
1

FPGA Based Intelligent Co-operative Processor in Memory Architecture

Zaki Ahmad1, Reza Sotudeh2, D. M. Akbar Hussain3, Shahab-ud-din4

 1Pakistan Institute of Laser and Optics, Rawalpindi, Pakistan

Email: zaki424@hotmail.com
2School of Electronics, Communication and Electrical Engineering, University of Hertfordshire, UK

Email: R.sotudeh@herts.ac.uk
3Automation & Control, Department of Electronic Systems, Aalborg University, Denmark

Email: akh@es.aau.dk

Abstract

In a continuing effort to improve computer system

performance, Processor-In-Memory (PIM) architecture

has emerged as an alternative solution. PIM

architecture incorporates computational units and

control logic directly on the memory to provide

immediate access to the data. To exploit the potential

benefits of PIM, a concept of Co-operative Intelligent

Memory (CIM) was developed by the intelligent

system group of University of Hertfordshire, based on

the previously developed Co-operative Pseudo

Intelligent Memory (CPIM). This paper provides an

overview on previous works (CPIM, CIM) and

realization of CPIM over two scenarios, cumulative

successive addition, and non-cumulative successive

addition, using Nexar 2004 EDS tool as a design

environment to target device (SPARTAN II,

XC2S300E-6PQ208C). The performance (speedup) is

then measured against an SISD without significant

performance acceleration methods to ensure a speedup

assessment obtained against base-line architecture.

Keywords

Co-operative Intelligent Memory (CIM), Processor-in-

Memory (PIM), Shared memory, CPU_major,

CPU_minor, Observer, Task optimizer.

1. Introduction

Due to the growing processor-memory performance

gap, those applications having high degree of locality

are able to exploit the full performance capability of

the current microprocessors. Applications that suffer

frequent cache or TLB misses find their performance

limited by the speed of the memory system. A concept,

Processor-in-Memory (PIM) architecture, IRAM, has

been proposed to improve system performance by the

computer architecture group of the University of

Berkeley [1]. PIM architecture incorporates

computational units and control logic directly on the

memory to provide immediate access to the data.

For class of tasks which are heavily reliant on memory

to-memory iterative process[2][3][4][5][6][7][8], an

extension of IRAM, Co-operative Intelligent Memory

(CIM) was developed by the intelligent system group

of University of Hertfordshire, based on previously

developed Co-operative Pseudo Intelligent Memory

(CPIM), to reduce the performance gap between the

processor and memory by partitioning computation

through dividing workload between major (non-

iterative) and minor (iterative) CPUs.

The choice of FPGA for the implementation of the

proposed architecture was driven by the growth in the

size and capabilities of programmable logic. Generally,

there are two primary methods in conventional

computing for the execution of algorithms. The first is

to use hard-wired technology, either an Application

Specific Integrated Circuit (ASIC) or a group of

individual components forming a board-level solution,

to perform the operations in hardware. ASICs are

designed specifically to perform a given computation,

and thus they are very fast and efficient when executing

the exact computation for which they were designed.

However, the circuit cannot be altered after fabrication.

This forces a re-design and re-fabrication of the chip if

any part of its circuits requires modification. This is an

expensive process, especially when one considers the

difficulties in replacing ASICs in a large number of

deployed systems. Board-level circuits are also

somewhat inflexible, frequently requiring a board re-

design and replacement in the event of changes to the

application.

The second method is to use software-programmed

microprocessors, more flexible solution. Processors

execute a set of instructions to perform a computation.

By changing the software instructions, the functionality

of the system is altered without changing the hardware.

However, the downside of this flexibility is that the

performance can suffer, and is far below that of ASICs.

mailto:zaki424@hotmail.com
mailto:R.sotudeh@herts.ac.uk
mailto:akh@es.aau.dk

2

The reason is that the processor must read each

instruction from memory, decode its meaning, and then

execute it. This results in a high execution overhead for

each individual operation. Additionally, the set of

instructions that may be used by a program is

determined at the fabrication time of the processor.

Reconfigurable computing is intended to fill the gap

between hardware and software, achieving potentially

much higher performance than software, while

maintaining a higher level of flexibility than hardware.

