to be assumed for sands having more 

than one particle size and the second is to deduce a relation that equates the mass of 

the hypothetical sphere to the true mass of equivalent sand particle. 

Due to the fact that particle sizes, in a given particle size distribution, do not exist in 

equal proportions, a simple average will not reflect a true average. Instead, a 

weighted average is more appropriate as it accounts for the relative weight 

percentage of each size fraction (proportion) in the particle size distribution. Thus: 

dam,, _ ("', d, (6.1) 
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where iv, is the weight percentage for the i/h fraction and c! is the sieve opening 

dimension in mm (sieves are of square opening) denoting, an equivalent sphere 
diameter for the corresponding sand particle. 

It is worth noting that, up to this end, the true mass of a sand particle is not accounted 
for. In the literature, despite its importance. a solution to the issue is not concentrated 

on. It was observed by the researcher that this could be partly attributed to the use of 

single particle size (either a perfect sphere or assumed as such) or apparently it was 

assumed not important. It could be a reasonable assumption to ignore mass 
differences between a single particle size and a sphere but this could hardly be 

overlooked in a more complicated case were multi sizes are considered. 

The procedure will be applied to each sand material in turn as follows 

a) Sand (A), Coarse Sand: 

The nominal sizes obtained from the sieve analysis range from 4.75 mm to 1.7 

mm as accumulated above the corresponding, mesh. Table (6.1) summarizes the 

results. 

Table (6.1), Particle Size Distribution of Sand (A) 

Sand (A) Coarse: Measured Density: 2600 K/m;, Sample Size. 467.1 gm. 

Sieve Opening 

U. S. Mesh No. to Mesh Square o/ Cumulative Weight (gm) 

ASTM E-1 1-87 Opening (mm) 

4 4.75 1.73 8.1 

4 2766 129.2 

6 3.35 58.64 273.9 

12 17 100 467 1 

Weighted Average Dia. 2.861 mm 
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b) Sand (B), Fine Sand: 

The nominal sizes obtained from the sieve analysis ranges from 0.6 mm to 0.15 

mm as accumulated above the corresponding mesh. Table (6 2) summarizes the 

results. 

Table (6.2), Particle Size Distribution of Sand (B) 

Sand (B) Fine: Measured Density: 2650 Kg/m;, Sample Size 340.7 ýgm. 

Sieve Opening 

U. S. Mesh No. to ASTM Mesh Square 0/ Cumulative Weight (`gm) 

E-1 1-87 Opening (mm) 

30 0.6 30.79 104.9 

40 0.425 49.55 168,8 

50 0.3 71.76 244.5 

70 0.212 93.16 317.4 

100 0.15 100 340.7 

Weighted Average Dia. 0.387 mm 

Figure (6.2) shows the particle size distribution for (A) and (B) respectively 

Main observations on the figure are: 

i. Sand (A) is widely graded compared with Sand (B) 

ii. The axes, around which the sizes are distributed, are sufficiently wide 

apart (forming two distinctive populations). 

iii Constituent sand sizes, for the finer population (Sand (B)), are in fairly 

similar proportions compared with the coarser sand population (steadier 

rise of the curve for Sand (B)). 
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6.4. Terminal Fall Velocity Correlation: 

0 
45 

Terminal fall velocities of complete spheres were investigated in Appendix (A) and 

three of the mostly used correlations were examined along with the coefficient of 

drag in each case. Relative errors ranging from ± 5% to + 10% were observed for the 

same physical conditions. 

For non-spherical particles, nominal (equivalent) diameters are usually assumed 

bringing in complexities of how to equate masses of particles and, moreover, shape 

departures from spherical necessitate devising a suitable shape factor. Thus. 

a) Mass Ratio: 

In order to separate the effect of the adoption of an equivalent diameter in the 

sieve analysis and the existence of more than one particle size, a mass 

ratio (yrn ) is deduced that is used as a correction factor in finding, the terminal 

velocity for a mix of non- spherical particles in terms of standard correlation for 

spheres. The procedure is as follows: 
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Take a cube filled with spheres then. 

Packing ratio for True volume of spheres 
complete spheres Bulk volume of spheres 

;T 
n- d3 

6 
_yr 

ný. d 3 6 (6.2) /1, (/ 

Two experiments were conducted to obtain the actual packing ratio for both Sand 

(A) and Sand (B). A graduated tube was filled with a measured quantity of each 

of the materials in turn, a known quantity of water was added and both the hulk 

volume of the solid materials and their true volume were observed. Applying 

equation (6.2) for the true sands and rearranging, the mass ratio (y/,,,,,, ) is 

obtained: 

(6.3 ) 

where 
) is the mass ratio, C', is the true sands packing ratio and S, 

r 
is the 

packing ratio for sand as if it was complete spheres 

The mass ratio inflates the equivalent sphere by its value to obtain equal mass 

with the corresponding prismatic sand particle. This is necessary for calculating 

both the terminal velocity and the coefficient of drag. 

Table (6 3), Actual Packing and Mass Ratios (yr, ) for experimental Sand 

Sand True Volume (ml) Bulk Volume (ml) Packing Ratio Mass Ratio 

(A) 195 330 0.59 1 126 364 

(B) 237 365 0.65 1.240909 
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Table (6.3) summarizes the results. It is clear from these results that the mass 
ratio exceeds unity (a given sand particle is heavier than an equivalent sphere of 
sand), which is physically justified because of the prismatic nature of sand. A 
direct benefit of obtaining a mass ratio is that it can be utilized to cons ert the 

equivalent diameter of a given material population (multi-sized sand) to an 

equivalent sphere diameter for the employment in finding the terminal velocity 

and the coefficient of drag. Thus: 

M 
particle 

= Y' mass 
X Al 

sphere 

6 
(Deq =Y 

mass 
X6 

\U sphere) (6.4) 

I 
Deq d 

sp 
X( 

mass 

)3 (6.5) 

where Degis the equivalent sand particle diameter accounting for equal mass with 

a true sand population and dsp is the weighted average diameter for a sphere for a 

given sand population. 

This procedure is an improvement on assuming equivalent diameter by averaging 

only. It was illustrated earlier (in the literature review) that many averaging 

methods were used on purely mathematical manipulation but none appears to 

have extended the treatment further to allow for physical equivalence with 

particles true mass. The concept of devising a mass ratio helps in reducing the 

differences between the coefficient of drag for different shapes of particles to 

those related to shape only by maintaining the masses of these particles similar to 

equivalent spheres. In this work, the weighted average diameter, combined with 

mass ratio, is used in the conclusion of the terminal velocities and consequently 

the coefficients of drag. 
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b) Terminal Velocity Correlation: 

In this work, terminal fall velocities were determined experimentally for each 

particle size. The measurement of terminal velocity is relatively simpler than 

measuring the coefficient of drag directly due to the small size of the particles. 
Terminal fall velocity, when determined experimentally. allows for the 

calculation of the coefficient of drag on experimental basis. Also, terminal 

velocity is a unique value for a given particle that determines drag particle-liquid 
interaction. By conducting simple dimensional analysis, the experimental 

terminal velocity can be related to the standard terminal velocity for a sphere of 

equal mass. The correlation for the latter may be readily obtained from literature 

(Appendix (A) reviews some of the most commonly used). Thus: 

U, 
_ . 

f(dsp7PnP> 
>PLl9' Vm) (6.6) U's 

Rearranging by finding non-dimensional groups by inspection, 

n 

S(PS - PL ). yl"la. s. s, 
d p 

Ut =K 2 
Uts (6.7) 

PL 

PL 

Where the non-dimensional group between the braces of the RHS is a modified 

form of Archimedes number to take into account the mass ratio. Physically, 

Archimedes number relates the apparent weight of a mass falling at terminal 

velocity in an inertial- gravitational field to the resisting viscous forces of the 

liquid. In this work, it is employed to mark the behaviour of a falling sand 

particle in terms of an equivalent mass for a corresponding sphere. However, 

Archimedes number is employed here in a modified form to allow for mitigating 

mass differences between a sand particle and an equivalent sphere. Thus, 

enabling direct calculation of a sand particle terminal velocity as a function of 
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that for a sphere of equal mass. Shape differences between a sphere and a sand 

particle of equal mass are partly accounted for by the constant K and the 

correlation exponent n. It is expected that these two quantities change for 

different shapes. Differences in shapes of sand particles employed in this exercise 

are considered minor because their shapes are nearly prismatic (natural sand from 

the same source valley) due to fairing of sharp edges through long-term attrition. 

Using a power law regression function, best fit is obtained for minimum error in 

the form: 

U` 
= 0.794 1[Ar, 

0.0333 

Uts 
(6.8) 

Table (6.4) summarizes the results for the above correlation. While terminal 

velocity 
(U)is found experimentally, 

(U, 
S) 

is calculated according to a 

standard correlation (in this case Turton and Levenspiel 1471 correlation according 

to the algorithm reported in Appendix (A)). Instead, any suitable correlation for 

sphere terminal velocity could be used provided that its sensitivity is pre- 

examined compared with other correlations (fig. 5. A in appendix (A) compares 

three of them). The correlation fits fairly well with the experimental data. The 

relative error between the experimental points and the correlation is rather 

distributed in the range of ± 8% while the average for all points is less than 1%. 
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Table (6.4), Results of Terminal Velocity Correlation for Sands (A)R (B) 

Particle Terminal Velocity (m/s) 
% relative 

Dia. 

(mill) 

Sphere 

(Uts) 

Particle (Ut) 

(experimental) 

Correlation 

(Utcorr. ) 
error 

0.15 0.0183 0.0134 0.0124 -7.9% 

0.212 0.0303 0.0184 0.0199 7.48% 

0.3 0.0474 0.0295 0.0301 1.97% 

0.425 0.0709 0.0365 0.0398 8.3% 

0.6 0.1019 0.0613 0.0603 -1.71% 

1.7 0.2562 0.1484 0.1372 -8.18% 

3.3 5 0.4169 0.2124 0.2086 -1.8100 

4 0.463 0.2216 0.2276 2 620%0 

4.75 0.5081 0.2319 02455 5.55% 

%Average Rel. error U. i?? %o 
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6.5. Coefficient of Drag Correlation: 

Coefficient of drag for sand particles is directly obtained from the experimental 
results for terminal velocities. Applying equation (A. 2) (Appendix (A)) in a modified 
form to include the equivalent particle diameter and the mass ratio. Thus: 

1/3d 
(PS 

-PL) 
D3 

('mass) 

SP 
9U 

t') 
PL 

(6.9) 

However, in the absence of the terminal velocity, a correlation is needed in a similar 
form to those reviewed in Appendix (A). The procedure starts with standard form 

(equation A. 3) in which the particle Reynolds number is calculated for sand particles 
(equivalent diameter and mass ratio), the coefficient of drag is found according to 

equation (6.9) and then correlating the coefficient of drag as function of particle 
Reynolds number. Thus: 

CD = K(X )n 
(6.10) 

where X is the R. H. S. of Turton and Levenspiel 1"' standard correlation for spheres 

but modified by equivalent particle diameter and mass ratio, K and n are correlation 

coefficients. Using a power law best-fit regression function the final form of the 

correlation is: 

C, D = 3.453 wo 7 (6.11) 

Table (6.5) summarizes the results. Relative error percentage is in the range of 

±12%. Bearing in mind that terminal velocity correlation contributes by about ±8'o 

of the error. However the error is fairly distributed as indicated by the low value of 

the average error, which is less than 1%. 
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Table (6.5), Results of Coefficient of Draggy Correlation viz. Experimental 

Particle Diameter 
(mm 

Coefficient of Drag 
%Relative Error 

Correlation Experimental 

0.15 23.06714 25.36403 -9.96°/s 

0.212 13.87792 14.06768 -1.37% 

0.3 9.04107 8.691358 3.87" 

0.425 6.317335 5.896437 6.66% 

0.6 4.687121 4.3231 12 7.77% 

1.7 2.479875 2.213472 10 741o 

3.35 1.865424 1.886899 -1 15% 

4 1.776578 1.892622 -6.53% 

4.75 1.713 546 1.931269 12.71% 

Average -0.30% 

Figure (6.4) exhibits a comparison between a standard correlation for spherical shape 

and that of the true sand experimented on in this work. The general trend is the same. 

At lower Reynolds number, both curves come closer indicating that finer particles 

are relatively near to round shape compared with the coarser ones. As Reynolds 

number increases, the correlation slope reduces until toward the highest values it 

becomes nearly asymptotic to horizontal. This agreement is in conformity with the 

well-known dependence of the coefficient of drag on the Reynolds number only at 

higher values of the latter. However, the curve for sand particles is shifted up higher 

than that for perfect spheres. Its decrease is rather less steep than that for spheres. 

