
Automati
 Code-GenerationTe
hniques for Mi
ro-ThreadedRISC Ar
hite
tures
Jason M
Guiness

Submitted to the University of Hertfordshire in partial ful�llment ofthe requirements of the degree of Master of S
ien
e by Resear
h.
Compiler Te
hnology and Computer Ar
hite
ture Group,Department of Computer S
ien
e S
ien
es,University of Hertfordshire,England.July 2006

Dedi
ated tothe many enlightening dis
ussions I had with Dr. Ri
hard Harris and Dr. AndresMárquez.

Automati
 Code-Generation Te
hniques forMi
ro-Threaded RISC Ar
hite
tures
Jason M
Guiness

Submitted to the University of Hertfordshire in partial ful�llment ofthe requirements of the degree of Master of S
ien
e by Resear
h.July 2006
Abstra
tThere has been an ever-widening gap between pro
essor and memory speeds,resulting in a `memory wall' where the time for memory a

esses dominates per-forman
e. To
ounter this, ar
hite
tures that use many very small threads thatallow multiple memory a

esses to o

ur in parallel have been under investigation.Examples of these ar
hite
tures are the CARE (Compiler Aided Reorder Engine) ar-
hite
ture, mi
ro-threading ar
hite
tures and
ellular ar
hite
tures, su
h as the IBMCy
lops family, implementing using pro
essors-in-memory (PIM), whi
h is the mainar
hite
ture dis
ussed in this thesis. PIM ar
hite
tures a
hieve high performan
e byin
reasing the bandwidth of the pro
essor to memory
ommuni
ation and redu
ingthat laten
y, via the use of many pro
essors physi
ally
lose to the main memory.These massively parallel ar
hite
tures may have sophisti
ated memory models, andI
ontend that there is an open question regarding what may be the ideal approa
hto implementing parallelism, via using many threads, from the programmer's per-spe
tive. Should the implementation be at language-level su
h as UPC, HPF or

ivother language extensions, alternatively within the
ompiler using tra
e-s
heduling?Or should it be at a library-level, for example OpenMP or POSIX-threads? Or per-haps within the ar
hite
ture, su
h as designs derived from data-�ow ar
hite
tures?In this thesis, DIMES (the Delaware Iterative Multipro
essor Emulation System),whi
h is being developed by CAPSL at the University of Delaware, was used as ahardware evaluation tool for su
h
ellular ar
hite
tures. As the programing example,the author
hose to use a threaded Mandelbrot-set generator with a work-stealing al-gorithm to evaluate the DIMES
thread programming model. This implementationwas used to identify potential problems and issues that may o

ur when attemptingto implement massive number of very short-lived threads.

De
laration
The work in this thesis is based on resear
h
arried out at the Compiler Te
hnologyand Computer Ar
hite
ture Group, University of Hertfordshire, England. No partof this thesis has been submitted elsewhere for any other degree or quali�
ation andit is all my own work unless referen
ed to the
ontrary in the text.

v

A
knowledgments
My sin
ere thanks to Dr. Colin Egan my �nal supervisor, of the University ofHertfordshire, for taking on an unusual student! But also my thanks to ProfessorAlex Shafarenko, of the same University for his inspirational
onversations, andbeing instrumental in my
ollaboration with CAPSL and the University of Delaware.Finally, my thanks to Dr. Slava Mu
hni
k, who initiated this program of resear
h.The following do
tors also deserve honorable mention: Dr. Andres Márquez and Dr.Georg Munz. Both were inspirational
onversationalists, ea
h in their own ways...The resear
h presented in this thesis was, in part, supported by the Engineeringand Physi
al Resear
h Coun
il (EPSRC) grant number: GR/S58492/01.

vi

Contents
Abstra
t iiiDe
laration vA
knowledgments vi1 Introdu
tion 12 Related Work 62.1 The VLIW Origins . 62.2 Beyond VLIW: Super-s
alar: the
ombination of bran
h predi
tors,spe
ulation and memory hierar
hies 72.3 Parallel Ar
hite
tures . 92.3.1 EARTH, the EARTH
ompiler and CARE 102.3.1.1 The EARTH ar
hite
ture 102.3.1.2 The EARTH Compiler 102.3.1.3 The CARE Ar
hite
ture 122.3.2 The Mi
ro-Threaded Ar
hite
ture 122.3.3 IBM BlueGene/C and Cy
lops 143 The limitations of super-s
alar ar
hite
tures: the memory wall 163.1 Multiple
ores and massively parallel ar
hite
tures 173.2 The programming models: from
ompilers to libraries 193.3 IBM BlueGene/C, Cy
lops and DIMES/P: the implementation of a
ellular ar
hite
ture . 203.4 Programming Models on Cellular Ar
hite
tures 21vii

Contents viii3.5 Programming for Cy
lops . 224 Programming the Mandelbrot Set Algorithm for Cy
lops 244.1 An Introdu
tion to the Mandelbrot Set 254.2 Threading and the Mandelbrot Set 274.3 A Dis
ussion of the Work-Stealing Algorithm 5 304.4 DIMES/P Implementation of the Mandelbrot-set appli
ation 314.4.1 The Memory Layout . 334.4.2 The Host Interfa
e . 334.4.3 Exe
ution details of the Mandelbrot-set appli
ation 345 List of A
hievements 376 Summary 38Bibliography 42Appendix 57A Implementing Appli
ations on a Cellular Ar
hite
ture - the Mandelbrot-set. 57A.1 Abstra
t. 57A.2 Introdu
tion. 58A.3 Programming Models on Cellular Ar
hite
tures. 60A.4 Con
lusion/Dis
ussion. 60B Implementing Appli
ations on a Cellular Ar
hite
ture - the Mandelbrot-set. 61B.1 Overview: . 61B.2 A re
ap on the memory wall. Part I:The pro
essor viewpoint. 62B.3 A re
ap on the memory wall. Part II:The memory viewpoint. 63B.4 The memory wall and
ellular ar
hite
tures: a solution? 63

Contents ixB.5 Programming models on Cellular Ar
hite
tures. 64B.6 A brief overview of Cy
lops and DIMES/P-2. 65B.7 An introdu
tion to the Mandelbrot set. 65B.8 The
lassi
 algorithm used to generate the Mandelbrot set: 66B.9 Threading applied to the Mandelbrot set. 67B.10 The Render-Thread Algorithm. 67B.11 The Work-Stealing Algorithm. 68B.12 A Dis
ussion of the Work-Stealing Algorithm. 69B.13 The stati
 layout of the render and work-stealing threads within theDIMES/P-2 system is shown below: 70B.14 Exe
ution Details of the Mandelbrot-set appli
ation. 70B.15 Super
omputing Ben
hmarks: Global Updates Per Se
ond (GUPS). . 70B.16 GUPS and DIMES. 71B.17 Limitations of
urrent GUPS & DIMES. 72B.18 Con
lusion & Future Work. 72C The Challenges of E�
ient Code-Generation for Massively ParallelAr
hite
tures. 74C.1 Abstra
t . 74C.2 Introdu
tion . 75C.3 Related Work . 76C.3.1 The Programming Models: from Compiler to Libraries 76C.3.2 Programming Models on Cellular Ar
hite
tures 77C.4 Programming for Cy
lops -
threads 78C.4.1 Threading and the Mandelbrot Set 79C.4.2 DIMES/P Implementation of the Mandelbrot-set appli
ation . 80C.5 Dis
ussion . 80

List of Figures
2.1 P (n) for
onventional memory with L0 = 1/T0, taken from [13℄. . . . 132.2 S
hemati
 of a mi
ro-threaded, RISC ar
hite
ture. 144.1 The
lassi
 Mandelbrot set image generated by �Fra
tint� [119℄. Points
oloured bla
k are in M . 264.2 A false-
olour image of the Mandelbrot set generated by �Aleph One�[71℄. 274.3 Simpli�ed s
hemati
 overview of the DIMES/P implementation ofCy
lopsE. 314.4 Layout of the render and work-stealing threads within the DIMES/Psystem. 324.5 The image generated shortly after program start-up. 344.6 Image generation has progressed, shortly before a work-stealing event. 344.7 Just after the �rst work-stealing operation. 354.8 The se
ond work-stealing operation. 354.9 The third work-stealing operation. 354.10 The
ompleted Mandelbrot set. 36B.1 The image generated shortly after program start-up. 71B.2 Image generation has progressed, shortly before a work-stealing event. 71B.3 Just after the �rst work-stealing operation. 71B.4 The se
ond work-stealing operation. 71

x

Chapter 1
Introdu
tion
The memory-wall [121℄ is a limiting fa
tor in CPU performan
e, whi
h may be
oun-tered by introdu
ing extra levels in the memory hierar
hy [15,121℄. However, theseextra levels in
rease the penalty asso
iated with a miss in the memory-subsystem,due to memory-a

ess times, limiting the ILP. Also, there may be an in
rease indesign
omplexity and power
onsumption of the overall system. An approa
h toavoid this problem may be to fet
h sets of instru
tions from di�erent memory banks,i.e. introdu
e threads, whi
h would allow an in
rease in ILP, in proportion to thenumber of exe
uting threads. There are issues with introdu
ing multiple threads ofexe
ution, su
h as they should not have data or
ontrol �ow that is inter-dependantbetween any of the
urrently exe
uting threads. Another issue is that the
ost for
reating, syn
hronising and destroying threads should be very
heap, whi
h
on-strains the ar
hite
tural design. The reason for this latter
onstraint is that thelaten
ies to be mitigated against would be pipeline stalls, usually very short peri-ods of time, potentially between a few to tens of
lo
k
y
les. Su
h short threads,that are designed to mitigate against pipeline stalls, this thesis shall term as mi
ro-threads. This de�nition is in slight
ontrast to the de�nitions used within [13, 68℄,where the motivation for the de�nition
ame from the di�ering size of the thread,i.e. that they la
ked a sta
k and
ontext. Given that the threads to whi
h this thesisrefers, and the threads of [13,68℄ are all used to maintain pipeline throughput, thenthis modi�ed de�nition has some justi�
ation. Note that these mi
ro-threads arenot operating-system level threads, whi
h have large
ontext, are potentially pre-1

Chapter 1. Introdu
tion 2emptible and used for pro
ess-level parallelism. Mi
ro-threads would be designed tohave very little
ontext, making
reation and destru
tion
heaper.Various ar
hite
tures have been proposed that
ould support mi
ro-threads:
• The ar
hite
ture of [13, 68℄, whi
h is designed to support the smallest variantof mi
ro-threads.
• The CARE (Compiler Aided Reorder Engine) ar
hite
ture des
ribed in [75℄,that supports strands, a variant of mi
ro-threads, that ful�l the same goal,thus
ome under the de�nition of mi
ro-threads used in this thesis.
• The integration of pro
essing logi
 and memory [21, 41, 105, 106℄ within thesame
hip, termed PIM. Su
h integration may also improve both data-pro
essingand data-a

ess time.In this thesis the appli
ation of mi
ro-threading to the �nal PIM ar
hite
ture is whatwill be examined in most detail, with o

asional referen
es to the other ar
hite
tures.A problem with integrating pro
essors and memory in the same spa
e is that thepro
essor speed and the amount of memory are redu
ed [21℄. This may be over
omeby
onne
ting multiple, independent PIM
ells, where the resultant ar
hite
ture isdes
ribed as
ellular. In this multi-threaded organisation, every thread unit servesas an independent single-issue, in-order pro
essor, thus able to potentially a

essmemory independently, depending upon the exa
t details of the ar
hite
tural design.This gives rise to a number of
ode-generation problems, some of whi
h are dis-
ussed in appendix C,
entred around the fa
t that to provide
omputational power,these systems are massively parallel. It is
ommon folklore in the programming
ommunity that writing
orre
t and e�
ient multi-threaded programs is hard. Thisproblem
ould be
ompounded for su
h
ellular ar
hite
tures. Thus,
onsiderableresear
h e�ort has been targeted at
ode generation, in
luding thread generation,to support su
h hardware. There is likely to be mu
h resear
h to do: to develop
ompilers to generate multi-threaded
ode,
reate lower-level libraries that ease theburden of
reating su
h
ode, and write debuggers that allow the programmer toe�e
tively debug su
h programs.

Chapter 1. Introdu
tion 3Thread-generating
ompilers exist; for example, HPF and UPC [45℄. The Fortran-based HPF is very useful for mathemati
al problems, but less so for other problemdomains. Both
ompilers spe
ialise on parallelising loop-
onstru
ts. Other C andC++ parallelising
ompilers exist, but are largely based upon the OpenMP library,for example IBM XL Fortran and Visual Age C/C++, whi
h also tend to fo
us uponloops and a sour
e of parallelism. Alternatively, higher-level approa
hes, su
h as a
ompiler that may automati
ally
reate threads using the split-phase
onstraint ex-ist for su
h ar
hite
tures as EARTH [109℄. The split-phase
onstraint may be looselyde�ned as when the
ompiler may generate a syn
hronization variable, and a destina-tion thread for a potentially, long-laten
y load from remote memory. This EARTH
ompiler attempts to ful�l the promise of thread-generation for the programmer: itis automated, general-purpose - not limited to loops - and the s
hedules it
reatesare provably fast and
orre
t.Moreover, the di�erent memory hierar
hies within
ellular ar
hite
tures add tothe multi-threaded
ode-generation problem. Resear
h is in progress to address thisproblem: for example by pla
ing hardware memory-banks that have di�erent a

essand
onsisten
y models at di�erent address ranges in the memory-map of the virtualma
hine, known as lo
ation
onsisten
y [40℄ is one approa
h. The EARTH
ompilerand UPC both provide language, hen
e
ompiler support, for su
h features using thesplit-phase
onstraint, or the use of the stri
t and relaxed keywords, respe
tively.The library-based approa
h to threading has often been made less e�e
tive by ala
k of language support, that would aid the expressiveness and use of thread-related
onstru
ts (for example threads themselves and syn
hronization me
hanisms). Forexample, the use of pragmas in the various implementations of OpenMP, and thefa
t that general-purpose languages have been very slow to adopt a su�
iently so-phisti
ated abstra
tion of the features of any ma
hine model. C/C++ has had thevolatile keyword for over a de
ade, but has made very limited use of it in supportingshared data, that may be a

essible by more than one thread, an obvious use of thekeyword. (Indeed this use is to be introdu
ed into the next C++ standard, to be �-nalised not before 2009.) This limitation has been noted (at the Asso
iation of C andC++ Users Conferen
e, 2005, by B. Stroustrup, in one of his keynote presentations,

Chapter 1. Introdu
tion 4and by others) and has apparently hampered development of multi-threaded pro-grams and the development of
ompilers that might automati
ally generate threads.The author
ontends that library-based solutions to threading are too dependantupon the programmer to use
orre
tly. For example, the expli
it use of lo
ks in pro-grams is prone to error, with deadlo
ks and ra
e-
onditions that are hard to tra
kdown are easily introdu
ed.The development of suitable tools to debug multi-threaded appli
ations has beenslow. Some tools are available (stra
e, truss, psta
k and various debugger) but arevery limited in fun
tionality, with regards to threading. More useful debuggers arein development, for example for Cy
lops [29℄. But these are few, with
urrentlylimited fun
tionality. Further development in this area would be vital to allow theprogrammer to debug their
ode on su
h systems. A more important aspe
t of thesetools would be to aid the programmer with regards to reasoning about the fun
tionof their multi-threaded
ode, and thus avoid su
h bugs.In the author's opinion, the leaders in this �eld are aiming at a language, notlibrary, based solution, whi
h would be the appropriate level of abstra
tion for theexpression of parallelism within a program. The
ompiler support would allowthe development of more powerful multi-threading abstra
tions, su
h as variousalgorithms, that would help to divor
e the programmer from the
omplex detailsof the underlying ar
hite
tural support. But there are limitations in the dire
tionof su
h
urrent
ompiler developments, for example, UPC apparently exposes onlyloop-based parallelism and HPF requires expli
it statements within the
ode to makethe
ompiler generate multi-threaded
ode whi
h also dire
ted towards parallelisingloops. The author
ontends that this would be far too limited for appli
ation togeneral-purpose programs.As identifying parallelism both
orre
tly and e�
iently has been very hard forthe programmer to do, the author
ontends that they should not do it. When su
hmassively-parallel ar
hite
tures are developed, this pro
ess should in
lude time todevelop libraries that plug into the target
ompilers to allow them to generate e�-
ient
ode for that ar
hite
ture. Thus the programmer would identify variables andfun
tions that they believe they may be able to parallelise, to guide the
ompiler.

Chapter 1. Introdu
tion 5The
ompiler, equipped via these libraries with a detailed ma
hine-model would beable to re�ne and hone these gross indi
ations in the program to generate e�
ient
ode. The author experien
ed only limited e�ort investigating the software aspe
tof the
ode generation problem for massively parallel ar
hite
tures. Unfortunately,if this
ase should
ontinue, this short
oming
ould adversely a�e
t the popularityof su
h systems and maintain the per
eption that massively parallel ar
hite
turesare too spe
ialized and thus too expensive to be of more general use. Given the pop-ularity of multi-
ore pro
essors, this position is set to be
ome even more untenable.

