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Abstract 

ABSTRACT 

The introduction of alternative materials and in particular aluminium alloys, for vehicle 
body applications has impelled the development of new joining techniques. Traditional 

joining methods such as spot-welding and arc-welding are being challenged. Self-piercing 

riveting has attracted considerable interest by the automotive industry and has been used as 

an alternative to spot-welding in vehicle body assembly. However, self-piercing riveting is 

a relatively new joining method and as such it is not well understood. The aim of this 

project was therefore to develop an understanding of the mechanical behaviour of self- 

piercing riveted joints. The effects of paint-baking, shelf-life, pre-straining and surface 

condition of the sheet material on the joint quality and behaviour were therefore examined. 
Aluminium alloy sheet materials, 5754 and AA6111, were used in this investigation. 

The project began with a metallographic inspection of cross-sections of samples that were 
joined under different conditions in order to examine the effect of process variables on the 

joint quality. This part of the investigation led to the identification of suitable setting 

parameters that produced joints which, by metallographic inspection, were of good quality. 
It was also observed that some process variables, such as sheet thickness combination, 

rivet and die design and setting force, affected the joint quality and therefore needed to be 

taken into consideration in the choice of the processing parameters. 

Subsequent work focused on mechanical testing. Lap shear, T-peel, pull-out and fatigue 

tests were carried out in order to examine the mechanical behaviour and to analyse the 

failure mechanisms of the joints. The work showed that the strength, the thickness and the 

surface condition of the riveted sheets affected the strength and the failure mechanisms of 
the joints. The joint strength was also observed to be dependent on the rivet and anvil 
design as well as the setting force. In addition, the joint strength and behaviour differed as 
the specimen geometry thus emphasising the need for a test standard for self-piercing 
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riveted joints. Paint baking led to a marginal and insignificant reduction in the static 

strength, whilst resulting in a reduction in the fatigue strength of the joints as a 

consequence of recovery of the 5754 alloy and the removal of the wax-based surface 
lubricant. The effect of 3%, 5% and 10% pre-straining of the 5754 sheet on the quality and 

performance of the self-piercing riveted joints was also examined. It was established that it 

was possible to produce joints of good quality, higher strength and superior fatigue 

performance by using the same setting parameters as for joints without additional pre- 

straining. An investigation of the effect of the shelf-life of AA6111 indicated that this only 

had a minor and insignificant effect on the joint quality and behaviour. It was therefore 

deduced that the quality and performance of joints would not be compromised even after 

an AA6111 self-life of 21 months. The effect of the interfacial characteristics on the joint 

quality and behaviour was examined by placing a PTFE layer at the interface between the 

riveted sheets. It was observed that the PTFE insert significantly reduced the joint strength 

and changed the failure mechanism. 

Three distinct failure modes, referred to as rivet pull-out, rivet fracture and sheet material 

failure, were observed during this investigation. All shear tested samples failed by rivet 

pull-out. The same failure mechanism was the only one observed for the pull-out tests. The 

failure mechanism for the peel test depended on the thickness of the rivet sheet. For joints 

with a (1 mm+2mm)/(0.9mm+2mm) combination, fracture of the thinner sheet material 

dominated the failure mechanism, whilst for joints with a (2mm+2mm) combination, rivet 

pull-out was the only failure system. Rivet fracture and sheet material failure were also 

observed during fatigue testing. 

Examination of samples following fatigue testing led to the observation of fretting which 

had not been reported by previous investigators working with self-piercing rivets. Fretting 

had an important effect on the fatigue strength and fatigue failure mechanisms. Inspection 

of fatigue fractured samples which were tested at maximum applied loads ranging from 

50% to 85% of the ultimate shear load of the joints exhibited fretting scars at three 

different interfaces. Flange-face fretting was observed to take place at one side of the 

interface between the two riveted sheets and led to the formation of mainly A1203 debris. 

Pin-bore fretting was observed to occur between the rivet shank and the aluminium alloy 

sheet and led to debris containing oxides of aluminium and iron together with the oxides of 
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zinc and tin from the wear of the corrosion protective coating of the rivet. Both types of 
fretting were affected by the applied load and the surface condition of the riveted sheets. 
Further examination indicated that fretting contributed to the initiation and propagation of 
fatigue cracks. The failure modes during fatigue testing were affected by the fretting 

behaviour and were dependent on the applied load and the interfacial conditions. A PTFE 

layer introduced a very low coefficient of friction leading to a significantly reduction in the 

amount of fretting. However, this was accompanied with a change in the load transfer 

mechanism resulting in rivet fracture and a shorter fatigue life. The paint-baking process 
led to the removal of the wax-based surface lubricant and fretting cracks therefore initiated 

at an earlier stage of the fatigue test. In addition, fretting also led to a significant work- 
hardening of the riveted sheets. It was observed that there was an increase in 

microhardness at the regions immediately below the fretting area from the riveted sheets. 
The depth of the work-hardened area below the fretting interface after different periods of 
fretting represented the depth of damage as a result of fretting fatigue. It was therefore 

further indicated that fretting played an important role in the fatigue behaviour and would 

probably affect the crash behaviour of the joints. 

The effect of secondary bending, an inherent feature of lap joints, was examined and 

analysed using strain gauge measurements. It was established that secondary bending 

contributed to the failure mechanism and led to a significant reduction in the fatigue 

strength of such joints. Using the experimental data an analysis has been carried out to 

predict the fatigue strength in the absence of secondary bending. 
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CHAPTER ONE 

1. INTRODUCTION 

Today's automotive industry is a challenging business, which is required not only to 

respond to environmental concerns about greenhouse gases and fuel economy, but also to 

meet customer expectations. Therefore, the next generation of vehicles must achieve fewer 

emissions, higher fuel efficiency and better performance. According to Polmear [1), fuel 

consumption can be reduced by 5.5% for each 10% reduction in vehicle weight. Moreover, 

for every kilogram saved in vehicle weight, a reduction of 20kg of CO2 emissions can be 

achieved for a vehicle covering 170,000km. The need for weight reduction has led to the 

growing application of lightweight materials, such as aluminium and polymer composites. 

The use of aluminium alloys offers a vehicle of lower weight and may lead to better fuel 

economy and fewer emissions, whilst the performance, comfort and safety are not 

compromised. Aluminium alloys have the advantage of high corrosion resistance, good 
formability and crashworthiness. In addition, the outstanding recyclability of aluminium 

alloys also poses a considerable attraction to manufacturers. Therefore, there are 

significant benefits in using aluminium alloys, particularly in the car body. However, the 

use of aluminium requires not only a different approach in car design, but also a new 

manufacturing technology including new joining methods. This has therefore triggered 

many investigations into new joining techniques for aluminium alloys. 
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1.1 Conventional Joining Methods for Aluminium Alloys 

1.1.1 Spot Welding 

Spot-welding and arc-welding are the most popular conventional joining techniques in the 

automotive industry. Spot-welding has been the principal joining process for decades in 

steel vehicle body structures. However, the quality of spot-welds for aluminium alloys may 

be poor. In addition, there are other concerns due to the short electrode life and the 

requirement of a higher manufacturing capital. 