These differences may be attributed to the shape imperfections of sand giving rise to 

drag specially at higher particle sizes (associated with higher Reynolds numbers). 

This is to be expected, as the larger sand particles are more of a prism than a sphere. 
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6.6. Pressure Drop Experimental Results: 

Table (6.6) summarizes the experimental results obtained for the various 

concentrations and flow rates (in terms of the average velocity of flow in m/s). The 

sand used was pre washed so that to eliminate contamination with dust or nmud. The 

pressure drop readings are quoted in terms of mm H2O per meter of pipe length. The 

data clearly indicate that for the same concentrations the pressure drop is not equal 

for the two sand populations (Sand (A) and Sand (B)). Also, it was not possible to 

obtain higher flow rates for the test runs at higher concentrations and the coarser 

particles. The reason is that it was necessary to obtain stable readings, which was not 

achievable due to the care that was taken to discard the readings that produced wavy 

unstable signals. At higher flow rates for coarse or high concentrations the pump 

started producing higher vibrations. Moreover, the control of flow rate was restricted 

to the valve at the outlet of the pipe test section to eliminate any possible turbulence 

due to restricting the incoming flow at the entrance of the pipe entrance (entrance 

effects). This may explain the relatively lower number of settings of flow rates 

However, the data points are distributed over a reasonable range of flow rates 

sufficient to represent the relation between pressure losses and flow rate with a fair 
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degree of accuracy (as will be seen further on in discussing the results in more 
detail). 

Table (6.6), Pressure Drop Experimental Results viz. Velocity of Flo\\ 

Test Section Length: 14.59 m Pipe Diameters 6" (154 mm) 

Pressure Drop (mm H20/m pipe length) 
Velocity 

Liquid 
of Flow Sand A Sand B 

Carrier 
m/s) ( 

C= 0.04 C 0.056 C= 0.09 C= 0.04 C= 0.056 C= 0.09 

2.0292 71.967 

2.0143 95.956 

1.9000 73.350 

1.8800 31.528 

1.8502 48.389 

1.8203 57.574 

1.8200 55.520 

1.7888 
------ ----------- ----------- ------------ ------------ 

27.416 
------------ ------------- 

1.7590 
----------- ------ 28,239 

1.7300 79.781 

1.6711 52.776 

1.6300 
----- ----------- ----------- ------------- ------------ 

25.017 
-- - ------------- 

1.6263 
----------- -------- 52.913 

1.6200 89.788 

1.6114 35.888 

1.5816 
--------- 

43.660 
----------- ------------ --------- --- -- ---- 

1.5667 
---------- - ----------- - 

69.568 

1.5503 23.989 

1.5200 17.409 

1.4921 
-- --- ------------- -- ------- 

125.840 
---------- -- 

1.4921 38.590 
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.. 
/ Continued 

... 
Table (6.6), 

Velocity 
Pressure Drop (mm H20/m pipe length) 

of Flow 
(mis) 

Sand (A) Sand (B) 
Liquid 
Carrier 

C= 0.04 C= 0.056 C= 0.09 C= 0.04 C= 0.056 C=0.09 

1.4622 50.377 

1.4473 57.300 

1.4324 
------------- 

1.4175 

26.000 
----------- ------------ 

59.973 
---------- 
66.278 

----------- ------------ - ----------- 
11.926 

------------ 

1.3714 19.740 

1.3279 53.256 

1.2981 
------------- 

1.2384 
----- ------ -------------- ------- --- ------ ------ ------------- 

95.956 
---- 

81.56 3 

1.2300 21.614 

1.1936 71.282 

1.1600 
------------- 

1.1340 
----------- 

29.472 
------------ - 

34.407 
----------- 

8 77', 
--- 

1.1329 15.833 

1.1200 23.715 7.814 

1.1100 
------------ 

1.0584 
----------- ------------ 

30.158 
----------- ----------- ------------ -------- 

16.175 

1.0444 62.371 

1.0146 57.916 

0.9848 58.602 

0.9698 28.650 

0.9541 12.543 

0.9400 13.228 

0.9251 

0.9000 11.652 

16.175 
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I Continued 
... 

Table (6.6), 

Velocity 
Pressure Drop (mm H20/m pipe length) 

of Flow 
(m/s) 

Sand (A) Sand (B) 
Liquid 
Carrier 

C= 0.04 C= 0.056 C= 0.09 C= 0.04 C= 0.056 C=0.09 

0.8800 

0.8795 

14.393 

11.857 

0.8654 
-- -------- 
0.8646 

---------- ------------ --------- 
14.393 

----- ----------- ------------ ---- 
11.995 

0.8505 18.917 

0.8400 5.003 

0.8356 
------------- 

0.8050 
----------- -------------- ----------- ------------- ------------- 

54.832 
------------ -------------- 10.350 

0.7162 43.180 

0.7013 24.674 

0.6565 
------------- 

0.6416 
-------- ------------ 

14.051 
----------- ----------- 

8.019 
------ 

0.6112 8.088 

0.6100 3.633 2.19-3) 

0.5968 
------------- 

0.5814 
----------- 

7.197 
------------ 

9.321 
---------- ----------- ------------ ------------ ----------- 

7.471 

0.5521 6.717 23.989 

0.5217 4.798 

0.4770 

0.4625 3.427 

564 
---- -------- 

0.4178 5.346 

0.3730 20.836 

0.3700 
------------- 

0.3600 
----------- ------------- 

2.399 
----------- ------------ ------------- ------------- 

0.960 
------------- 

0.3581 8.088 

0.1940 4.798 

0.1800 1 
. 
234 
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6.6.1. Pressure Drop Experimental Results for Coarser Population 

(Sand (A)): 

Figure (6.5) is a plot of the pressure drop against the a%era`ýe \eiocit% of tlo%\ for the 

coarser population (Sand (A)). Preliminary examination reveals that as the 

concentration increases the pressure drop increases. The curves seem to represent the 

trends fairly well (the curves of 0.04 and 0.056 concentrations are closer to each 

other while the curve of 0.09 concentration is situated further above) At the lower 

end of flow rate the curves approach the carrier liquid curve and become closely 

spaced indicating inception of accelerated settling. However, the readings at the 

lower end were stable and repeated themselves well during tests. Much lower values 

were not achievable due to severe vibration of the pump (indicating significant 
failure of suspension of solids). The velocities within this failure range fall 

consistently around 0.2 m/s. 
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Fig. (6.5), Pressure Drop viz Velocity of Flow for Sand (A) at Different 
Concentrations 

At higher velocities of flow (higher flow rates), the trend indicates greater rise 

compared with carrier liquid. The trend is fairly similar for the lower concentrations 

and significantly higher for the higher concentration. Even less scatter of the data 

points is observed at the highest concentration. This may suggest that the drag 
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mechanism becomes more effective as the concentration increases (in terms of 
imparting more energy to particles by fluid stream). The explanation is in two parts. 
first, suspension is increased due to increased turbulence and second, more enerp' 
exchange takes place between particles due to increased frequency of mutual 

collisions (being confined within the same boundary but with increased number of 

particles). Moreover, better degree of homogeneity is expected due to accelerated 
diffusion as a result of repeated collision (particles tend to follow the lowest energy 

path towards some form of equilibrium state). This may be confirmed by the greater 

rise of the trend line for the highest concentration as compared with the other lower 

ones. 

In the intermediate region of the trend lines it seems common behaviour for all of 

them to have lesser rise than at the higher end. This could be attributed to increased 

heterogeneity of the concentration distribution due to relatively lower turbulent 

suspension and less severity of mutual collisions. However, the drag mechanism 

seems to work well as may be observed by the continual rise of the trendlines. 

In the absence of experimental results about the exact degree of heterogeneity of the 

concentration distribution (being considered out of scope of this work), the 

commonly known relations for the starting of heterogeneity and formation of moving 

beds (departing from homogeneity of concentration distribution) were examined. 

Correlations of table (2.1) reviewed in chapter (2) were solved for the particle sizes 

of Sand (A). All proved unrealistic indicating either formation of moving beds at 

high velocities of flow exceeding 4 m/s or indicating full suspension at extremely 

lower velocities below 0.2 m/s. However, the relation given by Wilson 1241 seems to 

yield reasonable estimation of onset of suspension for the lower range of particle 

sizes. The equation is: 

45d 

L; =0.6U, 
? 

expD Ch. 2 (2.9) 
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Fig. (6.6), Incipient Suspension Velocity (Sand (A)) 

Figure (6.6) depicts a linear relation between the deposition to terminal velocity ratio 

and the exponential of the R. H. S. and suggesting higher velocities for incipient 

suspension at higher multiples of terminal velocities (ran-in- from around 6 to 15) 

In its non- dimensional form, Inception of suspension is initiated at higher 

suspension number (the exponential quantity at R. H. S. of above equation). In 

conjunction with data in table (6.7), it can be seen that at higher sand particle 

diameter, suspension starts at a velocity near 3.7 m/s while at the average particle 

diameter for Sand (A) the value falls to around 2 m/s However, applicability of 

Wilson's relation is much 

in doubt for Table (6.7), Incipient suspension Data for Sand (A) 

polyfractional sand (such 

as Sand (A)). In this 

work, visual observation 

indicated significantly 

higher degree of 

suspension than may be 

predicted by the above 

relation. Observing the 

effluent coming out of the 

d. (mm) (Vt) m/s (Ut) m/s 
Suspension 

(Vt/Ut) 

2.86 2. 08000 0. 23758 8. 75496 8.75496 

1.70 0. 85553 0. 13719 6. 23618 6.23618 

3.35 2. 10663 0. 20858 10 
. 
09975 10.09975 

4 2. 77925 0 
. 
22758 12 

. 
21232 1121232 

4.75 3. 73278 0 
. 
24550 15 

. 
20465 15.20465 

test section snowea au 

particle sizes to discharge virtually simultaneously. 
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Also, it was possible to filtrate out almost all the sizes of sand during) sxý itching, from 

one experimental run to another. This could be explained by the fact that the above 
relation did not account for the accelerated suspension due to existence of smaller 
particles. 

In an effort to further examine the validity of equation (2.9), another relation that 
determines the portion of solids moving in contact (creeping) load was examined 

The relation of Gillies ei at I "'I is: 

ýýý 
- exp(-0.01841ýý ) Ch 2 (2 17) 

This relation is heilt on enuation 
Table (6.8), Contact Load for sand (A) 

(2.9). Table (6.8) summarizes the 

results of this relationship. As it can 

be seen, it could hardly predict the 

existence of suspended part of Sand 

(A). Actually, it suggests that all the 

solids move as creeping bed. In this 

work, visual observation and the 

ability to filtrate virtually all the 

solids out of the test loop gives an 

evidence of its poor validity to 

polyfractional slurry similar to Sand 

(A) mixture. Also, the relatively 

higher rise of the trend lines in fig. 

(6.5) when velocity of flow was 

increased further suggests that 

suspension higher than predicted by 

Velocity Sand A Contact Load (Cc) 

(111/S) 
C 0.04 C= 0.056 C= 0.09 

0.1 0.0397 0,0556 0.0893 

0.3 0.0391 0.0547 0.0879 

0.5 0.0385 0.0539 0.0866 

0.7 0.0379 0.0530 0.0853 

0.9 0.0373 0.0522 0.0839 

1.1 0.0367 0.0514 0.0827 

1.3 0.0362 0.0506 0.0814 

1.5 00356 
1 

0.0499 0.0801 

1.7 0.0351 0.0491 0.0789 

1.9 0.0345 0.0483 0.0777 

the aoove reiauons is war iji-; Nia,, 

(probably due to more efficient drag mechanism embracing turbulent suspension and 

dispersive diffusion due to collisions). 
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6.6.2. Pressure Drop Experimental Results for finer Population 

(Sand (B)): 

Figure (6.7) is a plot for Sand (B) of pressure losses in meters H2O per meter of pipe 
length versus average velocity of flow in m/s. The general rising trend is observed 
for all concentrations. The same precautions discussed for Sand (A) apply, the range 

of velocities was dictated by the stability of the pump operation. At the lower end of 

the curves, they converge to the carrier liquid curve indicating the same trend as for 

Sand (A). However, convergence is significantly less than for Sand (A). The trend 

lines rise more rapidly as the velocity is increased, indicating greater influence of 
drag due to turbulent suspension taking place at lower velocities of flow. At the 

higher end, much divergence is observed in excess of that observed for Sand (A). In 

general, all the set of curves of Sand (B) are shifted higher up on the pressure loss 

scale for the same flow velocities compared with the set of Sand (A). Moreover, the 

trend is much pronounced for the higher concentration. The same reasoning apply as 

for Sand (A), more efficient drag mechanism is observed due much higher drag 

coefficient for smaller particles than for relatively coarser ones and the effect of more 

frequent particle collisions is even more due to the increased number of particles of 

smaller size filling the same void of coarser ones (for corresponding similar 

concentrations). The effect of divergence is specifically higher for the highest 

concentration confirming increased diffusion and inter-particle collisions. In the 

intermediate range, the rise is seemingly consistent and at a rate higher than observed 

for Sand (A). This may be directly attributed to the relative ease with which smaller 

particles are suspended. To validate the latter case, the same application of equations 

of incipient suspension and contact load determination were repeated (equations 2.9 

and 2.17). 
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Fig. (6.7), Pressure Drop viz. Velocity of Flow for Sand (B) at Different 
Concentrations 

Figure (6.8) shows clearly that suspension starts much earlier than for Sand (A). For 

even the larger particle sizes, the suspension is clearly taking place at a reasonably 

lower velocity in the range of 0.27 m/s. The full range of suspension velocities is in 

good agreement with the visual observations in this work. Re-examining the lower 

end of fig. (6.7) further confirms that almost all constituents of Sand (B) go into 

suspension within the proximity of the tabulated velocities. Although, unstable 

operation of the pumping device prevented further investigations at much lower flow 

velocities. Suspension number is much lower than for Sand (A). One of the main 

differences observed thus far between Sand (A) & (B) is the more accelerated 

suspension of Sand (B) at the lower range of measured velocity of flow, which 

further indicates that Sand (B) assumes more homogeneous behaviour. The 

consequence of this observation explains why the pressure drop curves for Sand (B) 

are shifted vertically higher up for the same concentration as compared with Sand 

(A). This is supported by the fact, commonly stated in the literature, that 

homogeneous suspension consumes much more energy than heterogeneous pattern. 