Chapter 2
Related Work
2.1 The VLIW OriginsThe resear
h that has been done in the �eld of multi-threaded ar
hite
tures, maybe
onsidered to have been heavily in�uen
ed by the work on VLIW ar
hite
tures:one
an
onsider them to have a limited number of �live� threads at any one instant,limited not only by the number of slots in the instru
tion word, but also by theability of the
ompiler to identify su
h instru
tion-level parallelism. Some resear
hwork [83, 117℄ demonstrated that, in the SPEC95 ben
hmark suite, there has beenpotential for a large number of independent threads, up to the order of thousands.Unfortunately this motivating result was for VLIW ma
hine-models with
ertain,ideal parameters; a
ommon limit has been the number of available registers, orbypass buses, or an ora
le bran
h predi
tor within the
ompiler. This gave impetusto the ar
hite
ture �eld to resear
h these ri
h topi
s, and has provided very e�e
tivedynami
, rather than
ompile-time bran
h predi
tors. But the VLIW
ompilers, thetra
e
ompilers of the time, required a
ompile-time bran
h predi
tor to produ
e
ode that did not need expensive re
overy me
hanisms, and enable the
ompiler toperform the whole-program,
ode-motion optimizations it needed to do to extra
tthe ILP from the programs. Results for the register problem have been similarlymixed: due to the multi-ported nature of the register banks, there is a physi
al andte
hnologi
al limit: having more registers s
ales the area of the
hip linearly, butmore register ports (for bypass buses) s
ales the area geometri
ally. Te
hnologi
al6

2.2. Beyond VLIW: Super-s
alar: the
ombination of bran
h predi
tors,spe
ulation and memory hierar
hies 7limitations in
hip fabri
ation limit the yield of the
hips: the larger the area, thelower the yield in dire
t proportion. Thus adding a su�
ient number of register portswill always rea
h a limit in the
urrent te
hnologi
al ability to produ
e e
onomi
quantities of su
h
hips.The instru
tion density in VLIW
ode de
reased for various reasons:
• a la
k of an e�e
tive
ompile-time bran
h predi
tor,
•
ombined with limited register resour
es,
• true data-dependen
ies,
• and stru
tural hazardsall of whi
h meant is was ne
essary to inje
t no-ops into the instru
tion stream.These no-ops have been of vital signi�
an
e: they were a dire
t indi
ation of theine�
ien
y of the
ompiler and tool-
hain, hen
e ar
hite
ture, to extra
t ILP fromthe instru
tion stream, and indi
ate an ine�
ien
y of both the software and the
ompiler. Consequently the e�e
tiveness of the VLIW ar
hite
ture as a te
hniqueto in
rease performan
e, via extra
ting ILP, by re-
ompiling the sour
e
ode hadbeen
onstrained.2.2 Beyond VLIW: Super-s
alar: the
ombinationof bran
h predi
tors, spe
ulation and memoryhierar
hiesBut the resear
h yielded very useful results: the development of dynami
, as opposedto the
ompile-time bran
h predi
tors. These meant that spe
ulative exe
utionof
ode was mu
h less likely to be wasted work. Thus the advent of super-s
alarpro
essors, but these had their problems: performan
e was hindered by slow memoryspeeds. So small
a
hes were implemented, based upon the assumption of data and
ontrol lo
ality. The size of a hardware
a
he has been
hosen to be roughly 10%of the average size of the exe
uting program the related data. These
a
hes have

2.2. Beyond VLIW: Super-s
alar: the
ombination of bran
h predi
tors,spe
ulation and memory hierar
hies 8been
omposed of very high speed memory, whi
h has been
ostly to implement.They were also pla
ed dire
tly in line with the IF stage of the pipeline, allowingvery high-speed instru
tion-fet
h from the
a
he, if there was a
a
he hit [80℄. Also,regarding instru
tion fet
h: the a

ura
y of the bran
h predi
tor and pla
ing it veryearly in the pipeline has been vital. This is to allow the bran
h target addressesto be obtained (potentially via the BTC, or via a default predi
tion, or a dynami
predi
tor may be used) before the instru
tions that would generate the result of thatbran
h
ondition. This allowed the instru
tion
a
he to pre-fet
h
a
he-line sizedamounts of instru
tions from slower hierar
hies, using the pre-
omputed, predi
ted,bran
h-target address, and deliver them with minimal pipeline stalls to the IF stage.The data
a
he has been more
omplex, but the
on
ept of implementing a small,write-ba
k, high-speed amount of memory so that register writes would be dire
tedto this memory has been relatively simple: it would a
t as a bu�er to the lower-level, slower memories, and allow memory reads to be potentially servi
ed dire
tlyby the data
a
he instead of from the lower-level memory hierar
hies. Anothermajor fa
tor has been out-of-order instru
tion exe
ution: if there were su�
ientpro
essor resour
es, instru
tions
ould be exe
uted in parallel, although they wouldbe fet
hed in-order and potentially retired out-of-order. Moreover instru
tions that
ompleted faster need not be held up by slower instru
tions that were ahead ofthem in the instru
tion stream. The use of a s
oreboard or register �le [59, 80℄allowed the data-dependen
ies between registers to be dynami
ally
omputed whilstthe instru
tions were in �ight in the pipeline. When these
a
hes were
ombinedwith bran
h predi
tion and spe
ulation even more ILP, and performan
e,
ould beextra
ted from the input instru
tion stream. In these ar
hite
tures, the retirementof instru
tions was linked to an ar
hite
tural state (potentially implemented via areorder bu�er) that, if a mis-predi
tion o

urred, would have to be rolled ba
k, andthe instru
tion fet
h re-started from the alternative bran
h. Also, if a pro
essor wereto implement pre
ise interrupts, for example to implement pro
essor ex
eptions, thena similar roll-ba
k, or
ompletion, of in-�ight instru
tions would need to o

ur toensure that the pro
essor would be in an ar
hite
tural state that would be
onsistentwith the sequential program state.

2.3. Parallel Ar
hite
tures 92.3 Parallel Ar
hite
turesThe roll-ba
k impli
itly implemented within super-s
alar ar
hite
tures has beenviewed as a problem: the in
reased state due to deeper pipelines makes the
hipsmu
h more
omplex. This in
reasing
omplexity has been viewed as one of the lim-its to the s
alability of the super-s
alar ar
hite
ture. The impli
it assumption inthe von Neumann ar
hite
ture underlies this design, therefore more radi
al alterna-tives would need to be resear
hed if in
reased performan
e may be obtained undersu
h
onstraints, for example data-�ow based
ompilers [12, 99℄ and
omputer sys-tems [48, 57℄. But the data-�ow ar
hite
ture itself had problems: the ar
hite
turalstate was re�e
ted in in
reasingly many registers, with in
reasingly many ports, thus
ompli
ating
hip design, in a similar manner to the VLIW register problems.The implementation of large quantities of memory with mixed exe
ution unitsmay be seen to have led to a few avenues of resear
h. The ones that are pertinentto this thesis are:
• EARTH and CARE,
• the mi
ro-threaded ar
hite
ture,
• and
ellular ar
hite
tures su
h as IBM BlueGene/C and Cy
lops.In general these ar
hite
tures examine various te
hniques by whi
h the ex
ess per-forman
e of the exe
ution units may be used to ameliorate the relatively limitedinstru
tion and data throughput rate from the memory subsystems. Threading theprogram attempts to divide the sequential program into data and
ontrol dependentthreads. These dependen
ies imply a partial exe
ution order upon the threads thatmust be satis�ed to maintain the
onsisten
y of the original program, as expressedby the programmer in the target language, whi
h has often been a sequential lan-guage. By this te
hnique the von Neumann ar
hite
tural
on
ept of stri
t instru
tionfet
h-de
ode-exe
ute-writeba
k
ould be avoided. Instead there
ould be, e�e
tivelymultiple exe
ution units, ea
h exe
uting as a von Neumann ar
hite
ture, within awhole ar
hite
ture that would be applied to the program as a whole, thus attemptingto mine su
h ILP as may be available within that program.

2.3. Parallel Ar
hite
tures 102.3.1 EARTH, the EARTH
ompiler and CARE2.3.1.1 The EARTH ar
hite
tureThe EARTH ar
hite
ture [53℄, was
omposed of: a syn
hronization pro
essor andan exe
ution pro
essor, linked by two queues. The program would be written inThreaded-C, su
h that those threads within the program would be s
heduled by ansyn
hronization unit to exe
ute on
onne
ted exe
ution unit, but only if all of therelated dependen
ies had been satis�ed. Due to the multi-pro
essor nature of thear
hite
ture the thread size would be
hosen to optimize exe
ution so that any redu
-tion in e�
ien
y due to long laten
y delays
aused by inter-pro
essor
ommuni
ationwould be minimized. These delays
ould be of many orders of magnitude longer thanlaten
ies due to bran
h mis-predi
tions, or lo
al memory a

esses. Threaded-C re-quired the programmer to annotate their program with thread
onstru
tors to dire
tthe
ompiler to generate multi-threaded
ode.2.3.1.2 The EARTH CompilerTo over
ome the ne
essity for the programmer to annotate the program, Tang inhis work [109℄, des
ribes a
ompiler that was able to take a C program and suitablyannotate it with the appropriate threads. Most importantly this
ould be donewithout the programmer's intervention.The te
hnique des
ribed in [109℄ is as follows: the
ompiler tried to identify, withthe potential aid of type modi�ers, those operations that may have
aused long la-ten
ies. Those memory a

esses would be labeled using the lo
al or remote typemodi�er, and if no modi�er were used the
ompiler had to assume that the a

esswas remote, therefore the type modi�er would be remote. The remote type modi�erindi
ated to the
ompiler that the memory a

ess would be of long laten
y. Theselong-laten
y operations, for example, memory a

esses or fun
tion
alls, would thenbe split into two threads. The �rst thread was the original thread and the se
ondthread
ontained the
ode that was data-dependent upon the long-laten
y opera-tion. To ensure that the data dependen
e was satis�ed a syn
hronization variablewas introdu
ed, su
h that the se
ond thread waited upon this syn
hronization ob-

2.3. Parallel Ar
hite
tures 11je
t before it
ould exe
ute, whi
h [109℄ terms as the split-phase
onstraint. Togenerate these threads the
ompiler
reated a data dependen
e graph of the inputprogram, with the edges in the graph being labeled as remote and lo
al. Thoseremote edges would be split by the
ompiler using the split-phase
onstraint. The
ompiler also builds up a program dependen
e �ow graph in whi
h the data and
ontrol dependen
ies of the program were hierar
hi
ally
aptured. This graph in-
luded the threaded representation of the original program from whi
h the
ompilerthen identi�ed an optimal order that satis�ed all of the
onstraints. This graph alsoallowed the
ompiler to identify further optimizations:
• To redu
e thread swit
hing
osts,
ontrol and data independent threads shouldbe merged. This was done by
omputing the remote level of ea
h node, andmerging those that have the same remote level.
• Within a thread, registers should be re-used and data shared with other in-stru
tions within the thread, to enhan
e lo
ality and sequential performan
eof the instru
tion stream.
• Long laten
y operations
ould be
overed by
ontrol and data independentlo
al operations, providing that the overall
ontrol and data dependen
ies aresatis�ed.In [109℄, Tang showed that the optimization problem posed by
ombining the abovedetails and minimizing the total exe
ution time was NP-hard. Thus an alternativepartitioning algorithm was required, to minimized
ompilation time. Tang showedthat the list-based s
heduling algorithm sele
ted was no worse than twi
e as slow asan optimal s
hedule of the nodes. This bound may be improved upon by redu
ingthe
ost of remote
ommuni
ation. Tang also examined the use of the various heapbased analysis to aid the thread partitioner so that it
an
reate more threads, ifrequired.The results presented in [109℄ showed that for randomly generated programgraphs, the list-based, thread-s
heduling algorithm produ
ed
ode that was within7% of the ideal run-time, whi
h was
lose to an optimal s
hedule. Also, for the

2.3. Parallel Ar
hite
tures 12
ustom ben
hmarks used by the paper, the thread s
heduler produ
es
ode that was
omparable in performan
e to optimized, hand-written
ode. Their results showedthat the heap analysis te
hnique improved the performan
e of the s
heduler, whi
hmade use of the heap analysis to optimize the thread performan
e.2.3.1.3 The CARE Ar
hite
tureIn [75℄ the basis of the large threads implemented within the EARTH was re-examined. In this
ase the threads were mu
h redu
ed in size. The
on
ept behindCARE was that the instru
tion fet
her within the pipeline required more guidan
e tobe able to fet
h instru
tion pointers to single-entry single-exit basi
 blo
ks, termedstrands, that
ould be exe
uted without stalls within the pipeline. Therefore duringexe
ution, the instru
tion fet
her would have an opportunity to identify other su
hstrands for subsequent exe
ution. Indeed ea
h strand would have a set of asso
iated�ring rules that, if satis�ed, would allow that strand to be s
heduled for subsequent,stall-free, exe
ution. These �ring rules would represent the data and
ontrol depen-den
ies upon whi
h the instru
tions within the strand depend. Thus the instru
tionfet
h unit would
ontain a set of strands that have all of their �ring rules satis�ed,ready to be exe
uted, and another set of strands, whi
h are awaiting their �ringrules to be satis�ed. The
ompiler, in this ar
hite
ture, would
reate the strands,and identify the �ring rules and populate that data stru
ture. Moreover, the initialordering of the strands within the instru
tion stream would be performed by the
ompiler. But the ar
hite
ture, at run-time would be allowed to re-order strands, iftheir �ring rules were satis�ed.2.3.2 The Mi
ro-Threaded Ar
hite
tureIn [13℄ a mathemati
al model was presented that examined the laten
ies from ageneralized memory unit, modeled as a queue, to a generalized pro
essing unit,i.e. requests for data. Their results for a lo
al memory system, as opposed tonetworked, are reprodu
ed in �gure 2.1. They demonstrated that to obtain over80% performan
e there need only be over 4 threads ready for exe
ution at any oneinstant in the program. This result was independent of the type of input program.

2.3. Parallel Ar
hite
tures 13

0.0 2.0 4.0 6.0 8.0 10.0

Number of micro−threads.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

.

R=0.5T
R=T
R=2T

T = Maximum throughput of memory sub−system.
R = Memory requests per unit time.

Figure 2.1: P (n) for
onventional memory with L0 = 1/T0, taken from [13℄.It was also independent of the exa
t memory sub-system implementation. Indeedthe only assumption that was made was the fa
t that the pro
essor ar
hite
ture
ansupport mi
ro-threading, the exa
t implementation of the mi
ro-threading beingabstra
ted out of the model. From the studies of available ILP within generalprograms, it would seem that the implementation of the te
hnique of mi
ro-threadingin a pro
essor would be extremely e�e
tive in maintaining pro
essor throughputduring memory loads. An important property of the mi
ro-threads des
ribed in [13℄was that the
ost of thread
reation, destru
tion and syn
hronization must be very
heap, due to the number and frequent swit
hing of mi
ro-threads. This propertyof mi
ro-threads implied that there must be e�
ient hardware support for them.To transform a generi
 program into a mi
ro-threaded program implied that the
ontrol
onstraints within the sequential program must be transformed into thread
reation and syn
hronization
onstraints. This task would be a
hieved by a mi
ro-threading stage within a suitable
ompiler. Further work [68℄ within this �eld hasdemonstrated the feasibility of su
h an ar
hite
ture. A simple s
hemati
 of their

2.3. Parallel Ar
hite
tures 14
Fur

Next address ... deterministic
horizontal transfer of control.

Threads that are
ready for execution.

Next address ... non−deterministic

vertical transfer of control.

therpipeline
Stages

Continuation queue & transfer of control.
Schematic of a micro−threaded, RISC architecture:

Instruction
fetch logic

PC 1
PC 2
PC 3
PC 4
PC 5

Continuation
Queue

Figure 2.2: S
hemati
 of a mi
ro-threaded, RISC ar
hite
ture.implementation is provided in �gure 2.2.In this ar
hite
ture, there are many very short threads, perhaps only 2-5 in-stru
tions in length. They wait upon only one data item, that may be viewed as asimpli�ed version of the �ring rules of CARE. The PCs of those threads that areready to exe
ute are stored in a
ontinuation queue, for eventual exe
ution withinthe pipeline. Be
ause of the ar
hite
tural speed of thread
reation, syn
hronizationand destru
tion, no spe
ulation would be done: all of those features would be
on-verted into mi
ro-threads, thus the exe
ution pipeline
ould be a relatively simpleRISC-like pipeline.2.3.3 IBM BlueGene/C and Cy
lopsThis ar
hite
ture will be dis
ussed in mu
h more detail in
hapter 3.3 of this thesis,but for the purposes of this se
tion, a brief summary will su�
e. This ar
hite
turewas a PIM-like ar
hite
ture, termed
ellular, that implements a number of exe
utionunits and memory units on one die. Thus it has the ability to exe
ute many threads,has fast memory a

ess, and may be viewed, in some sense, as between the EARTH

2.3. Parallel Ar
hite
tures 15ar
hite
ture and the mi
ro-thread ar
hite
ture, in terms of a threading model.In order to over
ome the von Neumann-derived memory wall, some method ofover
oming the impli
it data-fet
h delay should be implemented within the ar
hite
-ture. Moreover, su
h implementations usually imply multiple threads of exe
ution,whi
h further implies data and
ontrol dependen
ies that must be resolved, eitherat
ompile or run-time:
• Within EARTH and CARE this is at
ompile-time: the syn
hronization unithas expli
it dependen
ies upon whi
h it must wait, whi
h have been generatedat
ompile time.
• Within mi
ro-threaded ar
hite
tures, these dependen
ies may be left to beresolved at run-time, as long as all potentially data-dependent instru
tionsare suitably annotated by the
ompiler.
• Within Cy
lops, as will be presented in
hapter 3.3, the
ontrol and datadependen
ies are mu
h more
omplex due to the in
reased
omplexity of thear
hite
ture and the massive parallelism it makes available.Eventually this implies that some te
hnique must be used, either expli
itly or im-pli
itly by the programmer to generate the required threads for the ar
hite
ture.During the resear
h program, I
hose to
on
entrate upon the Cy
lops ar
hite
-ture for the rest of the program, as an example of the problems with programmingfor su
h sets of threaded ar
hite
tures.