Aluminium easily reacts with oxygen in the atmosphere and forms an oxide film on the 

metal surface giving protection to the metal from corrosion. However, according to Patrick 

et al. [2], the substantially higher melting point of this oxide film requires significantly 
higher resistance heating to break it down in order to allow weld formation to take place. 
Coupled with the high electrical and thermal conductivity of aluminium alloys, nearly 

three times the current and two times the electrode force are required for welding bare 

aluminium compared with welding bare steel. Consequently, the electrode life for 

aluminium alloy spot-welding is 2.5 to 5 times lower, compared with the electrode life for 

the spot-welding of mild steel. However, the welding time for aluminium alloys is only a 

quarter to half the time that is required to weld the same thickness of steel, due to the lower 

melting temperature. In addition, more accurate control of the welding parameters is 

required compared with steel, due to the effect of the surface oxide and surface roughness 

as well as the very narrow plastic range of aluminium. Auhl et al. [3] reported that these 

critical variables led to poor welds that could occur at random and at any time. It is 

obvious that the shorter electrode life requires more investment in the electrode. Apart 

from this, the different requirements on current and electrode force make the equipment 

which is used in the automotive production lines for steel spot-welding unlikely to be used 
for aluminium alloys. The investment in the development of new equipment for spot- 

welding aluminium alloys is considerable. Therefore, employing the technique for 

aluminium is likely to be more expensive. These factors have impelled manufacturers to 

look for alternative joining techniques. 
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1.1.2 Arc-welding 

Metal Inert Gas (MIG) and Tungsten Inert Gas (TIG) are the two main processes of arc- 
welding used by industry. In automotive manufacture, the process has been well-automated 

and has significant advantages in steel structure fabrication. However, the process 

requirements for welding aluminium are extremely difficult. 

The high thermal conductivity of aluminium requires an intensive and localized heat 

source, while its relatively large coefficient of thermal expansion demands a high welding 

speed to minimize the distortion. Polmear [1], Gingell et al. [4] and Barnes et al. [5] 

reported that the surface oxide film, which has a high melting point, needed to be removed 

or it might become entrapped and form inclusions in the weld bead. In addition, low 

hydrogen content was required due to the high solubility of this gas in molten aluminium, 

otherwise, weld porosity occurred after solidification. Furthermore, the environmental 
issues related to oxide fumes, arc-eye and the requirement of intensive energy, presented 
difficulties for arc-welding of aluminium alloys. Additional costs were thought to be 

inevitable to improve the process and protect the human operator from the hazardous 

environment. Therefore, to employ the process for aluminium, further development is 

necessary in order to minimise the disadvantages and facilitate the application of the 

process in service. 

There is growing interest in other joining techniques for aluminium due to the notable 
disadvantages of the conventional joining methods. Many studies have examined the 

suitability of other joining methods and explored new joining techniques. As a result, 
relatively new joining techniques have been developed, as outlined in the next section. 
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1.2 Relatively New Joining Techniques for Aluminium Alloys 

Laser welding, friction stir welding and mechanical fastening as well as adhesive bonding 

are the relatively new joining methods that are considered as candidates for joining 

aluminium in the automotive fabrication and assembly. 

1.2.1 Laser Welding 

Two main types of lasers can be considered for sheet metal joining. They are CO2 lasers 

and Nd: YAG lasers. According to Jones [6], laser welding offered many advantages for 

joining sheet materials, such as a lower overall heat input, which resulted in very little 

thermal distortion, a higher welding speed and a smaller heat affected zone. Barnes et at. 
[5] also reported that the potential for automation and the inherent flexibility of the system 

made laser welding more attractive. However, high surface reflectivity, high thermal 

conductivity, and for some alloys, low melting point constituents, low viscosity in the 
liquid phase and the presence of the surface oxide layer, are the main difficulties 

encountered by laser welding process for aluminium. Therefore, Jones et al [7] suggested 

that a high power density and a high welding speed are necessary to avoid limited 

penetration depths, an irregular shape and a rough appearance. Apart from these, the 

relative expense of capital equipment and the consumable items, such as the shielding gas, 

must be taken into account. In addition, according to Barnes et al. [5], the risks of 

accidental injury whilst the laser is in operation and damage to the eye, which can result 
from exposure to some laser beams, also need to be considered. Further work on real 

aluminium components is necessary in order to assess the performance of laser-welded 

assemblies in service. 

1.2.2 Friction Stir Welding 

Friction stir welding (FSW) was invented at The Welding Institute (TWI) in 1991. It is a 

solid phase process and particularly suitable for joining lightweight sheet materials, such as 
aluminium, copper, lead and plastics to produce straight-line welds. According to Kallee et 
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al. [8], Waldron et al. [9], the process has a number of advantages including low cost, low 

power demand, good appearance of the weld bead, no emission of fumes and radiation. In 

addition, as a solid-phase weld, many of the problems associated with liquid-phase welding 

aluminium alloys are avoided. The surface oxide layer can be effectively broken and 
dispersed throughout the weld due to the weld action. However, as a relatively new joining 

method, FSW limitations still remain. Besides a relatively slow process rate, Kallee et al. 
[10] also reported that two components being joined need to be clamped rigidly onto a 
backing bar due to the high pressure involved in the process in order to avoid the two 

pieces being forced apart, whilst a hole left at the end of each run has to be filled. In 

addition, according to Powell et al. [11], for some aluminium alloys, post-weld heat- 

treatment is required to optimise the properties in the joint area and this is not a practical 

solution for many applications, Therefore, further development is necessary. 

1.2.3 Adhesive Bonding 

Adhesive technology can be an alternative method for joining aluminium alloys. Compared 

with other joining techniques, such as welding and mechanical fastening, adhesive bonding 

can reduce stress concentrations and is more flexible and versatile, in addition to its ability 

to seal joints against moisture. Furthermore, according to Tavakoli [121, the process can 

save weight, reduce cost and is capable of joining dissimilar materials. However, the 

adhesive joints are inherently weak in peel and vehicle design would need to take account 

of this, particularly with regard to crashworthiness. Additionally, the long-term durability 

of adhesive joints and the effects of weathering and eventual water ingress are not clearly 

understood. Furthermore, the environmental issue in connection with adhesive dispensing 

is also a significant area of concern. Therefore, Barnes et al. [13] have reported that 

adhesive bonding is less competitive in the domain of joining techniques for the 

automotive industry. 

5 



Introduction Chapter 1 

1.2.4 Self-piercing Riveting and Clinching 

Self-piercing riveting and clinching are relatively new mechanical fastening techniques 

with considerable potential for use in the automotive industry. 

Self-piercing riveting is a point joining process and, unlike conventional riveting, does not 

require a pre-drilled hole. The process cycle is illustrated in Fig. 1.1. 

blankholder 
Pond 

-rivet 
`-' 

die 

Figure 1.1 Schematic representation of the self-piercing riveting process 

The sheets to be joined are clamped between a blank-holder and an upset die. A semi- 
tubular rivet is fed under the punch through a feeding system. The punch is then driven 

down by a setting force which is produced from a hydraulic or electrical power system. As 

the setting force increases, the rivet is forced to pierce the upper sheet and flare into the 
bottom sheet under the effect of the upset anvil. The punch is then lifted and a joint with a 

mechanical interlock is formed. A button is left on the underside of the bottom sheet due to 

the effect of the upset die. The joint can be set flush in one side if a countersunk rivet is 

used. Oval head rivets can also be used if non-flush on both sides is acceptable. Ideally, the 

rivet tail should not break through the bottom sheet. Clinching, as an offshoot of self- 

piercing riveting, is a similar operation, but without a rivet. 

