Automatic Code-Generation
Techniques for Micro-Threaded
RISC Architectures

Jason M°Guiness

Submitted to the University of Hertfordshire in partial fulfillment of

the requirements of the degree of Master of Science by Research.

Compiler Technology and Computer Architecture Group,
Department of Computer Science Sciences,
University of Hertfordshire,

England.

July 2006



Dedicated to

the many enlightening discussions I had with Dr. Richard Harris and Dr. Andres

Marquez.



Automatic Code-Generation Techniques for
Micro-Threaded RISC Architectures

Jason M°Guiness

Submitted to the University of Hertfordshire in partial fulfillment of
the requirements of the degree of Master of Science by Research.
July 2006

Abstract

There has been an ever-widening gap between processor and memory speeds,
resulting in a ‘memory wall’ where the time for memory accesses dominates per-
formance. To counter this, architectures that use many very small threads that
allow multiple memory accesses to occur in parallel have been under investigation.
Examples of these architectures are the CARE (Compiler Aided Reorder Engine) ar-
chitecture, micro-threading architectures and cellular architectures, such as the IBM
Cyclops family, implementing using processors-in-memory (PIM), which is the main
architecture discussed in this thesis. PIM architectures achieve high performance by
increasing the bandwidth of the processor to memory communication and reducing
that latency, via the use of many processors physically close to the main memory.
These massively parallel architectures may have sophisticated memory models, and
I contend that there is an open question regarding what may be the ideal approach
to implementing parallelism, via using many threads, from the programmer’s per-

spective. Should the implementation be at language-level such as UPC, HPF or
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other language extensions, alternatively within the compiler using trace-scheduling?
Or should it be at a library-level, for example OpenMP or POSIX-threads? Or per-
haps within the architecture, such as designs derived from data-flow architectures?
In this thesis, DIMES (the Delaware Iterative Multiprocessor Emulation System),
which is being developed by CAPSL at the University of Delaware, was used as a
hardware evaluation tool for such cellular architectures. As the programing example,
the author chose to use a threaded Mandelbrot-set generator with a work-stealing al-
gorithm to evaluate the DIMES cthread programming model. This implementation
was used to identify potential problems and issues that may occur when attempting

to implement massive number of very short-lived threads.
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Chapter 1

Introduction

The memory-wall [121] is a limiting factor in CPU performance, which may be coun-
tered by introducing extra levels in the memory hierarchy [15,121]. However, these
extra levels increase the penalty associated with a miss in the memory-subsystem,
due to memory-access times, limiting the ILP. Also, there may be an increase in
design complexity and power consumption of the overall system. An approach to
avoid this problem may be to fetch sets of instructions from different memory banks,
i.e. introduce threads, which would allow an increase in ILP, in proportion to the
number of executing threads. There are issues with introducing multiple threads of
execution, such as they should not have data or control flow that is inter-dependant
between any of the currently executing threads. Another issue is that the cost for
creating, synchronising and destroying threads should be very cheap, which con-
strains the architectural design. The reason for this latter constraint is that the
latencies to be mitigated against would be pipeline stalls, usually very short peri-
ods of time, potentially between a few to tens of clock cycles. Such short threads,
that are designed to mitigate against pipeline stalls, this thesis shall term as micro-
threads. This definition is in slight contrast to the definitions used within [13, 68|,
where the motivation for the definition came from the differing size of the thread,
i.e. that they lacked a stack and context. Given that the threads to which this thesis
refers, and the threads of [13,68] are all used to maintain pipeline throughput, then
this modified definition has some justification. Note that these micro-threads are

not operating-system level threads, which have large context, are potentially pre-
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Chapter 1. Introduction 2

emptible and used for process-level parallelism. Micro-threads would be designed to
have very little context, making creation and destruction cheaper.

Various architectures have been proposed that could support micro-threads:

e The architecture of [13,68|, which is designed to support the smallest variant

of micro-threads.

e The CARE (Compiler Aided Reorder Engine) architecture described in [75],
that supports strands, a variant of micro-threads, that fulfil the same goal,

thus come under the definition of micro-threads used in this thesis.

e The integration of processing logic and memory [21,41, 105, 106] within the
same chip, termed PIM. Such integration may also improve both data-processing

and data-access time.

In this thesis the application of micro-threading to the final PIM architecture is what
will be examined in most detail, with occasional references to the other architectures.

A problem with integrating processors and memory in the same space is that the
processor speed and the amount of memory are reduced [21]. This may be overcome
by connecting multiple, independent PIM cells, where the resultant architecture is
described as cellular. In this multi-threaded organisation, every thread unit serves
as an independent single-issue, in-order processor, thus able to potentially access
memory independently, depending upon the exact details of the architectural design.

This gives rise to a number of code-generation problems, some of which are dis-
cussed in appendix C, centred around the fact that to provide computational power,
these systems are massively parallel. It is common folklore in the programming
community that writing correct and efficient multi-threaded programs is hard. This
problem could be compounded for such cellular architectures. Thus, considerable
research effort has been targeted at code generation, including thread generation,
to support such hardware. There is likely to be much research to do: to develop
compilers to generate multi-threaded code, create lower-level libraries that ease the
burden of creating such code, and write debuggers that allow the programmer to

effectively debug such programs.
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Thread-generating compilers exist; for example, HPF and UPC [45]. The Fortran-
based HPF is very useful for mathematical problems, but less so for other problem
domains. Both compilers specialise on parallelising loop-constructs. Other C and
C-++ parallelising compilers exist, but are largely based upon the OpenMP library,
for example IBM XL Fortran and Visual Age C/C-+-+, which also tend to focus upon
loops and a source of parallelism. Alternatively, higher-level approaches, such as a
compiler that may automatically create threads using the split-phase constraint ex-
ist for such architectures as EARTH [109]. The split-phase constraint may be loosely
defined as when the compiler may generate a synchronization variable, and a destina-
tion thread for a potentially, long-latency load from remote memory. This EARTH
compiler attempts to fulfil the promise of thread-generation for the programmer: it
is automated, general-purpose - not limited to loops - and the schedules it creates
are provably fast and correct.

Moreover, the different memory hierarchies within cellular architectures add to
the multi-threaded code-generation problem. Research is in progress to address this
problem: for example by placing hardware memory-banks that have different access
and consistency models at different address ranges in the memory-map of the virtual
machine, known as location consistency |40] is one approach. The EARTH compiler
and UPC both provide language, hence compiler support, for such features using the
split-phase constraint, or the use of the strict and relazed keywords, respectively.

The library-based approach to threading has often been made less effective by a
lack of language support, that would aid the expressiveness and use of thread-related
constructs (for example threads themselves and synchronization mechanisms). For
example, the use of pragmas in the various implementations of OpenMP, and the
fact that general-purpose languages have been very slow to adopt a sufficiently so-
phisticated abstraction of the features of any machine model. C/C++ has had the
volatile keyword for over a decade, but has made very limited use of it in supporting
shared data, that may be accessible by more than one thread, an obvious use of the
keyword. (Indeed this use is to be introduced into the next C++ standard, to be fi-
nalised not before 2009.) This limitation has been noted (at the Association of C and

C-++ Users Conference, 2005, by B. Stroustrup, in one of his keynote presentations,
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and by others) and has apparently hampered development of multi-threaded pro-
grams and the development of compilers that might automatically generate threads.
The author contends that library-based solutions to threading are too dependant
upon the programmer to use correctly. For example, the explicit use of locks in pro-
grams is prone to error, with deadlocks and race-conditions that are hard to track
down are easily introduced.

The development of suitable tools to debug multi-threaded applications has been
slow. Some tools are available (strace, truss, pstack and various debugger) but are
very limited in functionality, with regards to threading. More useful debuggers are
in development, for example for Cyclops [29]. But these are few, with currently
limited functionality. Further development in this area would be vital to allow the
programmer to debug their code on such systems. A more important aspect of these
tools would be to aid the programmer with regards to reasoning about the function
of their multi-threaded code, and thus avoid such bugs.

In the author’s opinion, the leaders in this field are aiming at a language, not
library, based solution, which would be the appropriate level of abstraction for the
expression of parallelism within a program. The compiler support would allow
the development of more powerful multi-threading abstractions, such as various
algorithms, that would help to divorce the programmer from the complex details
of the underlying architectural support. But there are limitations in the direction
of such current compiler developments, for example, UPC apparently exposes only
loop-based parallelism and HPF requires explicit statements within the code to make
the compiler generate multi-threaded code which also directed towards parallelising
loops. The author contends that this would be far too limited for application to
general-purpose programs.

As identifying parallelism both correctly and efficiently has been very hard for
the programmer to do, the author contends that they should not do it. When such
massively-parallel architectures are developed, this process should include time to
develop libraries that plug into the target compilers to allow them to generate effi-
cient code for that architecture. Thus the programmer would identify variables and

functions that they believe they may be able to parallelise, to guide the compiler.
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The compiler, equipped via these libraries with a detailed machine-model would be
able to refine and hone these gross indications in the program to generate efficient
code. The author experienced only limited effort investigating the software aspect
of the code generation problem for massively parallel architectures. Unfortunately,
if this case should continue, this shortcoming could adversely affect the popularity
of such systems and maintain the perception that massively parallel architectures
are too specialized and thus too expensive to be of more general use. Given the pop-

ularity of multi-core processors, this position is set to become even more untenable.



Chapter 2

Related Work

2.1 The VLIW Origins

The research that has been done in the field of multi-threaded architectures, may
be considered to have been heavily influenced by the work on VLIW architectures:
one can consider them to have a limited number of “live” threads at any one instant,
limited not only by the number of slots in the instruction word, but also by the
ability of the compiler to identify such instruction-level parallelism. Some research
work [83,117| demonstrated that, in the SPEC95 benchmark suite, there has been
potential for a large number of independent threads, up to the order of thousands.

Unfortunately this motivating result was for VLIW machine-models with certain,
ideal parameters; a common limit has been the number of available registers, or
bypass buses, or an oracle branch predictor within the compiler. This gave impetus
to the architecture field to research these rich topics, and has provided very effective
dynamic, rather than compile-time branch predictors. But the VLIW compilers, the
trace compilers of the time, required a compile-time branch predictor to produce
code that did not need expensive recovery mechanisms, and enable the compiler to
perform the whole-program, code-motion optimizations it needed to do to extract
the ILP from the programs. Results for the register problem have been similarly
mixed: due to the multi-ported nature of the register banks, there is a physical and
technological limit: having more registers scales the area of the chip linearly, but

more register ports (for bypass buses) scales the area geometrically. Technological
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limitations in chip fabrication limit the yield of the chips: the larger the area, the
lower the yield in direct proportion. Thus adding a sufficient number of register ports
will always reach a limit in the current technological ability to produce economic
quantities of such chips.