The homogeneous pattern is marked with even concentration distribution that renders 

particles to move in a nebular form. Although homogeneous suspension is not 

practically sought in industrial applications due to excessive energy consumption, in 
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case of Sand (B) it is readily attainable and seems to be unavoidable. The balance 

between the initial cost of piping and the running, cost will most probably favour the 

choice of higher flow velocities and higher energy consumption. 

4.2 4.3 4.4 4.5 4.6 

Non-Dimensional Suspension No. 

Fig. (6.8), Non- Dimensional Incipient Velocity (Sand (B)) 

Tables (6.9) and (6.10) show clearly that suspension of Sand (B) is more pronounced 

than that of Sand (A) for the same concentration. However, contact load prediction 

using equations (2.9) and (2.17) seems to suffer the same inadequacy except at the 

higher end of the flow velocities. This suggests, again, that the effect of mixed sizes 

and the possible increased suspension due to smaller particles are not accounted for. 

Visual observation 

coupled with the increased 

pressure losses for Sand 

(B) for the same 

concentrations of Sand 

(A) and the prediction of 

lower contact load (table 

(6.10) higher end) are 

strong evidences that drag 

mechanism is remarkably 

more efficient for lower 

particle sizes and possibly 

4.6 

4.5 

4.4 

4.3 

4.2 

4.1 

4 

3.9 ý. 
3.9 4 4.1 

Table (6.9), Incipient Suspension for Sand (B) 

d. (mm) (Vt) m/s (Ut) m/s 
Suspension 

(Vt/Ut) 

0.39 0.16784 0.03950 4.24906 4.24906 

0.15 0.04933 0.01244 3.96476 3.96476 

0.21 0.08019 0.01986 4.03724 4.0-3724 

0.30 0.12453 0.03006 4.14240 4.14240 

0.43 0.18664 0.04344 4.29651 4.29651 

0.60 0.27258 0.06028 4.52193 4.52193 
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gains leverage by inter-particle support due to smaller fractions in Sand (A). Inter- 

particle support holds true for both Sands (A) & (B) but its effect is much 

pronounced for the smaller particle sizes (sand (B)). 

Table (6.10), in particular, depicts somewhat better prediction of contact load and 

suspended load for Sand (B) towards the higher velocity range. The differences 

observed by the 

application of 

equations (2.9) and 

(2.17) to Sand (B) as 

compared to their 

application to Sand 

(A) may suggest that if 

the particle sizes were 

very much smaller, the 

ability of these 

equations to predict 

suspension may be 

enhanced. However, 

no reservati ons were 

reported in the 

literature concerning 

limitations on their 

applicability. 

Table (6.10), Contact Load for Sand (B) 

Velocit (m/s) 
Sand B Contact Load (Cc) 

y 

1 
C= 0.04 

1 
C= 0.056 C= 0.09 

0.1 0.0382 0.0535 0.0859 

0.3 0.0348 0.0487 0.0783 

0.5 0.0317 0.0444 0.0713 

0.7 0.0289 0.0404 0.0650 

0.9 0.026 3 0.0368 0.0592 

1.1 0.0240 0.0335 0.0539 

1.3 0.0218 0.0306 0.0491 

1.5 0.0199 0.0278 0.0447 

1.7 0.0181 0.0254 0.0408 

1.9 0.0165 0.0231 0.0371 

6.7. Paired Comparisons of Results: 

Further examination of pressure drop results is necessary by examining each pair of 

curves representing the same concentration. If the differences in particle sizes are 

insignificant, then pressure drop for similar concentrations shall invariantly be the 

same regardless of the changes in particle size distribution. Preliminary examination 
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of results in figs. (6.5) and (6.7) confirmed existence of significant differences in 

pressure drops. The treatment to follow will concentrate on highlighting these 

differences. Each pair of curves representing same concentration \ý ill be taken in turn 

and further examined. 

6.7.1. Volumetric Concentration = 4`%º: 

Figure (6.9) compares the trend lines for Sands (A) & (B) at concentration of 0.04 

and clearly shows approximately similar results for both sands. 
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Fig. (6.9), Comparison of Pressure Drops for Sands (A) & (B) at Same 
Concentration (C = 0.04) 

This may be explained that at such low concentration, the dominant factor in 

determining pressure losses is the total solids content rather than the constituent 

particle sizes. However, at the lower velocity range the pressure drop of Sand (B) is 

higher and the rate of rise of Sand (B) trend line is less while at higher velocities the 

rate of rise of Sand (A) is higher. In view of comparison between these two curves, it 

may be concluded that suspension of Sand (B) occurs earlier than Sand (A) while 

Sand (A) starts going into suspension increasingly at a velocity in excess of I m/s. 
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However, pressure drop is less affected by sand type than is observed in the 
following comparisons. 

6.7.2. Volumetric Concentration = 5.6%: 

Figure (6.10) shows that pressure drop for Sand (B) is markedly hi ̀ , "her for the %% hole 

range of flow velocities and that the rate of rise for Sand (B) trend line is less than 

that for (B). This may reflect the idea that Sand (A) possibly has a higher degree of 
heterogeneity at lower velocities while Sand (B) maintains invariantly similar degree 

at the whole range. Smoother curve rise and higher pressure drop for almost the 

whole range, Sand (B) may be thought of as nearer to homogeneous flow pattern. 
Unlike lower concentration, marked difference is observed between the two sands 

that can only be attributed to differences associated with particle size structure. 
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Fig. (6.10), Comparison of Pressure Drops for Sands (A) & (B) at Same 
Concentration (C = 0.056) 
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6.7.3. Volumetric Concentration = 9'%º: 

Figure (6.11 ) shows clear differences between Sands (A) & (B) The trend observed 
for 5.6% concentration is accentuated more. The pressure drop is higher for the 

whole range of Sand (B). This indicates that increased concentration pronounces the 

effects of differences in sand populations giving, evidence that inter-particle support 
becomes higher. Probably through increased collisions leading to increased drag due 

to efficient suspension of smaller particles which in turn give leverage to suspending 

larger particles. This explanation concord with observations and in the same manner 

it can be concluded that at lower concentrations the probability of collisions between 

particles is less. Thus, leaving the drag mechanism less affected by inter-particle 

interaction. The consistent trend of less rate of rise for sand (B), observed in all the 

paired comparisons, is also applicable to this pair of curves. This is an indication that 

drag mechanism has a similar nature for Sand (B) and it probably changes roles in 

Sand (A). This latter observation will be examined in more detail in the coming 

sections. 
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Fig. (6.1 1), Comparison of Pressure Drops for Sands (A) & (B) at Same 
Concentration (C = 0.09) 
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6.8. Further Examination of Results (Comparison of Trend Lines 

Gradients): 

Figure (6.12) is a plot of the rate of change of the trend lines with respect to the 

velocity of flow The purpose of obtaining the gradients of the trend lines 

with respect to velocity is to compare the rate of rise of the curves for the different 

cases. To the knowledge of the author. this method was not cited in the literature. In 

general, as the velocity increases the gradient increases remarkably. This feature in 

itself is purely mathematical and commonly known for a power law relationship. 

However, the interesting features are the differences between the various curs es. 

which should be related to physical reasons. 

At the highest volumetric concentration (9%), Sand (B) trend line change is 

markedly higher for the full range while for Sand (A) the change in gradient 

increases at around a velocity of I m/s and approaches Sand (B) curve gradient 

change at around 1.8 m/s. For the other trend lines, the change in gradient is fairly 

similar up to a velocity of I m/s. At velocities in excess of I m/s, Sand (A) curves 

start rising at higher rates as compared with Sand (B). 
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Fig. (6.12), Gradients of Pressure Drops Trend Lines for Paired Comparisons at 
the same Concentration 
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The highest change in gradient is that for Sand (A) at the lowest concentration (4° o). 
These observations suggest that changes in concentration influence the rise of the 

curves. Also, the differences in particle sizes and particle size distribution in each 

population influence the rise of the curves. In all cases, rise of curves increased with 
increased concentration (although to a lesser extent below I m/s). This indicates that 

drag effectiveness (translated as more resistance to flow) increases due to increase in 

concentration. For the same level of turbulence intensity, being a strong function of 

velocity, the mechanisms of dispersion and diffusion may have increased due to 

existence of more particles in the same space which results in more inter-particle 

collisions (due to confinement). This is supported by the observation that, generally, 

Sand (B) curves start rising earlier than Sand (A) due to more particles in Sand (B) 

than in Sand (A) for the same concentration. Coupled with the previously mentioned 

observations (section 6.6.2) that showed suspension to take place in Sand (B) at 

much earlier flow velocities than for Sand (A), the rather lower rise of Sand (B) 

curves towards the higher end can be explained. Sand (B) trends seem to include a 

combined and effective drag mechanism that does not seem to change its nature 

throughout the range of velocities. Increased drag mechanism effectiveness may be 

attributed to easier suspension due to turbulence for the smaller particles of Sand (B) 

(probably enhanced by the existence of much smaller particles) and greater degree of 

homogeneity due to diffusive-dispersive forces. 

Sand (A) curves seem to change behaviour at velocities in excess of I m/s. At 

concentrations of 4% and 5.6%, Sand (A) curves cross curves of Sand (B) around 

velocity of 1.4 m/s. Exceeding this velocity, Sand (A) curves rise more than Sand 

(B), which indicates changes in drag mechanism. Although Sand (A) is less prone to 

inter-particle collisions relative to Sand (B), still drag effectiveness is significantly 

increased. The reason may well be due to improved suspension tendency as a result 

of increased turbulence intensity. It has been highlighted in section 6.6.1 that Sand 

(A) is more reluctant to suspension than Sand (B) showing disagreement with 

equation 2.9. The observed rapid rise of Sand (A) trend lines in the neighbourhood of 

14 m/s confirms that the prediction of equation 2.9 of incipient suspension is much 

higher than observed. The explanation of an earlier inception of suspension than 

expected (by equation 2.9) could only be explained by the existence of smaller 
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particles in Sand (A) population that play an assisting role in suspending the larger 

ones. 
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Fig. (6.13), % Relative Gradient Change viz Flow Velocity 

A 
A 

-)j 

Further investigation of the trend lines behaviour is through plotting the relative 

change of gradients as shown in fig. (6.13). It is clearly observed that relative 

changes in trend lines are sensitive to concentration Reversal of relative changes to 

negative start from I m/s for 4% concentration to 1.5 m/s for 5.6°%ö and near 2m/s for 

9%. This further confirms that Sand (A) is incurring more pressure losses at higher 

velocities due to more particles going into suspension. Figure (6.7.5) is constructed 

using, percent relative change relationship in Sand (B) gradient relative to Sand (A). 