Both self-piercing riveting and clinching offer several benefits to assemblers. The process 

of no pre-drilled hole not only saves labour and time, but also avoids the problem of 

alignment encountered by conventional riveting. Moreover, the processes can join a wide 

range of materials, combinations of similar or dissimilar materials and multi-layered sheets 

with an equivalent speed of operation. In comparison with spot-welding, the process is safe 

and environmentally friendly due to a lower energy requirement, low noise emission and 
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no fumes or heat radiation. In addition, the process is simple and can be easily automated. 
Furthermore, the equipment has a long tool-life, and therefore the capital and operating 

costs are relatively low. Riches et al [14] and Barnes et al [13] have reported that compared 

with clinching, self-piercing riveting has a better load-bearing ability, and therefore, can be 

used in load-bearing situations, while clinching is suitable for areas of lower loading. 

In spite of these advantages, there are still a number of barriers to widespread exploitation 

of these techniques. It was reported by Westgate et al. [ 15] that the high setting force and 

the need for access from both sides require a C-frame to be large and stiff enough. 
Moreover, both techniques leave bulges and indent joints, which may not be aesthetically 
desirable. Additionally, according to Howard et al. [16] and Sunday [17], corrosion could 

occur due to the surface irregularities or crevices, which are caused by the cold 
deformation process. Furthermore, self-piercing riveting introduces a consumable rivet, 

which adds weight to the process. For aluminium alloys, steel rivets are used and this may 

cause galvanic corrosion in the joint. 

According to Patrick et at [18], the self-piercing riveting process is extremely robust, 

simple and cost-effective even with the rivet consumable cost, The difficulties posed by the 

surface oxide in welding aluminium and the high capital investment as well as the high 

running cost make welding less competitive in the domain of joining aluminium. 
Martukanitz et al. [191, Matsumoto et al. [20] and Larsson et al. [21] reported that laser 

welding can be used to join steel components. Whether it can be successfully used for 

aluminium alloys in practice is still under investigation. Besides the requirement of a 
backing bar and the fade-out problem, friction stir welding can only be applied as straight 
line welds on a sheet. Therefore, with its advantages, mechanical fastening is likely to be a 

competitive joining method in the near future. As a result, the development of mechanical 
fastening and in particular self-piercing riveting has been accelerated. 
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1.3 Development of Self-piercing Riveting 

Self-piercing riveting is considered to be an alternative to spot-welding. Therefore, the 

process reliability, the possibility for mass production as well as the mechanical 
performance of self-piercing riveted joints including static and dynamic strength 

characteristics and the failure mechanisms must be evaluated and compared with 
alternative methods. 

King [22] conducted a detailed study of the process, in which a four-step setting force- 

displacement curve was used to identify the measurable process parameters affecting the 

quality of the joint. Based on this study, a process quality monitoring system was 
successfully developed and computerised thus enabling 100% inspection as well as partial 
control of the fastening quality. The automated process quality monitoring system for self- 
piercing riveting, "FASTRIV", provides the possibility of further development of the 

process. In addition, according to Lapensee [23] and Westgate et al. [15], the innovation of 
modern equipment including robot-mounted equipment and a lightweight long reach C- 
frame riveting gun with an adequate stiffness also facilitates the development of the 

process and makes it more reliable. The development has not only solved the problem of 
the reach limitation, but also provided the possibility of using self-piercing riveting in a 
high volume automated assembly. 

As the process developed, most research studies focused on the comparison of the 

mechanical behaviour of self-piercing riveted joints with spot-welded joints. Lapensee [231 

reported that compared with spot-welding, the static strength of self-piercing riveting was 
higher in the case of aluminium to aluminium and lower in the case of steel to steel. 
However, Razmjoo et al. [24] indicated that the static strength of self-piercing riveted 
joints was lower than that of spot-welded joints for both steel to steel and aluminium to 

aluminium joints. It was also observed that the static strength of spot-welded joints was at 
least 60% higher in steel specimens and 30% higher in aluminium specimens compared 

with self-piercing riveted joints for identical combinations. Olivier [25] conducted an 
investigation on the static properties of a self-piercing riveted joint and a spot-welded joint 

in steel sheet and indicated that the static strength of spot-welded joints was higher than 

that of self-piercing riveted joints, Additionally, both Riches [14] and Westgate [26] 
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predicted that a high static strength could be achieved for self-piercing riveted joints 

through a suitable rivet and anvil design. The fatigue strength of self-piercing riveted joints 

in a number of materials, which are favoured by the automotive industry, was reported to 
be superior to spot-welded joints, by Razmjoo [24], Krause et al [27], Sunday [17], Booth 

et al. [28]. 

In addition to the measurement of the static and fatigue strength, research studies also 

reported a variety of failure modes. King [22] has summarised six types of failure mode, 

which occurred during static testing. The failure mode, which occurred during fatigue 

testing of self-piercing riveted aluminium sheets, was described as an eyebrow crack by 

Krause et al [27]. Westgate and Razmjoo [26] reported that different failure modes 

occurred in steel specimens and aluminium specimens. The most recent research that was 
carried out by Fu and Mallick [29,30] at the University of Michaen indicated that fracture 

of the pierced sheet was the only failure system during fatigue testing. Despite the 
description of the failure mode in the literature, the failure mechanism for a self-piercing 
riveted joint still remains uncertain. 

1.4 Further Development 

The substantial advantages that can be gained from self-piercing riveting make the process 

more attractive than the welding process. Coupled with the development of the process, 

self-piercing riveting is beginning to be incorporated into the manufacturing procedures for 

low weight vehicles. Audi's A8, the first generation of Aluminium Space Frame vehicle 
first adopted this joining technique in its assembly. According to Mackenzie [31], 

following positive experience with the A8, the use of self-piercing rivets was increased by 

40% to a total of 1800 in the Audi A2, mainly to join sheet metal and extruded sections, At 

Jaguar, the first aluminium car, the XJ350, employed 3300 rivets in its assembly. In 

addition to the application in car-body assembly, self-piercing rivets have also been used in 

truck assembly. According to Sibley [32] and Bonde et al. [33], Volvo used 42 self- 

piercing rivets to improve the fatigue strength of the FH12 cab. However, the application is 

still at an early stage and as a relatively new joining technique, further development is 

necessary. 
9 
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Despite the limitations mentioned above, no agreed standard for testing self-piercing 

riveted joints exists. The specimen geometry and testing methodology need to be 

standardised, in order to relate test performance to in-service performance. All tests 

performed in previous studies followed the existing standard either for spot-welding, 

[Westgate [26]], or for blind riveting, [King [22]], in which most of the specimen geometry 

was a single lap joint. Such lap joints are simple to fabricate. However, the inherent 

eccentricity that results in deformation and referred to as secondary bending, as shown in 