The instruction density in VLIW code decreased for various reasons:

e a lack of an effective compile-time branch predictor,
e combined with limited register resources,
e true data-dependencies,

e and structural hazards

all of which meant is was necessary to inject no-ops into the instruction stream.
These no-ops have been of vital significance: they were a direct indication of the
inefficiency of the compiler and tool-chain, hence architecture, to extract ILP from
the instruction stream, and indicate an inefficiency of both the software and the
compiler. Consequently the effectiveness of the VLIW architecture as a technique
to increase performance, via extracting ILP, by re-compiling the source code had

been constrained.

2.2 Beyond VLIW: Super-scalar: the combination
of branch predictors, speculation and memory
hierarchies

But the research yielded very useful results: the development of dynamic, as opposed
to the compile-time branch predictors. These meant that speculative execution
of code was much less likely to be wasted work. Thus the advent of super-scalar
processors, but these had their problems: performance was hindered by slow memory
speeds. So small caches were implemented, based upon the assumption of data and
control locality. The size of a hardware cache has been chosen to be roughly 10%

of the average size of the executing program the related data. These caches have
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been composed of very high speed memory, which has been costly to implement.
They were also placed directly in line with the IF stage of the pipeline, allowing
very high-speed instruction-fetch from the cache, if there was a cache hit [80]. Also,
regarding instruction fetch: the accuracy of the branch predictor and placing it very
early in the pipeline has been vital. This is to allow the branch target addresses
to be obtained (potentially via the BTC, or via a default prediction, or a dynamic
predictor may be used) before the instructions that would generate the result of that
branch condition. This allowed the instruction cache to pre-fetch cache-line sized
amounts of instructions from slower hierarchies, using the pre-computed, predicted,
branch-target address, and deliver them with minimal pipeline stalls to the IF stage.
The data cache has been more complex, but the concept of implementing a small,
write-back, high-speed amount of memory so that register writes would be directed
to this memory has been relatively simple: it would act as a buffer to the lower-
level, slower memories, and allow memory reads to be potentially serviced directly
by the data cache instead of from the lower-level memory hierarchies. Another
major factor has been out-of-order instruction execution: if there were sufficient
processor resources, instructions could be executed in parallel, although they would
be fetched in-order and potentially retired out-of-order. Moreover instructions that
completed faster need not be held up by slower instructions that were ahead of
them in the instruction stream. The use of a scoreboard or register file [59, 80]
allowed the data-dependencies between registers to be dynamically computed whilst
the instructions were in flight in the pipeline. When these caches were combined
with branch prediction and speculation even more ILP, and performance, could be
extracted from the input instruction stream. In these architectures, the retirement
of instructions was linked to an architectural state (potentially implemented via a
reorder buffer) that, if a mis-prediction occurred, would have to be rolled back, and
the instruction fetch re-started from the alternative branch. Also, if a processor were
to implement precise interrupts, for example to implement processor exceptions, then
a similar roll-back, or completion, of in-flight instructions would need to occur to
ensure that the processor would be in an architectural state that would be consistent

with the sequential program state.
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2.3 Parallel Architectures

The roll-back implicitly implemented within super-scalar architectures has been
viewed as a problem: the increased state due to deeper pipelines makes the chips
much more complex. This increasing complexity has been viewed as one of the lim-
its to the scalability of the super-scalar architecture. The implicit assumption in
the von Neumann architecture underlies this design, therefore more radical alterna-
tives would need to be researched if increased performance may be obtained under
such constraints, for example data-flow based compilers [12,99] and computer sys-
tems [48,57]. But the data-flow architecture itself had problems: the architectural
state was reflected in increasingly many registers, with increasingly many ports, thus
complicating chip design, in a similar manner to the VLIW register problems.

The implementation of large quantities of memory with mixed execution units
may be seen to have led to a few avenues of research. The ones that are pertinent

to this thesis are:

e EARTH and CARE,
e the micro-threaded architecture,

e and cellular architectures such as IBM BlueGene/C and Cyclops.

In general these architectures examine various techniques by which the excess per-
formance of the execution units may be used to ameliorate the relatively limited
instruction and data throughput rate from the memory subsystems. Threading the
program attempts to divide the sequential program into data and control dependent
threads. These dependencies imply a partial execution order upon the threads that
must be satisfied to maintain the consistency of the original program, as expressed
by the programmer in the target language, which has often been a sequential lan-
guage. By this technique the von Neumann architectural concept of strict instruction
fetch-decode-execute-writeback could be avoided. Instead there could be, effectively
multiple execution units, each executing as a von Neumann architecture, within a
whole architecture that would be applied to the program as a whole, thus attempting

to mine such ILP as may be available within that program.
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2.3.1 EARTH, the EARTH compiler and CARE
2.3.1.1 The EARTH architecture

The EARTH architecture [53|, was composed of: a synchronization processor and
an execution processor, linked by two queues. The program would be written in
Threaded-C, such that those threads within the program would be scheduled by an
synchronization unit to execute on connected execution unit, but only if all of the
related dependencies had been satisfied. Due to the multi-processor nature of the
architecture the thread size would be chosen to optimize execution so that any reduc-
tion in efficiency due to long latency delays caused by inter-processor communication
would be minimized. These delays could be of many orders of magnitude longer than
latencies due to branch mis-predictions, or local memory accesses. Threaded-C re-
quired the programmer to annotate their program with thread constructors to direct

the compiler to generate multi-threaded code.

2.3.1.2 The EARTH Compiler

To overcome the necessity for the programmer to annotate the program, Tang in
his work [109], describes a compiler that was able to take a C program and suitably
annotate it with the appropriate threads. Most importantly this could be done
without the programmer’s intervention.

The technique described in [109] is as follows: the compiler tried to identify, with
the potential aid of type modifiers, those operations that may have caused long la-
tencies. Those memory accesses would be labeled using the local or remote type
modifier, and if no modifier were used the compiler had to assume that the access
was remote, therefore the type modifier would be remote. The remote type modifier
indicated to the compiler that the memory access would be of long latency. These
long-latency operations, for example, memory accesses or function calls, would then
be split into two threads. The first thread was the original thread and the second
thread contained the code that was data-dependent upon the long-latency opera-
tion. To ensure that the data dependence was satisfied a synchronization variable

was introduced, such that the second thread waited upon this synchronization ob-
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ject before it could execute, which [109] terms as the split-phase constraint. To
generate these threads the compiler created a data dependence graph of the input
program, with the edges in the graph being labeled as remote and local. Those
remote edges would be split by the compiler using the split-phase constraint. The
compiler also builds up a program dependence flow graph in which the data and
control dependencies of the program were hierarchically captured. This graph in-
cluded the threaded representation of the original program from which the compiler
then identified an optimal order that satisfied all of the constraints. This graph also

allowed the compiler to identify further optimizations:

e To reduce thread switching costs, control and data independent threads should
be merged. This was done by computing the remote level of each node, and

merging those that have the same remote level.

e Within a thread, registers should be re-used and data shared with other in-
structions within the thread, to enhance locality and sequential performance

of the instruction stream.

e Long latency operations could be covered by control and data independent
local operations, providing that the overall control and data dependencies are

satisfied.

In [109], Tang showed that the optimization problem posed by combining the above
details and minimizing the total execution time was NP-hard. Thus an alternative
partitioning algorithm was required, to minimized compilation time. Tang showed
that the list-based scheduling algorithm selected was no worse than twice as slow as
an optimal schedule of the nodes. This bound may be improved upon by reducing
the cost of remote communication. Tang also examined the use of the various heap
based analysis to aid the thread partitioner so that it can create more threads, if
required.

The results presented in [109] showed that for randomly generated program
graphs, the list-based, thread-scheduling algorithm produced code that was within

7% of the ideal run-time, which was close to an optimal schedule. Also, for the
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custom benchmarks used by the paper, the thread scheduler produces code that was
comparable in performance to optimized, hand-written code. Their results showed
that the heap analysis technique improved the performance of the scheduler, which

made use of the heap analysis to optimize the thread performance.

2.3.1.3 The CARE Architecture

In [75] the basis of the large threads implemented within the EARTH was re-
examined. In this case the threads were much reduced in size. The concept behind
CARE was that the instruction fetcher within the pipeline required more guidance to
be able to fetch instruction pointers to single-entry single-exit basic blocks, termed
strands, that could be executed without stalls within the pipeline. Therefore during
execution, the instruction fetcher would have an opportunity to identify other such
strands for subsequent execution. Indeed each strand would have a set of associated
firing rules that, if satisfied, would allow that strand to be scheduled for subsequent,
stall-free, execution. These firing rules would represent the data and control depen-
dencies upon which the instructions within the strand depend. Thus the instruction
fetch unit would contain a set of strands that have all of their firing rules satisfied,
ready to be executed, and another set of strands, which are awaiting their firing
rules to be satisfied. The compiler, in this architecture, would create the strands,
and identify the firing rules and populate that data structure. Moreover, the initial
ordering of the strands within the instruction stream would be performed by the
compiler. But the architecture, at run-time would be allowed to re-order strands, if

their firing rules were satisfied.

2.3.2 The Micro-Threaded Architecture

In [13] a mathematical model was presented that examined the latencies from a
generalized memory unit, modeled as a queue, to a generalized processing unit,
i.e. requests for data. Their results for a local memory system, as opposed to
networked, are reproduced in figure 2.1. They demonstrated that to obtain over
80% performance there need only be over 4 threads ready for execution at any one

instant in the program. This result was independent of the type of input program.
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Figure 2.1: P(n) for conventional memory with Ly = 1/Tj, taken from [13].

It was also independent of the exact memory sub-system implementation. Indeed
the only assumption that was made was the fact that the processor architecture can
support micro-threading, the exact implementation of the micro-threading being
abstracted out of the model. From the studies of available ILP within general
programs, it would seem that the implementation of the technique of micro-threading
in a processor would be extremely effective in maintaining processor throughput
during memory loads. An important property of the micro-threads described in [13]
was that the cost of thread creation, destruction and synchronization must be very
cheap, due to the number and frequent switching of micro-threads. This property
of micro-threads implied that there must be efficient hardware support for them.
To transform a generic program into a micro-threaded program implied that the
control constraints within the sequential program must be transformed into thread
creation and synchronization constraints. This task would be achieved by a micro-
threading stage within a suitable compiler. Further work [68] within this field has

demonstrated the feasibility of such an architecture. A simple schematic of their
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Next address ... deterministic
horizontal transfer of control.

Threads that are
ready for execution.

Next address ... non-deterministic
vertical transfer of control.

Schematic of a micro-threaded, RISC architecture:
Continuation queue & transfer of control.