Thus: 

Gradient (B) - Gradient (A) 
% Relative Change =x 100% 

Gradient (B) 

The same relationship is used to construct a similar plot for the relative values of 

pressure drops of Sand (B) to Sand (A) as shown in fig. (6.14). It is necessary to 

examine the changes in pressure drops for different concentrations and sands in a 

relative sense. It is not only that the gradient of pressure drop with respect to velocity 

of flow is important to examine, but also the relative chanties of pressure drops 

themselves. The examination of the gradients highlights the milestones where the 

various compositions of sand experience changes in drag, mechanism. Further 
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examination of pressure drops for the various trend lines show a shift in the relation 

towards higher flow velocities. Zero percent relative change of pressure drops occurs 
higher up on the velocity of flow axis at a shift of approximately 0.5 m/s relative to 

that for gradients for all the trend lines. This may indicate that the effects of the 

changes in drag mechanism (as depicted by gradient lines) take place on pressure 
drop higher up on the velocity axis. This may be explained by the higher sensitivity 

of the gradients to changes as they measure the rate of change. The comparison of 

respective curves in figs. (6.13) and (6.14) reveals that relative changes follo\ý 

similar behaviour. For the higher concentrations.. the changes are closer at lower 

velocities up to a velocity of 1 m/s while for lower concentration a marked fall of the 

trend is observed. Increased velocities of flow mark increased falling, divergence of 

the curves; indicating less change in pressure drops at higher flow rates. 
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Fig. (6.14), % Relative Change of Pressure Drop Trend lines viz Velocity of 

Flow at Different Concentrations for Sand (B) Compared to (A) 
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6.9. Empirical Correlation Building: 

The final results of experimental results are needed in a correlation that relates the 
pressure loss coefficient to the variables controlling the solid liquid flow. The ueneral 
algebraic form for such correlation was suggested earlier (ch. 4. eqn 4 7): 

K"c" - Frb. c' ch. 4(47) Iw 

For curve fitting purposes multiple linear regression was employed. As such, it was 

necessary to put the above equation in a linear form by converting it into logarithmic 

coordinates, thus: 

In 
in' '" 

=1n K+a In C+ b In Fr +c In CD Appendix C (C 
jW 

Multiple linear regression is described as a non biased method to estimate a curve fit 

with minimum error. Also, it renders the fit suitable for statistical analysis for 

determination of its goodness of fit. Details of the procedure and the explanation of 

the statistical test is outlined in appendix C. the final stage in obtaining the 

correlation is converting back into normal coordinates. 

The mathematical models (empirical correlations) are built using SPSS [521 software 

and further tested to examine goodness of fit. Appendix C gives results of such 

analysis and tabulates the computer programme output of the predicted regression 

values, regression coefficients and error statistics. 

In principle, ability of the correlation to explain the dependent variable in accordance 

with changes in the independent variables is measured as a percentage value (the 

higher the value the better is the fit of the regression). Furthermore, ascertaining that 

changes in the values of the independent variables are not due to chance but due to 

significant changes that are correlated to the dependent variable is measured by the 
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test of significance. Error serial propagation from one measured value to the next is 

also measured. The following sections give the correlations for Sand (A). Sand (B) 

and a global correlation for both Sand (A) and (B). 

6.9.1. Sand (A) Pressure Losses Correlation: 

Figure (6.15) plots the final results of the pressure loss correlation for Sand (. A) in 

logarithmic form. The measured values of the pressure loss coefficient are plotted 

against the values predicted by the mathematical model (empirical correlation) The 

linearity of the model is reasonably good. Thus: 

4.3623 2.092 4 4-4 
= I. 2523"ýý_ý 'ý 

As shown in appendix C, about 86% of the set of experimental results are explained 

well by the above correlation. 
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Fig. (6.15), Predicted viz Measured Values for Pressure Loss Coefficient 

Correlation for Sand A in Logarithmic Form 
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6.9.2. Sand (B) Pressure Losses Correlation: 

Figure (6. l 6) plots the final results of pressure drop correlation for sand (B) A 

strong linear relationship is obvious between the measured values % ersus the values 
predicted by the empirical correlation. Thus: 

In! - >> = 1.2789 " (' _307 Fi 0") 504 (6.1 1) 

About 92% of the experimental results are well explained by the above equation. 
Comparing the correlation for Sand (A) with that of Sand (B), the effects of 
densimetric waves and concentration are much pronounced for Sand (B) than Ihr 

Sand (A). Coefficient of drag is less different in both cases This supports the 

previous discussions on differences in pressure drops due to changes in solids 

content composition. Due to the relatively smaller particle sizes of Sand (B), 

confinement effects increase the contribution of turbulence and concentration. 
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Fig. (6.16), Predicted viz Measured Values for Pressure Loss Coefficient 
Correlation for Sand B in Logarithmic Form 
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6.9.3. Sand (A) and Sand (B) Pressure Losses Global Correlation: 

Figure (6.17) plots the results of the correlation for all the experimental results 

collectively for Sands (A) and (B). The relationship exhibits strong linear tendency 
Thus: 

=110.83 ý5.199 514 

About 82% of the values of the experimental results are well explained by the 

correlations. 
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Fig. (6.17) Predicted viz Measured Values of Pressure Loss Coefficient 
Correlation for Both Sand A and B in Logarithmic Form 
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Chapter 7 

Conclusions and Recommendations 

for Further Work 

7.1. Conclusions 

7.2. Recommendations for further Work 
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I. Conclusions: 

The problem of solid liquid flow is a multi variable one. Existence of solids in a form 

of a mixture with liquid introduces more complications to the ordinary fluid only 
flow problem. In this work, the definition of this problem highliuhted the difficulties 

in the prediction of the pressure losses associated with slurry flo\\, the added 

complexity of the existence of solids in more than one particle size N\ as further 

concentrated on and the subsequent literature review showed that multi particle size 

slurry (polyfractional mixture) was not well represented in the literature. 

Examination of the theoretical principles of solid liquid flow further suggested 

proceeding with conducting experimental work to determine with fair accuracy a 

suitably formulated pressure loss coefficient in the absence of an analytical solution. 

Experimental schedule was developed that allowed for the differentiation between 

the effects of particle size composition in given slurry by synthesizing two separate 

mixes of solid particles. The particle size distribution of each of these mixes is 

centred on a mean that is separated from the other by an order of magnitude (Sand 

(A) of coarser particle size distribution while Sand (B) of finer particle size 

distribution). The purpose was to observe the change in pressure losses due to solid 

composition in slurry. 

An industrial test rig was built that allowed for conducting experimental runs on 

three concentrations for each of the sand populations. Different flow rates were 

achievable that represented a fairly adequate range to obtain adequate number of data 

points for the development of a correlation. 

Experimental test runs were obtained, tabulated, discussed and correlations 

developed. The work included an introductory part that addressed the importance of 

characterizing the solids peculiarities in terms of shape effects on drag mechanism as 

compared with perfect spheres. Experimental measurements of terminal \ elocit\ 

were obtained for the specific purpose of defining a suitable coefficient of drag. 
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Experimental results were obtained under stable pumping conditions. The results 
were discussed. Summary of the conclusions are as follows. 

1) The coefficient of drag for the sand particles departs from that of perfect spheres. 
Investigation of existing correlations for spheres revealed fair degree of accuracy 

and any of them would be applicable en par. Devising a mass ratio to equate the 

sand particle mass to that of an equivalent sphere worked well in developing a 

correlation that highlights the differences in the coefficient of drag due to shape 

departures from perfect spherical shape (particles having similar masses). 

However, terminal fall velocity, as a unique property of drag of a single particle, 

was needed in the development of coefficient of drag for sand (non uniform 

shape). Empirical correlation of terminal velocity for the actually used sand was 

developed through experimental measurement as a function of standard sphere 

correlation and fluidisation number. Thus: 

= 0.7941[Ar] 
0.0333 

U's 
ch. 6 (6.8) 

The accuracy of the correlation is within ±8%. The coefficient of drag correlation 

followed: 

CD = 3.4531(X)0.7862 ch. 6 (6.11) 

The independent variable is a correlation of coefficient of drag of a perfect 

spherical shape. The accuracy of the correlation is in the range of ±12% of which 

about ±8% is due to the terminal velocity correlation. 

2) Graphical plots of pressure losses against velocity of flow range (0.2- 2 m/s) for 

the concentrations of 4%, 5.6% and 9% were plotted for Sand (A) and Sand (B) 

separately. 

a) Coarser sand results (Sand (A)) showed gradual rise of trend lines at 

velocities below approximately 1 m/s while rise increased at higher 

velocities. Trend lines for all concentrations approached the liquid carrier 
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curve at lower velocity end while they diverged siLnificantly at higher 

velocities. The latter case is more pronounced for higher concentrations. 
It can be concluded that coarser sand behaviour suggests a change in the 
drag mechanism above I m/s flow velocity. Accelerated suspension takes 
place due to more effective drag mechanism. Supporting evidence to this 
conclusion is the lesser effect on lower concentration. A combination of 
increased turbulence and diffusion (due to inter-particle collisions) 
enhances suspension at higher concentrations and velocities of flow. 

b) Finer Sand results (Sand (B) showed higher pressure drops for the same 
concentrations and velocities of flow compared with Sand (A). Although 

the concentrations were the same, finer particles produced significantly 
higher pressure losses. The conclusion is that pressure losses are not only 

affected by the concentration but also the composition of the solid 

particles. Lower particle sizes are more prone to suspension at lower 

velocities and tend to assume a more homogeneous flow pattern. Further 

evidence confirm that at higher flow rates the pressure loss increase is 

more due to increased particle collisions. 

3) Paired comparisons of results for both sand populations at similar concentrations 

showed that at lower concentration the effect of particle size was dominant. Finer 

particles incurred more losses at lower velocities but a reversal is observed at 

higher velocities. Thus, marking significant accelerated suspension of coarse 

sand at higher flow velocities. At the higher concentrations the finer sand 

consistently produced higher pressure losses. This further suggests that finer 

particles are more affected by drag mechanism embracing turbulent diffusion due 

to confinement. Earlier suspension of finer sand is confirmed by the lesser rise of 

the curves compared of the sudden changes experienced in coarser sand, 

indicating no changes of drag mechanism similar to that of coarse sand. 

4) Comparisons of the gradients in relative sense between Sand (A) and (B) as a 

pressure drop change with respect to flow velocity indicate that coarse sand 

changes behaviour at higher rate compared with finer sand. However, further 
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higher up on the scale reversal takes place (probably due to the inter particle 
collisions becoming significantly dominant favouring finer sand to incur more 
pressure losses) 

5) Empirical correlations were developed for each sand population separately and for 

the collective case for both sands. The correlations were developed using, the 
famous multiple linear regression. The goodness of fit was examined in detail 

and showed remarkably higher values of correlation (nearly linear in logarithmic 

coordinates. Thus: 

for Sand (A): 

=1.2523.04.3623 J .ý2,692 ß1 444 
t DA ch. 6, (6.12) 

for Sand(B): 

1.2789 07.367 Fr6 ý6 12594 
BB DB ch. 6 (6.1 1) 

for all results: 

im -1"' 
= 110.83 " C5.398 . Fr2 °43(. ýs14 

ch. 6 (6.14) i,,, 

6) It is worth concluding that in the context of this work drag mechanism is taken to 

embrace the various components of forces that may prevail in a given mix of 

solids and liquid carrier. Drag by the fluid stream is supported by turbulence and 

dispersion to produce a final effect that is greatly affected by the nature of the 

solids. It is clearly shown in this work that polyfractional slurries produce 

different pressure losses in accordance of a complex matrix of properties and 

flow mechanisms. 
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7.2. Recommendations for Further Work: 

Although significant effort has been put in this work, the aims of the exercise met to 

an acceptable degree and the experimental data formed an adequate basis for the 
development of empirical correlations for polyfractional slurries, still in man\- 
aspects continuation is very much recommended. This is partly due to the time and 

cost limitations imposed on a single research programme and partly due to the great 

number of problem formulations that may accrue for a slurry flow problem. 

Thus, recommendations for further work may be summarized as follows: 

1) Although an industrial size test rig is very much desirable for serving the 

industry best but it incurs much burden on its operation, running and 

equipping. A reasonably lower size may allow much freedom of control for 

the researcher. 

2) Flow velocities of wider range may reveal further enhancements of the 

results. This is desirable despite the fact that in industrial applications 

velocities do not normally exceed the investigated ranges. 

3) An increased number of solids particles populations will certainly cast more 

light on the effects of solid populations structures on pressure losses 

associated with slurry flow. It could be beneficial to separate populations of 

closer particle size distributions and increasing the number of populations 

experimented on. 

4) An ambitious experimental plan may allow for not only using different 

populations but also combinations thereof. 

5) Different carrier fluids other than water may be of benefit to study the effects 

of viscosity on slurry flow. 
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6) Different pipeline geometries may be employed to extract more conclusions 
regarding the possible differences attributed to conveying boundary 
properties. 

7) Solid materials used in experiments may be varied in properties and shapes to 
investigate possible differences due to different densities and shapes. 

8) In all cases, enhancements are possible in the characterization of solids drag 

and drag measurement. 

