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Abstract                                                                                                            

In a continuing effort to improve computer system 

performance, Processor-In-Memory (PIM) architecture 

has emerged as an alternative solution. PIM 

architecture incorporates computational units and 

control logic directly on the memory to provide 

immediate access to the data. To exploit the potential 

benefits of PIM, a concept of Co-operative Intelligent 

Memory (CIM) was developed by the intelligent 

system group of University of Hertfordshire, based on 

the previously developed Co-operative Pseudo 

Intelligent Memory (CPIM). This paper provides an 

overview on previous works (CPIM, CIM) and 

realization of CPIM over two scenarios, cumulative 

successive addition, and non-cumulative successive 

addition, using Nexar 2004 EDS tool as a design 

environment to target device (SPARTAN II,   

XC2S300E-6PQ208C). The performance (speedup) is 

then measured against an SISD without significant 

performance acceleration methods to ensure a speedup 

assessment obtained against base-line architecture.  
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1. Introduction 

Due to the growing processor-memory performance 

gap, those applications having high degree of locality 

are able to exploit the full performance capability of 

the current microprocessors. Applications that suffer 

frequent cache or TLB misses find their performance 

limited by the speed of the memory system. A concept, 

Processor-in-Memory (PIM) architecture, IRAM, has 

been proposed to improve system performance by the 

computer architecture group of the University of 

Berkeley [1]. PIM architecture incorporates 

computational units and control logic directly on the 

memory to provide immediate access to the data.   

For class of tasks which are heavily reliant on memory 

to-memory iterative process[2][3][4][5][6][7][8], an 

extension of IRAM, Co-operative Intelligent Memory 

(CIM) was developed by the intelligent system group 

of University of Hertfordshire, based on previously 

developed Co-operative Pseudo Intelligent Memory 

(CPIM), to reduce the performance gap between the 

processor and memory by partitioning computation 

through dividing workload between major (non-

iterative) and minor (iterative) CPUs. 

The choice of FPGA for the implementation of the 

proposed architecture was driven by the growth in the 

size and capabilities of programmable logic. Generally, 

there are two primary methods in conventional 

computing for the execution of algorithms. The first is 

to use hard-wired technology, either an Application 

Specific Integrated Circuit (ASIC) or a group of 

individual components forming a board-level solution, 

to perform the operations in hardware. ASICs are 

designed specifically to perform a given computation, 

and thus they are very fast and efficient when executing 

the exact computation for which they were designed. 

However, the circuit cannot be altered after fabrication. 

This forces a re-design and re-fabrication of the chip if 

any part of its circuits requires modification. This is an 

expensive process, especially when one considers the 

difficulties in replacing ASICs in a large number of 

deployed systems. Board-level circuits are also 

somewhat inflexible, frequently requiring a board re-

design and replacement in the event of changes to the 

application.  

The second method is to use software-programmed 

microprocessors, more flexible solution. Processors 

execute a set of instructions to perform a computation. 

By changing the software instructions, the functionality 

of the system is altered without changing the hardware. 

However, the downside of this flexibility is that the 

performance can suffer, and is far below that of ASICs. 
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The reason is that the processor must read each 

instruction from memory, decode its meaning, and then 

execute it. This results in a high execution overhead for 

each individual operation. Additionally, the set of 

instructions that may be used by a program is 

determined at the fabrication time of the processor. 

Reconfigurable computing is intended to fill the gap 

between hardware and software, achieving potentially 

much higher performance than software, while 

maintaining a higher level of flexibility than hardware. 

Reconfigurable devices in the form of Field-

Programmable Gate Arrays (FPGAs) contain an array 

of computational elements whose functionality is 

determined through multiple programmable 

configuration bits. These elements, known as logic 

blocks, are connected using a set of routing resources 

that are also programmable. In this way, custom digital 

circuits can be mapped to the reconfigurable hardware 

by computing the logic functions of the circuits within 

the logic blocks, and using the configurable routing to 

connect the blocks together to form the necessary 

circuits. However to do this the designer need a design 

environment that solves the system integration issues, 

where they can capture the hardware design, test and 

debug the system on the target FPGA.   

This paper describes some key characteristics of CPIM 

and CIM architecture and design flow to establish the 

basic methodology used in the implementation of 

proposed CPIM.  

The performance (speedup) over two scenarios, 

cumulative successive addition, and non-cumulative 

successive addition is then measured against an SISD 

without significant performance acceleration methods 

(by modern standards) to ensure a speedup assessment  

obtained against base-line architecture. For this, we 

chose 68000 as a base-line.  This choice was primarily 

driven by the rich instruction portfolio that covers all 

relevant addressing modes and the clear mapping of 

instruction and machine cycle to the 68000 hardware 

building block. 