Reconfigurable devices in the form of Field-

Programmable Gate Arrays (FPGAs) contain an array

of computational elements whose functionality is

determined through multiple programmable

configuration bits. These elements, known as logic

blocks, are connected using a set of routing resources

that are also programmable. In this way, custom digital

circuits can be mapped to the reconfigurable hardware

by computing the logic functions of the circuits within

the logic blocks, and using the configurable routing to

connect the blocks together to form the necessary

circuits. However to do this the designer need a design

environment that solves the system integration issues,

where they can capture the hardware design, test and

debug the system on the target FPGA.

This paper describes some key characteristics of CPIM

and CIM architecture and design flow to establish the

basic methodology used in the implementation of

proposed CPIM.

The performance (speedup) over two scenarios,

cumulative successive addition, and non-cumulative

successive addition is then measured against an SISD

without significant performance acceleration methods

(by modern standards) to ensure a speedup assessment

obtained against base-line architecture. For this, we

chose 68000 as a base-line. This choice was primarily

driven by the rich instruction portfolio that covers all

relevant addressing modes and the clear mapping of

instruction and machine cycle to the 68000 hardware

building block.

2. Architectures Description

The CPIM and CIM architectures are shown in Figure

1 and Figure 2 respectively. The main CPU,

CPU_major, has a conventional architecture and poses

no real design constraints on the CPIM architecture and

backed up by a deep cache hierarchy and suffers high

latency to access memory. The enhancement called

CPIM, introducing a new block of memory (shared

memory), shared through arbitration between

CPU_major and task specific processor, CPU_minor,

that consists of a small computational unit performing

iterative processing and an Iteration Control Unit

(ICU). ICU provides an instruction format for the

CPU_minor, consists of a set of registers, namely

address register (addr-register), job size register (job-

size-register), job nature register (job-nature-register)

and destination register (dest-register).

A detailed discussion of the CPIM architecture with

distribution of workload and code optimization

technique can be found in [9][10]. The CIM

architecture (Figure 2) differs from CPIM in terms of

approach; instead of Von-Neumann (instruction and

data are stored in a single memory) it requires a

Harvard approach towards memory (Separate memory

for instruction and data). This approach may simplify

read / write mechanism, particularly as programs are

normally read during execution, while data might be

read or altered. Also establish a path for the extraction

of vector components by monitoring the activity

operating on the address and data buses. The detection

of iterative tasks, conducted by an additional hardware

unit called “observer” having additional knowledge of

the location of specific logic blocks (CPIM) with

reference to their operational capability.

 Figure 1: CPIM Architecture

3

 Figure 2: CIM Architecture

The following jobs are performed by the observer;

 Extraction of vectors that characterize the

iteration.

 Transfer of vector components with the

related set of data into specific logic block.

 Removal of selected / corresponding iterative

loop from the main stream.

A detailed discussion of the CIM architecture with

design methodology, acceleration and speedup

parameter can be found in [9][10]. Our CPIM and

CIM architectures have the following characteristics:

 The memory capacity is large enough to hold

large data frames synonymous with high

resolution image frames.

 Eliminates the overhead associated with the

time it takes to fetch and execute the

instruction in a specific program loop.

 No need for special instructions as required in

the case of coprocessor.

 CPU_major (main CPU) can continue with

other operations while the CPIM is

completing its allocated task.

The major characteristics that make CIM distinctive

from the existing PIM systems, is its learning capability

to gather intelligence from the current program

execution profile.

3. Realization of CPIM

Along with the growth in the size and the functionality

of application specific ICs, there has been a

corresponding growth in the size and capabilities of

programmable logic. This has made it possible to

implement CPIM on FPGA. However to do this the

designer need a design environment that solves the

system integration issues, where they can capture the

hardware design, test and debug the system on the

target FPGA. This section shows the use of a window

based EDS tool (Nexar 2004, a window based

electronics design software introduced by Altium

limited) for FPGA design.

3.1 FPGA design flow

Design flow is the step by step methodology to go

through the process of FPGA design. The design flow

is shown in figure 3 and it can be seen that it is divided

into five (5) basic steps:

 Design Entry or Capture H/W design

The first step of FPGA design flow describes

the design that has to be implemented on

FPGA.