Figure 2.2: Schematic of a micro-threaded, RISC architecture.

implementation is provided in figure 2.2.

In this architecture, there are many very short threads, perhaps only 2-5 in-
structions in length. They wait upon only one data item, that may be viewed as a
simplified version of the firing rules of CARE. The PCs of those threads that are
ready to execute are stored in a continuation queue, for eventual execution within
the pipeline. Because of the architectural speed of thread creation, synchronization
and destruction, no speculation would be done: all of those features would be con-
verted into micro-threads, thus the execution pipeline could be a relatively simple

RISC-like pipeline.

2.3.3 IBM BlueGene/C and Cyclops

This architecture will be discussed in much more detail in chapter 3.3 of this thesis,
but for the purposes of this section, a brief summary will suffice. This architecture
was a PIM-like architecture, termed cellular, that implements a number of execution
units and memory units on one die. Thus it has the ability to execute many threads,

has fast memory access, and may be viewed, in some sense, as between the EARTH
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architecture and the micro-thread architecture, in terms of a threading model.

In order to overcome the von Neumann-derived memory wall, some method of
overcoming the implicit data-fetch delay should be implemented within the architec-
ture. Moreover, such implementations usually imply multiple threads of execution,
which further implies data and control dependencies that must be resolved, either

at compile or run-time:

e Within EARTH and CARE this is at compile-time: the synchronization unit
has explicit dependencies upon which it must wait, which have been generated

at compile time.

e Within micro-threaded architectures, these dependencies may be left to be
resolved at run-time, as long as all potentially data-dependent instructions

are suitably annotated by the compiler.

e Within Cyclops, as will be presented in chapter 3.3, the control and data
dependencies are much more complex due to the increased complexity of the

architecture and the massive parallelism it makes available.

Eventually this implies that some technique must be used, either explicitly or im-

plicitly by the programmer to generate the required threads for the architecture.
During the research program, I chose to concentrate upon the Cyclops architec-

ture for the rest of the program, as an example of the problems with programming

for such sets of threaded architectures.



Chapter 3

The limitations of super-scalar

architectures: the memory wall

The combination of data and instruction caches effectively decouples the processor
from the speed of the main-memory, by simply introducing more layers of caches
in the memory hierarchy. This decoupling has been highly successful: the increase
in performance of processors of the past decades has been greatly influenced by
the dramatic increase in clock speed. The original 8086 was clocked at roughly
4MHz with no instruction cache, the latest Pentium 4s have been clocked at over
3.4GHz [56]. These latest Pentiums could retire instructions at a rate of roughly
ten-times the main memory speed by using two to three cache levels. But to get such
high speeds the pipeline depth has had to be increased. The Pentium 4 has over 20
stages; the AMD Opteron has 10-12 stages, and has been clocked at approximately
2.6GHz. With these processors, if a branch mis-prediction or processor exception
should occur and the state would have to be rolled back, then instruction fetch
and the pipeline must be restarted, so it would take increasingly long in a 20 stage
pipeline to begin retiring instructions after the restart. The accuracy of the branch
predictor has been paramount, to avoid such time-consuming re-starts. But if the
processor speed were to increase, then more stages may be needed, and branch-
mispredictions would become even more costly. Moreover, the increased latency of
instruction fetch from the mis-predicted branch would increase due to the divergent

relative speeds of the processor and main memory. This problem has been termed

16
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the memory wall [117].

3.1 Multiple cores and massively parallel architec-
tures

The problem of the memory wall may be viewed as an effect of the relative perfor-
mance difference of main memory to processor speed. If the instruction throughput
could be increased by reading instructions from different memory banks, then the in-
struction issue rate is potentially limited by the number of available memory banks,
and IF stages attached to them.

Multi-core processors develop this idea. Let us suppose that the OS supports pre-
emptive multi-tasking, and these OS-level threads are guaranteed to have the inter-
thread, data-dependencies explicitly specified using kernel-level (thus architectural)
synchronization primitives. If the resources used for developing higher clock speeds
were instead used in implementing another core within the processor package, this
extra core would be viewed as an extra processor by the OS for scheduling threads
upon. Moreover, if the program were suitably written, it could take advantage of
any extra processor resources. But this requires extensive and potentially difficult
modifications to the source code to allow it to take advantage of such extra resources.
Moreover, the use of OS-level threads is expensive: they have a lot of context,
because each thread must not only retain the processor state, but the OS state, if it
were to be context-switched off the processor. Architectural-level threading would
seem to be a faster and more simple approach. Another limitation with multiple
processor cores is that the processor cores take die space away from the caches and
branch-predictors, that are proven, high-performance solutions.

Furthermore, there are costs associated with switching between an OS-level
thread with considerable context. These costs include the memory access times
to flush the OS and architectural states to main memory, and the instruction- and
data-cache misses inherent in such a context switch. A technique to avoid these
latencies may be to reduce the thread context to a level such that any such context

could be maintained in the processor, without having to be flushed to a lower mem-
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ory hierarchy. But this implies a dramatic reduction in context: for micro-threading
the context has been limited to only a program counter - an extreme example. More-
over this reduction also implies that these threads would be unlikely to be managed
at the OS-level.

To counter the memory latencies inherent in the super-scalar designs, the ap-
proach of placing the execution pipelines as close to the memory as possible may
be taken. In this context close means that the memory and the execution pipelines
are on the same die. Each instruction fetch stage and the data-bus of a pipeline
would be fed directly from an independent bank of memory. Thus the instruction
fetches and, more importantly, data reads and writes can occur independently of
other pipelines on the same die and other dies. This integration has the advantage
that the latency of memory access would be dramatically reduced. But to allow such
integration, the pipelines are usually much more simple than a super-scalar pipeline.
Often they have no branch prediction, thus no speculation, which allows the space
that a pipeline consumes on the die to be dramatically reduced, thus allowing more
memory and more execution units per die. For example, in the picoChip [33] design
there are approximately 308 VLIW cores and a similar number of DSP pipelines
on one die, with each VLIW core having direct, 1-clock cycle access to approxi-
mately 64K of RAM. Alternatively in the IBM BlueGene/C design [4], described
in section 3.3, more sophisticated 64-bit cores are implemented with approximately
64K of software-controlled data cache, and another 4Gb of RAM on chip, but with
a reduced number of pipelines, in this case approximately 96. Such chips offer a
considerable instruction retirement throughput. To further increase the bandwidth,
the picoChip has 4 ports implemented on it for accessing other picoChips in a grid
arrangement, and a memory port for accessing off-chip memory. To date, arrays of
up to 16 picoChips have been built. The IBM BlueGene/C design has 6 inter-chip
connection ports, allowing a cubic array of chips. Such an arrangement of IBM
BlueGene/C chips has been termed as a cellular architecture: each cell would be
an IBM BlueGene/C chip. The size of the entire IBM BlueGene/C array has been
envisaged to scale up to potentially 10,000,000 individual cells.
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3.2 The programming models: from compilers to
libraries

With such compute bandwidth, and parallelism, a number of problems for the pro-
grammer have been raised, primarily these are focused on the problems of memory
reads and writes. Super-scalar chips have had mechanisms to hide these problems
from the programmer, but the cellular chips such as picoChip and IBM BlueGene/C
do not. Thus the programmer needs to know how memory reads and writes interact

with:
e the software-controlled data-cache attached to that pipeline,
e the software-controlled data-cache of other on-chip pipelines,
e any global on-chip memory,
e the software controlled data-caches of other off-chip pipelines,
e the global on-chip memory that is on any other chips,
e any global memory that is not on any chip

e and finally, given the massive parallelism available, how to make efficient use

of it.

These issues give rise to various programming models, but initially the last point
will be discussed. Given the evidence of ILP studies, the efficient use of the massive
parallelism for general purpose programs such as SPEC2000 is highly unlikely to be
able to be parallelized to the extent of using a fraction of the resources of the IBM
BlueGene/C design, and similarly with the smaller picoChip. The answer would be
that these architectures eschew the aspiration of being practical for general-purpose
use. Instead they target specific, embarrassingly-parallel problem domains.

For a programmer, the memory access models are important to understand, or to
have a library or compiler that hides the details from the applications programmer.
In the remainder of this thesis the author will focus on the IBM BlueGene/C archi-

tecture, and a prototype implementation of it called Cyclops, that was implemented
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at CAPSL at the University of Delaware in collaboration with the University of
Hertfordshire. In the following sections the memory access models will be discussed,
leading on to a presentation of the author’s experience in developing a program
for such an architecture. The experience gained from this will allow the author to
discuss the major problems that were faced, how, if at all, they were overcome, and
the outstanding problem domains that, in the author’s experience, would hinder the

acceptance of multi-core chips and, moreover such massively parallel designs as IBM

BlueGene/C.

3.3 IBM BlueGene/C, Cyclops and DIMES/P: the
implementation of a cellular architecture

The IBM BlueGene/C architecture is described in detail in [4]. Briefly, this architec-
ture consists of a large number of thread units, an equal number of memory banks
and a large crossbar on one die. The execution thread-units are linked to each other
and the memory banks via the crossbar, which also has at least 8 off-chip intercon-
nects. These interconnects may be used to connect more of these chips together in
a large 3-d mesh. Of the order of 160 thread units are on a single die, with the
order of 2-4 Gbytes of DRAM, on-chip. This means that per chip there is a large
amount of available parallelism, and considering that the 3-d mesh may contain of
the order of 100,000 of such chips. A further factor in this design is that there is
no data cache: instead there is a specialized portion of each DRAM bank that is
directly accessible via a related thread unit. Such a portion of the DRAM is termed
the scratch-pad memory, and is effectively a software controlled data cache. This
scratch-pad memory is accessible from that related thread unit without having to ac-
cess the crossbar. The other memory, not associated with any particular thread-unit
is termed as on-chip memory. This gives rise to different memory access models.
These memory access models are related to the work on location-consistency, de-
scribed in [40,124]. In brief, this is the concept that if a set of memory locations
are accessed from two different thread units, the thread units will experience dif-

ferent memory access models of those memory locations, upon simultaneous access.
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For example: simultaneous accesses, by different thread units, to location 1 might
provide program consistency as the memory access model, whereas for location 2,
with simultaneous accesses, by different thread units, this might provide sequential
consistency. With regards to IBM BlueGene/C the scratch-pad memory only guar-
antees program consistency with regards to memory accesses. But for any memory
accessed via the crossbar, it guarantees sequential consistency.

At CAPSL much work had been done in collaboration with IBM with regards
to an implementation of the BlueGene/C architecture called Cyclops. Initially,
this work was implementing CyclopsE [21], which was developed into Cyclops64,
[30]. The CyclopsE architecture was prototyped in hardware, called DIMES/P,
[90,91]. DIMES/P was used as the platform for executing the programming example,
described in section 4.