Fig. 1.2, creates additional axial stresses in the lap joint. These stresses are restricted to a 

small area, where cross-sectional discontinuities occur. Secondary bending is an inherent 

feature of a single lap joint and affects the mechanical behaviour of a conventional riveted 

single lap joint. Kulak at al. [34] reported that secondary bending played a dominant role in 

the fatigue behaviour of a conventional riveted lap joint, whilst not significantly affecting 

the ultimate strength of such joints. Hartman [35] investigated the effects of secondary 
bending on the fatigue strength of 2024-T3 Alclad conventional riveted joints and reported 
that the symmetric butt-joint was definitely superior to the lap joint and the single-strap 

butt-joint. Schütz et al [36] have performed a detailed investigation on the effect of 

secondary bending on the fatigue strength of conventional riveted joints. Single-shear 

specimens with secondary bending and double-shear specimens without secondary bending 

were produced by keeping all other factors including the type of fastener the same. The test 

results revealed that double-shear specimens had higher fatigue strength than single-shear 

samples. However, the effect of secondary bending on the mechanical behaviour of a self- 

piercing riveted joint has only been investigated by Razmjoo and Westgate [24], who 

carried out a study by using so called "H" section specimens to eliminate the effect of 

secondary bending. The results indicated that the fatigue strength of the single-point lap 

joints was 30% to 50% lower than that of the "H" specimens for both steel to steel and 

aluminium to aluminium joints. However, Carr et al [37] pointed out that the "H" section 

geometry was not a suitable geometry for the selection of joining system, since the 

accuracy of the machining and manufacture of the sample, together with the alignment of 

the specimen could greatly affect the test results. Therefore the effect of secondary bending 

on the behaviour of a self-piercing riveted single lap joint needs to be examined. 
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Figure 1.2 Schematic of secondary bending 

In addition, the mechanical behaviour of self-piercing riveted joint is still not fully 

understood. Very little or no data are available in the public domain even though some 

applications have taken place in the automotive sector. It is evident that some materials can 
be joined by such means and excellent performance can be achieved. However, for 

individual materials, whether such a joint can achieve good performance still needs to be 

investigated. The mechanical behaviour of such a joint is strongly dependent on the 

materials being joined. Furthermore, it has been known that the change of material 

properties affects the performance of such a joint. However, the effect of the change of the 

material properties during vehicle production on the behaviour of such joints still remains 

uncertain. Additionally, in the automotive industry, the most important single factor to be 

considered for the application of such joints is the effect of cyclic loading in service. 

Conventional riveting, in contrast to self-piercing riveting, has been a major joining 

method in the aircraft industry for a long time and the failure mechanisms are well 

documented. Fretting, as a kind of wear and corrosion phenomenon, which occurs between 

two contacting components when subjected to an oscillatory load and micro-slip was 

observed to take place in conventional riveted joints. For example, lyer et al. [38] 

investigated the effect of fretting on fatigue and corrosive wear deterioration of a 

conventional riveted lap joint. A 3-D finite element model was developed and used to 

analyse the deformation of a riveted lap joint and the factors that can lead to fretting 

damage. According to the study, serious fretting occurred at the interface between two 

riveted sheets, when the rivet tilted and pressed its head with a large force against the panel 

at the edge of the hole. Szolwinski et al. [39] examined the influence of the process 
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parameters on the fatigue performance of conventionally riveted aircraft structures. It was 
revealed that a higher squeeze force offered an improvement in fatigue performance by 

increasing hole expansion and changing the distribution of the hoop stress, whilst fretting 

damage was also increased on the faying surfaces. Schijve [40] reported Multiple-Site 

Damage (MSD) fatigue on multi-riveted samples of conventional riveted joints and pointed 

out the importance of fretting corrosion for the initiation of fatigue cracks. Fretting fatigue, 

which occurred when the micro-movement is caused by cyclic loading on one of the 

contact members, has been shown to play an important role in the initiation of fatigue 

cracks and MSD fatigue in conventional riveted joints. 

Self-piercing riveting is very different from conventional riveting and there is no reason to 

expect the two to behave in the same manner. Very few previous investigations have 

examined the fatigue behaviour of self-piercing riveted joints and none of these has 

reported fretting to occur. There is therefore a need to examine the fatigue behaviour and 
failure mechanisms of self-piercing riveted joints. 

1.5 Research Objectives 

The project aimed to underpin the fundamentals of the mechanical behaviour of 5754 and 
6111 aluminium alloys joined by self-piercing rivets in a variety of joint combinations. The 

heat-treatment and work-hardening processes which take place during vehicle assembly 

were taken into account. The mechanical behaviour of self-piercing riveted joints was 
investigated in terms of strength characteristics and failure mechanisms. Some of the work 

was carried out in the context of requirements from the automotive industry. Alloys 5754 

and 6111 are the materials that are of interest to the automotive industry and in fact have 

been used in the Jaguar XJ350 model. Paint-baking and pre-straining were involved in the 

manufacturing process and therefore their effect on joint quality and behaviour were of 

specific interest. In addition, due to industrial requirements, the effect of the shelf-life of 

the material was also investigated. 
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The project was split into the following objectives: 

1. The investigation of cross-sectional deformation characteristics of riveted joints in 

order to establish the setting conditions for good-quality joints. 

2. The investigation of the strength characteristics of riveted joints by performing 

static and dynamic testing. 
3. The examination of the influential factors such as sheet thickness, alloy heat- 

treatment and work-hardening on the joint quality and behaviour. 

4. The investigation of the failure mechanisms of self-piercing riveted joints and in 

particular of the fatigue failure mechanisms. 
5. The examination of the distribution of secondary bending in riveted joints in order 

to clarify the influence of secondary bending on the mechanical behaviour. 

The project has been performed in collaboration with Alcan International Limited and 
Textron Fastening Systems. Alcan has supplied the aluminium alloy sheet material whilst 
Textron Fastening Systems have manufactured all the specimens that were tested. 

13 
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CHAPTER TWO 

2. EXPERIMENTAL PROCEDURE 

2.1 Test specimens for Fastener Evaluation 

The most important requirement of any standard specimen is that it should be 

representative of the structural feature which it is to be simulated. Alcan International 

Limited has classified joint types with respect to the joint angle in an actual vehicle. The 

results of this classification are shown in Fig. 2.1. It is evident that the lap-shear joint, 

which has a 0° angle, represents almost 50% of the total joint length in this vehicle. 
Therefore there is a good case for studying such a joint type. In addition, self-pierce 

riveting is being considered as an alternative to spot-welding and therefore for comparison, 
it is better to follow the test standard for spot-welding. The latest test standard for spot- 

welding by the International Organisation for Standardisation (ISO) is titled "Methods for 

the fatigue testing of spot-welded joints" [41], in which the basic specimen geometry of 

specimens is a single lap joint. Therefore a single lap joint was chosen as the basic 

geometry for this study. 
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Figure 2.1: Joint angle distribution (00 is lap, 90° is T) 

2.2 Objectives of the Experimental Approach 

The objectives of the experimental work can be summarised as follows: 

1. To produce self-piercing riveted joints for sheet material of various conditions, 
including different surface conditions, pre-straining levels, thickness and thickness 

combination as well as shelf-life by using an identical rivet and anvil design. 
2. To investigate the cross-sectional characteristics of the self-piercing riveted joints, 

relating to rivet and sheet material deformation during setting, in order to establish 

the effect of the variations mentioned above on joint quality. 

3. To determine the strength characteristics of the self-piercing riveted joints by 

performing lap shear, peel, pull-out and fatigue tests. 

4. To examine the deformation characteristics and the failure mechanisms of the self- 

piercing riveted joints from the tests by means of light microscopy, Scanning 

Electron Microscopy (SEM) and Energy Dispersive System (EDS) analysis. 