Chapter 3
The limitations of super-s
alarar
hite
tures: the memory wall
The
ombination of data and instru
tion
a
hes e�e
tively de
ouples the pro
essorfrom the speed of the main-memory, by simply introdu
ing more layers of
a
hesin the memory hierar
hy. This de
oupling has been highly su

essful: the in
reasein performan
e of pro
essors of the past de
ades has been greatly in�uen
ed bythe dramati
 in
rease in
lo
k speed. The original 8086 was
lo
ked at roughly4MHz with no instru
tion
a
he, the latest Pentium 4s have been
lo
ked at over3.4GHz [56℄. These latest Pentiums
ould retire instru
tions at a rate of roughlyten-times the main memory speed by using two to three
a
he levels. But to get su
hhigh speeds the pipeline depth has had to be in
reased. The Pentium 4 has over 20stages; the AMD Opteron has 10-12 stages, and has been
lo
ked at approximately2.6GHz. With these pro
essors, if a bran
h mis-predi
tion or pro
essor ex
eptionshould o

ur and the state would have to be rolled ba
k, then instru
tion fet
hand the pipeline must be restarted, so it would take in
reasingly long in a 20 stagepipeline to begin retiring instru
tions after the restart. The a

ura
y of the bran
hpredi
tor has been paramount, to avoid su
h time-
onsuming re-starts. But if thepro
essor speed were to in
rease, then more stages may be needed, and bran
h-mispredi
tions would be
ome even more
ostly. Moreover, the in
reased laten
y ofinstru
tion fet
h from the mis-predi
ted bran
h would in
rease due to the divergentrelative speeds of the pro
essor and main memory. This problem has been termed16

3.1. Multiple
ores and massively parallel ar
hite
tures 17the memory wall [117℄.3.1 Multiple
ores and massively parallel ar
hite
-turesThe problem of the memory wall may be viewed as an e�e
t of the relative perfor-man
e di�eren
e of main memory to pro
essor speed. If the instru
tion throughput
ould be in
reased by reading instru
tions from di�erent memory banks, then the in-stru
tion issue rate is potentially limited by the number of available memory banks,and IF stages atta
hed to them.Multi-
ore pro
essors develop this idea. Let us suppose that the OS supports pre-emptive multi-tasking, and these OS-level threads are guaranteed to have the inter-thread, data-dependen
ies expli
itly spe
i�ed using kernel-level (thus ar
hite
tural)syn
hronization primitives. If the resour
es used for developing higher
lo
k speedswere instead used in implementing another
ore within the pro
essor pa
kage, thisextra
ore would be viewed as an extra pro
essor by the OS for s
heduling threadsupon. Moreover, if the program were suitably written, it
ould take advantage ofany extra pro
essor resour
es. But this requires extensive and potentially di�
ultmodi�
ations to the sour
e
ode to allow it to take advantage of su
h extra resour
es.Moreover, the use of OS-level threads is expensive: they have a lot of
ontext,be
ause ea
h thread must not only retain the pro
essor state, but the OS state, if itwere to be
ontext-swit
hed o� the pro
essor. Ar
hite
tural-level threading wouldseem to be a faster and more simple approa
h. Another limitation with multiplepro
essor
ores is that the pro
essor
ores take die spa
e away from the
a
hes andbran
h-predi
tors, that are proven, high-performan
e solutions.Furthermore, there are
osts asso
iated with swit
hing between an OS-levelthread with
onsiderable
ontext. These
osts in
lude the memory a

ess timesto �ush the OS and ar
hite
tural states to main memory, and the instru
tion- anddata-
a
he misses inherent in su
h a
ontext swit
h. A te
hnique to avoid theselaten
ies may be to redu
e the thread
ontext to a level su
h that any su
h
ontext
ould be maintained in the pro
essor, without having to be �ushed to a lower mem-

3.1. Multiple
ores and massively parallel ar
hite
tures 18ory hierar
hy. But this implies a dramati
 redu
tion in
ontext: for mi
ro-threadingthe
ontext has been limited to only a program
ounter - an extreme example. More-over this redu
tion also implies that these threads would be unlikely to be managedat the OS-level.To
ounter the memory laten
ies inherent in the super-s
alar designs, the ap-proa
h of pla
ing the exe
ution pipelines as
lose to the memory as possible maybe taken. In this
ontext
lose means that the memory and the exe
ution pipelinesare on the same die. Ea
h instru
tion fet
h stage and the data-bus of a pipelinewould be fed dire
tly from an independent bank of memory. Thus the instru
tionfet
hes and, more importantly, data reads and writes
an o

ur independently ofother pipelines on the same die and other dies. This integration has the advantagethat the laten
y of memory a

ess would be dramati
ally redu
ed. But to allow su
hintegration, the pipelines are usually mu
h more simple than a super-s
alar pipeline.Often they have no bran
h predi
tion, thus no spe
ulation, whi
h allows the spa
ethat a pipeline
onsumes on the die to be dramati
ally redu
ed, thus allowing morememory and more exe
ution units per die. For example, in the pi
oChip [33℄ designthere are approximately 308 VLIW
ores and a similar number of DSP pipelineson one die, with ea
h VLIW
ore having dire
t, 1-
lo
k
y
le a

ess to approxi-mately 64K of RAM. Alternatively in the IBM BlueGene/C design [4℄, des
ribedin se
tion 3.3, more sophisti
ated 64-bit
ores are implemented with approximately64K of software-
ontrolled data
a
he, and another 4Gb of RAM on
hip, but witha redu
ed number of pipelines, in this
ase approximately 96. Su
h
hips o�er a
onsiderable instru
tion retirement throughput. To further in
rease the bandwidth,the pi
oChip has 4 ports implemented on it for a

essing other pi
oChips in a gridarrangement, and a memory port for a

essing o�-
hip memory. To date, arrays ofup to 16 pi
oChips have been built. The IBM BlueGene/C design has 6 inter-
hip
onne
tion ports, allowing a
ubi
 array of
hips. Su
h an arrangement of IBMBlueGene/C
hips has been termed as a
ellular ar
hite
ture: ea
h
ell would bean IBM BlueGene/C
hip. The size of the entire IBM BlueGene/C array has beenenvisaged to s
ale up to potentially 10,000,000 individual
ells.

3.2. The programming models: from
ompilers to libraries 193.2 The programming models: from
ompilers tolibrariesWith su
h
ompute bandwidth, and parallelism, a number of problems for the pro-grammer have been raised, primarily these are fo
used on the problems of memoryreads and writes. Super-s
alar
hips have had me
hanisms to hide these problemsfrom the programmer, but the
ellular
hips su
h as pi
oChip and IBM BlueGene/Cdo not. Thus the programmer needs to know how memory reads and writes intera
twith:
• the software-
ontrolled data-
a
he atta
hed to that pipeline,
• the software-
ontrolled data-
a
he of other on-
hip pipelines,
• any global on-
hip memory,
• the software
ontrolled data-
a
hes of other o�-
hip pipelines,
• the global on-
hip memory that is on any other
hips,
• any global memory that is not on any
hip
• and �nally, given the massive parallelism available, how to make e�
ient useof it.These issues give rise to various programming models, but initially the last pointwill be dis
ussed. Given the eviden
e of ILP studies, the e�
ient use of the massiveparallelism for general purpose programs su
h as SPEC2000 is highly unlikely to beable to be parallelized to the extent of using a fra
tion of the resour
es of the IBMBlueGene/C design, and similarly with the smaller pi
oChip. The answer would bethat these ar
hite
tures es
hew the aspiration of being pra
ti
al for general-purposeuse. Instead they target spe
i�
, embarrassingly-parallel problem domains.For a programmer, the memory a

ess models are important to understand, or tohave a library or
ompiler that hides the details from the appli
ations programmer.In the remainder of this thesis the author will fo
us on the IBM BlueGene/C ar
hi-te
ture, and a prototype implementation of it
alled Cy
lops, that was implemented

3.3. IBM BlueGene/C, Cy
lops and DIMES/P: the implementation of a
ellular ar
hite
ture 20at CAPSL at the University of Delaware in
ollaboration with the University ofHertfordshire. In the following se
tions the memory a

ess models will be dis
ussed,leading on to a presentation of the author's experien
e in developing a programfor su
h an ar
hite
ture. The experien
e gained from this will allow the author todis
uss the major problems that were fa
ed, how, if at all, they were over
ome, andthe outstanding problem domains that, in the author's experien
e, would hinder thea

eptan
e of multi-
ore
hips and, moreover su
h massively parallel designs as IBMBlueGene/C.3.3 IBM BlueGene/C, Cy
lops and DIMES/P: theimplementation of a
ellular ar
hite
tureThe IBM BlueGene/C ar
hite
ture is des
ribed in detail in [4℄. Brie�y, this ar
hite
-ture
onsists of a large number of thread units, an equal number of memory banksand a large
rossbar on one die. The exe
ution thread-units are linked to ea
h otherand the memory banks via the
rossbar, whi
h also has at least 8 o�-
hip inter
on-ne
ts. These inter
onne
ts may be used to
onne
t more of these
hips together ina large 3-d mesh. Of the order of 160 thread units are on a single die, with theorder of 2-4 Gbytes of DRAM, on-
hip. This means that per
hip there is a largeamount of available parallelism, and
onsidering that the 3-d mesh may
ontain ofthe order of 100,000 of su
h
hips. A further fa
tor in this design is that there isno data
a
he: instead there is a spe
ialized portion of ea
h DRAM bank that isdire
tly a

essible via a related thread unit. Su
h a portion of the DRAM is termedthe s
rat
h-pad memory, and is e�e
tively a software
ontrolled data
a
he. Thiss
rat
h-pad memory is a

essible from that related thread unit without having to a
-
ess the
rossbar. The other memory, not asso
iated with any parti
ular thread-unitis termed as on-
hip memory . This gives rise to di�erent memory a

ess models.These memory a

ess models are related to the work on lo
ation-
onsisten
y, de-s
ribed in [40, 124℄. In brief, this is the
on
ept that if a set of memory lo
ationsare a

essed from two di�erent thread units, the thread units will experien
e dif-ferent memory a

ess models of those memory lo
ations, upon simultaneous a

ess.

3.4. Programming Models on Cellular Ar
hite
tures 21For example: simultaneous a

esses, by di�erent thread units, to lo
ation 1 mightprovide program
onsisten
y as the memory a

ess model, whereas for lo
ation 2,with simultaneous a

esses, by di�erent thread units, this might provide sequential
onsisten
y. With regards to IBM BlueGene/C the s
rat
h-pad memory only guar-antees program
onsisten
y with regards to memory a

esses. But for any memorya

essed via the
rossbar, it guarantees sequential
onsisten
y.At CAPSL mu
h work had been done in
ollaboration with IBM with regardsto an implementation of the BlueGene/C ar
hite
ture
alled Cy
lops. Initially,this work was implementing Cy
lopsE [21℄, whi
h was developed into Cy
lops64,[30℄. The Cy
lopsE ar
hite
ture was prototyped in hardware,
alled DIMES/P,[90,91℄. DIMES/P was used as the platform for exe
uting the programming example,des
ribed in se
tion 4.With regards to any later dis
ussions, it is very important to remember thatea
h of these ar
hite
tures, IBM BlueGene/C, Cy
lops64, Cy
lopsE and DIMES/Pdisplay the same features: multiple thread units and multiple memory
onsisten
ymodels. This is simply be
ause they are all implementations of these same underly-ing
on
epts.3.4 Programming Models on Cellular Ar
hite
turesThe hardware di�eren
es between
ellular and super-s
alar ar
hite
tures indi
atethat di�erent programming models, are required to make e�e
tive use of the
ellularar
hite
tures [40, 41, 120℄. In the �rst two of those three papers, their author pro-pose the use of a
ombination of exe
ution models and memory models, as alreadydes
ribed in se
tions 3.2 and 3.3.The primary
on
erns when programming DIMES/P, and thus any Cy
lops-based ar
hite
ture, were:
• How to manage the potentially large numbers of threads.
• How to easily express any parallelism within the input sour
e-
ode.

3.5. Programming for Cy
lops 22
• How to make
orre
t, and most e�e
tive use, of the memory
onsisten
y mod-els.Some resear
h has already been done regarding programming models for the thread-ing, su
h as using thread per
olation as a te
hnique to perform dynami
 load-balan
ing [18, 53, 61℄. Another pie
e of resear
h [22℄ investigated using multi-levels
heduling-s
hemes: a work-stealing algorithm at the higher-level and a multi-threading te
hnique at the lower-level to hide
ommuni
ation laten
ies. A furtherpie
e of resear
h [37℄ investigated the use of �laments as lightweight threads toe�
iently implement thread
ontrol.3.5 Programming for Cy
lopsCy
lops has a set of parti
ular
on
erns asso
iated with programming for it, someof whi
h have been investigated, but for alternative ar
hite
tures. For Cy
lops, areasonable te
hnique for implementing memory
onsisten
y models, thread manage-ment, and �nally making use of any parallelism was investigated.This started with investigating how to easily implement the memory-
onsisten
ymodels. This was relatively simple: earlier, unpublished, work on the GCC-based
ompiler had implemented a simple algorithm: all stati
 variables were stored inon-
hip memory, and the fun
tion
all sta
k, in
luding all automati
 variables waspla
ed in the s
rat
h-pad memory.As there was no language-level support for thread management, a library hadto be implemented to support the thread management instru
tions in the Cy
lopsISA. An early version of TNT [29, 31℄,
alled
threads was used as the basis for
reating a higher-level C++ abstra
tion. The author
onsidered that the
threadimplementation, that
losely followed a POSIX-Threads API, was far too primitiveto be e�e
tively used for programming Cy
lops. The simple C++ API that wasdeveloped also in
luded thread-management,
riti
al-se
tions, mutexes and eventobje
ts to allow for easier management of the lower-level obje
ts.An abstra
tion of the extra
tion of parallelism from the range of possible ex-ample programs was not implemented for this thesis, as this was
onsidered to be

3.5. Programming for Cy
lops 23potentially too
losely
oupled to the a
tual program in question. In the author'sopinion, not performing this abstra
tion of parallelism was �awed, be
ause it iswhere the
ru
ial, further generalisations take pla
e that allow a programmer to im-plement an algorithm with far less regard for the underlying ar
hite
tural features.Thus the programmer would obtain mu
h greater bene�ts from this more powerfulabstra
tion.To test these ideas, and the Cy
lops ar
hite
ture, a simple program was
hosen.It had the properties that it was a small problem and embarrassingly parallel, ideallysuited to Cy
lopsE. Thus an implementation of a program to generate Mandelbrotsets was
reated, whi
h will be des
ribed in the following
hapter, 4.

Chapter 4
Programming the Mandelbrot SetAlgorithm for Cy
lops
In this
hapter, whi
h is a more detailed des
ription of the work done in appendixC, the salient details of the Mandelbrot set and an informal algorithm will be givenfor generating the set. How this algorithm may be multi-threaded is presented, withparti
ular attention to the implementation used for DIMES/P [90℄. This is a proto-type of the DIMES hardware that implements a redu
ed version of Cy
lopsE [21℄.Alternative algorithms are also presented, but were not implemented. A des
riptionof how the threaded algorithm was implemented on the DIMES/P platform will bepresented, followed by an example of the appli
ation running and the operation ofthe work-stealing algorithm.Further details and the various presentations whi
h were based upon this workare given in appendi
es B (this was a presentation give to the University of Hertford-shire, upon my return from CAPSL, introdu
ing DIMES and my work done there),A (this was a draft paper prepared at CAPSL in
ollaboration with Dr. Egan, forsubmission to various
onferen
es) and C (this was a
onferen
e paper that has beena

epted for publi
ation at ACSAC06).

24

4.1. An Introdu
tion to the Mandelbrot Set 254.1 An Introdu
tion to the Mandelbrot SetThe Mandelbrot [10, 72℄ set is intimately related to the Julia set1 [60℄, dis
overedin the 1910s. They are both mathemati
al entities
alled fra
tals relating to thefa
t that they have a non-integer dimension. Fra
tals are part of the bran
h ofmathemati
al
alled Chaos Theory, whi
h may be de�ned as the term for thosetheories relating to pseudo-random mappings and fun
tions. The appli
ations ofChaos Theory is widely varied and in
ludes su
h appli
ations as
ompression [85℄,
ryptography [32℄, e
onomi
s [82℄, seismology [114℄, the shape of naturally o

urringobje
ts [10℄ su
h as
louds, trees [6℄ and lands
apes, medi
ine su
h as the modellingof �brillation in the human heart [44℄, whi
h is apart from the pure mathemati
alor aestheti
 nature of the obje
ts.Both the Mandelbrot and Julia sets may be
reated by iteration of a very simpleequation:
zn+1 = z2

n + c (4.1)In this equation, zn is a
omplex number, where z0 = 0. c is also a
omplexnumber, whi
h is initialised to a value
onstant throughout the iterations. Theiteration of equation 4.1 terminates when:1. Either n rea
hes the so-
alled �maximum iteration� value, m, a �xed
onstant,greater than zero.2. Or | zn | ex
eeds the so-
alled �bailout� value of 2, usually set to the real value
4 (=| zn |2), for e�
ien
y reasons. It has been proven that | zn |→ ∞ on
e
| zn |≥ 2.To generate the Mandelbrot set, algorithm 1 is used.Usually the sele
tion of c is not random, but a �raster-s
an� of the
omplexplane. It is not ne
essary to s
an the whole of the
omplex plane, as a property1Ea
h point in the Mandelbrot set is an �index� into the Julia set for that point.