9) In the stage of the design of the experiments there are possibilities to set up a 

programme that studies certain mechanisms specifically (i. e. study of 

pressure losses in the neighbourhood of settling). 

10) Numerical analyses may ultimately be developed for a given set of 

experimental results associated with a numerical algorithm that simplifies an 

analytical expression. This is much needed in the development of simulation 

applications on computers. 
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Appendix (A): 

Calculation of the Coefficient of Drag for A Spherical Particle 

A. I. Physical Discussion: 

The motion of a free falling sphere under the influence of gravity in a stationary 

column of liquid is resisted by an inertial force, buoyancy force and %iscous force. If 

the diameter of the sphere is small enough and the fall is free (velocity is not 

significantly high), then the wave making effects and compressibility effects can 

safely be ignored. Furthermore, after an initial acceleration, the velocity of the sphere 

assumes a constant value (the free fall or terminal velocity) At this equilibrium state, 

the sphere is under the influence of a gravitational force driving it downwards and a 

drag force constituting a buoyancy force and a complex combination of inertial and 

viscous forces counteracting its free downfall. 

Inertial +Viscous 
Shear stresses develop at the boundary of the + Buoyancy Forces 

sphere due to its motion producing a drag force, 

which can be correlated with the kinetic energy 

available per unit volume of the liquid. 

The ratio between the drag force and the kinetic 

energy per unit volume of the liquid, thus, 

defines the coefficient of drag. 

D 

2 
pl_ 1 1,2 A 

Where C1) is the coefficient of drag, 

D is the drag force (N) 

Gravity 

(A. 1) 

g_ 
A- 1, Force Fig 

Balance on a Free Falling 
Sphere 

p, is the liquid density (Kg/m; ) 



U, is the free fall (terminal) velocity (m/s) 

A=- d2 is the sphere cross section (m) 4 

The force balance becomes: 

D 

Drag Force 

ýlD 2 PLU2A 

G 

Gravity 

Force 

d' 
/7 PS9 

-B 

- Buoyancy Force 

d' 
7F6PI_K 

Where d is the sphere diameter (m) 

p, is the density of the sphere (Kg/rn3) 

g is the gravitational acceleration (misz) 

and equation (A- 1) becomes: 

4 (Ps 
- P' CD=3dg 

U, PL 
(A. 2) 

The calculation of the coefficient of drag is governed by the physical nature of the 

flow past the sphere. This, in turn, is dependent on the level of turbulence and can 

only be found experimentally through correlation of the coefficient of drag with 

Reynolds number defined for the sphere dimensions. Figure (A-2) [471 depicts three 

different regions, the first obeys Stokes law for creeping flow of which sphere 

Reynolds number is below unity, followed by a transition region up to Reynolds 

number less than 1000 and the last region extends for higher up Reynolds numbers 

The last region is of the one of most interest in industrial applications since it 

coincides with the turbulent flow regime. Fortunately, in the higher region of 

Reynolds numbers (>1000) the coefficient of drag becomes a function of Reynolds 
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number only. However., due to the complexities associated with turbulence- the 

coefficient of drag is found experimentally. A formula that spans all flow regimes is 

reported 1ý^I after Turton and Levenspiel: 

24 (1 
+ 0.173) Re 7+0.41_) (A 3) 

Ref, 1+ 16300 Re 

Where Rena is the Reynolds number defined for the sphere diameter, the free fall 

velocity and the liquid density and viscosity (Ren =pf7, cI / ji, ). Alternati%ely. 

another empirical formula can be used 14S'l which yields similar results 

24 130 
n 7' 

40000 

.5 
l6 +++1 (A. 4) C, _ 0.5,116- 

Rey Rey Re 
f, 
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Reynolds Number. Re,, - 

Fig. (A-2). Coefficient of Drag viz. Re\ Holds No. 1471 

113 

  

`ý10 j 10 1011 10 101 10s 10 10 10° 



A. 2. Calculation of the Coefficient of Drag: 

Turton and Levenspiel 147] formula cannot readily be employed since the free fall 

velocity that is embedded in the definition of the Reynolds number is unknown. The 
free fall velocity appears in the physical law defining the drag coefficient (equation 
A. 2). Thus, two equations with two unknowns can be solved (though by an iteration 

algorithm since the free fall velocity is implicit in the equations). The following steps 

are followed to find the coefficient of drag: 

0 Assign a starting value for the Reynolds number 

0 Use Turton and Levenspiel formula to find the coefficient of drag 

(Eqn. A. 3) 

From the knowledge of the coefficient of drag, a starting value can be found 

for the free fall velocity (using the physical law, Eqn. A. 2) 

0 Recalculate the Reynolds number using the free fall velocity starting value 

0 Check coincidence of Reynolds number with the starting value for a 

predetermined tolerance 

Terminate the iteration if Reynolds number falls within tolerance, other wise 

employ the newly found Reynolds in Turton and Levenspiel and repeat until 

satisfactory 

The same algorithm has been reproduced using a second empirical formula for the 

coefficient of drag [481. The results were the same for the fifth decimal place. The 

flow chart to execute the above steps is shown in fig. (A-3). The results of the 

flowchart are shown in the graph of fig. (A-4) and the listing of the data produced by 

the algorithm is shown in the calculation sheets Table (A-l) according to two 

correlations (first, is according to Turton & Levenspiel 14-11 and second is according to 

Swamee & Ojha [481) 

114 



The iteration algorithm described above revealed a relative error in the prediction of 
the coefficient of drag in the range of t 1000 between the t\\o correlations in the 
extreme cases and an average relative error of around ± 1',,, o for the set of data 
iterated. 

The data is generated for a 

single sphere of sand of 

density (2650 Kg/m'), liquid 

is water at (20 C") having 

density (998.2 Kg/m3) and 

dynamic viscosity 

(1.002x] 0-3 Kg/ms). 

It is worth mentioning, that 

each value of the coefficient 

of drag is a unique value for 

its corresponding sphere 

diameter and its terminal fall 

velocity for the same 

material of the sphere and 

the same fluid properties. 

"t tftl 

Input. Sphere 
diameter. fluid 

densit% v ico»itv, 

Initial Red 

Cd = (eqn. A-3) 
Redo = Red n Umtinity from cLin 

('Ac. Ne\\ Red 

1 

N 
ý, IRed nc\\ - Red oIdj< tol. 

Y 
v 

Print Cd 

Fig. (A- 2), Flowchart fort the Coefficient of Drag Iterations 

A. 3. Calculation of the Terminal Velocity: 

The terminal velocity for a free falling sphere can be obtained from the force balance 

on it at equilibrium state. Rewriting equation (A1), terminal velocity can be 

correlated to the square root of the sphere diameter and the coefficient of drag for the 

same fluid and solid material as follows: 

ý'', = fK (\5) 

Ijc 



The importance of finding the terminal velocity lies in that it can be directly 

measured by timing the fall of a particle in a static liquid medium Thus. it can be 

used to calibrate the coefficient of drag for a sphere and. furthermore, for findinu the 

coefficient of drag for a non-spherical particles. 

The results of flowchart (Table A- l) tabulated the terminal velocity for two 

correlations. For further comparison, a third correlation reported by, Wilson was 

employed to check the consistency of these correlations. It is noted that the ma\ 

relative error for the first two correlations is in the range of ± 5'o while that for 

Wilson is around ± 8% from the average being more towards higher terminal 

velocity (higher sphere diameter). Figure (A- 5) correlates a velocity parameter (Y) 

with the terminal velocity for constant fluid and solid densities. The relation is linear 

with slight non-linearity in Wilson's correlation for presumably same physical 

conditions. 

1000 z 
f Cd Turton & Levenspiel 

llº Cd Swamee & Ojha 
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Fig. (A-4), Coefficient of Drag viz. Spherical Particle Reynolds \o 
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Appendix (B): 

Calculation of the Annual Pumping Costs for a Slurry Pipeline 

(Illustrative Example) 

B. 1. Annual Pumping Cost 

The annual pumping costs of a unit pipe length of a `rig en diameter are those 

associated with the energy cost to overcome the pressure drop (loss) per unit length 

of the given configuration of the pipeline and maintain the desired flow rate. For a 

horizontal pipe the per unit pumping cost is, 

PUC'=PpzixHpcrx('pri 

Where 

(B 1) 

PU(' is the annual per unit pumping cost per meter of pipe length ($/m) 

Ppi/ is the power per meter pipe length (KW/m) 

Hpcr is the annual running hours of the pipeline (Hours) 

(pry is the money value per energy unit ($/KWH) 

The power per unit is obtained in terms of a function of friction head loss per unit 

length: 

Ppii = 
P-9 

.. f 
f (h). -D2.1 

/7 1 
1000. rß 4 

Where 

p is the mass density of the liquid (Kg/m3) 

K is the gravitational acceleration (m/s2) 

1 (h) is a function of the frictional loss in meters of liquid 

per pipe unit length (m/m) 

1) is the pipe diameter (m) 

I' is the average velocity of flow (m/s) 

(B 2) 

1? g 



rý is the overall efficiency of the pump and the prime mover 

Thus, the per unit pumping cost (PI! (') becomes: 

PUC'= p. g D2.1 HpaxCpri (B 1000. rß 4 

B. 2. Worked Example: 

B. 2.1. Clear Water Flow 

Take a 6" pipe diameter running full of water, in the turbulent regime at 'O De-. C, 

the pipe material is steel, the water mass density is 998.2 Kg/in', the dynamic 

viscosity is 1.002* 10-3 Kg/ms and the average velocity of flow is in the range of 19 

to 2.1875 m/s as per normal industrial practice. The energy cost for industrial 

applications is 0.06 $/KWH (in Jordan). It is required to find the per annum pumping 

cost per unit pipe length. 

As a first approximation of the friction factor (Fanning friction factor) for steel pipes 
1 in the turbulent flow regime, the friction factor is '1: 

0.04 
Re°''6 

(B 4) 

The friction loss function per unit pipe length in meters of water per meter of pipe 

length is: 

fI, ' 
2T 

(B 5) 

Assuming a pump overall efficiency of 70° ° and normal running hours per annum of 

7500 hours (as standard design figures in industrial practice) 

1? 9 



The per unit pumping cost (PLC) for clear water becomes (from equations B and 
B. 5), 

pt 1C= 
11p.. 

fl 3 " 
.D xHpa - Cpu (B. 6) 7x1000. rß 

Table (B. 1) summarizes the output of equation (B. 6) for the normal range of a\ erage 
flow velocities encountered in discharge pipelines. 

B. 2.2. Example Repeated with Slurry Flow: 

Take the same pipe diameter filled with slurry of volumetric concentration (C) of 
10% of sand having a spherical shape of 5 mm diameter and having the same a\ eragc 
flow velocity range as in table (B. I ). Using six correlations for pressure drop in 

slurries that gained relatively wide use in pipeline design, table (B 22) summarizes the 

results for the annual per unit cost for one-meter pipe length. 

These correlations are originally expressed in different forms and need to be 

normalized in a standard form so that they can be compared. The standard form used 
here is expressing the correlations in the form of a friction factor similar to that used 

for clear water. Thus, the friction losses can be directly expressed in a Darcy like 

formula. 

Before normalization, the slurry density must be found. This is derived from the 

simple mass balance for a given mass of slurry mixture as follows: 

ni, = ms + n'L 

Where n,,,, is the mass of slurry (Kg) 

(B. 7) 

m.,. is the mass of solids contained in the given mass of the slurry (Kg) 

nn1 is the mass of liquid contained in the given mass of the slum' (Kg) 

and 
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V Pm = VPS +IL PL 15 = C. 1 and IL= (1 -C). F 

Thus, the slurry density becomes: 

pm = C. ps + (1- C)* PL (B. 8) 

The normalized forms of the slurry friction factor are as follows: 

Durand Formula: [2] 

-]. 5 

fmDurand 
= fw rw 176.0 D +1 (B. 9) 

Pn, g. D. (S -1) 

Zandi and Govatos Formula: I' 

-1.93 

f P" 280. C . 
ý'°ý 

+1 (B. 10) mZ&G -. w 
Pm S 

Chhabra and Richardson Formula: 141 

fmCh&Rich 7- fiv P" 0.55. 
c 

-1 
+1 (B. 11) 

P. 
fti 

OpD. 
(S) 

Fangary ei al Formula: [31 

mFangary 
= fi+P", 131. C 

Vý+ 
+1 (B. 12) 

./g. D. (ýJ 
- 

1) 
Pm 

Turian ei al Formula: 151 

nnTunan 
-C 08687.30.115. f,;. (, ö . 167 I 

-0.6938 

+ fN (B. 13) [g. 
Ds-1) 
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Swamee Formula: [6] 

64 8 ]16}0125 
f=-+9.5 In -+5.74 

- 
2500 6 

. nswam Re 3.7D Re o9 Re 
(B 

. 
1-1) 

Figure (B. 1) illustrates the friction factors for the different normalized slurry 
correlations as ratios of the clear water friction factor viz Reynolds number for the 

range of velocities applied earlier to the clear water example. Figure (B. 2) illustrates 

the yearly pumping cost money value ($/m) per one meter of pipe length. 