 Functional Verification and Simulation

This step checks the logical correctness of

design.

 FPGA Synthesis

This step converts design entry into logic

blocks.

 FPGA Place and Route

Optimized the circuit and minimizes the

length of interconnection.

 Circuit Analysis

This step performs timing analysis.

 Programming to FPGA

Download FPGA programming file into target

FPGA.

Figure 3: FPGA design steps

3.2 Design Environment

Nexar design environment [13] allows designing a

digital system in an FPGA project as a set of Schematic

sheets, VHDL codes, or using a mixture of Schematic

and VHDL. For the designers, the choice of whether to

use Schematic or VHDL based design entry comes

down to their concept towards design. Those who think

4

in software terms HDL are the better choice, and those

are hardware oriented, schematic or the mixture of

schematic and VHDL are the best choice.

Schematic design is facilitated in Nexar by the

inclusion of extensive libraries of pre-synthesized, pre-

verified IP components, including a range of processor

cores, which can be simply dropped onto the schematic

and connected together to form the system hardware.

This is analogous to the way designers work at the

board level with the physical “off-the-shelf”

components. The concept of multi-board is very

common at the system level design. Nexar provides a

multi-sheet design methodology, similar to the multi

board design. Designers turn to multi-sheet design for

various reasons, the primary one being project size;

some projects are simply too large or complicated to fit

on a single sheet. But even small design can benefit

from a multi sheet approach. For example, the design

may include various modular elements, and dividing

those modules into individual documents would allow

several designers to work on a project in parallel.

 At the system level, Nexar provides a schematic-based

design methodology to define system connectivity. The

reason being that graphical schematic–based capture or

design entry is more efficient for connecting functional

blocks than HDLs, and allows complex systems to be

created quickly at the component level. Along with

IP–based components, Nexar includes a library of IP-

based virtual instruments (as pre-synthesized models),

such as logic analyzers, frequency counters/generators

and I/O monitors that can be incorporated into the

design at the schematic level to facilitate system testing

and debugging. These instruments have on-screen front

panels analogous to their physical counterparts to

provide a natural way for the designers to examine the

working of their circuits, and to see inside the FPGA

during the design process. After design entry, the

compilation stage can verify that the design entry or

captured source is free of electrical, drafting, and

coding errors. Resolve any error found and re-compile

the project to check.

3.3 Constraints on all sides

The FPGA is constrained by the timing requirement of

the design (timing constraints), the capacity and

architecture of the device (routing constraints) and the

I/O standards applied to the I/O buffers (I/O

constraints). A constraints file is an input to the

synthesis process. Constraints can be applied globally

or to the specific portions of the design. The synthesis

engine uses these constraints to optimize the net-list.

However, it is equally important to not over constrain

the design, which will generally result in less than

optimal results from the next step in the

implementation process-physical device placement and

interconnecting routing. Synthesis constraints soon

become place and route constraints. Nexar provides a

handy way to add the constraints file into the FPGA

project by using Configuration Manager.

Integral to Nexar is a versatile FPGA-based

development board called a Nano-Board that provides

a re-configurable platform for implementing the design.

The Nano-Board uses JTAG-based communication to

both download the design to the on-board FPGA, and

to interact with processor cores and instruments in the

design once it has been downloaded to the target device

(FPGA) housed on the removable daughterboard.

Synthesis stage can be run with the “Devices” view

configured in either „Live‟ or „not Live‟ mode. During

synthesis, the source documents are translated into

intermediate VHDL files which are then synthesized

into EDIF netlist, suitable for vendor Place and Route

tools. Errors detected during synthesis are based on

errors in the intermediate files, so go back to the source

files to fix any problems. After netlist synthesize, the

design is automatically converted into the format

supported internally by the FPGA vendors Place-and-

Route tools. This stage “Build” can be run with the

Device view configured in “live” or “not live” mode.

Running the tools at this stage can verify a design fit

inside the chosen physical device. The end result of this

stage is the generation of an FPGA programming file

that will ultimately be used to programming the

physical device with the design.