4.1. An Introdu
tion to the Mandelbrot Set 26Algorithm 1 The
lassi
 algorithm used to generate the Mandelbrot set.1. Set the value of m, the maximum iterations, greater than zero.2. Sele
t a point from the
omplex plane, and set c to that value.3. Initialise n = 0, z0 = 0.4. Exe
ute equation 4.1.5. In
rement n.6. If | zn |2≥ 4 then that c is not in the set of points whi
h
omprise the Man-delbrot set. Go to 2.7. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 2.8. Go to 4.

Figure 4.1: The
lassi
 Mandelbrot set image generated by �Fra
tint� [119℄. Points
oloured bla
k are in M .of the Mandelbrot set is that it is entirely
ontained within the
ir
le of radius 2,
entred on the origin of the
omplex plane. Another important property of the
onversion to �oating-point arithmeti
 is that the distan
e between the su

essivelysele
ted points c is a �nite number representable by a �oating-point number, andnon-zero. In other terms, this distan
e is the resolution at whi
h the set is
reated.Usually the set of points M is displayed as an image, with those points in theset
oloured to
ontrast with those that are not in the set. This gives the
lassi
image in �gure 4.1. The bla
k region in �gure 4.1 is a basin of stability of algorithm1. Those points of whi
h it
omprises remain within a �nite distan
e of the origin,

4.2. Threading and the Mandelbrot Set 27

Figure 4.2: A false-
olour image of the Mandelbrot set generated by �Aleph One�[71℄.i.e. | zn |< ∞. Those outside this region are unstable, and eventually | zn |→ ∞.More
ommonly, the points c have a value assigned to them that is derived from
n, the iteration at whi
h algorithm 1 terminated for that point. This gives a false-
olour image, as shown in �gure 4.2 , in whi
h the points c of similar
olour aretermed �level-sets�, basins of stability identi�ed by the algorithm that en
lose theMandelbrot set.4.2 Threading and the Mandelbrot SetAn important property of algorithm 1 to generate the Mandelbrot set is that the
lassi�
ation of ea
h c in the
omplex plane is independent of the
lassi�
ation ofany other c. Therefore the Mandelbrot set may be implemented as a massivelyparallel appli
ation, thus potentially suited to
ellular ar
hite
tures. Studies ofalternative implementations for di�erent ar
hite
tures, su
h as �ne-grain threaded-ar
hite
tures [37℄ and NUMA ar
hite
tures [22℄ have already been done. For
ellularar
hite
tures, another important feature of this
lassi�
ation pro
ess is that the�oating point support required may be implemented in �xed-point arithmeti
 usingup to 32 bits for the digits, as DIMES/P [90℄ la
ks �oating point support.The Mandelbrot set may be implemented using one algorithm per thread unit

4.2. Threading and the Mandelbrot Set 28within the
ellular-ar
hite
ture ma
hine. This approa
h would work well for massive
lusters of
ellular
omputing nodes. (Remember that for an image of 100×100points, c, 10,000 thread units would be required with this te
hnique.) Moreover,the
lassi�
ation of any randomly sele
ted c may take between 1 and m iterationsof the algorithm. In general it is not possible to know in advan
e how long su
h a cwill take to
lassify. Therefore the
omputation time would take approximately mtimes the time per iteration loop in algorithm 1.Due to the properties of DIMES/P [90℄, this te
hnique was not possible, as therewere only 8 thread units between two pro
essors. The
hosen implementation, de-rived from the implementation used in [71℄, had the
omplex plane divided into aseries of horizontal strips. Separate render threads, as the
lassi�
ation of the points
c within ea
h strip is independent of su
h
lassi�
ation on other render threads.Therefore ea
h render thread implements a slightly modi�ed version of algorithm 1,whi
h is provided in algorithm 4. Only the
oordinates for the bounding re
tangleare inter-related between the render threads. However, ea
h strip will, in general,take a di�erent amount of time to render, thus the render threads will
ompletetheir assigned portion of work at di�erent times. This lead to the addition of aload-balan
ing algorithm moving un
ompleted work to threads that have already
ompleted their assigned work. Thus a work-stealing algorithm 5 was added to per-form the load-balan
ing between the render threads. Alternative implementationsof the Mandelbrot set using a work-stealing algorithm [22℄ or �ne-grain threadedalgorithm [37℄ exist.The updates to the start, x, and �nish points of the strips for the render threads
Tc and Tl are performed atomi
ally - the threads are suspended whilst these up-dates are done, either be
ause Tc is stopped or be
ause Tl is stopped by using amutex. (A mutex is required as the data to be updated is a two
omplex numbers,
x and the �nish point, these must both be updated as a pair, atomi
ally. In thisimplementation a
omplex number
onsists of two words - one for the real part,one for the imaginary part.) This is a dynami
-programming solution to the load-balan
ing problem of work distribution between the render threads. Moreover, thealgorithm is robust: if the estimated
ompletion-time, t, has an error, whi
h it is

4.2. Threading and the Mandelbrot Set 29Algorithm 2 The render-thread algorithm.1. Set the value of m, the maximum iterations, greater than zero. Set the es-timated
ompletion-time, t, to the largest, �nite, representable time-periodpossible.2. Set c = x, where x is the top-left of the strip to be rendered.3. Initialise n = 0, z0 = 0.(a) Exe
ute equation 4.1.(b) In
rement n.(
) If | zn |2≥ 4 then that c is not in the set of points whi
h
omprise theMandelbrot set. Go to 4.(d) If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.(e) Go to 3a.4. In
rement the real part of c. If the real part of c is less than the width of thestrip to be rendered, go to 3.5. Cal
ulate the average of t and the time it took to render that line.6. Set the real part of c to the left-hand of the strip. In
rement the
omplex partof c. If the
omplex part of c is less than the height of the strip, go to 3.7. Signal work
ompleted, set t = 0 (thus this thread is guaranteed not to besele
ted by the work-stealing algorithm 5).8. Suspend.Algorithm 3 The work-stealing algorithm.1. Monitor render threads for a work-
ompleted signal. That thread that
om-pletes we shall denote as Tc.2. Find that render thread with the longest estimated
ompletion-time, t, notethat ea
h render thread updates this time upon
ompletion of a line. Call thisthread Tl.3. Stop Tl when it
ompletes the
urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two renderthreads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.

4.3. A Dis
ussion of the Work-Stealing Algorithm 5 30very likely to have, the algorithm merely performs ex
essive work-stealing opera-tions, but automati
ally tunes to �nd a lo
al minimum in the total
ompletion time
urve. Experiments with [71℄ have shown that the algorithm
an a

ommodate er-rors of over 100% in the estimated
ompletion-times, and rapidly
orre
ts to thenew lo
al minimum.4.3 A Dis
ussion of the Work-Stealing Algorithm 5The algorithm 5 has some important features:
• The bandwidth of the single thread that implements that algorithm is the lim-iting fa
tor in its ability to s
ale. Conversely, this algorithm is able to toleratefailures in render threads and is therefore robust. If a render thread stopsresponding, eventually it will be the slowest, un�nished render thread, and itswork will be stolen. It is possible to s
ale this work-stealing algorithm, if oneobserves that the work-stealing algorithm operates upon a sli
e of the
omplexplane, demonstrating that the work-stealing algorithm is re
ursive. It is pos-sible to assign strips s0...j of the plane to independent sets of render threads,governed by their own work-stealing thread. These si strips are monitored bya work-stealing thread in turn, those strips returning an aggregate estimated
ompletion time. But this has a limitation: On
e the number of render threadsbe
omes of the order of the verti
al resolution of the image, the
ompletiontime is bounded by the maximum time it takes a render thread to generate asingle line. This line for the Mandelbrot set in �gures 4.1 and 4.2 is the line

(−2, 0) to (2, 0), whi
h has the most points within the set. These points take
m time to
lassify. As the unit of work in the work-stealing algorithm is a line,this is the slowest line, and thus the ultimate limit of this algorithm, unlessthe resolution is in
reased. This dis
ussion leads to the following algorithm:

• If robustness is not required, then the image generated may be viewed as anarray of values, where ea
h of these values is the
lassi�
ation of c. Considerif there are p0...q threads, ea
h pn thread initially
lassi�es a point in the array

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 31

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Processor 0

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Network

Processor 1

Figure 4.3: Simpli�ed s
hemati
 overview of the DIMES/P implementation of Cy-
lopsE.o�set by n, and on
e
ompleted, moves along the array using a stride of q. Thisallows the use of a number of threads that is bounded by the number of pointswithin the image. As this may be for an image of resolution 100×100, thus10,000 points, whi
h maps well on to the
ellular ar
hite
tures as des
ribedin [21℄. For more thread units, the image resolution would need to be in
reased.Unfortunately, this algorithm does not have a natural ability to tolerate failuresin thread units, unlike the work-stealing algorithm, 5.4.4 DIMES/P Implementation of the Mandelbrot-set appli
ationA simpli�ed s
hemati
 diagram of the DIMES/P implementation (from [90℄) of theCy
lopsE pro
essor is given in �gure 4.3. The features of this ar
hite
ture are thatthe memory model for the two types of memory, the s
rat
h-pad and the globalmemories are di�erent:
• Global memory obeys the Sequential Consisten
y Model for all thread units.

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 32
Processor 1

Thread Unit 0

Thread Unit 1

Thread Unit 2

Thread Unit 3

Render Thread

Render Thread

Render Thread

Work−Steal Th.

Memory128K Global

100x100 Pixel Image

Processor 0

Thread Unit 0

Thread Unit 1

Thread Unit 2

Thread Unit 3

CRTS − Debug

Main

Render Thread

Render Thread

Figure 4.4: Layout of the render and work-stealing threads within the DIMES/Psystem.
• S
rat
h-pad memory obeys the program
onsisten
y model for all thread units,apart from the thread unit to whi
h it is atta
hed.Su
h di�erent
onsisten
y models a�e
t the way that the data for the Mandelbrot-set appli
ation is arranged in memory, but this will be dis
ussed in more detail inse
tion 4.4.1.The stati
 layout of the render and work-stealing threads within the DIMES/Psystem is shown in �gure 4.4. The software threads that o

upy the thread unitsare:
• The CRTS - Debug thread is required for the debugger, if it is exe
uted. Asthreads are stati
ally allo
ated at program start-up, this must be left free forthe debugger and Cellular Run-Time System (CRTS2) support.
• Main is the main loop of the Mandelbrot-set appli
ation.
• The Render Threads are the threads that exe
ute algorithm 4.2Not to be
onfused with the ANSI/ISO 'C' Runtime.

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 33
• Work-Steal Th is the thread that exe
utes algorithm 5. Only one work-stealingthread was implemented, due to the limited number thread units per pro
essor.In prin
iple a render thread
ould also run on this thread unit, but the CRTSdoes not support virtual threads, moreover the work-stealing thread a
tuallyhas to spin in a busy wait monitoring for
ompletion of a render thread. Hen
e,for this appli
ation, it was deemed an unne
essary
omplexity.Further details regarding the implementation may be found in [70℄.4.4.1 The Memory LayoutAs far as the programmer is
on
erned, the two 64k global memory units
omprisea single,
ontiguous 128k blo
k of memory whi
h is for
ode and global data. Theprogrammer has no a

ess to di�erentiate between them. Moreover, the Cy
lopsEdesign is su
h that a

ess times to them are the same, no matter whi
h thread unitfrom whi
h pro
essor a

esses them. The programmer may ensure that data will bepla
ed in global memory by the
ompiler by ensuring that it is stati
. This may bedone by making it global, or using the C/C++ keyword �stati
�. The
ompiler pla
esthe sta
k frame into the s
rat
h-pad memory, whi
h means that fun
tion
all depth islimited, as there is only 4K sta
k spa
e per thread. The Mandelbrot-set algorithmas des
ribed does not need this mu
h spa
e for ea
h thread unit, thus all threadlo
al-data is pla
ed into the
orresponding s
rat
h-pad memory for performan
e.The 40,000 bytes of image data (100×100 words, 1 word = 4 bytes) is pla
ed inglobal memory for implementation reasons. DIMES/P has no
onsole, thus the onlyway that
ommuni
ation with DIMES/P
an o

ur is via the global memory froma spe
ially written program running on the host
omputer.4.4.2 The Host Interfa
eThe DIMES/P implementation is physi
ally lo
ated on an FPGA on a PCI board,with spe
ialized hardware and software support for it to
ommuni
ate with thehost
omputer for loading programs, and
ommuni
ating results, of whi
h detailsare given in [29, 90℄. A simple
ommand-line program was written to periodi
ally

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 34
T2

T0

T1

{

{
{

Figure 4.5: The image generated shortly after program start-up.
T2

T0

T1

{
{
{Figure 4.6: Image generation has progressed, shortly before a work-stealing event.fet
h the image data from the DIMES/P memory, and save it to a �le for subse-quent display. This program also allows the user to enter image parameter data forsubsequent
ontrol of the image rendering on DIMES/P.4.4.3 Exe
ution details of the Mandelbrot-set appli
ationIn this example, there are three threads for simpli
ity:1. On program start, the render threads start to exe
ute and perform their as-signed work. The assigned work is initially equal 1

3
portions of the total image,arranged in horizontal strips. The top render thread is denoted by T0, the mid-dle by T1 and the lower by T2, although this relative position will
hange later.The operation of the render threads may be seen in �gure 4.5. No work-stealinghas o

urred, so there are just three strips, one per render thread, s
anningfrom left to right, top to bottom.2. As the image generation pro
eeds, the T0 and T2 threads progress faster than

T1, as seen in �gure 4.6. Note how T0 has
al
ulated more than T2 - the lighterareas take longer to
al
ulate, and the strip generated by T0 is bla
k at thetop, and white at the bottom, but the
onverse is true for T2.

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 35
T
T

T2

1

0

{
{
{

Figure 4.7: Just after the �rst work-stealing operation.
T1

T0

T2 {
{
{

Figure 4.8: The se
ond work-stealing operation.3. The �rst work-stealing operation has just o

urred. T0 �nished and T1, theslowest (mainly white) has had the remaining work divided between it and T0,see �gure 4.7. Note how the end-point of T1 was assigned to be the new endpoint of T0 and the new end-point of T1 is the start-point of T0.4. Shortly after this �rst work-stealing operation o

urs, T2
ompletes its assignedwork. A se
ond work-stealing operation o

urs, see �gure 4.8. In this
ase workwas again stolen from T1, and assigned to T2.5. After a pause T1
ompletes its assigned work, and another work-stealing op-eration o

urs, this time with T0, whi
h may be seen in �gure 4.9.6. Finally the set is
ompleted, see �gure 4.10 , with no further work-stealingoperations, as the number of un
ompleted lines for any render thread is less
T2

T0

T1

{
{
{

Figure 4.9: The third work-stealing operation.

4.4. DIMES/P Implementation of the Mandelbrot-set appli
ation 36
Figure 4.10: The
ompleted Mandelbrot set.than 2, and a line is the minimum unit of work for this algorithm.

Chapter 5
List of A
hievements
The following goals have been a
hieved by the author in the
ourse of the MS
(Res)program:

• A
ollaboration between the University of Hertfordshire and the CAPSL group,under Professor Gao at the University of Delaware, was set up by the author.As part of this
ollaboration the author worked at the CAPSL group for ap-proximately 18 months.
• Two departmental seminars regarding this work were presented at CAPSL.
• A poster of the Mandelbrot set implementation on the DIMES/P-2 platformwas shown at Super Computing '03, amongst other posters from the CAPSLgroup regarding DIMES.
• Two departmental seminars on regarding this work were presented at the Uni-versity of Hertfordshire, shortly after the author's return from the CAPSL.
• A
onferen
e paper by the author has been a

epted for the 11th Asia-Pa
i�
Computer Systems Ar
hite
ture Conferen
e, titled: �The Challenges of E�-
ient Code-Generation for Massively Parallel Ar
hite
tures�, also to be pre-sented by the author. It is in
luded in appendix C.