 

2. Architectures Description 
 

The CPIM and CIM architectures are shown in Figure 

1 and Figure 2 respectively. The main CPU, 

CPU_major, has a conventional architecture and poses 

no real design constraints on the CPIM architecture and 

backed up by a deep cache hierarchy and suffers high 

latency to access memory. The enhancement called 

CPIM, introducing a new block of memory (shared 

memory), shared through arbitration between 

CPU_major and task specific processor, CPU_minor, 

that consists of a small computational unit performing 

iterative processing and an Iteration Control Unit 

(ICU). ICU provides an instruction format for the 

CPU_minor, consists of a set of registers, namely 

address register (addr-register), job size register (job-

size-register), job nature register (job-nature-register) 

and destination register (dest-register). 

 

A detailed discussion of the CPIM architecture with 

distribution of workload and code optimization 

technique can be found in [9][10]. The CIM 

architecture (Figure 2) differs from CPIM in terms of 

approach; instead of Von-Neumann (instruction and 

data are stored in a single memory) it requires a 

Harvard approach towards memory (Separate memory 

for instruction and data). This approach may simplify 

read / write mechanism, particularly as programs are 

normally read during execution, while data might be 

read or altered. Also establish a path for the extraction 

of vector components by monitoring the activity 

operating on the address and data buses. The detection 

of iterative tasks, conducted by an additional hardware 

unit called “observer” having additional knowledge of 

the location of specific logic blocks (CPIM) with 

reference to their operational capability.  

 

 

 
 

                Figure 1: CPIM Architecture 
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               Figure 2: CIM Architecture 

 

The following jobs are performed by the observer; 

 

 Extraction of vectors that characterize the 

iteration. 

 Transfer of vector components with the 

related set of data into specific logic block. 

 Removal of selected / corresponding iterative 

loop from the main stream. 

 

A detailed discussion of the CIM architecture with 

design methodology, acceleration and speedup 

parameter can be found in [9][10].  Our CPIM and 

CIM architectures have the following characteristics: 

 The memory capacity is large enough to hold 

large data frames synonymous with high 

resolution image frames. 

 Eliminates the overhead associated with the 

time it takes to fetch and execute the 

instruction in a specific program loop. 

 No need for special instructions as required in 

the case of coprocessor. 

 CPU_major (main CPU) can continue with 

other operations while the CPIM is 

completing its allocated task. 

The major characteristics that make CIM distinctive 

from the existing PIM systems, is its learning capability 

to gather intelligence from the current program 

execution profile. 

 

3. Realization of CPIM 
 

Along with the growth in the size and the functionality 

of application specific ICs, there has been a 

corresponding growth in the size and capabilities of 

programmable logic. This has made it possible to 

implement CPIM on FPGA. However to do this the 

designer need a design environment that solves the 

system integration issues, where they can capture the 

hardware design, test and debug the system on the 

target FPGA. This section shows the use of a window 

based EDS tool (Nexar 2004, a window based 

electronics design software introduced by Altium 

limited) for FPGA design. 

 

3.1   FPGA design flow 

Design flow is the step by step methodology to go 

through the process of FPGA design. The design flow 

is shown in figure 3 and it can be seen that it is divided 

into five (5) basic steps: 

 Design Entry or Capture H/W design 

The first step of FPGA design flow describes 

the design that has to be implemented on 

FPGA. 

 Functional Verification and Simulation 

This step checks the logical correctness of 

design. 

 FPGA Synthesis 

This step converts design entry into logic 

blocks. 

 FPGA Place and Route 

Optimized the circuit and minimizes the 

length of interconnection. 

 Circuit Analysis 

This step performs timing analysis. 

 Programming to FPGA 

Download FPGA programming file into target 

FPGA. 

                 

 

Figure 3: FPGA design steps 

 

3.2   Design Environment 

Nexar design environment [13] allows designing a 

digital system in an FPGA project as a set of Schematic 

sheets, VHDL codes, or using a mixture of Schematic 

and VHDL. For the designers, the choice of whether to 

use Schematic or VHDL based design entry comes 

down to their concept towards design. Those who think 
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in software terms HDL are the better choice, and those 

are hardware oriented, schematic or the mixture of 

schematic and VHDL are the best choice. 

 

Schematic design is facilitated in Nexar by the 

inclusion of extensive libraries of pre-synthesized, pre-

verified IP components, including a range of processor 

cores, which can be simply dropped onto the schematic 

and connected together to form the system hardware. 

This is analogous to the way designers work at the 

board level with the physical “off-the-shelf” 

components. The concept of multi-board is very 

common at the system level design. Nexar provides a 

multi-sheet design methodology, similar to the multi 

board design. Designers turn to multi-sheet design for 

various reasons, the primary one being project size; 

some projects are simply too large or complicated to fit 

on a single sheet. But even small design can benefit 

from a multi sheet approach. For example, the design 

may include various modular elements, and dividing 

those modules into individual documents would allow 

several designers to work on a project in parallel. 