3.4 Program FPGA

Finally, the programming file, once successfully

downloaded to the device via the JTAG link, the text

underneath the target device will change from “Power”

to “Loaded” and any Nexus-enabled devices on the soft

devices chain will be display as running.

3.5 Hardware design

The major component of CPIM architecture described

in Figure 1, includes an optimized CPU, shared

memory, an iteration control unit and an arbiter.

Optimised CPU (CPU_minor) is a task specific

processor that consists of a dedicated computation unit.

The CPIM under discussion equipped with a task

5

“cumulative Successive addition” (An array of numbers

is added and the result is stored in the defined memory

location).

Shared memory is a SRAM-type memory, holding data

related to the iterative job, having enough capacity to

hold large frame synonyms with high resolution image

frames.

Iteration control unit provides an instruction format for

the CPU_minor. It consists of three registers, namely

Address register, Job size register and Job nature

register. Address register is 24-bit wide, representing

the starting address of the operand block. Once

initialized, a counter will then increment a pointer,

pointing to the next operand required by the task. Job-

size register is 16-bit wide, representing the total

number of operands (number of iteration involved in

the iterative loop). Job-nature register is 8-bit wide,

representing the nature of Job. Destination register,

two registers are required to hold the start and end

address of the destination block.

 Arbiter facilitates the transfer of information between

components. The processors in shared-memory multi-

processor system request access to common resources

through the system bus. When two or more processors

share the same memory, some hardware mechanism is

required to make sure that only one processor can

access the memory at a time. This can be achieved by

using an arbiter in a shared memory system.

Figure 4: Comulative Successive Addition

Figure 5: Non-Comulative Successive Addition

4. Conclusion

CPIM uses a pre-compilation task optimization

methodology for the workload distribution between

CPU_major and CPU_minor. It can be seen from

Figure 4 and 5 where we have used two different tasks

relating to commulative and non-comulative successive

addition and the performance in speed up is

approximately 20 %. Image processing applications

generally require high bandwidth, low latency access to

image data, and generally decomposed into simple

iterative operations. For this reason, computing in

memory or intelligent memory architectures best fit for

co-operative processing, executing the functions that

they are optimized for, while leaving functions that are

mostly serial and compute intensive to the main

processor (CPU_major). Hence, the described

architectures have the potential for scaling up to tackle

more demanding jobs that exhibit frequent and intense

program locality behavior.

5. References

[1] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.

Keeton, C. Kozyrakis, R. Thomas and K. Yelick. A Case for

Intelligent RAM: IRAM. IEEE Micro, April 1997.

 [2] Y. Kang, J. Torrellas and T. S. Huang, An IRAM

Architecture for Image Analysis and Pattern Recognition.

14th International Conference on Pattern Recognition, 1998.

[3] M. Oskin et al., “Active Pages: A computation model for

intelligent memory”, IEEE, 1999.

[4] Y. Kang et al., “FlexRAM: Towards an intelligent

memory system”, ICCD, Oct 1999.

[5] J. Darper et al., “The architecture of DIVA processing in

memory chips”, ICS, June 2002.

6

[6] A. Saulsbury et al., “Missing the memory wall: The case

for processor/memory integration”, ICSA,May 1996.

[7] D. Burger et al., “Memory bandwidth limitations of

future microprocessors”,I SCA, Aug 1996.

[8] K. Mai et al., “Smart memories: A modular

reconfigurable architecture”, ISCA, June 2000.

[9] Zaki Ahmad “Co-operative Intelligent Memory”, PHD

thesis, University of Hertfordshire, United Kingdom, 2007.

[10] R.Sotudeh, Z.Ahmad, F.Bensaali “Intelligent Co-

operative Processor in Memory Architectures” The

Mediterranean Journal of Electronics and Communication,

Vol. 3, 2007, pp 17-30.

[11] R. Boyle and R. Thomas “Computer vision: A first

course”, Blackwell Scientific Publications, 1988.

[12] R.dougherty and A. Laplante, “Introduction to REAL-

Time IMAGING”, SPIE optical Engineering Press, 1995.

[13] Designing with Nexar 2004, Altium Ltd.