With regards to any later discussions, it is very important to remember that
each of these architectures, IBM BlueGene/C, Cyclops64, CyclopsE and DIMES/P
display the same features: multiple thread units and multiple memory consistency
models. This is simply because they are all implementations of these same underly-

ing concepts.

3.4 Programming Models on Cellular Architectures

The hardware differences between cellular and super-scalar architectures indicate
that different programming models, are required to make effective use of the cellular
architectures [40,41,120]. In the first two of those three papers, their author pro-
pose the use of a combination of execution models and memory models, as already
described in sections 3.2 and 3.3.

The primary concerns when programming DIMES/P, and thus any Cyclops-

based architecture, were:

e How to manage the potentially large numbers of threads.

e How to easily express any parallelism within the input source-code.
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e How to make correct, and most effective use, of the memory consistency mod-

els.

Some research has already been done regarding programming models for the thread-
ing, such as using thread percolation as a technique to perform dynamic load-
balancing [18,53,61]. Another piece of research [22] investigated using multi-level
scheduling-schemes: a work-stealing algorithm at the higher-level and a multi-
threading technique at the lower-level to hide communication latencies. A further
piece of research [37] investigated the use of filaments as lightweight threads to

efficiently implement thread control.

3.5 Programming for Cyclops

Cyclops has a set of particular concerns associated with programming for it, some
of which have been investigated, but for alternative architectures. For Cyclops, a
reasonable technique for implementing memory consistency models, thread manage-
ment, and finally making use of any parallelism was investigated.

This started with investigating how to easily implement the memory-consistency
models. This was relatively simple: earlier, unpublished, work on the GCC-based
compiler had implemented a simple algorithm: all static variables were stored in
on-chip memory, and the function call stack, including all automatic variables was
placed in the scratch-pad memory.

As there was no language-level support for thread management, a library had
to be implemented to support the thread management instructions in the Cyclops
ISA. An early version of TNT [29,31], called cthreads was used as the basis for
creating a higher-level C++ abstraction. The author considered that the cthread
implementation, that closely followed a POSIX-Threads API, was far too primitive
to be effectively used for programming Cyclops. The simple C++ API that was
developed also included thread-management, critical-sections, mutexes and event
objects to allow for easier management of the lower-level objects.

An abstraction of the extraction of parallelism from the range of possible ex-

ample programs was not implemented for this thesis, as this was considered to be
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potentially too closely coupled to the actual program in question. In the author’s
opinion, not performing this abstraction of parallelism was flawed, because it is
where the crucial, further generalisations take place that allow a programmer to im-
plement an algorithm with far less regard for the underlying architectural features.
Thus the programmer would obtain much greater benefits from this more powerful
abstraction.

To test these ideas, and the Cyclops architecture, a simple program was chosen.
It had the properties that it was a small problem and embarrassingly parallel, ideally
suited to CyclopsE. Thus an implementation of a program to generate Mandelbrot

sets was created, which will be described in the following chapter, 4.



Chapter 4

Programming the Mandelbrot Set
Algorithm for Cyclops

In this chapter, which is a more detailed description of the work done in appendix
C, the salient details of the Mandelbrot set and an informal algorithm will be given
for generating the set. How this algorithm may be multi-threaded is presented, with
particular attention to the implementation used for DIMES/P [90]. This is a proto-
type of the DIMES hardware that implements a reduced version of CyclopsE [21].
Alternative algorithms are also presented, but were not implemented. A description
of how the threaded algorithm was implemented on the DIMES /P platform will be
presented, followed by an example of the application running and the operation of
the work-stealing algorithm.

Further details and the various presentations which were based upon this work
are given in appendices B (this was a presentation give to the University of Hertford-
shire, upon my return from CAPSL, introducing DIMES and my work done there),
A (this was a draft paper prepared at CAPSL in collaboration with Dr. Egan, for
submission to various conferences) and C (this was a conference paper that has been

accepted for publication at ACSACO06).

24
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4.1 An Introduction to the Mandelbrot Set

The Mandelbrot [10, 72| set is intimately related to the Julia set' [60], discovered
in the 1910s. They are both mathematical entities called fractals relating to the
fact that they have a non-integer dimension. Fractals are part of the branch of
mathematical called Chaos Theory, which may be defined as the term for those
theories relating to pseudo-random mappings and functions. The applications of
Chaos Theory is widely varied and includes such applications as compression [85],
cryptography [32], economics [82], seismology [114], the shape of naturally occurring
objects [10] such as clouds, trees [6] and landscapes, medicine such as the modelling
of fibrillation in the human heart [44], which is apart from the pure mathematical
or aesthetic nature of the objects.

Both the Mandelbrot and Julia sets may be created by iteration of a very simple

equation:

Zny1 = 22 4 C (4.1)

In this equation, z, is a complex number, where z5 = 0. ¢ is also a complex
number, which is initialised to a value constant throughout the iterations. The

iteration of equation 4.1 terminates when:

1. Either n reaches the so-called “maximum iteration” value, m, a fixed constant,

greater than zero.

2. Or | z, | exceeds the so-called “bailout” value of 2, usually set to the real value
4 (=| z, |?), for efficiency reasons. It has been proven that | z, |— oo once

| zn |> 2.

To generate the Mandelbrot set, algorithm 1 is used.

4

Usually the selection of ¢ is not random, but a “raster-scan” of the complex

plane. It is not necessary to scan the whole of the complex plane, as a property

'Each point in the Mandelbrot set is an “index” into the Julia set for that point.
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Algorithm 1 The classic algorithm used to generate the Mandelbrot set.
1. Set the value of m, the maximum iterations, greater than zero.

2. Select a point from the complex plane, and set ¢ to that value.
3. Initialise n = 0, z5 = 0.

4. Execute equation 4.1.

5. Increment n.

6. If | 2, |*> 4 then that c is not in the set of points which comprise the Man-
delbrot set. Go to 2.

7. If n > m then that c is in the Mandelbrot set, i.e. ¢ C M. Go to 2.

8. Go to 4.

A
El

Figure 4.1: The classic Mandelbrot set image generated by “Fractint” [119]|. Points
coloured black are in M.

of the Mandelbrot set is that it is entirely contained within the circle of radius 2,
centred on the origin of the complex plane. Another important property of the
conversion to floating-point arithmetic is that the distance between the successively
selected points c is a finite number representable by a floating-point number, and
non-zero. In other terms, this distance is the resolution at which the set is created.

Usually the set of points M is displayed as an image, with those points in the
set coloured to contrast with those that are not in the set. This gives the classic
image in figure 4.1. The black region in figure 4.1 is a basin of stability of algorithm

1. Those points of which it comprises remain within a finite distance of the origin,
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Figure 4.2: A false-colour image of the Mandelbrot set generated by “Aleph One”
[71].

i.e. | z, |< co. Those outside this region are unstable, and eventually | z, |— oc.

More commonly, the points ¢ have a value assigned to them that is derived from
n, the iteration at which algorithm 1 terminated for that point. This gives a false-
colour image, as shown in figure 4.2 , in which the points ¢ of similar colour are
termed “level-sets”, basins of stability identified by the algorithm that enclose the
Mandelbrot set.

4.2 Threading and the Mandelbrot Set

An important property of algorithm 1 to generate the Mandelbrot set is that the
classification of each ¢ in the complex plane is independent of the classification of
any other c¢. Therefore the Mandelbrot set may be implemented as a massively
parallel application, thus potentially suited to cellular architectures. Studies of
alternative implementations for different architectures, such as fine-grain threaded-
architectures [37] and NUMA architectures [22] have already been done. For cellular
architectures, another important feature of this classification process is that the
floating point support required may be implemented in fixed-point arithmetic using
up to 32 bits for the digits, as DIMES/P [90] lacks floating point support.

The Mandelbrot set may be implemented using one algorithm per thread unit
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within the cellular-architecture machine. This approach would work well for massive
clusters of cellular computing nodes. (Remember that for an image of 100x100
points, ¢, 10,000 thread units would be required with this technique.) Moreover,
the classification of any randomly selected ¢ may take between 1 and m iterations
of the algorithm. In general it is not possible to know in advance how long such a ¢
will take to classify. Therefore the computation time would take approximately m
times the time per iteration loop in algorithm 1.

Due to the properties of DIMES/P [90], this technique was not possible, as there
were only 8 thread units between two processors. The chosen implementation, de-
rived from the implementation used in [71], had the complex plane divided into a
series of horizontal strips. Separate render threads, as the classification of the points
¢ within each strip is independent of such classification on other render threads.
Therefore each render thread implements a slightly modified version of algorithm 1,
which is provided in algorithm 4. Only the coordinates for the bounding rectangle
are inter-related between the render threads. However, each strip will, in general,
take a different amount of time to render, thus the render threads will complete
their assigned portion of work at different times. This lead to the addition of a
load-balancing algorithm moving uncompleted work to threads that have already
completed their assigned work. Thus a work-stealing algorithm 5 was added to per-
form the load-balancing between the render threads. Alternative implementations
of the Mandelbrot set using a work-stealing algorithm [22] or fine-grain threaded
algorithm [37] exist.

The updates to the start, x, and finish points of the strips for the render threads
T. and T; are performed atomically - the threads are suspended whilst these up-
dates are done, either because T, is stopped or because 7; is stopped by using a
mutex. (A mutex is required as the data to be updated is a two complex numbers,
x and the finish point, these must both be updated as a pair, atomically. In this
implementation a complex number consists of two words - one for the real part,
one for the imaginary part.) This is a dynamic-programming solution to the load-
balancing problem of work distribution between the render threads. Moreover, the

algorithm is robust: if the estimated completion-time, ¢, has an error, which it is
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Algorithm 2 The render-thread algorithm.

1.

Set the value of m, the maximum iterations, greater than zero. Set the es-
timated completion-time, ¢, to the largest, finite, representable time-period
possible.

Set ¢ = x, where x is the top-left of the strip to be rendered.
Initialise n = 0, z5 = 0.
(a) Execute equation 4.1.

(b) Increment n.

(c) If | 2, |*> 4 then that c is not in the set of points which comprise the
Mandelbrot set. Go to 4.

(d) If n > m then that ¢ is in the Mandelbrot set, i.e. ¢ C M. Go to 4.
(e) Go to 3a.

Increment the real part of c. If the real part of ¢ is less than the width of the
strip to be rendered, go to 3.

Calculate the average of ¢t and the time it took to render that line.

Set the real part of ¢ to the left-hand of the strip. Increment the complex part
of c¢. If the complex part of ¢ is less than the height of the strip, go to 3.