37

Chapter 6
Summary
The limitations of DIMES/P prevented further study of the properties of this pro-gram: s
alability and timings were not done be
ause of the limited number of threadunits (8) and memory
apa
ity (128k). Despite this, the development of the programwas instru
tive: an initial
ontention of this thesis was that the memory models andmassive parallelism (i.e. large numbers of mi
ro-threads) inherent in
ellular ar
hi-te
tures would make programming for them hard. This was experien
ed to di�erentmeasures, relating to the memory model support, the thread library and thereforethe mi
ro-thread support.With regards to the memory model support, the fa
t that the
ompiler madenatural use of language-level syntax to map data into s
rat
h-pad and on-
hip mem-ory (using the C/C++ keyword stati
) made using these di�erent memory mod-els easy. But this simpli
ity was at a pri
e: Cy
lops only has word-sized, atomi
memory-operations, and these operations were apparently unused for this problem.The author
ontends that su
h multiple, read-modify-write operations that must bemaintained as an atomi
 unit hampered the performan
e of the program on Cy
lops,be
ause they
ould not make use of the hardware-level support for atomi
 opera-tions. So the more usual barriers su
h as mutexes and
riti
al se
tions were needed.This implies that the manual lo
king that had to be applied should really have beenimplemented within the
ompiler-provided support via the stati
 keyword. If thiswere the
ase then it may have been possible for the
ompiler to perform optimiza-tion on the lo
king of a

ess to the data, and improved program performan
e, with38

Chapter 6. Summary 39apparently no impa
t upon the developer. As already mentioned,
ertain membersof the C++ standards
ommittee are proposing the extension of the exe
ution modelwithin the C++ standard to support the
on
epts of memory
onsisten
y within theC++ standard. That this proposal will address the problem outlined above is notyet
lear. It is the author's
ontention that there should be support for su
h lo
king(in some manner implemented within the
ompiler or a run-time library) if pro-grams more sophisti
ated than the one des
ribed in this thesis are to be su

essfullywritten for these ar
hite
tures.With regards to the thread library: the
omplexity of POSIX-Threads has been ahindran
e to su

essful multi-thread program
reation. Indeed this opinion has beenvoi
ed by some members of the C++ standards
ommittee at the ACCU 2004, 2005and 2006
onferen
es. The
reation of a C++ wrapper to hide thread
reation anddestru
tion, and
ombine with that thread, any lo
al storage in an e�
ient manner,was only partially su

essful: The
on
ept that a thread is an obje
t has not been notuniversally a

epted, be
ause this means that the data to be manipulated be
omesintimately intermingled with the thread-management
ode. This would be an evengreater problem when
onsidering mi
ro-threads in that they have little, or indeedno
ontext, thus mingling threading
onstru
ts with data is potentially in dire
t
on�i
t with the design of mi
ro-threads. Even for this simple example program,this mingling was evident in the work-stealing algorithm, and the way it intera
tedwith the start and end-points of the worker threads. For more
omplex, largerprograms, su
h
omplexity would be likely to make writing them
orre
tly, andmodifying them later very hard. Subsequent updates to the
thread model, whi
hbe
ame TNT, des
ribed in [31℄, are still largely POSIX-Thread based, and whi
his a low-level API. The
on
ept that data and exe
ution should be kept separateis
ommonly and naturally embodied in programming via the syntax of �main�. Ithas been
ontended by members of the C++ Standards
ommittee that this patternshould be dupli
ated for thread libraries: that there should exist a pool of threads,to whi
h work is passed. This work would be asyn
hronously exe
uted, on a threadwithin the pool. With the results returned from that pool via a wait-able obje
t.This
on
ept is similar to the data-�ow designs that pre
eded VLIW, indeed it has

Chapter 6. Summary 40been argued that this
on
ept is a software emulation of data-�ow.When
onsidering the harder problem of
reating an e�e
tive algorithm to imple-ment mi
ro-threading and representing that in
ode,
learly the example programdes
ribed above was very limited in its a
hievements. The work-stealing algorithmwas intimately related to the program design. The ability to abstra
t the work-stealing operation to other problems would be very limited using that design. Al-ternative approa
hes have been examined, su
h as in [88℄, using OpenMP, whi
hwas still used as a library to express the parallelism, but OpenMP poorly maps tomi
ro-threads, the primitives it implements, arguably, have been too tied into thepro
ess-level parallelism for whi
h it was originally designed. Alternatively, if one isto
onsider the suggestion above, of a mi
ro-thread pool into whi
h work is submit-ted, then the details of how the pool works be
ome separated from the work itself.The fa
t that the pool balan
es work between threads using a master-slave, or work-stealing algorithm should be independent of the work: a natural division of
on
epts.If this were the
ase, then the programmer would be free to add work to the poolas desired. The parallelism of the algorithm would be more naturally expressed interms of operations on data. If one is to
onsider this further: the a
tual exe
utable
ode (in terms of the fun
tion pointer, in mi
ro-threading terms a program
ounter)and the data are passed to the pool together. It
ould be then possible for the poolto be designed to make use of data lo
ality and
ode lo
ality: Did a previous threadexe
ute that
ode before? If so, prefer to run that work on that thread. If thereare �
liques� of threads, related due to resour
e asymmetry, then one might
reate apool to represent the parti
ular feature of that resour
e. For example a Cy
lops
hipmight be represented as a mi
ro-thread pool,
ontained within a greater thread poolthat represents the ma
hine, due to the fa
t that o�-
hip memory a

ess makes useof a message-passing proto
ol, rather than the
rossbar network embedded withinthe
hip, that allows mu
h more rapid memory a

ess.It is still an open question regarding what may be the ideal approa
h to im-plementing parallelism via mi
ro-threading: language-level support su
h as UPC,HPF or other language extensions, or within the
ompiler using tra
e-s
heduling, orshould it be at a library-level using, for example OpenMP or POSIX-Threads, or

Chapter 6. Summary 41should it be within the ar
hite
ture, su
h as the mi
ro-threaded ar
hite
tures [13℄of Luo et al [68℄, CARE [75℄ or Cy
lops [31℄.

Bibliography
[1℄ Adam, T.L., Chandy, K.M. and Di
kson, J.R., �A Comparison of List S
hedulesfor Parallel Pro
essing Systems,� CACM, 17, 12, pp. 685-690, De
ember, 1974.[2℄ Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., �Network Flows: Theory, Algo-rithms and Appli
ations,� Prenti
e-Hall, 1993.[3℄ Allen, J.R., Kennedy, K., Porter�eld, C. and Warren, J.D., �Conversion of Con-trol Dependen
e to Data Dependen
e,� Pro
eedings of the 10th ACM Symposiumon Prin
iples of Programming Languages, pp. 177-89, January 1983.[4℄ Almásil, G., Cas
aval, C., Castaños, J.G., Denneau, M., Lieber, D., Moreira, J.E.and Warren, H.S., �Disse
ting Cy
lops: Detailed Analysis of a MultithreadedAr
hite
ture.�, ACM SIGARCH Computer Ar
hite
ture News, Vol. 31, Mar
h2003[5℄ Amaral, J.N., Gao, G.R., and Tang, X., �An Implementation of a Hop�eld Net-work Kernel on EARTH,� CAPSL Te
hni
al Paper, 1998. http://www.
apsl.udel.edu[6℄ Aono, M., Kunil, T.L., �Botani
al Tree Image Generation.�, IEEE ComputerGraphi
s and Appli
ations 4,5 (1984) 10-33.[7℄ Ar
hite
ture Simulation Framework, http://www.lri.fr/~osmose/ASF/, latestupdated in 28/06/2001 or http://www-ro
q.inria.fr/a3/tools.html.en.[8℄ Avarind, R.S.N., and Pingail, K.K., �I-stru
tures: Data Stru
tures for ParallelComputing,� ACM TOPLAS, 11(4): pp. 598-632, O
tober 1989.42

Bibliography 43[9℄ Ba
kus, J., �Can programming be liberated from the von Neumann style? Afun
tional style and its algebra of programs,� Communi
ations of the ACM 21,8, pp. 613-641, August 1978.[10℄ Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.-O., Saupe, D.,Voss, R.F., �The S
ien
e of Fra
tal Images.�, Springer-Verlag, 1988.[11℄ G.E. Blello
h, P.B. Gibbons, Y. Matias and G.J. Narlikar, �Spa
e-E�
ientS
heduling of Parallelism with Syn
hronization Variables,� Pro
eedings of the9th ACM Symposium on Parallel Algorithms and Ar
hite
tures (SPAA), June1997.[12℄ Bohm A.P.W. and Sargeant, J., �E�
ient Data�ow Code Generation forSISAL�, IEEE Transa
tions on Computers, vol.C-38 no.1, pp. 4-14, January1989.[13℄ Boly
hevsky, A., Jesshope, C.R. and Mu
hni
k, V.B., �Dynami
 S
heduling inRISC Ar
hite
tures,� IEE. Pro
.-Comput. Digit. Te
h., Vol. 143, No. 5, Sept.1996.[14℄ Bruening, U., Giloi, W.K. and S
hroeder-Preiks
hat, W., �Laten
y Hiding inMessage Passing Ar
hite
tures�, Pro
eedings of the 8th International ParallelPro
essing Symposium [21℄, pp. 704-709.[15℄ Burger, D., �Memory Bandwidth Limitations of Future Mi
ropro
essors.�, ISCA1996.[16℄ Burks, A.W., Goldstine, H.H. and von Neumann, J., �Preliminary dis
ussion ofthe logi
al design of an ele
troni

omputing instrument.� A.H. In Taub, editor,John von Neumann Colle
ted Works, The Ma
millan Co., New York, Volume V,pp. 34-79, 1963.[17℄ Burts
her, M. and Zorn, B.G., �Predi
tion Out
ome History-based Con�den
eEstimation for Load Value Predi
tion,� The Journal of Instru
tion-Level Paral-lelism, vol. 1, February 1999. http://www.jilp.org/vol1

Bibliography 44[18℄ Cai, H., �Dynami
 Load-Balan
ing on the EARTH-SP System.�, Master's The-sis, M
Gill University, Montréal, May 1997.[19℄ B. Calder and D. Grunwald, �Redu
ing Indire
t Fun
tion Call Overhead inC++ Programs,� Pro
eedings of the 21st Symposium on The Prin
iples of Pro-gramming Languages, pp. 397-408, January, 1994.[20℄ Calder, B., Feller, P. and Eusta
e, A., �Value Pro�ling and Optimization,� TheJournal of Instru
tion-Level Parallelism, vol. 1, February 1999. http://www.jilp.org/vol1[21℄ Cas
aval, C., Castaños, J.G., Ceze, L., Denneau, M., Gupta, M., Lieber, D.,Moreira, J.E., Strauss, K. and Warren, H.S., �Evaluation of a MultithreadedAr
hite
ture for Cellular Computing.�, 8th International Symposium on High-Performan
e Computer Ar
hite
ture (HPCA), February 2002.[22℄ Cavalherio, G.G.H., Doreille, M., Galilée, F., Gautier, T., Ro
h, J-L., �S
hedul-ing Parallel Programs on Non-Uniform Memory Ar
hite
tures.�, HPCA Confer-en
e � Workshop on Parallel Computing for Irregular Appli
ations WPCIA1,Orlando, USA, January 1999.[23℄ Chang, P.-Y., Hao, E., Yeh, T.-Y. and Patt, Y.N., �Bran
h Classi�
ation: ANew Me
hanism for Improving Bran
h Predi
tor Performan
e,� Pro
eedings ofMICRO-27, pp. 22-31, Nov-De
 1994.[24℄ Chappell, R.S., Stark, J., Knott, S.P., Reinhardt, S.K. and Patt, Y.N., �Simul-taneous Subordinate Mi
rothreading (si
),� Pro
eedings of the 26th InternationalSymposium on Computer Ar
hite
ture, IEEE, 1998.[25℄ Cleary, J. andWitten, I., �Data Compression using Adaptive Coding and PartialString Ma
hines,� IEEE Transa
tions on Communi
ations, vol. 32, pp. 396-402,April 1984.[26℄ Cmelik, B. and Keppel, D., �Shade: A Fast Instru
tion-Set Simulator for Exe
u-tion Pro�ling,� ACM SIGMETRICS Conferen
e on Measurement and Modellingof Computer Systems, 1994.

Bibliography 45[27℄ Co�man, J.R., ed., �Computer and Job-Shop S
heduling Theory,� John Wiley,New York, 1976.[28℄ Cohn, R. and Lowney, P.G., �Design and Analysis of Pro�le based Optimizationin Compaq's (si
) Compilation Tools for the Alpha,� The Journal of Instru
tion-Level Parallelism, vol. 2, January 2000. http://www.jilp.org/vol2[29℄ del Cuvillo, J.B., Klosiewi
z, R. and Zhang, Y., �A Software Development Kitfor DIMES.�, CAPSL Te
hni
al Note 10, Department of Ele
tri
al and ComputerEngineering, University of Delaware, Newark, Delaware, May 2003, ftp://ftp.
apsl.udel.edu/pub/do
/notes/.[30℄ del Cuvillo, J.B., Zhu, W., Hu, Z. and Gao, G.R., �FAST: A Fun
tionally A

u-rate Simulation Toolset for the Cy
lops-64 Cellular Ar
hite
ture.�, Workshop onModeling, Ben
hmarking and Simulation (MoBS), held in
onjun
tion with the32nd Annual International Symposium on Computer Ar
hite
ture (ISCA'05),Madison, Wis
onsin, June 4, 2005.[31℄ del Cuvillo, J.B., Zhu, W., Hu, Z. and Gao, G.R., �TiNy Threads: a ThreadVirtual Ma
hine for the Cy
lops64 Cellular Ar
hite
ture.�, Fifth Workshop onMassively Parallel Pro
essing (WMPP), held in
onjun
tion with the 19th Inter-national Parallel and Distributed Pro
essing System, Denver, Colorado, April 3- 8, 2005.[32℄ Da
hselt, F., Kelber, K. and S
hwarz, W., �Chaoti
 Coding and Cryptanalysis.�,Pro
eedings of 1997 IEEE International Symposium on Cir
uits and SystemsCir
uits and Systems in the Information Age (New York, USA), vol. 4, May1998, pp. 518-21.[33℄ Duller, A., Towner, D., Panesar, G., Gray, A. and Robbins, W., �pi
oArrayte
hnology: the tool's story.�, Pro
eedings of the Design, Automation and Testin Europe Conferen
e and Exhibition, IEEE, 2005.[34℄ Egan, C., Steven, G. and Vintan, L., �Ca
hed Two-level Adaptive Bran
h Pre-di
tors with Multiple Stages,� In Trends in Network and Pervasive Computing

Bibliography 46ARCS 2002 (Le
ture Notes in Computer S
ien
e 2299), Springer-Verlag, pp. 179191, 2002.[35℄ Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L. and Tullsen, D.M.,�Simultaneous Multithreading (si
): A Platform for Next-Generation Pro
es-sors,� IEEE Mi
ro, Vol. 17, No. 5, September/O
tober 1997.[36℄ Emami, M, Ghiya, R. and Hendren, L.J., �Context-sensitive Interpro
edural(si
) Points-to Analysis in the Presen
e of Fun
tion Pointers,� Pro
eedings ofthe ACM SIGPLAN '94 Conferen
e on Programming Language Design and Im-plementation, SIGPLAN Noti
es 29(6), pp. 242-56, June 1994.[37℄ Engler, D.R., Andrews, G.R. and Lowenthal, D.K., �Filaments: E�
ient Sup-port for Fine-Grain Parallelism.�,TR 93-13a, Dept. of Computer S
ien
e, Uni-versity of Arizona, Tu
son, 1993.[38℄ Fisher, J.A., �The Optimization of Horizontal Mi
ro
ode within and beyondBasi
 Blo
ks: An Appli
ation of Pro
essor S
heduling with Resour
es,�, PhDdissertation, University of New York, New York, 1979.[39℄ Gao, G.R., Theobald, K.B., Márquez, A., and Sterling, T., �The HTMTProgram Exe
ution Model,� CAPSL Te
hni
al Memo 9, July 1997. .http://www.
apsl.udel.edu[40℄ Gao, G.R. and Sarkar, V., �Lo
ation Consisten
y - a New Memory Model andCa
he Consisten
y Proto
ol.�, IEEE Transa
tions on Computers, Vol. 49, No. 8,August 2000.[41℄ Gao, G.R., Theobald, K.B., Hu, Z., Wu, H, Lu, J., Sterling, T.L., Pingali, K.,Stodghill, P., Stevens, R. and Hereld, M., �Next Generation System Software forFuture High-End Computing Systems.�, International Parallel and DistributedPro
essing Symposium: IPDPS 2002 Workshops April 15 - 19, 2002 Fort Laud-erdale, Florida.[42℄ Gao, G.R., Theobald, K.B., Govindarajan, R., Leung, C., Hu, Z., Wu, H.,Lu, J., del Cuvillo, J., Ja
quet, A., Janot, V. and Sterling, T.L., �Program-

Bibliography 47ming Models and System Software for Future High-End Computing Systems:Work-in-Progress.�, International Parallel and Distributed Pro
essing Sympo-sium (IPDPS'03) April 22 - 26, 2003 Ni
e, Fran
e.[43℄ Garey, M.R. and Johnson, D.S., �Computers and Intra
tability: A Guide to theTheory of NP-Completeness,� W.H. Freemann and Co., New York, 1979.[44℄ Gar�nkel, A., Chen, P.S., Walter, D.O., Karagueuzian, H.S., Kogan, B., Evans,S.J., Karpoukhin, M., Hwang, C., U
hida, T., Gotoh, M., Nwasokwa, O., Sager,P. and Weiss, J.N., �Quasiperiodi
ity and
haos in
ardia
 �brillation.�, Journalof Clini
al Investigation. 99(2), pp. 305-14, January 1997.[45℄ El-Ghazawi, T.A., Carlson, W.W., Draper, J.M., �UPC Language Spe
i�
ationsV1.1.1�, O
tober 2003.[46℄ Ghiya, R. and Hendren, L.J., �Conne
tion Analysis: A Pra
ti
al Interpro
edu-ral (si
) Heap Analysis for C,� International Journal of Parallel Programming,24(6), De
ember 1996.[47℄ Gottleib, A., Luba
hevsky, B.D., and Rudolph, L., �Basi
 Te
hniques for theE�
ient Coordination of Very Large Numbers of Cooperating Sequential Pro
es-sors,� ACM Transa
tions on Programming Languages and Systems, 5(2), April1983.[48℄ Gurd, J.R. and Snelling, D.F., �Man
hester Data-Flow: A Progress Report�,ACM Pro
eedings of the 6th International Conferen
e on Super
omputing, pp.216-225, 1992.[49℄ Hennessy, J.L. and Patterson, D.A., � Computer Ar
hite
ture: A QuantitativeApproa
h,� 2nd Edition, Morgan Kaufmann, 1996.[50℄ Hoogerbrugge, J. and Augusteijn, L., �Instru
tion S
heduling for TriMedia,�The Journal of Instru
tion-Level Parallelism, vol. 1, February 1999. http://www.jilp.org/vol1

Bibliography 48[51℄ Hsu, P.Y.T. and Davidson, E.S., �Highly Con
urrent S
alar Pro
essing,� Pro-
eedings of the 13th Annual International Symposium on Computer Ar
hite
ture,pp. 386-95, June 1986.[52℄ Huang, J., and Lilja, D.J., �An E�
ient Strategy for Developing a Simulatorfor a Novel Con
urrent Multi-Threaded Pro
essor Ar
hite
ture,� 1998.[53℄ Hum, H.H.J., Maquelin, O., Theobald, K.B., Tian, X., Gao, G.R. and Hen-dren, L.J., �A Study of the EARTH-MANNA Multithreaded System.�, Intl. J.of Parallel Programming, 24(4):319-347, August 1996.[54℄ Hwu, W.W., Conte, T.M. and Chang, P.P., �Comparing Software and HardwareS
hemes for Redu
ing the Cost of Bran
hes,� Pro
eedings of the 16th AnnualInternational Symposium on Computer Ar
hite
ture, pp. 224-233, May 1989.[55℄ Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann,R.A., Ouellette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm J.G. andLavery, D.M., �The Superblo
k (si
): An E�e
tive Te
hnique for VLIW andSupers
alar Compilation,� The Journal of Super
omputing, Vol. 7, 1/2: pp.229-248, 1993.[56℄ Intel Pentium 4 Pro
essor Produ
t Brief,http://www.intel.
om/design/Pentium4/prodbref/ http://www.intel.
om/design/Pentium4/prodbref/.[57℄ Jagannathan, R., �Data�ow (si
) Models,� E.Y. Zomaya, editor, Parallel andDistributed Computing Handbook, M
Graw-Hill, 1985.[58℄ Jesshope, C.R. and Luo, B., �Evaluation of Ve
tor-Instru
tion Set Mi
ro-Threaded Pipelines,� Institute of Information S
ien
es and Te
hnology, MasseyUniversity, New Zealand, private
ommuni
ations.[59℄ Johnson, M., �Supers
alar Mi
ropro
essor Design.�, Prenti
e Hall, New Jersey,1991.[60℄ Julia, G., �Sur l'iteration des Fun
tions Rationelles.�, Journal de Math. Pure etAppl. 8 (1918) 47-245.