5. To investigate the influence of Secondary Bending (SB) by using strain gauges to 

measure the strain level on the sheet material. 
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2.3 Setting Parameter of Self-piercing Riveted Joints 

2.3.1 Self-piercing Rivets 

A semi-tubular type is the basic form of a self-piercing rivet, which is made of wire 
material by a multi-blow cold forming process. The material for rivet manufacture is 

limited by its ability to be cold formed, but it can be hardened up to 550 Vickers. A 

standard specification BS EN 10263 of wire material is used for the formation of the rivets, 

which are then heat-treated to achieve the required properties. 

Fig. 2.2 shows a self-piercing rivet with a countersunk head. The proportions of the head 

diameter, poke diameter and poke depth are dependent on the rivet shank diameter. 

Shank Diameter: The two most common rivet diameters of 4.8mm and 3.9mm were used 
in this study. Table 2.1 presents the head diameter, poke diameter, poke depth and the 

tolerance range for a given rivet shank diameter. 

Shank Length: The length of the rivet 
shank is selected based on the thickness of 
the material to be joined. As the joint 

thickness increases the rivet length also 
has to increase in proportion. However, 

the rivet shank must not break through the 
lower sheet because of the requirement of 

good visual quality. In this study, three 

typical rivet lengths were selected based 

on the experience of Textron Fastening 

Systems and confirmed by metallographic 
investigation of fastening sections. 

Coantenu k Herd 

Figure 2.2 Self-piercing Rivet 
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Rivet Head: A standard countersunk head has been used throughout, as seen in Fig. 2.2. The 

diameters of the head are also listed in Table 2.1. 

Surface Coating: The external surface of the rivet was protected by a coating to prevent 
galvanic corrosion. Four kinds of alternative rivet coatings are available currently in 

Textron Fastening Systems, named Mechanical Zinc, Mechanical Zinc/Tin, Silver Almac 

and Delta Seal coating. A silver Almac coating, which contains tin and zinc, was chosen 
for this project. 

Table 2-1 Rivet Geometrical Data (All dimensions: mm) 
Shank 

Diameter 

Shank 

Length 

Head 

Diameter 

Poke Diameter Poke 

Depth 

Hardness 

(Hv) 

Rivet 

Code 

4.8.0.15 6.5 

- 

8.7.0.3 3.8 4.0 380/420 23-0282 

4.8.0.15 7.5075 8.7.0.3 3.9: '0" 4-. 6= 450/500 23-5233 

3.9-0.1 6.0 8.1-0.3 3.3 3.5 450/500 FSC3960002Z11 

3.9.9.1 5.0 8.1-0.3 3.3 3.0 450/500 FSC3950001Z11 

3.2 I 3.0 6.5-0.3 2.8°' 2.0+ ' 400/450 FSC3230001ZI 1 

2.3.2 Sheet Materials 

Depending upon the application, aluminium alloys for car-body sheet applications must 
have a strength comparable to steel, adequate formability, they must be dent and corrosion 

resistant, and must have good surface appearance. Therefore, alloys of 5xxx series and 
6xxx series have been favoured for use by the automotive industry. 

Standard tensile tests were performed on the two sheet materials used in the investigation 

in order to obtain their mechanical properties. The specimen geometry is shown in Fig. 2.3. 
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Figure 2.3 Specimen geometry for tensile test of sheet material 

2.3.2.1 NG5754 

Wrought NG5754 aluminium alloy sheets of 1mm and 2mm thickness were used in this 

study. The NG5754 alloy sheets were pre-treated with a chromate free film. The sheet was 

also coated with a wax-based surface lubricant whose concentration was below 1%. 

2.3.2.2 HS5754 

The HS5754 aluminium alloy sheets were the same as the NG5754 alloy sheets except that 

the HS5754 sheets were not coated by the wax-based surface lubricant. Only 2mm thick 
HS5754 sheets were tested. 

The mechanical properties and the nominal alloy composition of the NG5754 and the 

HS5754 aluminium alloy sheets are listed in Table. 2.2. 
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2.3.2.3 Pre-strained NG5754 

Strain-hardening occurs during most working and forming operations. Therefore, the pre- 

strained NG5754 sheets were tested in order to simulate the forming process during car- 

body assembly. 

The pre-strained NG5754 alloy sheets were obtained from the NG5754 sheets by pre- 

straining to different levels at a crosshead speed 15mm/min. Three pre-straining levels 

were achieved and tested. The load versus extension curves obtained during pre-straining 

are presented in Figs. 2.4-2.6. 

25 

20- 

Z 15 

10 

5 

0 
0 1234567 

Extension(mm) 

Figure 2.4 Load vs. Extension for 3% Pre-straining of NG5754 
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25 
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Figure 2.5 Load vs. Extension for 5% Pre-straining of NG5754 
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Figure 2.6 Load vs. Extension for 10% Pre-straining of NG5754 

The composition of the pre-strained 5754 aluminium alloy sheet is the same as NG5754 

and HS5754, but the mechanical properties had changed as a result of pre-straining and are 

shown in Table 2.3. 

Table 2-3 Mechanical Properties of Nominal 5754 

MECHANICAL PROPERTIES 
Pre-strain level Tensile strength (MPa) Elongation (%) Hardness (Hv) 

3% 254 20 73 
5% 261 18 77 

10% 276 16 86 

2.3.2.4 AA6111 

The heat-treatable aluminium alloy AA61 11 sheet was in wrought form and initially in the 

T4 condition. The material was riveted after a shelf-life of various period of time. During 

the shelf-life period, the material was expected to undergo natural ageing. Two thicknesses 

of 0.9mm and 2mm were used for the AA6111 alloy sheets. The chemical composition and 

the mechanical properties of the AA6111 alloy sheet are shown in Table 2.4. 
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Table 2-4 Composition and Mechanical Properties of AA6111 

MECHANICAL PROPERTIES 
Young's Modulus 

(GPa) 
Tensile strength 

a 
Elongation Hardness (Hv) 

70 308 26% 93 
NOMINAL COMPOSITIONS 

Si Fe Cu Mn Mg Al 

0.20-1.70 0.70 0.90 0.80 0.10-1.40 Balance 

2.3.3 Anvil Tooling 

The purpose of the anvil is to provide a shaped cavity to accommodate the extent of 
deformation and to cause the rivet shank to flare during joint formation. The anvil shape 

affects both the piercing force and the flaring in the rivet shank and therefore, the joint 

strength. Four different anvil profiles are available at Textron Fastening Systems. The 

selection of the anvil profile is dependent on the rivet dimensions and the material 

specifications. Therefore, a specific anvil design should be adopted for each different 

fastening application. In this investigation, the selection of the anvil profile was 

accompanied with a corresponding different rivet design in order to make the test results 

comparable. 

2.3.4 Setting Force 

A relatively high setting force is required by a self-piercing rivet to deform and compress 

the sheet material until the rivet is set fully down. A rivet with a flat countersunk head 

normally requires a higher setting force than a rivet with an oval head in order to flush with 

the top sheet. The value of the setting force depends on the material specification, material 

hardness and thickness as well as the rivet and anvil design. Therefore different setting 

force values were selected. 
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2.3.5 Fastening Conditions 

For the purpose of this investigation, all fastenings were created between two sheets of 

material only, as this is seen as the most common application in auto-body assembly. 
Different codes were introduced to identify the fastening conditions. An explanation of the 
fastening codes is summarised below: 

FS: refers to fastening, N5: refers to NG5754, H5: refers to HS5754, A6: refers to 
AA6111, P5: refers to Pre-strained NG5754 and the accompanying number refers to the 

percentage amount of pre-straining. 
2.3.5.1 FSN5 Series 

The NG5754 alloy sheets were jointed in pairs to create the FSN5 series of fastenings. The 
fastenings identified by `*' were exposed to a paint-bake cycle (PB) at 180°C for 30 

minutes after joining but prior to testing. The geometry of the FSN56 fastening was 
smaller than the other samples and will be described later. 