Signal work completed, set ¢ = 0 (thus this thread is guaranteed not to be
selected by the work-stealing algorithm 5).

Suspend.

Algorithm 3 The work-stealing algorithm.

1.

Monitor render threads for a work-completed signal. That thread that com-
pletes we shall denote as T..

Find that render thread with the longest estimated completion-time, ¢, note
that each render thread updates this time upon completion of a line. Call this
thread 7Tj.

Stop T; when it completes the current line it is rendering.

Split the remaining work to be done in the strip equally between the two render
threads 7, and T;.

Restart the render threads 7). and Tj.

Go to 1.
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very likely to have, the algorithm merely performs excessive work-stealing opera-
tions, but automatically tunes to find a local minimum in the total completion time
curve. Experiments with [71] have shown that the algorithm can accommodate er-
rors of over 100% in the estimated completion-times, and rapidly corrects to the

new local minimum.

4.3 A Discussion of the Work-Stealing Algorithm 5
The algorithm 5 has some important features:

e The bandwidth of the single thread that implements that algorithm is the lim-
iting factor in its ability to scale. Conversely, this algorithm is able to tolerate
failures in render threads and is therefore robust. If a render thread stops
responding, eventually it will be the slowest, unfinished render thread, and its
work will be stolen. It is possible to scale this work-stealing algorithm, if one
observes that the work-stealing algorithm operates upon a slice of the complex
plane, demonstrating that the work-stealing algorithm is recursive. It is pos-
sible to assign strips sg_; of the plane to independent sets of render threads,
governed by their own work-stealing thread. These s; strips are monitored by
a work-stealing thread in turn, those strips returning an aggregate estimated
completion time. But this has a limitation: Once the number of render threads
becomes of the order of the vertical resolution of the image, the completion
time is bounded by the maximum time it takes a render thread to generate a
single line. This line for the Mandelbrot set in figures 4.1 and 4.2 is the line
(—2,0) to (2,0), which has the most points within the set. These points take
m time to classify. As the unit of work in the work-stealing algorithm is a line,
this is the slowest line, and thus the ultimate limit of this algorithm, unless

the resolution is increased. This discussion leads to the following algorithm:

e [f robustness is not required, then the image generated may be viewed as an
array of values, where each of these values is the classification of ¢. Consider

if there are pg_, threads, each p, thread initially classifies a point in the array
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Figure 4.3: Simplified schematic overview of the DIMES/P implementation of Cy-

clopsE.

offset by n, and once completed, moves along the array using a stride of ¢. This

allows the use of a number of threads that is bounded by the number of points

within the image. As this may be for an image of resolution 100x100, thus

10,000 points, which maps well on to the cellular architectures as described

in [21]. For more thread units, the image resolution would need to be increased.

Unfortunately, this algorithm does not have a natural ability to tolerate failures

in thread units, unlike the work-stealing algorithm, 5.

4.4 DIMES/P Implementation of the Mandelbrot-

set application

A simplified schematic diagram of the DIMES/P implementation (from [90]) of the

CyclopsE processor is given in figure 4.3. The features of this architecture are that

the memory model for the two types of memory, the scratch-pad and the global

memories are different:

e Global memory obeys the Sequential Consistency Model for all thread units.
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Figure 4.4: Layout of the render and work-stealing threads within the DIMES/P
system.

e Scratch-pad memory obeys the program consistency model for all thread units,

apart from the thread unit to which it is attached.

Such different consistency models affect the way that the data for the Mandelbrot-
set application is arranged in memory, but this will be discussed in more detail in
section 4.4.1.

The static layout of the render and work-stealing threads within the DIMES/P
system is shown in figure 4.4. The software threads that occupy the thread units

are:

e The CRTS - Debug thread is required for the debugger, if it is executed. As
threads are statically allocated at program start-up, this must be left free for

the debugger and Cellular Run-Time System (CRTS?) support.
e Main is the main loop of the Mandelbrot-set application.

e The Render Threads are the threads that execute algorithm 4.

*Not to be confused with the ANSI/ISO ’C’ Runtime.
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o Work-Steal Th is the thread that executes algorithm 5. Only one work-stealing
thread was implemented, due to the limited number thread units per processor.
In principle a render thread could also run on this thread unit, but the CRTS
does not support virtual threads, moreover the work-stealing thread actually
has to spin in a busy wait monitoring for completion of a render thread. Hence,

for this application, it was deemed an unnecessary complexity.

Further details regarding the implementation may be found in [70].

4.4.1 The Memory Layout

As far as the programmer is concerned, the two 64k global memory units comprise
a single, contiguous 128k block of memory which is for code and global data. The
programmer has no access to differentiate between them. Moreover, the CyclopsE
design is such that access times to them are the same, no matter which thread unit
from which processor accesses them. The programmer may ensure that data will be
placed in global memory by the compiler by ensuring that it is static. This may be
done by making it global, or using the C/C++ keyword “static”. The compiler places
the stack frame into the scratch-pad memory, which means that function call depth is
limited, as there is only 4K stack space per thread. The Mandelbrot-set algorithm
as described does not need this much space for each thread unit, thus all thread
local-data is placed into the corresponding scratch-pad memory for performance.
The 40,000 bytes of image data (100x100 words, 1 word = 4 bytes) is placed in
global memory for implementation reasons. DIMES/P has no console, thus the only
way that communication with DIMES/P can occur is via the global memory from

a specially written program running on the host computer.

4.4.2 The Host Interface

The DIMES/P implementation is physically located on an FPGA on a PCI board,
with specialized hardware and software support for it to communicate with the
host computer for loading programs, and communicating results, of which details

are given in [29,90]. A simple command-line program was written to periodically
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Figure 4.5: The image generated shortly after program start-up.
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Figure 4.6: Image generation has progressed, shortly before a work-stealing event.

fetch the image data from the DIMES/P memory, and save it to a file for subse-
quent display. This program also allows the user to enter image parameter data for

subsequent control of the image rendering on DIMES/P.

4.4.3 Execution details of the Mandelbrot-set application

In this example, there are three threads for simplicity:

1. On program start, the render threads start to execute and perform their as-
signed work. The assigned work is initially equal % portions of the total image,
arranged in horizontal strips. The top render thread is denoted by Tj, the mid-
dle by T} and the lower by T5, although this relative position will change later.
The operation of the render threads may be seen in figure 4.5. No work-stealing
has occurred, so there are just three strips, one per render thread, scanning

from left to right, top to bottom.

2. As the image generation proceeds, the Ty and 75 threads progress faster than
T, as seen in figure 4.6. Note how 7 has calculated more than 75 - the lighter
areas take longer to calculate, and the strip generated by T is black at the

top, and white at the bottom, but the converse is true for T5.
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Figure 4.7: Just after the first work-stealing operation.

T1_+}_A

T 7
4
Figure 4.8: The second work-stealing operation.

3. The first work-stealing operation has just occurred. Tj finished and 7T}, the
slowest (mainly white) has had the remaining work divided between it and Tj,
see figure 4.7. Note how the end-point of 77 was assigned to be the new end

point of T and the new end-point of 717 is the start-point of Tj.

4. Shortly after this first work-stealing operation occurs, T, completes its assigned
work. A second work-stealing operation occurs, see figure 4.8. In this case work

was again stolen from 7}, and assigned to T5.

5. After a pause 177 completes its assigned work, and another work-stealing op-

eration occurs, this time with T, which may be seen in figure 4.9.

6. Finally the set is completed, see figure 4.10 , with no further work-stealing

operations, as the number of uncompleted lines for any render thread is less

TZ\

R\»t-ﬂt —

4

Figure 4.9: The third work-stealing operation.
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Figure 4.10: The completed Mandelbrot set.

than 2, and a line is the minimum unit of work for this algorithm.



Chapter 5

List of Achievements

The following goals have been achieved by the author in the course of the MSc(Res)

program:

e A collaboration between the University of Hertfordshire and the CAPSL group,
under Professor Gao at the University of Delaware, was set up by the author.
As part of this collaboration the author worked at the CAPSL group for ap-

proximately 18 months.
e Two departmental seminars regarding this work were presented at CAPSL.

e A poster of the Mandelbrot set implementation on the DIMES/P-2 platform
was shown at Super Computing ‘03, amongst other posters from the CAPSL
group regarding DIMES.

e Two departmental seminars on regarding this work were presented at the Uni-

versity of Hertfordshire, shortly after the author’s return from the CAPSL.

e A conference paper by the author has been accepted for the 11" Asia-Pacific
Computer Systems Architecture Conference, titled: “The Challenges of Effi-
cient Code-Generation for Massively Parallel Architectures”, also to be pre-

sented by the author. It is included in appendix C.
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Summary

The limitations of DIMES/P prevented further study of the properties of this pro-
gram: scalability and timings were not done because of the limited number of thread
units (8) and memory capacity (128k). Despite this, the development of the program
was instructive: an initial contention of this thesis was that the memory models and
massive parallelism (i.e. large numbers of micro-threads) inherent in cellular archi-
tectures would make programming for them hard. This was experienced to different
measures, relating to the memory model support, the thread library and therefore
the micro-thread support.

With regards to the memory model support, the fact that the compiler made
natural use of language-level syntax to map data into scratch-pad and on-chip mem-
ory (using the C/C++ keyword static) made using these different memory mod-
els easy. But this simplicity was at a price: Cyclops only has word-sized, atomic
memory-operations, and these operations were apparently unused for this problem.
The author contends that such multiple, read-modify-write operations that must be
maintained as an atomic unit hampered the performance of the program on Cyclops,
because they could not make use of the hardware-level support for atomic opera-
tions. So the more usual barriers such as mutexes and critical sections were needed.
This implies that the manual locking that had to be applied should really have been
implemented within the compiler-provided support via the static keyword. If this
were the case then it may have been possible for the compiler to perform optimiza-

tion on the locking of access to the data, and improved program performance, with
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apparently no impact upon the developer. As already mentioned, certain members
of the C++ standards committee are proposing the extension of the execution model
within the C++ standard to support the concepts of memory consistency within the
C-++ standard. That this proposal will address the problem outlined above is not
yet clear. Tt is the author’s contention that there should be support for such locking
(in some manner implemented within the compiler or a run-time library) if pro-
grams more sophisticated than the one described in this thesis are to be successfully
written for these architectures.