Bibliography 49[61℄ Kakulavarapu, K.P., �Dynami
 Load-Balan
ing Issues in the EARTH RuntimeSystem.�, Master's Thesis, M
Gill University, Montréal, April 2000.[62℄ Kakulavarapu, P., Morrone, C.J., Theobald, K., Amaral J.N. and Gao, G.R., �AComparative Performan
e Study of Fine-Grain Multi-threading on DistributedMemory Ma
hines.�, 19th IEEE International Performan
e, Computing andCommuni
ation Conferen
e-IPCCC2000, Phoenix, Arizona, USA, Feb. 20-22,2000.[63℄ Kalamatiano, J. and Kaeli, D.R., �Indire
t Bran
h Predi
tion using Data Com-pression Te
hniques,� The Journal of Instru
tion-Level Parallelism, vol. 2, De-
ember 1999. http://www.jilp.org/vol1[64℄ Kogge, P.M., Sterling, T.L. and Gao, G., �Pro
essing in memory: Chips topeta�ops.�, In Workshop on Mixing Logi
 and DRAM: Chips that Compute andRemember at ISCA '97. http://iram.
s.berkeley.edu/is
a97-workshop/,Denver, CO, June 1997.[65℄ Lam, M.S. and Wilson, R.P., �Limits of Control Flow on Parallelism,� Pro-
eeding of the 19th Annual International Symposium on Computer Ar
hite
ture,ACM, May 1992, pp. 46-57.[66℄ Lee, C., Potkonjak, M. and Mangione-Smith, W.H., �Mediaben
h (si
): A Toolfor Evaluating and Synthesizing Multimedia and Communi
ations Systems,�Pro
eedings of the 30th Annual International Symposium on Mi
ro-ar
hite
ture,De
ember 1998.[67℄ Lo, J. L., Eggers, S. J., Emer, S. J., Levy, H. M., Stamm, R. L., Tullsen, D.M., �Converting Thread-Level Parallelism to Instru
tion-Level Parallelism viaSimultaneous Multithreading,� ACM Transa
tions on Computer Systems, Vol.15, No. 3, August 1997, Pages 322354.[68℄ Luo, B., and Jesshope, C.R., �Performan
e of a Mi
ro-Threaded Pipeline,� AC-SAC 2002, Melbourne, Australian, Vol. 6.

Bibliography 50[69℄ M
Farling, S., �Combining Bran
h Predi
tors,� Te
h. Note TN-36, DEC WRL,June 1993.[70℄ M
Guiness, J.M., �A DIMES Demonstration Appli
ation: Mandelbrot-Set Gen-eration Using a Work-Stealing Algorithm.�, CAPSL Te
hni
al Note 11, Depart-ment of Ele
tri
al and Computer Engineering, University of Delaware, Newark,Delaware, June 2003, ftp://ftp.
apsl.udel.edu/pub/do
/notes/.[71℄ M
Guiness, J.M., �Aleph One�, http://aleph1.sour
eforge.net/.[72℄ Mandelbrot, B.B., �The Fra
tal Geometry of Nature.�, W.H.Freeman & Co.,Sept., 1982.[73℄ Márquez, A, Theobald, K.B., Tang, X. and Gao, G.R., �A Superstrand (si
)Ar
hite
ture,� CAPSL Te
hni
al Memo 14, De
ember 1997. http://www.
apsl.udel.edu[74℄ Márquez, A, Theobald, K.B., Tang, X., Sterling, T. and Gao, G.R., �A Su-perstrand (si
) Ar
hite
ture and its Compilation,� CAPSL Te
hni
al Memo 18,Mar
h 1998. http://www.
apsl.udel.edu[75℄ Márquez, A., �CARE Ar
hite
ture,� PhD dissertation, University of Delaware,2004.http://www.
apsl.udel.edu/publi
ations.shtml##5[76℄ Moreira, J.E., �On the Implementation and E�e
tiveness of Autos
heduling forShared-Memory Multi-Pro
essors,� PhD Thesis, Univerisity of Illinois, Urbana,Illinois, USA, 1995.[77℄ Morrone, C.J., Amaral, J.N., Tremblay, G. and Gao, G.R., �A Multi-ThreadedRuntime System for a Multi-Pro
essor/Multi-Node Cluster.�, 15th Annual In-ternational Symposium on High Performan
e Computing Systems and Appli
a-tions, June 18-20, 2001, Windsor, ON, Canada.[78℄ Moshovos, A. and Sohi, G.S., �Memory Dependen
e Predi
tion in MultimediaAppli
ations,� The Journal of Instru
tion-Level Parallelism, vol. 2, January 2000.http://www.jilp.org/vol2

Bibliography 51[79℄ Mu
hni
k, S.S., �Advan
ed Compiler Design and Implementation,� MorganKaufmann Publishers, San Fran
is
o, 1997.[80℄ Patterson, D.A. and Hennessy, L.J., �Computer Ar
hite
ture: A QuantitativeApproa
h.�, 2nd Edition, Morgan Kaufmann In
., San Fran
is
o, pp. 374, 1996.[81℄ �Perfe
t Developer�, http://www.es
herte
h.
om/index.html[82℄ Peters, E.E., �Fra
tal Market Analysis : Applying Chaos Theory to Investmentand E
onomi
s.�, John Wiley & Sons, 1994.[83℄ Posti�, M.A., Greene, D.A., Tyson, G.S. and Mudge, T.N., �The limits of in-stru
tion level parallelism in SPEC95 appli
ations.�, The Third Workshop on theIntera
tion between Compilers and Computer Ar
hite
tures (INTERACT), in
onjun
tion with the Eighth International Conferen
e on Ar
hite
tural Supportfor Programming Languages and Operating Systems (ASPLOS-VIII), O
tober1998.[84℄ Posti�, M., Tyson, G. and Mudge, T., �Performan
e Limits of Tra
e Ca
hes,�The Journal of Instru
tion-Level Parallelism, vol. 1, February 1999. http://www.jilp.org/vol1[85℄ Reghbati, H.K., �An Overview of Data Compression Te
hniques.�, Computer14,4 (1981) 71-76.[86℄ Reilly, J., �SPEC Des
ribes SPEC95 Produ
ts And Ben
hmarks�, IntelCorporation, September 1995. http://open.spe
ben
h.org/osg/
pu95/news/
pu95des
r.html[87℄ Norton Riley, H., �The von Neumann Ar
hite
ture of Computer Systems,�Computer S
ien
e Department California State Polyte
hni
 University Pomona,California, September 1987. http://www.
supomona.edu/~hnriley/www/VonN.html[88℄ Rodenas, D., Martorell, X., Ayguade, E., Labarta, J., Almasi, G., Cas
aval, C.,Castanos, J. and Moreira, J., �Optimizing NANOS OpenMP for the IBM Cy
lops

Bibliography 52Multithreaded Ar
hite
ture.�, 19th IEEE International Parallel and DistributedPro
essing Symposium, Vol. 1, pp. 110, 2005.[89℄ Rotenburg, E. and Smith, J.E., �Control Independen
e in Tra
e Pro
essors,�The Journal of Instru
tion-Level Parallelism, vol. 2, January 2000. http://www.jilp.org/vol2[90℄ Sakane, H., Yakay, L., Karna, V., �DIMES/P Hardware Te
hni
al Manual.�,CAPSL Te
hni
al Note 12, Department of Ele
tri
al and Computer Engineering,University of Delaware, Newark, Delaware, June 2003, ftp://ftp.
apsl.udel.edu/pub/do
/notes/.[91℄ Sakane, H., Yakay, L., Karna, V., Leung, C. and Gao, G.R., �DIMES: An It-erative Emulation Platform for Multipro
essor-System-on-Chip Designs.�, IEEEInternational Conferen
e on Field-Programmable Te
hnology, De
ember 15-17,2003, Tokyo, Japan.[92℄ Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D., Ke
k-ler, S. W., Moore, C.R., �Exploiting ILP, TLP, and DLP with the PolymorphousTRIPS Ar
hite
ture�, 30th Annual International Symposium on Computer Ar-
hite
ture, 2003.[93℄ Saulsbury, A., Pong, F., and Nowatzyk, A., �Missing the Memory Wall: TheCase for Pro
essor/Memory Integration.�, In Pro
eedings of the 23rd Interna-tional Symposium on Computer Ar
hite
ture, pp. 90-101, May 1996.[94℄ Savari, S. and Young, C., �Comparing and Combining Pro�les,� The Journal ofInstru
tion-Level Parallelism, vol. 2, January 2000. http://www.jilp.org/vol2[95℄ CAPSL Exhibit Booth 130, November 18th-20th http://www.
apsl.udel.edu/dimes/s
2003_flyer.html, as part of Super Computing 2003, [96℄.[96℄ Super Computing 2003, November 15th-21st, Phoenix, Arizona, U.S.A.http://www.s
-
onferen
e.org/s
2003/

Bibliography 53[97℄ S
hnarr, E.C., �Applying Programming Language Implementation Te
hniquesto Pro
essor Simulation,� PhD dissertation, University of Wins
onsin, Madison,2000.[98℄ Se
hrest, S., Lee, C.C. and Mudge, T., �The Role of Adaptivity in Two-level Adaptive Bran
h Predi
tion,� 28th International Symposium on Mi
ro-ar
hite
ture, 1995.[99℄ Sharp, J.A., �Data Flow Computing,� Ellis Horwood Limited, Chi
hester, Eng-land, 1985.[100℄ Skadron, K., Martonorst, M. and Clark, D.W., �Spe
ulative Updates of Lo
aland Global Bran
h History,� The Journal of Instru
tion-Level Parallelism, vol.2, De
ember 1999. http://www.jilp.org/vol2[101℄ Smith, J.E., and Sohi, G.S., �The Mi
roar
hite
tures of Supers
alar Pro
es-sors.�, In the Pro
eedings of the IEEE 1995.[102℄ de Souza, A.F., and Roun
e, P., �On the E�e
tiveness of the S
heduling Algo-rithm of the Dynami
ally Tra
e S
heduled VLIW Ar
hite
ture,� 11th Symposiumon Computer Ar
hite
ture and High Performan
e Computing, SBAC-PAD, 1999.[103℄ Srinivasan, S.T. and Lebe
k, A.R., �Load Laten
y Toleran
e in Dynami
allyS
heduled Pro
essors,� The Journal of Instru
tion-Level Parallelism, vol. 1,February 1999. http://www.jilp.org/vol1[104℄ Sterling, T., Be
ker, D.J., Savarese, D., Berry, M., and Res, C., �A
hieving aBalan
ed Low-Cost Ar
hite
ture for Mass Storage Management through Multi-ple Fast Ethernet Channels on the Beowulf Parallel Workstation�, Pro
eedings ofthe International Parallel Pro
essing Symposium, 1996. http://
esdis.gsf
.nasa.gov/beowulf/papers/papers.html[105℄ Sterling, T.L., "An Introdu
tion to the Gilgamesh PIM Ar
hite
ture." Pro
.European Conferen
e on Parallel Pro
essing, Man
hester, UK, pp. 16-32, August2001.

Bibliography 54[106℄ Sterling, T.L., Zima, H.P., �Gilgamesh: A Multithreaded Pro
essor-In-Memory Ar
hite
ture for Peta�ops Computing.�, Pro
.SC2002, Baltimore,November 2002.[107℄ Steven, G., �Exploiting Instru
tion-Level Parallelism in High Performan
e Pro-
essors,� Department of Computer S
ien
e, University of Hertfordshire, Unpub-lished, 2001.[108℄ Stout
hinin, A., Amaral, J.N, Gao, G.R., Dehnert, J. and Jain, S., �Automati
Pre-fet
hing of Indu
tion Pointers for Software Pipelining,� CAPSL Te
hni
alMemo 37, November 1999. http://www.
apsl.udel.edu[109℄ Tang, X., �Compiling for Multithreaded (si
) Ar
hite
tures,� PhD disserta-tion, University of Delaware, Autumn 1999.[110℄ Tarles
u, M.D., Theobald, K.B. and Gao, G.R., �Elasti
 History Bu�er: ALow-Cost Method to Improve Bran
h Predi
tion A

ura
y,� IEEE Conferen
eon Computer Design, O
tober 1997.[111℄ Tate, D., �Supers
alar Ar
hite
tures and Stati
ally S
heduled Programs,� PhDdissertation, University of Hertfordshire, Hat�eld, Hertfordshire, U.K., 2000.[112℄ Theobald, K. B., Gao, G. R. and Hendren, L. J, �Spe
ulative Exe
ution andBran
h Predi
tion on Parallel Ma
hines,� ICS-7/93, ACM, 1993.[113℄ Tullsen, D.M., Eggers, S.J. and Levy, H.M., �Simultaneous Multithreading(si
): Maximising (si
) On-
hip Parallelism,� Pro
eedings of the 22nd AnnualInternational Symposium on Computer Ar
hite
ture, pp 392-402, June 1995.[114℄ Tur
otte, D.L., �Fra
tals and Chaos in Geology and Geophysi
s.�, CambridgeUniversity Press, 1992, pp. 35-50.[115℄ Unger, A., Ungerer, Th. and Zehender, E., �Simultaneous Spe
ulation S
hedul-ing,� 11th Symposium on Computer Ar
hite
ture and High Performan
e Com-puting, SBAC-PAD '99, 1999.

Bibliography 55[116℄ Waingold, E., Taylor, M., Srikrishna, D., Sarkar, D., Lee, W., Lee, V., Kim,J., Frank, M., Fin
h, P., Barua, R., Babb, J., Amarasinghe, S. and Agarwal, A.,�Baring It All to Software: RAW Ma
hines.�, Computer September 1997 (Vol.30, No. 9) pp 86 -93.[117℄ Wall, D.W., �Limits of Instru
tion-Level Parallelism,� Pro
eedings of the 4thInternational Conferen
e on Ar
hite
tural Support for Programming Languagesand Operating System, SIGPLAN Noti
es, vol. 26, no. 4, ACM Press, New York,NY, pp. 176-189, 1991.[118℄ Wang, Z., Pier
e, K. and M
Farling, S., �BMAT � A Binary Mat
hing Toolfor Stale Pro�le Propagation,� The Journal of Instru
tion-Level Parallelism, vol.2, January 2000. http://www.jilp.org/vol2[119℄ Wegner, T., Osu
h, J., Martin, G., Bussell, B., �Fra
tint�, http://www.fra
tint.org/[120℄ Woo, S.C., Ohara, M., Torrie, E., Singh, J.P. and Gupta, A., �The SPLASH-2 programs:
hara
terization and methodologi
al
onsiderations.�, In Pro
eed-ings of the 22nd Annual International Symposium on Computer Ar
hite
ture,ACM/IEEE, Porto�no, Italy, pp. 24-36, 1995.[121℄ Wulf, W. and M
Kee, S., �Hitting the memory wall: Impli
ations of the obvi-ous.�, Computer Ar
hite
ture News, 23(1), pp. 20-24, 1995.[122℄ Yeh, T.-Y., and Patt, Y.N., �Alternative Implementations of Two-Level Adap-tive Bran
h Predi
tion,� Pro
eedings of the 19th Annual International Sympo-sium on Computer Ar
hite
ture, pp. 124-34, May 1992.[123℄ Yeh, T.-Y., and Patt, Y.N., �A Comparison of Dynami
 Bran
h Predi
tors thatuse Two Levels of Bran
h History,� Pro
eedings of the 20th Annual InternationalSymposium on Computer Ar
hite
ture, pp. 257-66, May 1993.[124℄ Zhang, Y., Zhu. W., Chen, F., Hu, Z. and Gao, G.R, �Sequential Consis-ten
y Revisited: The Su�
ient Conditions and Method to Reason Consisten
yModel of a Multipro
essor-on-a
hip Ar
hite
ture.�, The IASTED International

Bibliography 56Conferen
e on Parallel and Distributed Computing and Networks (PDCN2005),February 15 - 17, 2005, Innsbru
k, Austria.