Table 2.5 shows the fastening conditions of the FSN5 series of fastenings. 

Table 2-5 Fastening Conditions for FSN5 Series 

Rivet Code 

Sheet Material 
Thickness (mm) 

Anvil Code Setting Note 
Upper sheet Lower sheet 

P(bar) ressure 

FSN51 23-5233 2 2 64015 240 

FSN51* 23-5233 2 2 64015 240 PB 

FSN52 FSC3960002Z11 2 2 64220 120 

FSN53 FSC3950002Z11 1 2 64220 100 

FSN53* FSC3950002Z11 1 2 64220 100 PB 

FSN54 FSC3950002Z11 2 1 64220 100 

FSN55 FSC3230001Z11 1 1 SK46527/15 60 

FSN56 23-5233 2 2 64015 240 Small 
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2.3.5.2 FSH5 Series 

The FSH5 series of fastenings was prepared from the HS5754 alloy sheets only. A PTFE 

tape was inserted at the interface between the two riveted sheets before the riveting process 

to form the FSH52 fastening. The PTFE tape had a 1.9mm width and a 0.2mm thickness. 

The fastening conditions of the FSH5 series are shown in Table 2.6. 

Table 2-6 Fastening Conditions for FSH5 Series 

Rivet Code 

Sheet Material 
Thickness (nun) 

Anvil Code Setting Pressure Note 
Upper sheet Lower sheet (bar) 

FSH51 23-5233 2 2 64015 240 

FSH52 23-5233 2 2 64015 240 PTFE 

2.3.5.3 FSP5 Series 

The pre-strained NG5754 alloy sheets with three pre-straining levels were joined in pairs. 
The fastening conditions for the pre-strained NG5754 sheets were the same as the FSN51 
fastening, which was made from the NG5754 with 0% pre-straining in order to make the 

test results comparable. The FSP50 and the FSP50* fastenings were the same as the 
FSN51 and the FSN51 * fastenings respectively. Half of the fastenings were exposed to a 

paint-bake cycle indicated by a "*" in the fastening code, while the others were not. 

Table 2.7 lists the fastening conditions for the pre-strained NG5754 sheet. 
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Table 2-7 Fastening Conditions for FSP5 Series 

Rivet Code 
Sheet Material 

Nominal Thickness (mm) Anvil 
Code 

Setting 
Pressure 

Note 

4. Upper sheet Lower sheet (bar) 

FSP50 23-5233 2 2 64015 240 0% pre-straining 

FSP53 23-5233 2 2 64015 240 3% pre-straining 

FSP55 23-5233 2 2 64015 240 5% pre-straining 

FSP510 23-5233 2 2 64015 240 10% pre-straining 

FSP50* 23-5233 2 2 64015 240 0% pre-straining & PB 

FSP53 * 23-5233 2 2 64015 240 3% pre-straining & PB 

FSP55* 23-5233 2 2 64015 240 5% pre-straining & PB 

FSP510* 23-5233 2 2 64015 240 10% pre-straining &PB 

2.3.5.4 FSA6 Series 

The AA6111 alloy sheets with two thickness values at a different shelf-life time were 
combined with the NG5754 sheets in 2mm gauge to make the FSA6 series of fastenings. 
The shelf-life of AA6111 for automotive applications is 6 months. It was originally 
planned to examine the effect of 0-month, 3-month and 6-month shelf-life of AA6111 on 
the joint quality and behaviour. However, material that was 19 months old was sent for use 
by mistake and this was not discovered until the latter stages of the project. Although a 
new batch of AA6111 was received, no fresh material was available and re-solutionising 

could not be performed on time. Therefore the shelf-life of AA6111 was extended to a 21- 

month period. The riveted samples that were produced were from different batches of 
AA6111. 

The AA6111 sheets in 0.9mm gauge were riveted and tested after a shelf-life of 3,5 and 8 

months. The 2mm thick AA61 11 sheets were riveted and tested after a shelf-life of 5,19 

and 21 months. Most of the FSA6 fastenings was exposed to a paint-bake cycle indicated 

by a "*" in the fastening code. The fastening conditions for the FSA6 series of fastenings 

are listed in Table 2.8. 
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Table 2-8 Fastening Conditions for AA6111 to NG5754 

Rivet Code 
Sheet Material 

Thickness (mm) Anvil 
Code 

Setting 
Pressure 

Note 

w Upper sheet 
(AA6111) 

Lower sheet 
(NG5754) 

(bar) 

FSA61 * 23-5233 2 2 64015 240 5 months shelf-life 

FSA62 23-5233 2 2 64015 240 19 months shelf-life 

FSA62* 23-5233 2 2 64015 240 19 months shelf-life 

FSA63* 23-5233 2 2 64015 240 21 months shelf-life 

FSA64* FSC3950002Z11 0.9 2 64220 100 3 months shelf-life 

FSA65* FSC3950002Z11 0.9 2 64220 100 5 months shelf-life 

FSA66* FSC3950002Z11 0.9 2 64220 100 8 months shelf-life 

2.4 Test Conditions of Self-piercing Riveted Joints 

Typical lap-shear, T-peel and fatigue tests were carried out to examine the potential failure 

modes and to allow comparison of the behaviour of joints prepare under various fastening 

conditions. To determine the effect of the rivet geometry characteristics, such as rivet flare, 

on the joint strength, the pull-out test was developed in this study. The basic geometry of 
the samples referred to the proposed ISO standard "Method for the fatigue testing of spot 

welded joint" [41]. 

2.4.1 Shear Test 

The geometry of a single-riveted lap joint specimen for the shear test is illustrated in 

Fig. 2.7. For each fastening condition, at least 4 samples were tested. The ultimate shear 
load was recorded to determine the shear strength of the joints and the load levels for the 
fatigue test. The failure mode was also assessed in order to establish the failure 

mechanisms of a self-piercing riveted joint. For comparison purposes, the geometry of the 

FSN56 fastening was different from the other samples and is shown in Fig. 2.8. 
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The shear test was performed using an Avery Denison Testing Machine with a load 

capacity of 5OkN. The test speed was 10mm/min as specified by Alcan. 

60mm 

Grip area 
I Grip area 

70mm 200mm 70mm 

side 

45mm 

(R1g& side) 

Figure 2.7 Specimen Geometry for the Shear and the Fatigue tests 

nun 
Gri p area 

III 

Grip area 

48 

1 
50 mm 95 mm 50 mm 

Figure 2.8 Specimen Geometry for the FSN56 fastening 

2.4.2 Peel Test 

A specimen for the peel test is shown diagrammatically in Fig. 2.9. Four samples were 
tested for each fastening condition in order to obtain the joint peel strength and assess the 
failure mode of the joints. 
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An Avery Denison Testing Machine with a load capacity 5OkN was used to carry out the 

peel test. The test speed was about 10mm/min as specified by Alcan. 

insert centre 

45 mm 

Grip area 

22mm 

Grip area 

47.5mm I 200mm I 4l. 5mm 

Figure 2.9 Specimen Geometry for the Peel test 

2.4.3 Pull-out Test 

60mfi 

There are no current published standards for the pull-out test. Two important factors were 

considered in the design of such a test. Firstly, to avoid the effect of bending on the joint, 

both the upper and bottom sheets had to be bent to a symmetrical U shape before being 

joined. Therefore, a special tool was designed to bend the sheets being joined to aU shape, 

as shown in Fig. 2.10. Secondly, in order to effectively avoid buckling of the sheet during 

the pull-out test, two fixtures were also designed to fasten the U shape sheets. The presence 

of the two fixtures led to uniform loading during the test. 
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Figure 2.10 Tool for bending sheet to U shape 

The pull-out test was performed on a Hounsfield Tensometer tensile test machine at a test 

speed of l0mm/min. 