With regards to the thread library: the complexity of POSIX-Threads has been a
hindrance to successful multi-thread program creation. Indeed this opinion has been
voiced by some members of the C++ standards committee at the ACCU 2004, 2005
and 2006 conferences. The creation of a C++ wrapper to hide thread creation and
destruction, and combine with that thread, any local storage in an efficient manner,
was only partially successful: The concept that a thread is an object has not been not
universally accepted, because this means that the data to be manipulated becomes
intimately intermingled with the thread-management code. This would be an even
greater problem when considering micro-threads in that they have little, or indeed
no context, thus mingling threading constructs with data is potentially in direct
conflict with the design of micro-threads. Even for this simple example program,
this mingling was evident in the work-stealing algorithm, and the way it interacted
with the start and end-points of the worker threads. For more complex, larger
programs, such complexity would be likely to make writing them correctly, and
modifying them later very hard. Subsequent updates to the cthread model, which
became TNT, described in [31], are still largely POSIX-Thread based, and which
is a low-level API. The concept that data and execution should be kept separate
is commonly and naturally embodied in programming via the syntax of “main”. It
has been contended by members of the C++ Standards committee that this pattern
should be duplicated for thread libraries: that there should exist a pool of threads,
to which work is passed. This work would be asynchronously executed, on a thread
within the pool. With the results returned from that pool via a wait-able object.

This concept is similar to the data-flow designs that preceded VLIW, indeed it has
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been argued that this concept is a software emulation of data-flow.

When considering the harder problem of creating an effective algorithm to imple-
ment micro-threading and representing that in code, clearly the example program
described above was very limited in its achievements. The work-stealing algorithm
was intimately related to the program design. The ability to abstract the work-
stealing operation to other problems would be very limited using that design. Al-
ternative approaches have been examined, such as in [88|, using OpenMP, which
was still used as a library to express the parallelism, but OpenMP poorly maps to
micro-threads, the primitives it implements, arguably, have been too tied into the
process-level parallelism for which it was originally designed. Alternatively, if one is
to consider the suggestion above, of a micro-thread pool into which work is submit-
ted, then the details of how the pool works become separated from the work itself.
The fact that the pool balances work between threads using a master-slave, or work-
stealing algorithm should be independent of the work: a natural division of concepts.
If this were the case, then the programmer would be free to add work to the pool
as desired. The parallelism of the algorithm would be more naturally expressed in
terms of operations on data. If one is to consider this further: the actual executable
code (in terms of the function pointer, in micro-threading terms a program counter)
and the data are passed to the pool together. It could be then possible for the pool
to be designed to make use of data locality and code locality: Did a previous thread
execute that code before? If so, prefer to run that work on that thread. If there
are “cliques” of threads, related due to resource asymmetry, then one might create a
pool to represent the particular feature of that resource. For example a Cyclops chip
might be represented as a micro-thread pool, contained within a greater thread pool
that represents the machine, due to the fact that off-chip memory access makes use
of a message-passing protocol, rather than the crossbar network embedded within
the chip, that allows much more rapid memory access.

It is still an open question regarding what may be the ideal approach to im-
plementing parallelism via micro-threading: language-level support such as UPC,
HPF or other language extensions, or within the compiler using trace-scheduling, or

should it be at a library-level using, for example OpenMP or POSIX-Threads, or
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should it be within the architecture, such as the micro-threaded architectures [13]

of Luo et al [68], CARE [75] or Cyclops [31].
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A.1 Abstract.

There is an ever widening gap between CPU speed and memory speed, resulting in
a ‘'memory wall’ where the time for memory accesses dominate performance. Cellu-
lar architectures, such as the Cyclops family, have been developed to overcome this

'memory wall’ by implementing processors-in-memory (PIM) on the same chip. PIM
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architectures achieve high performance by increasing the bandwidth of processor-
memory communication and reducing latency. In this paper we introduce DIMES
(the Delaware Iterative Multiprocessor Emulation System) which is being developed
by CAPSL at the University of Delaware, as a hardware validation tool for cellular
architectures. The version of DIMES used in this paper is a simplified hardware
implementation of the Cyclops-64 cellular architecture developed at the IBM T. J.
Watson Research Center. Since DIMES is a hardware validation tool, its hardware
implementation is constrained to a dual processor where each processor has four
thread units. DIMES memory is restricted to 16K of local scratch-pad memory
per processor and 64K global shared memory. Additionally DIMES is linked to a
host computer for I/O. We have chosen to use a Mandelbrot-set generator (written
in C+-+) with a work-stealing algorithm as our metric to evaluate the program-
ming model on DIMES. The Mandelbrot-set generator has been threaded, and the
work-stealing algorithm achieves load balancing between the DIMES’ threads. The
Mandelbrot example demonstrates the effective use of DIMES’ threads, the effective
use of DIMES scratch-pad memory and the effective use DIMES global memory in
its CRTS environment. The results of the study are highly promising and show that

DIMES is an ideal hardware tool for validating future Cyclops enhancements.

A.2 Introduction.

High performance processors, in particular super-scalars, exploit instruction level
parallelism (ILP) by overlapping instruction execution (pipelining) and using multi-
ple instruction issue (MII) per clock cycle [101]. Although, this approach improves
processor performance, it does not improve performance of the memory subsystem.
Researchers improve CPU speed by increasing the number of instructions issued in
each clock cycle or by increasing the depth of the pipeline, which can cause a bot-
tleneck in the memory-subsystem. This is termed as the memory-wall and impacts
on overall system performance [121].

One approach to overcome the memory-wall is to improve data throughput and

data storage between the memory subsystem and the CPU by introducing extra
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levels in the memory hierarchy [15,121]. However, introducing extra levels in the
memory hierarchy increases the penalty associated with a miss in the memory-
subsystem, which limits the amount of ILP and impacts on processor performance.
Also, there is an increase in design complexity and an increase in power consumption
of the overall system. Furthermore, increasing the number of levels in the memory
hierarchy does not improve memory access times.

An alternative approach to overcome the memory-wall is to improve both data-
processing and data-access time by the integration of processing logic in memory
[21, 41,105,106, 116]. The idea of integrating processors-in-memory (PIMs) is to
simplify the memory hierarchy design, to achieve higher bandwidth and to reduce
latency. There are several PIM architectures being developed, for example, the
Cyclops family of PIM architectures by IBM [21], the Gilgamesh PIM architecture
by NASA [105,106], the polymorphous TRIPS architecture at Austin, Texas [92]
and the Shamrock PIM architecture at Notre Dame, France [64].

A problem with integrating a processor and memory on in the same silicon space
is that the processor speed is reduced in comparison with a high performance pro-
cessor and the amount of memory is also reduced [21]. To overcome the reduction in
processing power and the reduction in the amount of available memory and therefore
latency, multiple PIM chips are connected together forming a network of cells, where
a single PIM chip is considered to be a cell and the whole architecture is described
as cellular.

To overcome the data access problem, each cell is threaded such that each thread
unit is independent from all other thread units. In this multi-threaded organisation,
every thread unit serves as an independent single-issue in-order processor, which
shares computationally expensive hardware resources such as floating-point units
and caches.

In this paper we introduce DIMES (the Delaware Iterative Multiprocessor Em-
ulation System) which is being developed by CAPSL at the University of Delaware
[29,90]. DIMES is a hardware validation tool for cellular architectures, in particular
the Cyclops family [21]. DIMES places the Cyclops architectural design into a sin-
gle FPGA. The idea behind DIMES is to emulate Cyclops cycle by cycle, to be far
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faster than software based simulations, and to direct future Cyclops enhancements.

A.3 Programming Models on Cellular Architectures.

Cellular architectures require different programming models to the general-purpose
code executed by super-scalar processors [40,41,120]. Gao proposes the use of
a combination of execution models and memory models, because of the cellular
architectures multiple execution units within each cell.

Gao’s programming model evaluates multiple threads in each cell due to the large
number of execution units within Cyclops. For example, one programming model
uses thread percolation as a technique to perform dynamic load-balancing [18,53,62].
Additionally, in cellular architectures, multiple threads perform memory accesses
independently. As a result of this, the memory subsystem requires some form of
access model that allows these memory references to be effectively served. For
example, the use of the location-consistency model was suggested as a memory

access model by [40].

A.4 Conclusion/Discussion.

The threaded algorithm shows that the Mandelbrot set is an ideal mechanism for
evaluating cellular architectures and programming models on the DIMES hardware.
Currently DIMES is targeted towards CyclopsE, however DIMES could be expanded
to the full IBM Cyclops family and other cellular architectures, such as those at
Gilgamesh at NASA and Shamrock at Notre Dame.

Future enhancements to DIMES may incorporate more hardware to allow bench-
marks, such as Tabletoy and others. This will also allow us to evaluate further

enhancements to the cellular programming model.
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B.1 Overview:
Recap from last week:

e The memory wall and cellular architectures: a solution?

e Programming models on Cellular Architectures, followed by a brief overview

of Cyclops and DIMES /P-2.
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New this week:

e An introduction to the Mandelbrot set.
e Threading and Work-Stealing applied to the Mandelbrot set.

e The programming implementation with regard to DIMES /P-2 and the execu-
tion details of the Mandelbrot-set application. PLUS A LIVE DEMONSTRA-
TION OF THE PROGRAM!!!

e Latest work: Global Updates Per Second (GUPS) benchmarks.

e Conclusions & Future Work.

B.2 A recap on the memory wall. Part I:

The processor viewpoint.

Processor Memory

Wall

e Higher performance may be achieved through ILP by MII and/or pipelining.
Various techniques are used to implement these goals, e.g. Register Renaming,
Out-of-order instruction issue/execution, Branch Prediction, dynamic instruc-

tion scheduling, Value Prediction, Instruction Reuse, etc.

e But this causes a bottle-neck - upon a miss the recovery cost becomes in-
creasingly high, because the memory cannot keep up with the required fetch

rate.

e This leads to attempts to improve the performance of the memory.
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B.3 A recap on the memory wall. Part II:

The memory viewpoint.

Processor

Main Memory

L2

L1

0 Wall

e Increasing the levels of memory in the hierarchy, by placing levels of caches

between the main memory and the CPU (or on the CPU).

e This reduces the memory wall, but on a cache miss the penalty is more severe.
(Also this does not reduce the memory sub-system latency for an initial access,

only upon subsequent access.)

e In both cases:

— The hardware complexity and cost is increased.

— The rewards obtained are balanced against known disadvantages.

B.4 The memory wall and cellular architectures: a
solution?

e Why not place the processor in the memory, e.g. PIM architectures? Does

this remove the memory wall?

e In principle due to the proximity of the execution units to the memory cells,

the latency and bandwidth should be reduced.

e But due to the mixture of logic units on the silicone die, the gate density is

reduced.
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e To maintain gate density, more simple execution cores are used, such as RISC

pipelines which may also omit branch prediction, for example.

e Thus the memory density and execution unit throughput are reduced. How

may this be countered?

— With the addition of a network interface to interconnect between the PIM

chips. Thus each chip becomes a cell.