Appendix A
Implementing Appli
ations on aCellular Ar
hite
ture - theMandelbrot-set.
This was a draft paper prepared at CAPSL, at the University of Delaware in
ol-laboration with Dr. Egan, for submission to various
onferen
es, before the authorleft Delaware.Authors: Jason M
Guiness1,2, Colin Egan2, Guang Gao1.1University of Delaware, Newark, DE.
2University of Hertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB.m
guines�
apsl.udel.edu
.egan�herts.a
.ukggao�ee.udel.eduA.1 Abstra
t.There is an ever widening gap between CPU speed and memory speed, resulting ina 'memory wall' where the time for memory a

esses dominate performan
e. Cellu-lar ar
hite
tures, su
h as the Cy
lops family, have been developed to over
ome this'memory wall' by implementing pro
essors-in-memory (PIM) on the same
hip. PIM57

A.2. Introdu
tion. 58ar
hite
tures a
hieve high performan
e by in
reasing the bandwidth of pro
essor-memory
ommuni
ation and redu
ing laten
y. In this paper we introdu
e DIMES(the Delaware Iterative Multipro
essor Emulation System) whi
h is being developedby CAPSL at the University of Delaware, as a hardware validation tool for
ellularar
hite
tures. The version of DIMES used in this paper is a simpli�ed hardwareimplementation of the Cy
lops-64
ellular ar
hite
ture developed at the IBM T. J.Watson Resear
h Center. Sin
e DIMES is a hardware validation tool, its hardwareimplementation is
onstrained to a dual pro
essor where ea
h pro
essor has fourthread units. DIMES memory is restri
ted to 16K of lo
al s
rat
h-pad memoryper pro
essor and 64K global shared memory. Additionally DIMES is linked to ahost
omputer for I/O. We have
hosen to use a Mandelbrot-set generator (writtenin C++) with a work-stealing algorithm as our metri
 to evaluate the program-ming model on DIMES. The Mandelbrot-set generator has been threaded, and thework-stealing algorithm a
hieves load balan
ing between the DIMES' threads. TheMandelbrot example demonstrates the e�e
tive use of DIMES' threads, the e�e
tiveuse of DIMES s
rat
h-pad memory and the e�e
tive use DIMES global memory inits CRTS environment. The results of the study are highly promising and show thatDIMES is an ideal hardware tool for validating future Cy
lops enhan
ements.A.2 Introdu
tion.High performan
e pro
essors, in parti
ular super-s
alars, exploit instru
tion levelparallelism (ILP) by overlapping instru
tion exe
ution (pipelining) and using multi-ple instru
tion issue (MII) per
lo
k
y
le [101℄. Although, this approa
h improvespro
essor performan
e, it does not improve performan
e of the memory subsystem.Resear
hers improve CPU speed by in
reasing the number of instru
tions issued inea
h
lo
k
y
le or by in
reasing the depth of the pipeline, whi
h
an
ause a bot-tlene
k in the memory-subsystem. This is termed as the memory-wall and impa
tson overall system performan
e [121℄.One approa
h to over
ome the memory-wall is to improve data throughput anddata storage between the memory subsystem and the CPU by introdu
ing extra

A.2. Introdu
tion. 59levels in the memory hierar
hy [15, 121℄. However, introdu
ing extra levels in thememory hierar
hy in
reases the penalty asso
iated with a miss in the memory-subsystem, whi
h limits the amount of ILP and impa
ts on pro
essor performan
e.Also, there is an in
rease in design
omplexity and an in
rease in power
onsumptionof the overall system. Furthermore, in
reasing the number of levels in the memoryhierar
hy does not improve memory a

ess times.An alternative approa
h to over
ome the memory-wall is to improve both data-pro
essing and data-a

ess time by the integration of pro
essing logi
 in memory[21, 41, 105, 106, 116℄. The idea of integrating pro
essors-in-memory (PIMs) is tosimplify the memory hierar
hy design, to a
hieve higher bandwidth and to redu
elaten
y. There are several PIM ar
hite
tures being developed, for example, theCy
lops family of PIM ar
hite
tures by IBM [21℄, the Gilgamesh PIM ar
hite
tureby NASA [105, 106℄, the polymorphous TRIPS ar
hite
ture at Austin, Texas [92℄and the Shamro
k PIM ar
hite
ture at Notre Dame, Fran
e [64℄.A problem with integrating a pro
essor and memory on in the same sili
on spa
eis that the pro
essor speed is redu
ed in
omparison with a high performan
e pro-
essor and the amount of memory is also redu
ed [21℄. To over
ome the redu
tion inpro
essing power and the redu
tion in the amount of available memory and thereforelaten
y, multiple PIM
hips are
onne
ted together forming a network of
ells, wherea single PIM
hip is
onsidered to be a
ell and the whole ar
hite
ture is des
ribedas
ellular.To over
ome the data a

ess problem, ea
h
ell is threaded su
h that ea
h threadunit is independent from all other thread units. In this multi-threaded organisation,every thread unit serves as an independent single-issue in-order pro
essor, whi
hshares
omputationally expensive hardware resour
es su
h as �oating-point unitsand
a
hes.In this paper we introdu
e DIMES (the Delaware Iterative Multipro
essor Em-ulation System) whi
h is being developed by CAPSL at the University of Delaware[29,90℄. DIMES is a hardware validation tool for
ellular ar
hite
tures, in parti
ularthe Cy
lops family [21℄. DIMES pla
es the Cy
lops ar
hite
tural design into a sin-gle FPGA. The idea behind DIMES is to emulate Cy
lops
y
le by
y
le, to be far

A.3. Programming Models on Cellular Ar
hite
tures. 60faster than software based simulations, and to dire
t future Cy
lops enhan
ements.A.3 Programming Models on Cellular Ar
hite
tures.Cellular ar
hite
tures require di�erent programming models to the general-purpose
ode exe
uted by super-s
alar pro
essors [40, 41, 120℄. Gao proposes the use ofa
ombination of exe
ution models and memory models, be
ause of the
ellularar
hite
tures multiple exe
ution units within ea
h
ell.Gao's programming model evaluates multiple threads in ea
h
ell due to the largenumber of exe
ution units within Cy
lops. For example, one programming modeluses thread per
olation as a te
hnique to perform dynami
 load-balan
ing [18,53,62℄.Additionally, in
ellular ar
hite
tures, multiple threads perform memory a

essesindependently. As a result of this, the memory subsystem requires some form ofa

ess model that allows these memory referen
es to be e�e
tively served. Forexample, the use of the lo
ation-
onsisten
y model was suggested as a memorya

ess model by [40℄.A.4 Con
lusion/Dis
ussion.The threaded algorithm shows that the Mandelbrot set is an ideal me
hanism forevaluating
ellular ar
hite
tures and programming models on the DIMES hardware.Currently DIMES is targeted towards Cy
lopsE, however DIMES
ould be expandedto the full IBM Cy
lops family and other
ellular ar
hite
tures, su
h as those atGilgamesh at NASA and Shamro
k at Notre Dame.Future enhan
ements to DIMES may in
orporate more hardware to allow ben
h-marks, su
h as Tabletoy and others. This will also allow us to evaluate furtherenhan
ements to the
ellular programming model.

Appendix B
Implementing Appli
ations on aCellular Ar
hite
ture - theMandelbrot-set.
This was a presentation give to the University of Hertfordshire, upon the author'sreturn from CAPSL, introdu
ing DIMES and the work that was done.Authors: Jason M
Guiness1,2, Colin Egan2, Guang Gao1.
1University of Delaware, Newark, DE.
2University of Hertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB.m
guines�
apsl.udel.edu
.egan�herts.a
.ukggao�ee.udel.edu
B.1 Overview:Re
ap from last week:

• The memory wall and
ellular ar
hite
tures: a solution?
• Programming models on Cellular Ar
hite
tures, followed by a brief overviewof Cy
lops and DIMES/P-2. 61

B.2. A re
ap on the memory wall. Part I:The pro
essor viewpoint. 62New this week:
• An introdu
tion to the Mandelbrot set.
• Threading and Work-Stealing applied to the Mandelbrot set.
• The programming implementation with regard to DIMES/P-2 and the exe
u-tion details of the Mandelbrot-set appli
ation. PLUS A LIVE DEMONSTRA-TION OF THE PROGRAM!!!
• Latest work: Global Updates Per Se
ond (GUPS) ben
hmarks.
• Con
lusions & Future Work.B.2 A re
ap on the memory wall. Part I:The pro
essor viewpoint.

Wall

Processor Memory

• Higher performan
e may be a
hieved through ILP by MII and/or pipelining.Various te
hniques are used to implement these goals, e.g. Register Renaming,Out-of-order instru
tion issue/exe
ution, Bran
h Predi
tion, dynami
 instru
-tion s
heduling, Value Predi
tion, Instru
tion Reuse, et
.
• But this
auses a bottle-ne
k - upon a miss the re
overy
ost be
omes in-
reasingly high, be
ause the memory
annot keep up with the required fet
hrate.
• This leads to attempts to improve the performan
e of the memory.

B.3. A re
ap on the memory wall. Part II:The memory viewpoint. 63B.3 A re
ap on the memory wall. Part II:The memory viewpoint.
o Wall

L2L1

Processor

Main Memory

• In
reasing the levels of memory in the hierar
hy, by pla
ing levels of
a
hesbetween the main memory and the CPU (or on the CPU).
• This redu
es the memory wall, but on a
a
he miss the penalty is more severe.(Also this does not redu
e the memory sub-system laten
y for an initial a

ess,only upon subsequent a

ess.)
• In both
ases:� The hardware
omplexity and
ost is in
reased.� The rewards obtained are balan
ed against known disadvantages.B.4 The memory wall and
ellular ar
hite
tures: asolution?
• Why not pla
e the pro
essor in the memory, e.g. PIM ar
hite
tures? Doesthis remove the memory wall?
• In prin
iple due to the proximity of the exe
ution units to the memory
ells,the laten
y and bandwidth should be redu
ed.
• But due to the mixture of logi
 units on the sili
one die, the gate density isredu
ed.

B.5. Programming models on Cellular Ar
hite
tures. 64
• To maintain gate density, more simple exe
ution
ores are used, su
h as RISCpipelines whi
h may also omit bran
h predi
tion, for example.
• Thus the memory density and exe
ution unit throughput are redu
ed. Howmay this be
ountered?� With the addition of a network interfa
e to inter
onne
t between the PIM
hips. Thus ea
h
hip be
omes a
ell.� Thus redu
ed individual performan
e may be
ountered by inter
onne
t-ing many of these
ells together to build up a
ellular ar
hite
ture, e.g.Cy
lops developed at IBM, Gilgamesh at NASA and Shamro
k at NotreDam.B.5 Programming models on Cellular Ar
hite
tures.Cellular ar
hite
tures have parti
ular features that mean that their programmingmodel is di�erent to super-s
alar pro
essors:
• They have large (millions) of exe
ution (or in
ellular ar
hite
tures threadunits) whi
h are simple.
• Memory a

ess is irregular: Some memory is very
lose, thus fast, the rest iso�-
hip, so mu
h slower.Resear
h into appropriate programming models is on-going, the
urrent model ispthread, but future dire
tions in
lude:
• For example thread per
olation as a te
hnique to perform dynami
 load-balan
ing.
• In
ellular ar
hite
tures, multiple threads perform memory a

esses indepen-dently. As a result of this, the memory subsystem
ould have some form ofa

ess model that allows these memory referen
es to be e�e
tively served. Forexample, the use of the lo
ation-
onsisten
y model
ould be used as a memorya

ess model.

B.6. A brief overview of Cy
lops and DIMES/P-2. 65B.6 A brief overview of Cy
lops and DIMES/P-2.At the University of Delaware the �rst hardware simulation of a
ellular ar
hite
turehas been built under Hiro Sakane's group:
• This is
alled DIMES/P-2.
• It is a simpli�ed implementation of the 32-bit Cy
lopsE design, one of thefamily of Cy
lops ar
hite
tures developed at the IBM T.J. Watson Resear
hCenter.

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Processor 0

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Network

Processor 1

B.7 An introdu
tion to the Mandelbrot set.The Mandelbrot set is a fra
tal named after Professor B.B. Mandelbrot, who dis-
overed the set in the 1960s. It is intimately related to the Julia set, also a fra
tal,dis
overed in the 1910s.Both the Mandelbrot and Julia sets may be
reated by iteration of a very simpleequation:

B.8. The
lassi
 algorithm used to generate the Mandelbrot set: 66
zn+1 = z2

n + c (B.7.1)In this equation, zn is a
omplex number, where z0 = 0. c is also a
omplexnumber, whi
h is initialized to a value
onstant throughout the iterations. Theiteration of equation terminates when:1. Either n rea
hes the so-
alled �maximum iteration� value, m, a �xed
onstant,greater than zero.2. Or | zn | ex
eeds the so-
alled �bailout� value, a �xed
onstant, usually set tothe real value 4, for e�
ien
y reasons.
B.8 The
lassi
 algorithm used to generate the Man-delbrot set:1. Set the value of m, the maximum iterations, greater than zero.2. Sele
t a point from the
omplex plane, and set c to that value.3. Initialize n = 0, z0 = 0.4. Exe
ute equation B.7.1.5. In
rement n.6. If | zn |≥ 2 then that c is not in the set of points whi
h
omprise the Mandelbrotset. Go to 2.7. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 2.8. Go to 4.

B.9. Threading applied to the Mandelbrot set. 67B.9 Threading applied to the Mandelbrot set.An overview of threading the Mandelbrot-set generation algorithm:
• An important property of algorithm to generate the Mandelbrot set is that the
lassi�
ation of ea
h c in the
omplex plane is independent of the
lassi�
ationof any other c. Thus the Mandelbrot set may be implemented as a massivelyparallel appli
ation, thus potentially suited to
ellular ar
hite
tures. Indeedthe Mandelbrot has has been used in as a ben
hmark for di�erent ar
hite
tures,su
h as �ne-grain threaded-ar
hite
tures and NUMA ar
hite
tures.The
omplex plane is divided into a series of horizontal strips. These strips may be
al
ulated or rendered independently of ea
h other, using separate render threads,as the
lassi�
ation of the points c within ea
h strip is independent of su
h
lassi�-
ation on other render threads. Therefore ea
h render thread implements a slightlymodi�ed version of the
lassi
 algorithm, whi
h is given in the threaded algorithm,given next.B.10 The Render-Thread Algorithm.1. The algorithm:(a) Set the value of m, the maximum iterations, greater than zero. Set the esti-mated
ompletion-time, t, to ∞.(b) Set c = x, where x is the top-left of the strip to be rendered.(
) Initialise n = 0, z0 = 0.i. Exe
ute equation B.7.1.ii. In
rement n.iii. If | zn |≥ 2 then that c is not in the set of points whi
h
omprise theMandelbrot set. Go to 4.iv. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.v. Go to 3a.

B.11. The Work-Stealing Algorithm. 68(d) In
rement the real part of c. If the real part of c is less than the width of thestrip to be rendered, go to 3.(e) Cal
ulate the average of t and the time it took to render that line.(f) Set the real part of c to the left-hand of the strip. In
rement the
omplex partof c. If the
omplex part of c is less than the height of the strip, go to 3.(g) Signal work
ompleted, set t = 0 (thus this thread is guaranteed not to besele
ted by the work-stealing algorithm).(h) Suspend.A load-balan
ing algorithm was added to move un
ompleted work to threads thathave
ompleted their assigned work. This is be
ause ea
h strip will take a di�erentamount of time to render.B.11 The Work-Stealing Algorithm.1. Monitor render threads for a work-
ompleted signal. That thread that
om-pletes we shall denote as Tc.2. Find that render thread with the longest estimated
ompletion-time, t, notethat ea
h render thread updates this time upon
ompletion of a line. Call thisthread Tl.3. Stop Tl when it
ompletes the
urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two renderthreads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.This is a dynami
-programming solution to the load-balan
ing problem of workdistribution between the render threads. Due to the sele
tion of the slowest renderthread, this algorithm may been see to be optimal. The author believes that this isan original appli
ation of work-stealing to Mandelbrot-set generation.

B.12. A Dis
ussion of the Work-Stealing Algorithm. 69B.12 A Dis
ussion of the Work-Stealing Algorithm.
• The bandwidth of the single thread that implements that algorithm is thelimiting fa
tor in it's ability to s
ale.
• It is possible to s
ale this work-stealing algorithm, if one observes that thework-stealing algorithm operates upon a sli
e of the
omplex plane. This
luedemonstrates that the work-stealing algorithm is re
ursive.
• Conversely this algorithm is able to tolerate failures in render threads. If arender thread stops responding, eventually it will be the slowest, un�nishedrender thread, and it's work will be stolen.If robustness is not required, thenthe image generated may be viewed as an array values. Ea
h of these valuesis the
lassi�
ation of c. Thus if one has p0...q threads, ea
h pn thread initially
lassi�es a point in the array o�set by n, and on
e
ompleted, moves along thearray using a stride of q.
• This allows the use of a number of threads that is bounded by the number ofpoints within the image. As this may be for an image of resolution 100×100,thus 10,000 points, this maps well on to
ellular ar
hite
tures.

B.13. The stati
 layout of the render and work-stealing threads withinthe DIMES/P-2 system is shown below: 70B.13 The stati
 layout of the render and work-stealingthreads within the DIMES/P-2 system is shownbelow:
Processor 1

Thread Unit 0

Thread Unit 1

Thread Unit 2

Thread Unit 3

Render Thread

Render Thread

Render Thread

Work−Steal Th.