B. 3. Concluding Remarks: 

Friction factors for the assumed slurry are widely varying depending on the 

correlation applied. The highest is that of Durand that gives a friction factor that is 

approximately 28 folds the friction factor of clear water. The second highest is that of 
Zandi & Govatos giving around 18 folds while the other correlations form two bands 

that are much lower. Fangary et al and Chhabra and Richardson give a band that is 8 

to 6 folds while Turian et al and Swamee give much lower value of around 2 to 3 

folds. 

The variation of the friction factors with Reynolds number is relatively more 

significant for the upper edge correlations while it is minimal for the lower edge 

ones. 

The same conclusions can be drawn for the yearly pumping cost per unit pipe length. 

Figure (B. 2) summarizes the results. The yearly per unit pumping cost could be any 

value between 10 $/m a year to around 160 $/m a year. 

Finally, there are no apparent significant differences in the range of application, 

reported in the literature, for any of the correlations under investigation. They all are 

reported to hold universally good. Thus, a pipeline designer will be left with a hard 

132 



decision to make and normally he will go for the highest friction factor reported so as 
to stay in the safe side. 

Table (B. 1. ), Clear Water Annual Pumping Cost per Unit Pipe Length 

Pipe Diameter = 0.154 m (6"). Medium: Water. Temperature: 20 °C. Density : 998. Kg/ n3 
Dynamic Viscosity: 1.002 *10-3 Kg/ms, Pump efficiency (rl): 70% 

Yearly Running Hrs. (Hpa): 7500 Cost of KWH (Cpu): 0.06 $/KWH 

Flow Velocity Reynolds Number Friction Factor Yearly Per Unit Cost 

(V) m/s (Re) (fK) (PL'(') $/m 

1.9 288461.9 0.005351 5.640509 

1.9125 290359.6 0.005346 5.746537 

1.925 292257.4 0.00534 5.853847 

1.9375 294155.2 0.005334 5.962447 

1.95 296053 0.005329 6.072344 

1.9625 297950.7 0.005323 6.183545 

1.975 299848.5 0.005318 6.296057 

1.9875 301746.3 0.005313 6.409887 

2 303644.1 0.005307 6.525041 

2.0125 305541.8 0.005302 6.641528 

2.025 307439.6 0.005297 6.759353 

2.0375 309337.4 0.005292 6.878525 

2.05 311235.2 0.005286 6.999049 

2.0625 313132.9 0.005281 7.120933 

2.075 315030.7 0.005276 7.244184 

2.0875 316928.5 0.005271 7.368809 

2.1 318826.3 0.005266 7.494814 

2.1125 320724.1 0.005261 7.622207 

2.125 322621.8 0.005256 7.750995 

2.1375 324519.6 0.005251 7.881184 

2.15 326417.4 0.005246 8.012781 

2.1625 328315.2 0.005241 8.145794 

2.175 330212.9 0.005237 8.28023 

2.1875 332110.7 0.005232 8.416094 
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Appendix (C): 

Mathematical Model Building, Regression Analysis and Statistical 
Testing of the Goodness of Fit of Correlations: 

C. I. Introduction: 

Experimental data need to be put in a reduced form that manifests the interrelations 

between them. Every observation obtained experimentally represents a certain 

relation between a dependent variable and one or more independent variables. In 

research, variables are reduced into non-dimensional groups. Next logical step \\ould 
be finding an algebraic form that transform experimental data (observations) into an 

equation (correlation). 

However, due to the empirical nature of the correlations (the true physical law is 

unknown) many inaccuracies due to the measurement methods, human error, nature 

of the variables and the effects of the surrounding environment are unavoidable. 

Thus, a methodology is necessary to estimate the functional relationship between the 

variables (or the non-dimensional groups) with fair accuracy. 

Regression analysis, in conjunction with statistical means, is employed to give a 

prediction of the required correlation with the minimum possible error in the curve 

fitting procedure. Multiple linear regression is normally used when more than one 

independent variable is involved. Further on, consistent set of statistical tests is 

applied to examine the goodness of fit of the regression. 

C. 2. Multiple Linear Regression: 

The main justification for using this method is that it estimates the path of a straight 

line that best fits the association between the variables \ý ith the least value of error 

The method is built on the estimation of the normal least squares of errors in 

observations. According to the theory of Gauss-Markov 1501 the estimates of the 

normal least squares are the best unbiased linear estimates". The basic underlyiii 
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assumption in the method of least squares is that the independent variables are error 
free (or subject to negligible error) while the dependent variable is subject to errors 

that have to be eliminated 'j [5 

C. 3. Application of the Multiple Linear Regression: 

The first step in the application is to linearize the candidate mathematical model 

(equation (C. 1)) for which the multiple linear regression is to be applied. In this 

work, the dependent variable is the pressure loss coefficient non-dimensional group 

im -1W while the independent variables are the volumetric concentration (', the non- 
iW 

dimensional group Froude's number Fr and the non-dimensional group coefficient of 

drag CD. Thus: 

)m 
11Ca. 

FrbCc (C. 1 ) 

1N, 

where K, a, b, and c are the curve fitting coefficients 

The above equation is made linear by taking the natural logarithm for both sides of 

the equation: 

In '"' -'"' = In K+a In C+b In Fr +c In CD (C. 2) 
l 

The estimation equation takes the observations (experimental results) in the 

following matrix form: 

Y=Xß+u (C. 3) 

Where Y is the array of the dependent variable of the degree it xI containing it 

observations of variable Y, X is the matrix of the independent variables of the degree 

it xk containing it observations for k independent variables with the first column 
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assuming the value of 1, Bis the array of the degree krI containing the unknown 

coefficients and u is the array of the degree nx1 representing the unknown random 

variable of marginal error. 

The method of least squares is used to estimate the values of the unknowns under the 
following assumptions : [501 

i) The expected mean value of the marginal random error variable array is 

zero for all the observations: 

E(U) =0 

ii) The variance of the random variable between the observations is the same 

and the non-existence of autocorrelation: 

V(u; )=E(u )=6' 

cov(u; u, ) = E(u, u, ) = 0, " i #. j 

iii) The matrix of observations X is not random 

iv) The number of observations exceeds the number of variables. 

v) The random variable array has normal distribution: 

u N(O, 62 

Under the above assumptions the multiple regression is carried out through the 

estimation of errors according to the method of least squares. The calculation 

procedure is lengthy and software is used to obtain the output result. In this work, 

SPSS for Windows®1521 was used. The level of confidence under which calculations 

were carried out is 95% (i. e. no more than one observation out of twenty 

observations may occur due to chance). 
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C. 4. Statistical Tests for the Goodness of Fit: 

It is important to have an idea about how far does the linear curve obtained through 
regression analysis predict the actual physical relationship bemeen the curve titted 

variables. For this purpose three tests are normally sufficient to decide whether a 
correlation is truly representative or not: 

C. 4.1. Coefficient of Determination Test Statistic: 

It measures the strength of association between the dependent variable and the 
independent variables. The percentage output of the coefficient of determination 

(denoted R2) explains how much of the observations of the independent variables 

explain the dependent variable. The remaining percentage is unexplained by the 

regression. Statistically speaking 1511, R2 is that fraction of the total variance of v', 

which is contributed by its regression upon the variables . vj, . v,. _ x4 Thus: 

sum of* cc/iua c'. v of devialiotis in 1' accoiiilled for by ic'gr¬' vio! I 
R' =f 

total srini of squares of in y firom actual 

(C4) 

C. 4.2. Significance Test Statistic: 

In addition to the extent by which the assumed regression equation is capable to 

explain the dependent variable by the associated independent variables, measured by 

R2, it is required to ascertain if the differences between the different values of Y as 

predicted by the different settings of the independent variables are not due to chance. 

The hypothesis that all the coefficients of the independent variables are equal to zero 

is rejected to prove that the prediction equation gives significant values. Statistic F is 

employed to calculate the ratio of the mean sum of squares of deviations between the 

predicted values and the actual values of the regression to the mean sum of squares 

of errors in the regression. F distribution tabulation shows the critical \ alues belo\ý 
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which the regression is in error and the values predicted by the assumed model are 
insignificant. Thus: 

MSR F 
MSL (C ý) 

Where MSR is the mean sum of squares of de% iations in the regression and .tI 
'/. is 

the mean sum of squares of errors. 

C. 4.3. Durbin Watson Statistic: 

The Durbin Watson Statistic is used to test for the presence of first order 

autocorrelation in the residuals of a regression equation 1`31. It is a measure of the 

sequential propagation of error amongst the successive settings of the predicted 

values. Thus: 

n 
y\ýt 

n 

t=1 

(C. 6) 

Where d= Durbin Watson statistic, e= residual and t= the interval. 

A regression is autocorrelation free if the d statistic rates above a given tabulated 

critical value at confidence of 950 o. 
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C. 4.4. Case wise Residual Analysis: 

It is of interest to try to find how close the prediction of the measured \ alue to the 
predicted one for each data point. Statistically, residual analysis serves this purpose. 
Standardized residual is defined as a ratio of the residual to the estimated standard 
deviation for each case (experimental observation viz. predicted value). Thus: 

e. 
e. = ' 

, VI 
n 6 

(C. 7) 

Where e., is the standardized residual, e; = Y, - Y. is the deviation of the measured 
A 

value Y, from the predicted value Y, and 6 is the estimated standard deviation. 

If the errors are normally distributed 1541. then approximately 95% of the standardized 

residuals fall in the interval (-2, +2). Residuals that are outside this interval may 
indicate the presence of an outlier 154]; that is, an observation that is not typical of the 

rest of the data. However, criteria on discarding an outlier are varying and no 

agreement on general rules is available. Sometimes, an outlier may indicate a 

physical significance that is a property of the observation. In this work, although case 

wise residual analysis was conducted, the results do not suggest serious lack of fit 

that may necessitates a need to pursue adoption an outlier criterion. 

Tables (C. 1, C. 2 and C. 3) summarise the output of the case wise analysis obtained 

through using SPSS® for the empirical correlations of Sand (A), Sand (B) and the 

global correlation for all the experimental results for both Sands (A&B). In table 

(C. 1), results of Sand (A), only one case (number 19) out of 24 cases exceeded the 

limit of the standardised residual while the rest of the cases distributed fairly between 

negative and positive values. In table (C. 2), results of Sand (B), only two cases 

(number 25 and number 29) exceeded the limits out of 32 cases while the other cases 

distributed fairly around zero. In table (C. 3) only 5 cases out of 56 exceeded limits. 

The number of exceeding cases is fairly low as compared with total number of 

observations studied. Thus, it is not believed to affect the predictions of the 
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correlations significantly. Considering the random nature of the fluid floxý problems 
in general and the slurry flow problems in particular. the case wise analysis may 
safely be assumed adequate. 