— Thus reduced individual performance may be countered by interconnect-
ing many of these cells together to build up a cellular architecture, e.g.
Cyclops developed at IBM, Gilgamesh at NASA and Shamrock at Notre

Dam.

B.5 Programming models on Cellular Architectures.

Cellular architectures have particular features that mean that their programming

model is different to super-scalar processors:

e They have large (millions) of execution (or in cellular architectures thread

units) which are simple.

e Memory access is irregular: Some memory is very close, thus fast, the rest is

off-chip, so much slower.

Research into appropriate programming models is on-going, the current model is

pthread, but future directions include:

e For example thread percolation as a technique to perform dynamic load-

balancing.

e In cellular architectures, multiple threads perform memory accesses indepen-
dently. As a result of this, the memory subsystem could have some form of
access model that allows these memory references to be effectively served. For
example, the use of the location-consistency model could be used as a memory

access model.
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B.6 A brief overview of Cyclops and DIMES /P-2.

At the University of Delaware the first hardware simulation of a cellular architecture

has been built under Hiro Sakane’s group:

e This is called DIMES/P-2.

e It is a simplified implementation of the 32-bit CyclopsE design, one of the
family of Cyclops architectures developed at the IBM T.J. Watson Research

Center.

Processor 0

Processor 1

Thread Unit 0

Thread Unit 0

4K Scratch pad

4K Scratch pad

Thread Unit 1

Thread Unit 1

4K Scratch pad

4K Scratch pad

Thread Unit 2

Thread Unit 2

4K Scratch pad

4K Scratch pad

Thread Unit 3

Thread Unit 3

4K Scratch pad

4K Scratch pad

64K Global
Memory

Network

B.7 An introduction to the Mandelbrot set.

The Mandelbrot set is a fractal named after Professor B.B. Mandelbrot, who dis-

covered the set in the 1960s. It is intimately related to the Julia set, also a fractal,

discovered in the 1910s.

Both the Mandelbrot and Julia sets may be created by iteration of a very simple

equation:

64K Global
Memory
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Zny1 = 22 +c (B.7.1)

In this equation, z, is a complex number, where z5 = 0. ¢ is also a complex
number, which is initialized to a value constant throughout the iterations. The

iteration of equation terminates when:

1. Either n reaches the so-called “maximum iteration” value, m, a fixed constant,

greater than zero.

2. Or | z, | exceeds the so-called “bailout” value, a fixed constant, usually set to

the real value 4, for efficiency reasons.

B.8 The classic algorithm used to generate the Man-

delbrot set:

1. Set the value of m, the maximum iterations, greater than zero.
2. Select a point from the complex plane, and set ¢ to that value.
3. Initialize n = 0, zp = 0.

4. Execute equation B.7.1.

5. Increment n.

6. If| z, |> 2 then that cis not in the set of points which comprise the Mandelbrot
set. Go to 2.

7. If n > m then that c is in the Mandelbrot set, i.e. ¢ C M. Go to 2.

8. Go to 4.
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B.9 Threading applied to the Mandelbrot set.

An overview of threading the Mandelbrot-set generation algorithm:

e An important property of algorithm to generate the Mandelbrot set is that the

classification of each ¢ in the complex plane is independent of the classification

of any other c¢. Thus the Mandelbrot set may be implemented as a massively

parallel application, thus potentially suited to cellular architectures. Indeed

the Mandelbrot has has been used in as a benchmark for different architectures,

such as fine-grain threaded-architectures and NUMA architectures.

The complex plane is divided into a series of horizontal strips. These strips may be

calculated or rendered independently of each other, using separate render threads,

as the classification of the points ¢ within each strip is independent of such classifi-

cation on other render threads. Therefore each render thread implements a slightly

modified version of the classic algorithm, which is given in the threaded algorithm,

given next.

B.10 The Render-Thread Algorithm.

1. The algorithm:

(a) Set the value of m, the maximum iterations, greater than zero. Set the esti-

mated completion-time, ¢, to oco.

(b) Set ¢ = x, where z is the top-left of the strip to be rendered.

(c) Initialise n =0, 29 = 0.

1.
il.

iii.

1v.

Execute equation B.7.1.
Increment n.

If | z, |> 2 then that ¢ is not in the set of points which comprise the
Mandelbrot set. Go to 4.

If n > m then that ¢ is in the Mandelbrot set, i.e. ¢ C M. Go to 4.

Go to 3a.
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(d) Increment the real part of c. If the real part of c is less than the width of the

strip to be rendered, go to 3.
(e) Calculate the average of ¢ and the time it took to render that line.

(f) Set the real part of ¢ to the left-hand of the strip. Increment the complex part
of c. If the complex part of ¢ is less than the height of the strip, go to 3.

(g) Signal work completed, set ¢+ = 0 (thus this thread is guaranteed not to be

selected by the work-stealing algorithm).

(h) Suspend.

A load-balancing algorithm was added to move uncompleted work to threads that
have completed their assigned work. This is because each strip will take a different

amount of time to render.

B.11 The Work-Stealing Algorithm.

1. Monitor render threads for a work-completed signal. That thread that com-

pletes we shall denote as T..

2. Find that render thread with the longest estimated completion-time, ¢, note
that each render thread updates this time upon completion of a line. Call this

thread 1j.
3. Stop T; when it completes the current line it is rendering.

4. Split the remaining work to be done in the strip equally between the two render

threads 7. and T;.
5. Restart the render threads 7T, and T;.

6. Go to 1.

This is a dynamic-programming solution to the load-balancing problem of work
distribution between the render threads. Due to the selection of the slowest render
thread, this algorithm may been see to be optimal. The author believes that this is

an original application of work-stealing to Mandelbrot-set generation.
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B.12 A Discussion of the Work-Stealing Algorithm.

e The bandwidth of the single thread that implements that algorithm is the

limiting factor in it’s ability to scale.

e [t is possible to scale this work-stealing algorithm, if one observes that the
work-stealing algorithm operates upon a slice of the complex plane. This clue

demonstrates that the work-stealing algorithm is recursive.

e Conversely this algorithm is able to tolerate failures in render threads. If a
render thread stops responding, eventually it will be the slowest, unfinished
render thread, and it’s work will be stolen.If robustness is not required, then
the image generated may be viewed as an array values. Each of these values
is the classification of c. Thus if one has p,_, threads, each p, thread initially
classifies a point in the array offset by n, and once completed, moves along the

array using a stride of q.

e This allows the use of a number of threads that is bounded by the number of
points within the image. As this may be for an image of resolution 100x100,

thus 10,000 points, this maps well on to cellular architectures.
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below:

Processor O

Thread Unit O

Processor 1

CRTS - Debug

Thread Unit O

Render Thread

Thread Unit 1

Main

Thread Unit 1

Render Thread

Thread Unit 2

Render Thread

Thread Unit 2

Render Thread

Thread Unit 3

Render Thread

Thread Unit 3

Work—-Steal Th.

100x100 Pixel Image

128K Global Memory

B.14 Execution Details of the Mandelbrot-set ap-
plication.
B.15 Supercomputing Benchmarks: Global Updates

Per Second (GUPS).

The GUPS benchmark is a very simple program that is effectively a cross-section

bandwidth benchmark. It makes a large number of random updates to a large array:
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Figure B.2: Image generation has pro-

Figure B.1: The image generated
& &¢ 8 gressed, shortly before a work-stealing

shortly after program start-up.
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Figure B.3: Just after the first work- Figure B.4: The second work-stealing
stealing operation. operation.

e for (i = 0;1 < 30000000; +-+1i) table[random integer| += random _value;

e This is complicated because for Cyclops we wish to perform this operation on

the table across multiple processors.

e The limiting factor for the program is the memory access time due to the
random reads & writes this confounds architectural features that may attempt

to improve memory performance.

e But we are allowed to have a 0.1% errors in the table at the end of the bench-

mark.

This error rate is vital as it allows us to relax the locking used to access the global
table. This relaxation means that updates to the table may not be done in sequential

program order, thus introducing errors.

B.16 GUPS and DIMES.

Currently there have been three simple, initial implementations of this program, all

run on DIMES/P-2:
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1. A sequential implementation, with no threading.

2. Multi-threaded implementations:

(a) Full locking on the table access, thus giving a zero error rate.

(b) No locking at all on the table access, thus sacrificing error rate for speed.
The error rate is as yet unmeasured, but this appears to run 10 times

faster than the fully locked version above.

The justification for implementing GUPS with no locking is a statistical one. As
the amount of memory on Cyclops is 1Gb/chip, with only 320 thread units/chip,
then the likelihood of any two thread units accessing any one memory location at

the same time is very low, much lower than 0.001 (our permissible error rate).

B.17 Limitations of current GUPS & DIMES.

e The pthread programming model is too simplistic:

— It does not reflect the memory hierarchy. More sophisticated memory
models (such as location consistency) will be needed to aid the program-
mer in effectively lay out the global table to make the memory accesses

faster.

— It does not directly support data or thread percolation.

e The DIMES/P-2 hardware has too few resources (only 8 thread units and
128Kb RAM) to be a realistic platform upon which to run these more sophis-

ticated benchmarks.

B.18 Conclusion & Future Work.

e The Mandelbrot set is an ideal program to demonstrate and test massively

parallel architectures, such as cellular architectures.
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e The current run-time system and pthread programming model, although sim-
ple, is sufficiently powerful only for a certain sub-set of sophisticated applica-

tions.

e Future development of the Cyclops architecture towards Cyclops-64, with the
development of DIMES/P-8 with more hardware resources (at least 32 thread
units and 512Kb RAM) will allow the development and testing of more sophis-
ticated programs, such as supercomputing benchmarks. These benchmarks
and the greater hardware resources will allow further experimentation with the
sophisticated programming models that have been suggested, such as thread

percolation and location consistency.
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C.1 Abstract

Overcoming the memory wall [121] may be achieved by increasing the bandwidth
and reducing the latency of the processor to memory connection, for example by
implementing Cellular architectures, such as the IBM Cyclops. Such massively
parallel architectures have sophisticated memory models. In this paper we used
DIMES (the Delaware Iterative Multiprocessor Emulation System), developed by
CAPSL at the University of Delaware, as a hardware evaluation tool for cellular
architectures. The authors contend that there is an open question regarding the

potential, ideal approach to parallelism from the programmer’s perspective. For

74
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example, at language-level such as UPC or HPF, or using trace-scheduling, or at a
library-level, for example OpenMP or POSIX-threads. To investigate this, we have
chosen to use a threaded Mandelbrot-set generator with a work-stealing algorithm to
evaluate the DIMES cthread programming model for writing a simple multi-threaded

program.