The geometry of a single riveted joint specimen for the pull-out test with two fixtures is 

shown in Fig. 2.11. 

6C 
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et 

i 
Figure 2.11 Specimen geometry for the pull-out test 
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2.4.4 Fatigue Test 

The specimen geometry for the fatigue tests was the same as for the shear test, as shown in 

Figs. 2.7,2.8. The fatigue tests were performed in a closed-loop servo-hydraulic universal 
fatigue test machine with a load capacity of 200kN. A sinusoidal waveform in tension- 

tension was chosen as the applied load with a frequency of 20Hz. The maximum applied 

loads were calculated from the average ultimate shear load of the joint and ranged from 

85% to 50% of the average ultimate shear load. The minimum applied load was 0.5kN due 

to the limitation of the test machine. Some fastening conditions were tested at five load 

levels, while others were at three load levels. 

At least 2 samples were tested at each load level for each fastening condition. In order to 

perform statistical analysis 21 samples were tested at each fastening condition. Some tests 

were manually stopped after a fixed number of cycles and the samples were disassembled 

and examined microscopically. 

2.5 Metallographic Investigation of Self-piercing Riveted Joints 

Metallographic investigation was carried out to examine the deformation and failure 

characteristics of the joints. Light microscopy and Scanning Electron Microscopy (SEM) 

were employed for the investigation. In order to assess the effect of the setting parameters 

on the quality of the joints, metallographic investigation was performed on a limited 

number of samples in cross-section. The characteristics that represent a good quality joint 

include the following: 

1. Flushness of the rivet head. 

2. Symmetrical and properly flared rivet shank. 
3. No significant gaps between the riveted sheets and between the rivet and the sheets. 
4. No breakthrough. 

5. No cracks in the rivet or the sheet materials. 

The influence of certain setting parameters on the cross-sectional deformation 

characteristics was established by comparing the various fastening conditions investigated. 
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Metallographic investigation was also performed on a number of samples after fatigue 

failure. Some samples that had not failed after fatigue testing were also examined in order 

to examine the deformation characteristics of the joints. 
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CHAPTER THREE 

3. EXPERIMENTAL RESULTS 

3.1 FSN5 Series 

The FSN5 series of fastenings was created for joining NG5754 alloy sheet together with 

thickness combinations of (1 mm+2mm), (2mm+2mm), (2mm+lmm) and (1 mm+l mm). 

Four types of rivet and anvil combinations were selected for this series of fastenings. The 

FSN51 and the FSN52 fastenings had a (2mm+2mm) combination, but the rivet and anvil 

design were different in each case. The only difference between the FSN51 and the FSN56 

fastenings was the specimen size, as shown in Figs. 2.6 and 2.7. The FSN53 fastening had a 
(lmm+2mm) thickness combination with a corresponding reduction in rivet length 

compared with the FSN52 fastening. Therefore, any difference between the two fastenings 

would be referred to as a variation in thickness. The FSN51* and FSN53 * fastenings were 

produced using identical fastening conditions as the FSN51 and FSN53 fastenings. The 

FAN51* and FSN53* samples were exposed to a paint-bake cycle for 30 minutes at 180°C 

prior to testing. 
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3.1.1 Cross-sectional Examination 

Cross-sectional examination was performed on all the FSN5 series of fastenings in order to 

examine the effect of the setting parameters on the joint quality. The aim of this was to 

optimise the setting parameters. Two FSN51 fastenings were initially prepared under 

different setting parameters, as listed in Table 3.1. A cross-section of the FSN5Ia fastening 

is shown in Fig. 3.1 (a). It was observed that there was a gap between the two riveted sheets 

and the rivet shank did not flare symmetrically. Fig. 3.1 (b) shows a cross-section of the 

FSN51 fastening. It was evident that the longer rivet shank, compared with the FSN51a 

fastening, did not break through the lower sheet and the rivet flared symmetrically, while 

no gap developed between the two riveted sheets. The results suggested that the quality of 

the FSN51 fastening was satisfactory and better than that of the FSN51a fastening. The 

setting parameters for the FSN51 fastening were thus optimised and the setting parameters 
for the rest of fastenings were therefore selected based on this selection. 

Table 3-1 Setting parameters for FSN518 and FSN51 fastenings 

Sheet Material 
Thickness (mm) 

Fastening Rivet Code Anvil Code Setting Pressure 
Code Upper sheet Lower sheet 

(bar) 

FSN51a 23-0282 2 2 P634 120 

FSN51 23-5233 2 2 64015 240 

0j! 1I 
LA (b) 

Figure 3.1 (a) cross-section of FSN51�, (b) cross-section of the FSN51 
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Fig. 3.2 (a) shows a cross-section of the FSN52 fastening. It was apparent that the 

deformation characteristics of the fastening were not as good as for the FSN51 fastening. 

The rivet shank was slightly shorter leading to insufficient piercing of the upper sheet and 

flaring into the lower sheet. For comparison, the FSN52 fastening underwent mechanical 

tests even though the setting parameters for this fastening were not optimised as for the 

FSN51 fastening. A cross-section of the FSN55 fastening with a (1 mm+l mm) combination 

is shown in Fig. 3.2 (b). The joint quality is acceptable although there was a small gap 

between the two riveted sheets. This was probably caused by the low volume of the 1 mm 

locked sheet over the cavity of the anvil profile. 

(a) (b) 

Figure 3.2 (a) a cross-section of the FSN52 fastening 

(b) a cross-section of the FSN55 fastening 

Cross-sections of the FSN53 and FSN54 fastenings are shown in Fig. 3.3. Examination 

using optical microscopy indicated that the deformation characteristics of the setting 

process were satisfactory and the setting parameters produced an FSN53 fastening of good 

quality. For the FSN54 fastening, the upper sheet was clearly not totally pierced and there 

was a significant gap between the two riveted sheets, while the lower sheet was fractured 

in the centre of the cavity of the anvil profile. This suggested that the setting parameters 

could not produce a good quality FSN54 fastening. Based on the cross-sectional 

examination, it was concluded that the FSN54 fastening would perform very poorly. 

Therefore, no mechanical testing was carried out for the FSN54 fastening. 
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(a) (b) 

Figure 3.3 (a) a cross-section of the FSN53 fastening 

(b) a cross-section of the FSN54 fastening 

3.1.2 Mechanical Test Results 

3.1.2.1 Shear Test Results 

Fig. 3.4 shows the shear test results for the FSN5 series of fastenings. The FSN51 fastening 

exhibited the highest ultimate shear load and the FSN55 fastening had the lowest ultimate 

shear load. The ultimate load for the FSN51 fastening was higher than that for the FSN51 * 

fastening indicating that the paint-baking cycle reduced the ultimate shear load of the 

fastening. The lower ultimate shear load for the FSN52 fastening compared with the 

FSN51 fastening suggested that the rivet and anvil design affected the ultimate shear load. 