Memory128K Global

100x100 Pixel Image

Processor 0

Thread Unit 0

Thread Unit 1

Thread Unit 2

Thread Unit 3

CRTS − Debug

Main

Render Thread

Render Thread

B.14 Exe
ution Details of the Mandelbrot-set ap-pli
ation.B.15 Super
omputing Ben
hmarks: Global UpdatesPer Se
ond (GUPS).The GUPS ben
hmark is a very simple program that is e�e
tively a
ross-se
tionbandwidth ben
hmark. It makes a large number of random updates to a large array:

B.16. GUPS and DIMES. 71Figure B.1: The image generatedshortly after program start-up.
T2

T0

T1

{

{
{

Figure B.2: Image generation has pro-gressed, shortly before a work-stealingevent.
T2

T0

T1

{
{
{Figure B.3: Just after the �rst work-stealing operation.

T
T

T2

1

0

{
{
{

Figure B.4: The se
ond work-stealingoperation.
T1

T0

T2 {
{
{

• for (i = 0; i < 30000000; ++i) table[random_integer℄ += random_value;
• This is
ompli
ated be
ause for Cy
lops we wish to perform this operation onthe table a
ross multiple pro
essors.
• The limiting fa
tor for the program is the memory a

ess time due to therandom reads & writes this
onfounds ar
hite
tural features that may attemptto improve memory performan
e.
• But we are allowed to have a 0.1% errors in the table at the end of the ben
h-mark.This error rate is vital as it allows us to relax the lo
king used to a

ess the globaltable. This relaxation means that updates to the table may not be done in sequentialprogram order, thus introdu
ing errors.B.16 GUPS and DIMES.Currently there have been three simple, initial implementations of this program, allrun on DIMES/P-2:

B.17. Limitations of
urrent GUPS & DIMES. 721. A sequential implementation, with no threading.2. Multi-threaded implementations:(a) Full lo
king on the table a

ess, thus giving a zero error rate.(b) No lo
king at all on the table a

ess, thus sa
ri�
ing error rate for speed.The error rate is as yet unmeasured, but this appears to run 10 timesfaster than the fully lo
ked version above.The justi�
ation for implementing GUPS with no lo
king is a statisti
al one. Asthe amount of memory on Cy
lops is 1Gb/
hip, with only 320 thread units/
hip,then the likelihood of any two thread units a

essing any one memory lo
ation atthe same time is very low, mu
h lower than 0.001 (our permissible error rate).B.17 Limitations of
urrent GUPS & DIMES.
• The pthread programming model is too simplisti
:� It does not re�e
t the memory hierar
hy. More sophisti
ated memorymodels (su
h as lo
ation
onsisten
y) will be needed to aid the program-mer in e�e
tively lay out the global table to make the memory a

essesfaster.� It does not dire
tly support data or thread per
olation.
• The DIMES/P-2 hardware has too few resour
es (only 8 thread units and128Kb RAM) to be a realisti
 platform upon whi
h to run these more sophis-ti
ated ben
hmarks.B.18 Con
lusion & Future Work.
• The Mandelbrot set is an ideal program to demonstrate and test massivelyparallel ar
hite
tures, su
h as
ellular ar
hite
tures.

B.18. Con
lusion & Future Work. 73
• The
urrent run-time system and pthread programming model, although sim-ple, is su�
iently powerful only for a
ertain sub-set of sophisti
ated appli
a-tions.
• Future development of the Cy
lops ar
hite
ture towards Cy
lops-64, with thedevelopment of DIMES/P-8 with more hardware resour
es (at least 32 threadunits and 512Kb RAM) will allow the development and testing of more sophis-ti
ated programs, su
h as super
omputing ben
hmarks. These ben
hmarksand the greater hardware resour
es will allow further experimentation with thesophisti
ated programming models that have been suggested, su
h as threadper
olation and lo
ation
onsisten
y.

Appendix C
The Challenges of E�
ientCode-Generation for MassivelyParallel Ar
hite
tures.
This is
opy of a
onferen
e paper submitted and a

epted for the 11th Asia-Pa
i�
Computer Systems Ar
hite
ture Conferen
e.Jason M M
Guiness1, Colin Egan1, Bru
e Christianson1 and Guang Gao2.Department of Compiler Te
hnology and Computer Ar
hite
ture, University ofHertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB.
.egan�herts.a
.uk1CAPSL, University of Delaware, Delaware, U.S.A. g.gao�
apsl.udel.edu2C.1 Abstra
tOver
oming the memory wall [121℄ may be a
hieved by in
reasing the bandwidthand redu
ing the laten
y of the pro
essor to memory
onne
tion, for example byimplementing Cellular ar
hite
tures, su
h as the IBM Cy
lops. Su
h massivelyparallel ar
hite
tures have sophisti
ated memory models. In this paper we usedDIMES (the Delaware Iterative Multipro
essor Emulation System), developed byCAPSL at the University of Delaware, as a hardware evaluation tool for
ellularar
hite
tures. The authors
ontend that there is an open question regarding thepotential, ideal approa
h to parallelism from the programmer's perspe
tive. For74

C.2. Introdu
tion 75example, at language-level su
h as UPC or HPF, or using tra
e-s
heduling, or at alibrary-level, for example OpenMP or POSIX-threads. To investigate this, we have
hosen to use a threaded Mandelbrot-set generator with a work-stealing algorithm toevaluate the DIMES
thread programming model for writing a simple multi-threadedprogram.C.2 Introdu
tionIntegrating the pro
essing logi
 and memory [21℄, termed PIM, is an approa
hto over
ome the memory wall [121℄. PIM ar
hite
tures may improve both data-pro
essing and data-a

ess times, but the
ombined pro
essor speed and the amountof memory may be redu
ed [21℄. This may be over
ome by
onne
ting multiple, inde-pendent PIM
ells, giving a
ellular ar
hite
ture. In this organisation, every threadunit is an independent single-issue, in-order pro
essor, thus able to potentially a
-
ess memory independently. Moreover, the di�erent memory hierar
hies may havedi�erent a

ess timings and
onsisten
y models su
h as lo
ation
onsisten
y [40℄.This gives rise to a number of
ode-generation problems,
entred around the fa
tthat to provide
omputational power, these systems are not only massively parallel,but have
omplex memory hierar
hies.Resear
h also pro
eeded towards thread-generating
ompilers, for example, HPFand UPC [45℄, IBM XL Fortran and Visual Age C/C++, largely based upon OpenMP,all of whi
h have their
ompromises. Some of these also have support for the variousmemory models.Unfortunately general-purpose languages have been slow to adopt a sophisti
atedabstra
tion of the ma
hine model, library-based approa
hes have developed, forexample, the various implementations of OpenMP. But, the authors
ontend thatlibrary-based solutions to threading are too dependent upon the programmer to usee�e
tively. For example, the expli
it use of lo
ks in programs is prone to error, withdeadlo
ks and ra
e-
onditions that are hard to tra
k down easily, introdu
ed, evenon systems with only a few pro
essors. The development of suitable tools to debugmulti-threaded appli
ations has also been slow. Debuggers are in development, for

C.3. Related Work 76example for Cy
lops [42℄, but there have been too few, with limited fun
tionality.As identifying parallelism both
orre
tly and e�
iently is very hard for the pro-grammer to do, the authors
ontend that they should not do it. The
ompiler,equipped via these libraries with a detailed ma
hine-model,
ould be able to usethe programmer-identi�ed parallelize-able variables and fun
tions, to generate moree�
ient
ode. The authors identi�ed little work investigating the software aspe
tof the
ode-generation problem for massively-parallel ar
hite
tures. Unfortunately,if this
ase would
ontinue, this short
oming
ould adversely a�e
t the popularityof su
h systems and maintain the per
eption that massively parallel ar
hite
turesare too spe
ialised and thus too expensive to be of more general use. Given thepopularity of introdu
ing multi-
ore pro
essors, this position is set to be
ome evenmore untenable.C.3 Related WorkC.3.1 The Programming Models: from Compiler to LibrariesWith su
h
ompute bandwidth, and parallelism, a number of problems for the pro-grammer have been raised, primarily these are fo
used on the problems of memoryreads and writes. Super-s
alar
hips have had me
hanisms to hide these problemsfrom the programmer, but the
ellular ar
hite
tures of su
h
hips as pi
oChip [33℄and IBM BlueGene/C [4℄ do not. Thus the programmer needs to know how memoryreads and writes intera
t with:
• the software-
ontrolled data-
a
he atta
hed to that pipeline,
• the software-
ontrolled data-
a
he of other on-
hip pipelines,
• any global on-
hip memory,
• the software
ontrolled data-
a
hes of other o�-
hip pipelines,
• the global on-
hip memory that is on any other
hips,
• any global memory that is not on any
hip

C.3. Related Work 77
• and �nally, given the massive parallelism available, how to make e�
ient useof it.For a programmer, the memory a

ess models are important to understand, or tohave a library or
ompiler that hides the details from the appli
ations programmer.In the remainder of the paper the authors will fo
us on the IBM BlueGene/C ar-
hite
ture, and a prototype implementation of it
alled Cy
lops [21, 30℄, that wasimplemented at CAPSL at the University of Delaware in
ollaboration with theUniversity of Hertfordshire. The Cy
lops ar
hite
ture was prototyped in hardware,
alled DIMES/P, [91℄ whi
h was used as the platform for exe
uting the programmingexample, des
ribed later in this paper. In the following se
tions the memory a

essmodels will be dis
ussed, leading on to a presentation of the authors' experien
e indeveloping a program for su
h an ar
hite
ture. The experien
e gained from this willallow the authors to dis
uss the major problems that were fa
ed, how, if at all, theywere over
ome, and the outstanding problem domains that, in the authors' experi-en
e, would hinder the a

eptan
e of multi-
ore
hips and, moreover su
h massivelyparallel designs as IBM BlueGene/C.C.3.2 Programming Models on Cellular Ar
hite
turesThe hardware di�eren
es between
ellular and super-s
alar ar
hite
tures indi
atethat di�erent programming models, to those used for super-s
alar ar
hite
tures, arerequired to make e�e
tive use of the
ellular ar
hite
tures [40, 42℄. In the �rst twoof those three papers, their authors propose the use of a
ombination of exe
utionmodels and memory models, as already noted in this paper.The primary
on
erns when programming DIMES/P, and thus any Cy
lops-based ar
hite
ture, were:
• How to manage the potentially large numbers of threads.
• How to easily express any parallelism within the input sour
e-
ode.
• How to make
orre
t, and most e�e
tive use, of the memory
onsisten
y mod-els.

C.4. Programming for Cy
lops -
threads 78Some resear
h has already been done regarding programming models for the thread-ing, su
h as using thread per
olation as a te
hnique to perform dynami
 load-balan
ing [62℄. Another pie
e of resear
h [22℄ investigated using multi-level s
heduling-s
hemes: a work-stealing algorithm at the higher-level and a multi-threading te
h-nique at the lower-level to hide
ommuni
ation laten
ies. Alternatively there isresear
h [88℄ into how to implement OpenMP e�
iently on
ellular ar
hite
turessu
h as IBM BlueGene/C.C.4 Programming for Cy
lops -
threadsThis se
tion will very brie�y des
ribe the
thread programming model, whi
h is anearly version of TNT [31,42℄, then how it was used to implement the programmingexample, followed by a dis
ussion of the implementation.The implementation of the memory
onsisten
y models was relatively simple:earlier, unpublished, work on the GCC-based
ompiler had implemented a simplealgorithm: all stati
 variables were stored in on-
hip memory, and the fun
tion
allsta
k, in
luding all automati
 variables was pla
ed in the s
rat
h-pad memory.As there was no language-level support for thread management, a library hadto be implemented to support the thread management instru
tions in the Cy
lopsISA, whi
h was used as the basis for
reating a higher-level C++ abstra
tion. Thiswas be
ause the
thread implementation, that
losely followed a POSIX-ThreadsAPI, was
onsidered far too primitive by the authors to be e�e
tively used forprogramming Cy
lops. This C++ API also in
luded
riti
al-se
tion, mutex andevent obje
ts to allow for easier management of the lower-level obje
ts.To test these ideas, and the Cy
lops ar
hite
ture, a small, simple and embarrass-ingly parallel program to generate Mandelbrot sets [72℄ was
reated. In the followingse
tions a brief overview of how this how this program may be implementation forDIMES/P.

C.4. Programming for Cy
lops -
threads 79Algorithm 4 The render-thread algorithm.1. Set the value of m, the maximum iterations, greater than zero. Set the estimated
ompletion-time, t, to ∞.2. Set c = x, where x is the top-left of the strip to be rendered.3. Initialise n = 0, z0 = 0.(a) Exe
ute zn+1 = z2
n + c.(b) In
rement n.(
) If | zn |≥ 2 then that c is not in the set of points whi
h
omprise the Mandelbrot set. Go to 4.(d) If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.(e) Go to 3a.4. In
rement the real part of c. If the real part of c is less than the width of the strip to be rendered, go to 3.5. Cal
ulate the average of t and the time it took to render that line.6. Set the real part of c to the left-hand of the strip. In
rement the
omplex part of c. If the
omplex part of

c is less than the height of the strip, go to 3.7. Signal work
ompleted, set t = 0 (thus this thread is guaranteed not to be sele
ted by the work-stealingalgorithm 5).8. Suspend.Algorithm 5 The work-stealing algorithm.1. Monitor render threads for a work-
ompleted signal. That thread that
ompletes we shall denote as Tc.2. Find that render thread with the longest estimated
ompletion-time, t, note that ea
h render thread updatesthis time upon
ompletion of a line. Call this thread Tl.3. Stop Tl when it
ompletes the
urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two render threads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.C.4.1 Threading and the Mandelbrot SetDue to the properties of DIMES/P, alternative te
hniques were not possible, as thereare only 8 thread units between two pro
essors. In this implementation, the
omplexplane was divided into a series of horizontal strips. Those strips may be
al
ulatedindependently of ea
h other, using separate threads, implemented as algorithm 4.However, ea
h strip will, in general, take a di�erent amount of time to
omplete,thus the threads would have
ompleted their assigned portion of work at di�erenttimes. Thus a work-stealing algorithm 5 performed the load-balan
ing between thethreads.

C.5. Dis
ussion 80The bandwidth of the work-stealing thread, algorithm 5, limited s
aling to moreworker threads, algorithm 4. But algorithm 5 would able to tolerate failures: if aworker thread stopped responding, its work would have been eventually stolen.If robustness is not required, then the image generated may be viewed as anarray values. Ea
h of these values would be the
lassi�
ation of c. Thus if one has
p0...q threads, ea
h pn thread initially
lassi�es a point in the array o�set by n, andon
e
ompleted, would move along the array using a stride of q. This would allowthe use of a number of threads that is bounded by the number of points within theimage.C.4.2 DIMES/P Implementation of the Mandelbrot-set ap-pli
ationIn
threads, ea
h software thread was stati
ally allo
ated to one of the 8 hardwarethread-units in DIMES/P at program start-up. The software threads were:1. The a thread was required for
threads support and the debugger [42℄, if itwere to be run.2. The main loop of the Mandelbrot-set appli
ation.3. The thread that exe
uted the work-stealing algorithm 5. In prin
iple, a workerthread
ould also run on this thread unit, but
threads did not support virtualthreads.4. The remaining 5 threads were worker threads that exe
uted algorithm 4.Further details regarding the implementation may be found in [70℄.C.5 Dis
ussionThe limitations of DIMES/P prevented further study of the properties of this pro-gram: s
alability and timings were not done be
ause of the limited number of threadunits (8) and memory
apa
ity.

C.5. Dis
ussion 81The memory model support, using the C/C++ keyword stati
 by the
ompiler,made natural use of language-level syntax to map data into s
rat
h-pad and on-
hip memory made using these di�erent memory models. The atomi
, word-sized,memory-operations on Cy
lops were not used for this problem, be
ause of the mul-tiple, read-modify-write operations that had to be maintained as an atomi
 unit. Ifthe manual lo
king had been implemented within the
ompiler, then it may havebeen possible for the
ompiler to perform optimization on the lo
king of a

ess tothe data.With regards to the thread library: in the opinion of the author's, the
om-plexity of POSIX-Threads has been a hindran
e to su

essful multi-thread program
reation. Abstra
ting the algorithms that expressed the parallelism within the Man-delbrot program, for example the work-stealing algorithm, was not implemented forthis paper, as this was
onsidered to be potentially too
losely
oupled to the a
tualprogram in question. Ultimately this de
ision, in the authors' opinion, was �awed,and by extra
ting and abstra
ting the work-stealing algorithm from both the pro-gram and Cy
lops, would have allowed a programmer to reuse that algorithm withother programs, thus separating the design of the parallelism from the details of theprogram that would wish to use it.It is still an open question regarding what may be the ideal approa
h to paral-lelism: language-level support su
h as UPC, HPF or other language extensions, orwithin the
ompiler using tra
e-s
heduling, or should it be at a library-level using,for example OpenMP or POSIX-Threads, or should it be within the ar
hite
ture,su
h as the data-�ow design. If programs more sophisti
ated than the one des
ribedin this paper are to be su

essfully written for these
ellular ar
hite
tures, thenbased upon this brief examination, it is the authors'
ontention that it would behighly advantageous to have:
• Compiler support for making use of any available the memory model of thear
hite
ture.
• Compiler support for lo
king, whi
h would aid the programmer with writing
ode that avoids ra
e-
onditions.

C.5. Dis
ussion 82
• Reusable abstra
tions of te
hniques of implementing parallelism, su
h as work-stealing, or master-slave models. These abstra
tions
ould make use of bothdata and
ode lo
ality to ensure that a thread unit re-exe
utes the same
ode,if desirable.The resear
h presented in this paper is supported by the Engineering and Physi
alResear
h Coun
il (EPSRC) grant number: GR/S58492/01.