C.2 Introduction

Integrating the processing logic and memory [21], termed PIM, is an approach
to overcome the memory wall [121|. PIM architectures may improve both data-
processing and data-access times, but the combined processor speed and the amount
of memory may be reduced [21]. This may be overcome by connecting multiple, inde-
pendent PIM cells, giving a cellular architecture. In this organisation, every thread
unit is an independent single-issue, in-order processor, thus able to potentially ac-
cess memory independently. Moreover, the different memory hierarchies may have
different access timings and consistency models such as location consistency [40].
This gives rise to a number of code-generation problems, centred around the fact
that to provide computational power, these systems are not only massively parallel,
but have complex memory hierarchies.

Research also proceeded towards thread-generating compilers, for example, HPF
and UPC [45], IBM XL Fortran and Visual Age C/C++, largely based upon OpenMP,
all of which have their compromises. Some of these also have support for the various
memory models.

Unfortunately general-purpose languages have been slow to adopt a sophisticated
abstraction of the machine model, library-based approaches have developed, for
example, the various implementations of OpenMP. But, the authors contend that
library-based solutions to threading are too dependent upon the programmer to use
effectively. For example, the explicit use of locks in programs is prone to error, with
deadlocks and race-conditions that are hard to track down easily, introduced, even
on systems with only a few processors. The development of suitable tools to debug

multi-threaded applications has also been slow. Debuggers are in development, for
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example for Cyclops [42], but there have been too few, with limited functionality.
As identifying parallelism both correctly and efficiently is very hard for the pro-
grammer to do, the authors contend that they should not do it. The compiler,
equipped via these libraries with a detailed machine-model, could be able to use
the programmer-identified parallelize-able variables and functions, to generate more
efficient code. The authors identified little work investigating the software aspect
of the code-generation problem for massively-parallel architectures. Unfortunately,
if this case would continue, this shortcoming could adversely affect the popularity
of such systems and maintain the perception that massively parallel architectures
are too specialised and thus too expensive to be of more general use. Given the
popularity of introducing multi-core processors, this position is set to become even

more untenable.

C.3 Related Work

C.3.1 The Programming Models: from Compiler to Libraries

With such compute bandwidth, and parallelism, a number of problems for the pro-
grammer have been raised, primarily these are focused on the problems of memory
reads and writes. Super-scalar chips have had mechanisms to hide these problems
from the programmer, but the cellular architectures of such chips as picoChip [33]
and IBM BlueGene/C [4] do not. Thus the programmer needs to know how memory

reads and writes interact with:

e the software-controlled data-cache attached to that pipeline,

the software-controlled data-cache of other on-chip pipelines,

any global on-chip memory,

the software controlled data-caches of other off-chip pipelines,

the global on-chip memory that is on any other chips,

any global memory that is not on any chip
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e and finally, given the massive parallelism available, how to make efficient use

of it.

For a programmer, the memory access models are important to understand, or to
have a library or compiler that hides the details from the applications programmer.
In the remainder of the paper the authors will focus on the IBM BlueGene/C ar-
chitecture, and a prototype implementation of it called Cyclops [21,30], that was
implemented at CAPSL at the University of Delaware in collaboration with the
University of Hertfordshire. The Cyclops architecture was prototyped in hardware,
called DIMES/P, [91] which was used as the platform for executing the programming
example, described later in this paper. In the following sections the memory access
models will be discussed, leading on to a presentation of the authors’ experience in
developing a program for such an architecture. The experience gained from this will
allow the authors to discuss the major problems that were faced, how, if at all, they
were overcome, and the outstanding problem domains that, in the authors’ experi-
ence, would hinder the acceptance of multi-core chips and, moreover such massively

parallel designs as IBM BlueGene/C.

C.3.2 Programming Models on Cellular Architectures

The hardware differences between cellular and super-scalar architectures indicate
that different programming models, to those used for super-scalar architectures, are
required to make effective use of the cellular architectures [40,42|. In the first two
of those three papers, their authors propose the use of a combination of execution
models and memory models, as already noted in this paper.

The primary concerns when programming DIMES/P, and thus any Cyclops-

based architecture, were:

e How to manage the potentially large numbers of threads.
e How to easily express any parallelism within the input source-code.

e How to make correct, and most effective use, of the memory consistency mod-

els.
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Some research has already been done regarding programming models for the thread-
ing, such as using thread percolation as a technique to perform dynamic load-
balancing [62]. Another piece of research [22] investigated using multi-level scheduling-
schemes: a work-stealing algorithm at the higher-level and a multi-threading tech-
nique at the lower-level to hide communication latencies. Alternatively there is
research [88] into how to implement OpenMP efficiently on cellular architectures

such as IBM BlueGene/C.

C.4 Programming for Cyclops - cthreads

This section will very briefly describe the cthread programming model, which is an
early version of TNT [31,42], then how it was used to implement the programming
example, followed by a discussion of the implementation.

The implementation of the memory consistency models was relatively simple:
earlier, unpublished, work on the GCC-based compiler had implemented a simple
algorithm: all static variables were stored in on-chip memory, and the function call
stack, including all automatic variables was placed in the scratch-pad memory.

As there was no language-level support for thread management, a library had
to be implemented to support the thread management instructions in the Cyclops
ISA, which was used as the basis for creating a higher-level C+- abstraction. This
was because the cthread implementation, that closely followed a POSIX-Threads
API, was considered far too primitive by the authors to be effectively used for
programming Cyclops. This C++ API also included critical-section, mutex and
event objects to allow for easier management of the lower-level objects.

To test these ideas, and the Cyclops architecture, a small, simple and embarrass-
ingly parallel program to generate Mandelbrot sets [72]| was created. In the following

sections a brief overview of how this how this program may be implementation for

DIMES/P.
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Algorithm 4 The render-thread algorithm.

1. Set the value of m, the maximum iterations, greater than zero. Set the estimated completion-time, ¢, to oco.

2. Setc= xz, where z is the top-left of the strip to be rendered.

3. Tnitialise n = 0, zo = 0.

(a) Execute zp4+1 = z% +c.

(b) Increment n.

(C) If | 2 |> 2 then that c is not in the set of points which comprise the Mandelbrot set. Go to 4.
(d) If n > m then that c is in the Mandelbrot set, i.e. ¢ C M. Go to 4.

(e) Go to 3a.

4. Tncrement the real part of c. If the real part of c is less than the width of the strip to be rendered, go to 3.
Calculate the average of ¢t and the time it took to render that line.

6. Set the real part of ¢ to the left-hand of the strip. Increment the complex part of c¢. If the complex part of
c is less than the height of the strip, go to 3.

7. Signal work completed, set ¢ = 0 (thus this thread is guaranteed not to be selected by the work-stealing
algorithm 5).

8. Suspend.

Algorithm 5 The work-stealing algorithm.

1. Monitor render threads for a work-completed signal. That thread that completes we shall denote as 7.

2. Tind that render thread with the longest estimated completion-time, ¢, note that each render thread updates
this time upon completion of a line. Call this thread Tj.

Stop T; when it completes the current line it is rendering.
Split the remaining work to be done in the strip equally between the two render threads 7. and 7j.

Restart the render threads T. and Tj.

AN

Go to 1.

C.4.1 Threading and the Mandelbrot Set

Due to the properties of DIMES /P, alternative techniques were not possible, as there
are only 8 thread units between two processors. In this implementation, the complex
plane was divided into a series of horizontal strips. Those strips may be calculated
independently of each other, using separate threads, implemented as algorithm 4.
However, each strip will, in general, take a different amount of time to complete,
thus the threads would have completed their assigned portion of work at different
times. Thus a work-stealing algorithm 5 performed the load-balancing between the

threads.
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The bandwidth of the work-stealing thread, algorithm 5, limited scaling to more
worker threads, algorithm 4. But algorithm 5 would able to tolerate failures: if a
worker thread stopped responding, its work would have been eventually stolen.

If robustness is not required, then the image generated may be viewed as an
array values. Each of these values would be the classification of ¢. Thus if one has
Do..q threads, each p, thread initially classifies a point in the array offset by n, and
once completed, would move along the array using a stride of ¢g. This would allow
the use of a number of threads that is bounded by the number of points within the

image.

C.4.2 DIMES/P Implementation of the Mandelbrot-set ap-
plication

In cthreads, each software thread was statically allocated to one of the 8 hardware

thread-units in DIMES/P at program start-up. The software threads were:

1. The a thread was required for cthreads support and the debugger [42], if it

were to be run.
2. The main loop of the Mandelbrot-set application.

3. The thread that executed the work-stealing algorithm 5. In principle, a worker
thread could also run on this thread unit, but cthreads did not support virtual

threads.

4. The remaining 5 threads were worker threads that executed algorithm 4.

Further details regarding the implementation may be found in [70].

C.5 Discussion

The limitations of DIMES/P prevented further study of the properties of this pro-
gram: scalability and timings were not done because of the limited number of thread

units (8) and memory capacity.
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The memory model support, using the C/C+-+ keyword static by the compiler,
made natural use of language-level syntax to map data into scratch-pad and on-
chip memory made using these different memory models. The atomic, word-sized,
memory-operations on Cyclops were not used for this problem, because of the mul-
tiple, read-modify-write operations that had to be maintained as an atomic unit. If
the manual locking had been implemented within the compiler, then it may have
been possible for the compiler to perform optimization on the locking of access to
the data.

With regards to the thread library: in the opinion of the author’s, the com-
plexity of POSIX-Threads has been a hindrance to successful multi-thread program
creation. Abstracting the algorithms that expressed the parallelism within the Man-
delbrot program, for example the work-stealing algorithm, was not implemented for
this paper, as this was considered to be potentially too closely coupled to the actual
program in question. Ultimately this decision, in the authors’ opinion, was flawed,
and by extracting and abstracting the work-stealing algorithm from both the pro-
gram and Cyclops, would have allowed a programmer to reuse that algorithm with
other programs, thus separating the design of the parallelism from the details of the
program that would wish to use it.

It is still an open question regarding what may be the ideal approach to paral-
lelism: language-level support such as UPC, HPF or other language extensions, or
within the compiler using trace-scheduling, or should it be at a library-level using,
for example OpenMP or POSIX-Threads, or should it be within the architecture,
such as the data-flow design. If programs more sophisticated than the one described
in this paper are to be successfully written for these cellular architectures, then
based upon this brief examination, it is the authors’ contention that it would be

highly advantageous to have:

e Compiler support for making use of any available the memory model of the

architecture.

e Compiler support for locking, which would aid the programmer with writing

code that avoids race-conditions.
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e Reusable abstractions of techniques of implementing parallelism, such as work-
stealing, or master-slave models. These abstractions could make use of both

data and code locality to ensure that a thread unit re-executes the same code,

if desirable.
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