Table (C. I ), Case wise Diagnostics of Pressure Loss Coefficient for Sand A 
Correlation in I. nwwarithtnic Fnrni 

Case 
Number 

Residual 
Std. Residual Measured Value Predicted Value 

1.2703308 0.9913653 0.66548581 0.3258795 
2 -0.884035 0.9027177 1.129500351 -0.226783 
3 -0.066936 1.0353552 1.052526538 -0.017171 
4 -0.170087 1.6-3355494 1.679181992 -0.043633 
5 -0.350839 0.3893308 0.479332026 -0.0OO()t)1 
6 -0.631923 0.733472 0.895579978 -0.162108 
7 -0.487582 1.4294672 1 554547342 -012508 
8 -0.553132 0.2184637 0.360 359444 -0 14 1896 
9 0.1223087 1.5760062 1.544630176 0.031376 

10 -0.702148 1.3053559 1.48547887 -0.180123 
11 0.6650936 0.3985965 0.227979 182 0.1706173 

12 1.3 52689 1.0268566 0.679849566 0.347007 

13 0.6224349 0.815495 0.655821017 0.159674 

14 -0.702704 1.1683675 1.348632949 -0.180265 
15 1.1662233 0.3480135 0.048840762 0.2991727 

16 0.8237909 0.7481554 0.536827321 02113281 

17 -0.051647 1.2123423 1.225591371 -0.013249 
18 0.9219024 1.4464003 1.209903538 0.2364968 

19 -2.416774 -0.589092 0.030885717 -0.619978 
20 -0.3302989 1.1488093 1.226535522 -0.077726 
21 _ 1.029132 0.7918462 0.527841645 0.2640045 

22 -1.363324 0.5356347 0.885369828 -0.349735 
23 1.0070565 2.7479495 2.489608041 0.2583415 

24 -0.296842 1.3571333 1.433282546 -0.076149 
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Table (C. 2), Case wise Diagnostics of Pressure Loss Coefficient for Sand B 
Correlation in Lozarithmic Fnrrn 

Case 
Number 

Std. Residual Measured Value Predicted Value Residual 

1 0.6047342 0.7866805 0.6531739 0.1335066 
2 -0.551471 1.2006165 1.3223643 -0.121748 
3 -0.793106 0.4476972 0.6227906 -0.175093 
4 0.4535502 0.7185665 0.6184366 0.1001299 
5 1.2414651 0.8743297 0.6002526 0.2740772 
6 -1.438469 0.950503-3 1.2680728 -0 31757 
7 0.7221963 0.7520481 0.5926094 0.1594386 
8 0.6278757 1.4021988 1.2635832 0 138615(- 
9 -0.020323 2.2028955 2.2073823 -0.004487 
10 -0.690572 1.1065005 1.2589574 -0.152457 
11 0.4042467 1.3479107 1.2586655 0.0892452 

12 -0.063303 2.1952188 2.2091942 
_ -0 013975 

13 -0.455544 2.1132385 2.2138085 -0 10057 

14 -0.810136 2.0399126 2.2187656 -0.178853 
15 0.0402887 1.28893 59 1.2800414 0.0088945 
16 -0.334045 2.1725267 2.24627 36 -0.073747 
17 -0.468634 2.150687 2.2541469 -0.10346 
18 -0.166582 2.2261642 2.262940 3 -0.036776 
19 0.4816776 1.4264891 1.3201496 0.1063395 

20 -1.061071 0.4242213 0.658473 -0.234252 
21 0.534497 0.7820319 0.6640' 15 0.1 180004 

22 0.47442 0.7939749 0.6892377 0.1047373 

23 0.7571211 2.4904767 2.323 3278 0.167149 

24 0.6594443 2.5430764 2.3974914 0.1455849 

25 2.292603 1.9674594 1.4613235 0.50613 59 

26 -0.392264 0.7540786 0.8406784 -0.0866 
27 -0.585724 2.4292182 2.558528 -0.12931 
28 -0.179591 0.8993486 0.9389968 -0.039648 
29 -3.193762 0.3677703 1.0728542 -0.705084 
30 0.5505922 1.2801042 1.1585504 0.1215538 

31 0.751365 3.0467805 2.8809023 0.1658782 

32 0.6085204 2.1066372 1.9722947 . 
1343 425 0 
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Table (C. 3), Casewise Diagnostics of Pressure Loss Coefficient for Both Sand A 
and B Correlation in I. C1ooarithrriir Fnr,,, 

NuCase mber 
Std. Residual Measured value Predicted Value Residual 

1 -2.581031 -0.589092 0.233344125 -0.822436 2 -0.051921 0.2184637 0.235008137 -0.016544 
3 0.4380817 0.3480135 0.208420336 0.1395931 
4 -2.780414 0.3677703 1.253739138 -0.885969 
5 0.438756 0.3893308 0 24952284 301 39808 
6 0.5591945 0.3985965 0.220411167 0.1781853 
7 -1.383659 0.4242213 0.8651 19275 -0.440898 
8 -0.369717 0.4476972 0.565506064 -0.117809 
9 -1.171347 0.5356347 0.908880058 -0.373245 
10 0.4610132 0.7185665 0.571666262 0.1469002 
11 -0.230741 0.733472 0.806996922 -0.073525 
12 -0.086927 0.7481554 0,775854349 -0.027699 
13 0.3915859 0.7520481 0.627270631 0.1247774 
14 -0.979802 0.7540786 1.066288905 -0.31221 
15 -0.285906 0.7820319 0.873134981 -0.091103 
16 0.8004109 0.7866805 0.531632467 0,255048 

17 -0.033355 0.7918462 0.802474599 -0.010628 
18 -0.354547 0.7939749 0.90694996 -0.112975 
19 0.1071251 0.815495 0.7813 59971 0.0 3413 5 

20 0.8452243 0.8743297 0.605002035 0.2693277 
21 -0.788904 0.8993486 1.150730165 -0251382 
22 0.2070417 0.9027177 0.836744616 0.0659731 

23 -0.730132 0.9505033 1.183157072 -0.232654 
24 2.2523491 0.9913653 0.273662428 0.7177029 

25 0.7638273 1.0268566 0.783465746 02433908 

26 0.6548612 1.0353552 0.826686077 0.2086692 

27 -0.379115 1.1065005 1.22730404 -0.120804 
28 -1.423345 1.1488093 1.60235292 -0.453544 
29 -1.294171 1.1683675 1.580750482 -0.412383 
30 0.3109969 1.2006165 1.101518463 0.099098 

31 -1.142187 1.2123423 1.576296193 -0.363954 
32 -0.108642 1.2801042 1.314722621 -0 034618 

33 -0.164395 1.2889359 1.341319623 -0.052384 
34 -0.90662 1.3053559 1.594247017 -0.288891 
35 0.3647735 1.3479107 1.231676918 0.1162338 

36 2.39171 17 1.3571333 0.59502 3025 0.7621 103 

37 0.6395224 1.4021988 1.198417284 0.2037815 
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/ Continued Table (C. 3) 
Case 

Number 
Std. Residual Measured value Predicted Value Residual 

38 0.0303314 1.4264891 1.416824151 0.009665 
39 -0.541887 1.4294672 1.6021 37636 -0.17267 
40 -0.457429 1.4464003 1 592158266 -0.145758 
41 -0.07836 1.5760062 1.600975462 -0.024969 
42 0.05 70681 1.63 5 5494 1.6173 6491 1 00181845 
43 1.2005029 1.9674594 1.584923512 0.3825 359 
44 -0.24282 2.0399126 2.117286317 -0.077374 
45 0.4077415 2.1066372 1.97671186 0.1299254 
46 0.0402955 2.1132385 2.100398456 0.01284 

47 -0.137557 2.150687 2194519099 -0043832 
48 -0.024813 2.1725267 18043333 -000907 
49 0.3642586 2.1952188 2.079149104 0.1160697 

50 0.5782829 2.2028955 2118627787 0.1842678 

51 0.0533595 2.2261642 2209161406 0.0170028 

52 -0.278181 2.4292182 2.517859665 -0.088641 
53 0.6224685 2.4904767 2.292129 , 52 01983474 

54 0.5323455 2.5430764 2.373446421 0.1696 3 

55 2.5672546 2.7479495 1.92990 3063 0.8180464 

56 0.9275401 3.0467805 2.751223186 0.2955573 
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C. 5. Concluding Remarks: 

A regression is statistically sound if it fulfils the above three statistics. Namely, it is 

powerful in explaining the functional relation, significant in predicting different 

values at different settings and free form sequential errors. Furthermore. case \\ Ise 
analysis did not show many observations that fall totally out of the statistically 
acceptable ranges. 

Computer listings of the main test statistics are reported at the end of this appendix. 
They show reasonably powerful capability of the correlations in explaining the 

pressure loss coefficient by the volumetric concentration, the non-dimensional 

parameter (Fr) and the non-dimensional group (CD). Table (C. 4) summarises the 

results of the test statistics for four variables (4 degrees of freedom of variables 
including the dependent variable) and different number of observations (observations 

degrees of freedom (df)). The values of the coefficient of determination (R2) are 

0.857,0.921 and 0.823 for the results of Sand (A), Sand (B) and the global results for 

both respectively. It is obvious that the correlation is less powerful in the latter case 

where all the results are considered. This may be physically explained by the 

differences in the nature of the slurry compositions. Test for significance proves the 

existence of a strong relationship between the dependent variable and the associated 

independent ones. Calculated F- statistic is good if it exceeds the tabulated value 151). 

Comparing F values for different correlations, it is apparent that they exceed 

sufficiently the tabulated values. Values of Durbin Watson statistic fall in the range 

of -4 to + 4. Commonly, values exceeding +2 indicate absence of error propagation 

between successive observations . 

Table (C. 4), Summary of Test Statistics 

Test Statistic 

Correlation (dO 
(R2) 

F Statistic Values 
Durbin- Watson 

Tabulated Calculated 

Sand (A) 23 0.857 2.8 39.981 2.3489 

Sand (B) 31 0.921 2.68 108.089 1059 

Sands (A&B) 55 0.823 2.57 80.696 1.68 

146 



However, statistical testing cannot alone judge the adequacy of a certain regrc,, ion 

It is always the task of the researcher to ensure that there exists a ph% sical meaning 

of the behaviour predicted by the regression equation. 

C. 6. SPSS ® Statistical Analysis Program Output: 

The summary of the statistical program SPSS output is outlined below (all values are 
in linear units due to logarithmic modelling of the variables) 

C. 6.1. SPSS ® Regression Output for Sand A: 

Variables Entered' 

Model Variables Entered 
1 Coefficient of Drag for Sand A (CDA), 

- Volumetric Solids Concentration (CA), 

- Froude No. squared (FRSQj 

a. All requested variables entered. 
b. Dependent Variable: Pressure Loss Coefficient (YA) 

Model Summary 

Model R R Square 
Durbin-W 

atson 
1 . 

926 . 
857 2.349 

ANOVA 

Sum of F Statistic 
Model Squares df 
1 Regression 7.893 3 39.981 

Residual 1.316 20 

Total 9.209 23 

Coefficients 
Model 
1 (Constant) . 

225 

CA 1.473 

FRSQ . 
297 

CDA 9.645 
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C. 6.2. SPSS ®Regression Output for Sand B: 

Variables Entered 

Variables 
Model Entered 
1 CDB, CB, 

FRSQ 

a. All requested variables entered. 
b. Dependent Variable: YB 

Model Summarp 

Model R R Square 
Durbin-W 

atson 
1 

. 
959a 

. 
921 2.059 

a. Predictors: (Constant), CDB, CB, FRSQ 
b. Dependent Variable: YB 

ANOVAb 

Sum of 
Model Squares df F Statistic 
1 Regression 15.804 3 108.089 

Residual 1.365 28 
Total 17.169 31 

b. Dependent Variable: YB 

Coefficients' 

Coefficients 

Model 
1 (Constant) . 

246 
CB 1.997 
FRSQ 1.195 
CDB 9.441 

a Dependent Variable: YB 
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C. 6.3. Regression SPSS ü Output for Both Sands (. a&B): 

Variables Enterec? 

Variables 
Model Entered 
1 CDGLOBAL, 

CGLOBAL 
, FRSQGLO 

a. All requested variables entered. 
b. Dependent Variable: YGLOBAL 

Model Summary' 

Model R R Square 
Durbin-W 

atson 
1 

. 907a 
. 823 1.680 

a. Predictors: (Constant), CDGLOBAL, 
CGLOBAL, FRSQGLOB 

b. Dependent Variable: YGLOBAL 

ANOVAb 

Sum of 
Model Squares df F Statistic 
1 Regression 24.580 3 80.696 

Residual 5.280 52 
Total 29.860 55 

b- Dependent Variable: YGLOBAL 

Coefficientsa 

Coefficients 

Model 
1 (Constant) 4.708 

CGLOBAL 1.686 
FRSQGLOB 2.125E-02 
CDGLOBAL 1.874 

a- Dependent Variable: YGLOBAL 
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Appendix (D): 

Instrumentation Description and Calibration: 

D. I. Differential Pressure Transmitter: 

D. I. I. Description: 

The differential pressure transducer used in experiments is 
. \lphaline®, \1oodcl 

1151DR, made by Rosemount Inc. designed to measure extremely low-pressure 

differentials 155]. Figure (D. 1) shows an isometric cross-section of the measuring cell 
(6-cellTM). The measuring cell is housed in a robust casing to which the tube leads of 

the pressure measurement taps are connected. The electronic circuitry is directly 

connected to the signal lead wires in a metallic housing protecting it from shocks. 

vibrations, stray signals and noise. 

The physical principle (excerpted from PDS 4294)1"" employed in measuring 

pressure differentials is a changing capacitance proportional to the measured pressure 

changes. The isolating diaphragms detect and transmit the process pressure to the 

silicone oil fill fluid. The fluid in turn transmits the pressure to the sensing 

diaphragm in the centre of the cell. The sensing diaphragm functions as a spring 

element that deflects in response to differential pressure across it. The displacement 

of the sensing diaphragm, a maximum motion of 0.1 mm, is proportional to the 

differential pressure. Capacitor plates on both sides of the sensing diaphragm detect 

the position of the sensing diaphragm. The differential capacitance between the 

sensing diaphragm and the capacitor plates is converted electronically to a two-\/ire. 

linear, 4-20 mA dc signal. 