 

 At the system level, Nexar provides a schematic-based 

design methodology to define system connectivity. The 

reason being that graphical schematic–based capture or 

design entry is more efficient for connecting functional 

blocks than HDLs, and allows complex systems to be 

created quickly at the component level.  Along with 

IP–based components, Nexar includes a library of IP-

based virtual instruments (as pre-synthesized models), 

such as logic analyzers, frequency counters/generators 

and I/O monitors that can be incorporated into the 

design at the schematic level to facilitate system testing 

and debugging. These instruments have on-screen front 

panels analogous to their physical counterparts to 

provide a natural way for the designers to examine the 

working of their circuits, and to see inside the FPGA 

during the design process. After design entry, the 

compilation stage can verify that the design entry or 

captured source is free of electrical, drafting, and 

coding errors. Resolve any error found and re-compile 

the project to check.  

 

3.3   Constraints on all sides 
 

The FPGA is constrained by the timing requirement of 

the design (timing constraints), the capacity and 

architecture of the device (routing constraints) and the 

I/O standards applied to the I/O buffers (I/O 

constraints). A constraints file is an input to the 

synthesis process. Constraints can be applied globally 

or to the specific portions of the design. The synthesis 

engine uses these constraints to optimize the net-list. 

However, it is equally important to not over constrain 

the design, which will generally result in less than 

optimal results from the next step in the 

implementation process-physical device placement and 

interconnecting routing. Synthesis constraints soon 

become place and route constraints. Nexar provides a 

handy way to add the constraints file into the FPGA 

project by using Configuration Manager. 

  

Integral to Nexar is a versatile FPGA-based 

development board called a Nano-Board that provides 

a re-configurable platform for implementing the design. 

The Nano-Board uses JTAG-based communication to 

both download the design to the on-board FPGA, and 

to interact with processor cores and instruments in the 

design once it has been downloaded to the target device 

(FPGA) housed on the removable daughterboard. 

Synthesis stage can be run with the “Devices” view 

configured in either „Live‟ or „not Live‟ mode. During 

synthesis, the source documents are translated into 

intermediate VHDL files which are then synthesized 

into EDIF netlist, suitable for vendor Place and Route 

tools. Errors detected during synthesis are based on 

errors in the intermediate files, so go back to the source 

files to fix any problems. After netlist synthesize, the 

design is automatically converted into the format 

supported internally by the FPGA vendors Place-and-

Route tools. This stage “Build” can be run with the 

Device view configured in “live” or “not live” mode. 

Running the tools at this stage can verify a design fit 

inside the chosen physical device. The end result of this 

stage is the generation of an FPGA programming file 

that will ultimately be used to programming the 

physical device with the design. 

 

3.4   Program FPGA 
 

Finally, the programming file, once successfully 

downloaded to the device via the JTAG link, the text 

underneath the target device will change from “Power” 

to “Loaded” and any Nexus-enabled devices on the soft 

devices chain will be display as running. 

 

3.5   Hardware design 
 

The major component of CPIM architecture described 

in Figure 1, includes an optimized CPU, shared 

memory, an iteration control unit and an arbiter. 

 

Optimised CPU (CPU_minor) is a task specific 

processor that consists of a dedicated computation unit. 

The CPIM under discussion equipped with a task 
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“cumulative Successive addition” (An array of numbers 

is added and the result is stored in the defined memory 

location). 

 

Shared memory is a SRAM-type memory, holding data 

related to the iterative job, having enough capacity to 

hold large frame synonyms with high resolution image 

frames. 

 

Iteration control unit provides an instruction format for 

the CPU_minor. It consists of three registers, namely 

Address register, Job size register and Job nature 

register. Address register is 24-bit wide, representing 

the starting address of the operand block. Once 

initialized, a counter will then increment a pointer, 

pointing to the next operand required by the task. Job-

size register is 16-bit wide, representing the total 

number of operands (number of iteration involved in 

the iterative loop). Job-nature register is 8-bit wide, 

representing the nature of Job. Destination register, 

two registers are required to hold the start and end 

address of the destination block. 

 Arbiter facilitates the transfer of information between 

components. The processors in shared-memory multi-

processor system request access to common resources 

through the system bus. When two or more processors 

share the same memory, some hardware mechanism is 

required to make sure that only one processor can 

access the memory at a time. This can be achieved by 

using an arbiter in a shared memory system. 

 

Figure 4: Comulative Successive Addition 

 

 

 

 

 

 

 

 

Figure 5: Non-Comulative Successive Addition 

 

4. Conclusion 
 

CPIM uses a pre-compilation task optimization 

methodology for the workload distribution between 

CPU_major and CPU_minor. It can be seen from 

Figure 4 and 5 where we have used two different tasks 

relating to commulative and non-comulative successive 

addition and the performance in speed up is 

approximately 20 %. Image processing applications 

generally require high bandwidth, low latency access to 

image data, and generally decomposed into simple 

iterative operations. For this reason, computing in 

memory or intelligent memory architectures best fit for 

co-operative processing, executing the functions that 

they are optimized for, while leaving functions that are 

mostly serial and compute intensive to the main 

processor (CPU_major).  Hence, the described 

architectures have the potential for scaling up to tackle 

more demanding jobs that exhibit frequent and intense 

program locality behavior. 
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