The transmitter operates on a 24 V dc power supply and outputs signals in the range 

of 4-20 mA, the temperature limits are -29 to 93 °C, The differential pressure span is 

0 to 3500 mmH2O and upper range limit (URL) is 3810 mm H20. The transmitter 

can withstand overpressure of 138 bars without damage. 
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Reported accuracy is: 

Accuracy =± [0.02(URL / Span) - 0.1 ] °%o of calibrated flow span 
=± [0.02(3810/3500) 

- 0.1 ]%=±0.078% 

Lead 
NN'ire 

Capacitor 
Plates 

Sensing 
I)iaphragni 

Silicone 
Oil 

Rigid 
Insulation 

Isolat 
Uiapt 

s 

Fig. (D. 1), Isometric Cross Section of the b-cellT"l 

D. 1.2. Calibration: 

V eIded 
Seals 

The calibration of the differential pressure transducer as a separate unit does not help 

much in the evaluation of its performance in a measurement set-up that includes a 

train other instruments. Errors cannot be readily evaluated except if the whole train is 

calibrated in the same set-up that will be used in the actual test rig. Errors due to 

different sources (i. e. wiring, pressure transmitter, chart recorder) can be summed up 

151 

/ ý- ý -. _ 
\ 



in one global relative error if the whole measuring train is calibrated as one unit The 

worker preferred this approach as it reduces experimental effort and simulates the 

real measuring environment on the test rig. 

Figure (D. 2) shows the line diagram and fig. (D. 3) shows a pictorial vie\\ of the 

calibration set-up. The differential pressure transmitter input chambers on both sides 

of the sensing, element are connected to the reference pressure signals of the pressure 

calibrator. Hand pumps are employed to set the desired reference differential 

pressure. The chart recorder displays the actually measured pressures 

ýV'r- METEP 

14 ANIC 
CHART 

FEr ORDEF 
I-P 

+ ('. HART 

Fig. (D. 2), Line Diagram of the Differential Pressure Transmitter Calibration Setup 

152 



m 

J 
c 

'. J 

J 



Four test runs were made and relative error was calculated for the averaue of each 

setting. Table (D. 1) shows the test results of the calibration. The relative error ranues 
from 3.1 °/o at the lower range of measurements down to 0.22° ° at the higher range. 
The calibration results are plotted in fib` (D 4) showing a fairly good linear relation. 

Table (D. 1) Differential Pressure Transducer Calibration 

Differential Pressure Measurements in mm H2O 

Reference Measured A% erase 
Relative 

Error 

500 513 519 516 517 516.00 3.10° o 
700 715 712 712 71 3.00 1.82° o 
900 915 914 915 916 914.67 1.60°o 
1000 1010 1012 1012 1011 1011.33 1.12°o 

1200 1217 1213 1214 121 3 1214.67 1.2100 
1400 1409 1409 1408 1408.67 0.6200 

1500 1516 1512 1512 1516 1513.3 3 0.88°o 
2000 2008 2012 2009 2006 2009.67 0418° o 
2400 2411 2412 2414 2414 2412.33 0.51°0 

2700 27 13 2715 2713 2713 271 3. (- 7 U 50° o 
3000 3013 3014 3012 3013 3013.00 0.43°0 

3300 3312 3312 3 312 3 316 3312.00 0.3600 

3500 3508 3510 3505 3508 3507.67 022% 

Figure (D. 4) Calibration Curve for the Dif Press. 
Transducer in mm H2O 

4000 " Relerenee 
Q 1st nun (measured) ßQ 

3 000 42 nd nun (measured) 
- 

X3 rd run (measured) 

X4 th run (mzasured) 

2000 
C 

(d 
a-) 

1000 t- 

0 1000 2000 3000 4000 

Reference Value 

154 



D. 1.3. Description of the Calibration Instruments: 

The pressure calibrator used in the calibration is PC 106 made by OY Beamex AB 
s`'I Certified laboratories in Jordan regularly calibrate the Calibrator. Figure (D 5) 

shows the main functional parts of the calibrator Analogue pressure signals are 
applied to one or more of the pressure module connections. The analogue to digital 

converters and amplification units make these signals ready at the micro controller 
input in a digital form. The user interface unit facilitates the configuration. range 

selection, units of measurement and user control of the calibrator. Display can he 

read out from two LCD panels and in various units as desired. In this exercise. it was 

possible to set the pressure reference signals down to few millimetres H2O. 

I/O Card 

I/O Bus 

, 11, I N. + A/I) T-ý 

. 
11I P. + . 

1/U -a 

. 
ý- ANIP. + : 1/D 

c 
II r 

"t ppcr Displa% 
keyboard 

Lower Display 

1 scr Interface 1 nit 

Fig. (D. 5), Pressure Calibrator Block Diagram 

Standard four-channel chart recorder is used to obtain the output signals of the 

differential pressure transducer and the flow rate. The range, chart speed and 

sampling rate can be adjusted through a menu driven procedure. LCD display shows 

channel state and signal value in the chosen units. The recorder accepts electrical 

analogue signals at 24 V dc voltage. 

Figure (D. 6) shows a manually operated air pump, (PGV 300) Beamex made, which 

can be finely tuned to deliver extremely low volumetric tlow,, rate through the 
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adjustment of the side knob The same knob is used to lock the pressure in the 
discharge line for reasonably long periods. A vent valve is placed at the top of the 
pump to relieve the line pressure. 

._ 

Fig. (D. 6), Cross Section Through the Calibration Air Pump 

D. 2. Magnetic Flow Meter: 

D. 2.1. Description: 

Magnetic flow meters are non-intrusive flow measurement instruments. Thus. they 

do not interact with the flow pattern. The result is much accuracy and fewer 

complications in the interpretation of the measured signals with minimal correction 

factors. The only limitations on the use of these flow meters are: 

- Must be installed in a vertical pipe run direction to allow for averaging of the 

flow properties on the cross section of measurement. 

- The fluid must contain electrically conductive material. 
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- Minimum distance of any direction and ' or direction change must be not less 

than three pipe diameters. (for test rig, applications this is raised to 10 pipe 
diameters). 

- The flow meter must be electrically isolated from the line pipe. 

- The pipe must be completely filled (bubbles give rise to different electrical 
behaviour than the flowing, medium) 

As such, magnetic flow meters are extensively used in slurry flow applications 
Figure (D. 7) shows a pictorial representation of a4 -inch magnetic tlo\ý meter 
Pulsmag V DM1 6532 made by Endress and Hauser IL According to Faraday's law 

of electrical induction, as an electric current (1) passes through the coils, magnetic 

field is generated across the distance between them, as the fluid flows in a direction 

perpendicular to the direction of the magnetic field it acts as a conductor moving 

across the magnetic field with a given velocity (V) and thus generates an induced 

electromotive force (Ue) that is perpendicular to the direction of both the magnetic 

field and the moving conductor (in this case the flowing slurry) The induced voltage 

is directly proportional to the flow rate. 

_V 

i 

fV 

--a a- 

-I 

Fig. (D. 7), Magnetic Flow Meter Pictorial view 
11 

electrically insulating liner is arranged with the same pipe diameter, two coils are 
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situated across the pipe and perpendicular to them two electrodes are arranged to 
measure the induced electromotive force. The flow meter is microprocessor 
controlled and can be programmed for any suitable unit of measurement The range 
of flow rate in this exercise is from 0 to 198 cubic meters per hour. 

` 

D. 2.2. Calibration: 

Simulated calibration was carried out using standard electronic calibrator that is 
factory configured. This method of calibration was considered adequate due to the 

extensive experience with these flow meters at the site stiere this exercise was 
conducted and the decision of the repeated calibrations that Nvere conducted and 
formed a proven record of accuracy of this method of calibration Apparently, in 

cases were unknown behaviour of a flow meter it is necessary either to calibrate it 

using a standard volumetric and/ or gravimetric procedure This was considered 

unnecessary under the circumstances. 

The Table D. 2. Calibration of the Maunetic Flow Meter 

calibrating 

set impresses 

current at the 

input test 

leads of the 

electronic 

module of 

the flow 

meter. The 

resulting 

Flow Rate (%) Current (mA) Relative Error 

Ref. Measured Impressed Measured Q°° Current 

0 0 4 4.03 0 
1 

0.07% 

25 24.5 8 8.02 0.02% 0.0250/'0 

50 49.9 12 12.05 0.02° 0 0.04° c 

0.027 

75 74.8 16 16.05 % 0.01100 

100 99.8 20 20.05 1 0.02% 0.0250. o 

output 

current is measured at the electrodes. In this exercise the output current was 

measured at the chart recorder to include the error up to the recording point. 
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Table (D. 2) summarizes the results. The current ranges from 4 to 20 nmA 
corresponding to percent flow of the full flo\ti meter range Relative error ranges 
from 0.07% at the lower range to 0.025° ° at the upper flow range 

D. 3. Rotary Cup Viscometer: 

D. 3.1. Description: 

Figure (D. 8) illustrates the operating principle of the viscosity-sensing unit As the 
inner rotary cup rotates at a preset speed. the fluid between the inner and outer cups 
is subjected to shear stress at the inner and outer surfaces of the rotan' cup The 

sheared layer is kept thin enough so 

that turbulence is not allowed to 
'Ieasutiittg I Rotary- Cup 
Space 

distort the shear stress. The fluid 

viscosity resists motion by exerting 

torque on the electrical motor 

Temperature is kept constant -- ------ 

through a cooling/ heating jacket _____=_ 

that circulates the cooling fluid in a 

cascade of temperature control 

baths. The shear stress is 

proportional to rotary speed in 

radians per second where the 
ý" o olin2 Jacket Outer Cup 

constant of proportionality is the 

Newtonian viscosity. 
Fig. (D. 8), Rotary Cup Viscometer 

Sensing Unit 

Viscosity measurement set-up is pictorially shown in fig. (D 9). which comprises 

rotary cup viscometer (Rotovisco® RV 20, Measuring System and 

temperature control cooling/ heating circulators. The viscometer comprises a motor. 

a sensing unit and a control unit. The motor rotary speed is controlled and can be set 

at different values. Torque and shear stress ranges can be selected Digital readout 

shows measured shear stress and shear rate through a selector switch. 
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D. 3.2. Calibration: 

Standard calibration fluid is used in the calibration process of predetermined 
viscosities at different temperatures. Table (D 3) summarizes the fluid properties 

Table (D. 33), Specifications of the Calibration Fluid 

Standard Trade Name: Canon ® Certified Viscosity Standard (Mineral Oil 

100%) Conforminý& to ASTM Oil standard 
Standard Code: S60 

Temperature Kinematic Dynamic Density 
(0C) 

Viscosity V Viscosity .t (<zm/ml) 

` (m. Pa. S. ) (mm /S) 
20 161.1 139.7 0.8673 
25 119.1 102.9 0.8642 

37.78 60.13 51.49 0.8563 
40 54.06 46.22 0.855 

98.89 7.79 6.376 0.8185 
100 7.598 6.214 0.8178 

The calibration procedure is carried out through selecting the operating temperature, 

rotary speed setting and torque and shear stress ranges Different settings of speed of 

rotation produces a table of values of shear stresses viz. shear rates Table (D 4) 

summarizes the calibration measurements. 

Table (D. 4), Shear Stress - Shear Rate Viscometer Calibration Data 

Shear rate in Shear Stress in Pa 

rad. /sec T= 20 Deg. C T= 25 Deg CT= 40 Deg, C 

25.65 3.29 3 2.4475 1.49075 

41.85 5.696 4.272 2.33625 

75.6 9.612 7.209 3.7825 

124.2 16.287 12.30425 6.0075 i 

207.9 28.035 20.6925 9.90125 

348.3 47.971 35.6 16.7765 

579.15 80.634 61.143 28.90275 

969.3 132.61 101.61575 48 S5 

1615.95 16324825 81.3015 

2697.3 132.32075 
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Figure (D. 10) is a plot of calibration results at different temperatures The slopes of 
the straight lines represent the measured %alues of the dynamic viscosity of the 
calibration fluid at different temperatures. In a similar manner, dynamic . iscosities 

can be measured for the fluids in the range of measurement of the apparatus 

Figure(D. 10). Shear Stress - Shear Rate Calibration Cur\ e for 
Viscometer at Different Temperatures 
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Table (D. 5) compares the results of calibration mth the reference results 

of the calibration fluid. An error range from 1.751)o to 5.67° c was 

observed. 

Table (D. 5), Reference viz. Measured Dynamic Viscosity in Pa S. for Calibration 
Gl. 1; 1l 

Temperature 
(De-. C) 

Reference Measured Relative Error 
11 

20 0.1397 0.1373 -1.75% 

25 0.1029 0.10? i 0.59% 

40 0.04622 0.049 5 67l o 
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