The slightly higher ultimate shear load for the FSN51 fastening compared with the FSN56 

fastening indicated the influence of the specimen size on the ultimate shear load. The fact 

that the FSN53 fastening had a lower ultimate shear load than the FSN52 fastening 

suggested that a reduction in the thickness of the upper sheet led to a decrease in the 

ultimate shear load. 
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Figure 3.4 Shear test results for the FSN5 series of fastenings 

3.1.2.2 Peel Test Results 

The peel test results for the FSN5 series of fastenings are shown in Fig. 3.5. The FSN51 

fastening exhibited the highest ultimate peel load, while the FSN55 fastening had the 
lowest ultimate peel load. The ultimate peel load for the FSN52 fastening was lower than 

that for the FSN51 fastening indicating that the rivet and anvil design had an effect on the 

ultimate peel load. The lower ultimate peel load for the FSN53 fastening compared with 
the FSN52 fastening suggested that lowering the thickness of the pierced sheet led to a 

reduction in the ultimate peel load. The ultimate peel load for the FSN53 fastening was 

about 15% higher compared with the FSN53* fastening indicating that paint-baking led to 

a slight reduction in the ultimate peel load. 
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Figure 3.5 Peel test results for the FSN5 series of fastenings 

3.1.2.3 Pull-out Test Results 

Fig. 3.6 shows the pull-out test results for the FSN5 series of fastenings. As for the shear 

and peel test results, the FSN51 fastening exhibited the highest ultimate pull-out load. The 

lower ultimate pull-out load for the FSN52 fastening compared with the FNS51 fastening 

suggested that the selection of rivet and anvil design had an effect on the pull-out strength. 

The higher pull-out strength of the FSN52 fastening compared with the FSN53 fastening 

indicated that a reduction in the thickness of the pierced sheet corresponded to a decrease 

in the pull-out strength. The ultimate pull-out load for the FSN53 fastening was almost the 

same as for the FSN53 * fastening indicating that the paint-bake cycle had a marginal effect 

on the pull-out strength. 
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Figure 3.6 Pull out test result for the FSN5 series of fastenings 

3.1.2.4 Fatigue Test Results 

The fatigue test results for the FSN5 series of fastenings are shown in Fig. 3.7. The FSN51 

fastening exhibited the best fatigue behaviour in this series of fastenings. The S-N curves 

indicated that the FSN51 fastening had the longest fatigue endurance, whilst the fatigue 

endurance for the FSN53 * fastening was the lowest. Compared with the FSN51 fastening, 

the fatigue endurance for the FSN56 fastening was shorter indicating that a reduction in the 

specimen size led to a decrease in the fatigue life. The shorter fatigue life for the FSN52 

fastening compared with the FSN51 fastening indicated that the rivet and anvil design 

affected the fatigue endurance. The lower fatigue endurance for the FSN53 compared with 

the FSN52 fastening suggested that decreasing the upper sheet thickness led to a decrease 

in fatigue life. The fatigue endurance for the FSN53 fastening was marginally higher than 

that for the FSN53 * fastening indicating that the paint-bake cycle had a marginal influence 

on the fatigue endurance. 
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Figure 3.7 Fatigue test results for the FSN5 series of fastenings 

3.1.3 Failure Modes 

Three distinct failure modes were observed to occur in static and fatigue tests. These are 
described as rivet pull-out, rivet fracture and sheet material failure. Rivet pull-out involved 

sample failure due to the rivet pulling out during the tests. Rivet fracture describes the 

failure where the rivet fractured. Sheet material failure simply implied that sample failure 

was due to fracture of the sheet material. 

In shear tests, all samples failed by rivet pull-out. Fig. 3.8 shows fractured samples having 

(1 mm+2mm) and (2mm+2mm) thickness combinations. The rivet was pulled out of the 
locked sheet leading to a separation of the two riveted sheets, whilst the rivet was still 

attached to the pierced sheet. Both the pierced and the locked sheets had suffered some 
deformation and the I mm pierced sheet suffered more distortion than the 2mm pierced 

sheet. For some fastenings with a (2mm+2mm) thickness combination, the rivet head also 
fractured, whilst the button remained intact, as shown in Fig. 3.8(c). This indicated that the 
countersunk rivet head might be a stress concentration point. 
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I mm pierced sheet 

(a) 

2mm pierced sheet 

(c) 

, V4ý1 

2mm locked sheet 

2mm locked sheet 

2mm pierced sheet 

Figure3.8 Failure modes observed in shear 
tests. (a) rivet pull-out for a FSN53 fastening, 
(b) rivet pull-out for a FSN51 fastening (c) 
fractured rivet head and intact button for a 
FSN51 fastening 

During peel testing, failure occurred by either rivet pull-out or sheet material failure. All 

the joints with a (2mm+2mm) thickness combination failed by the rivet being pulled out, 

whilst fracture of the thinner sheet occurred for all the joints with a (1 mm+2mm) thickness 

combination. Fig. 3.9 shows these two different failure modes. 
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(a) (b) 

Figure 3.9 Failure modes for the peel test, 

(a) Rivet pull-out failure in (2mm+2mm) joint, 

(b) Sheet material failure in (lmm+2mm) joint 
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? mm locked sheet 
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Figure 3.10: Rivet pull-out failure in all the pull-out tests, 

(a) a (lmm+2mm) joint, (b) a (2mm+2mm) joint 
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The pull-out test was specially designed to measure the clinch strength of the joints. All 

samples being tested by the pull-out test failed by means of rivet pull-out. Therefore rivet 

pull-out was the only failure mode observed for the pull-out test for both (2mm+2mm) and 
(lmm+2mm) thickness combinations, despite the fact that the thinner pierced sheet 

suffered more distortion than the thicker component, as shown in Fig. 3.10. 

The failure modes that were observed in fatigue tests were rivet fracture and sheet material 
failure. The joints with a (1 mm+2mm) thickness combination failed by sheet material 
failure only, whilst either rivet fracture or sheet material failure occurred for the joints 

with a (2mm+2mm) thickness combination depending on the magnitude of the applied 
load. For joints with a (1 mm+2mm) thickness combination, the 1mm thick pierced sheet 

suffered more distortion than the 2mm thick locked sheet. Eventually the thinner sheet 
fractured near the rivet head but the rivet remained undamaged still connecting the two 

sheets together, as shown in Fig. 3.11(a). For joints with a (2mm+2mm) combination, when 
the applied loads exceeded 3.6kN, rivet fracture dominated the failure mode together with 
fracture of the sheet material, as shown in Fig. 3.11 (b). At applied loads lower than 3. OkN, 

sheet material fracture was the dominant mechanism of failure, as shown in Fig. 3.11 (c). In 

addition, black-coloured scars were observed at the interface between the two riveted 

sheets, as presented in Figs. 3.11 (b) and (c), indicating that fretting took place at the 
interface. 
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3.2 FSH5 Series 

Figure 3.11: Failure modes for the fatigue 
test, (a) sheet material failure in 
(lmm+2mm) joint, (b) rivet fracture in 
(2mm+2mm) joint that failed at a 
maximum load of 3.6kN, (c) sheet 
material failure in (2mm+2mm) joint that 
failed at a maximum load of 2.7kN 

(c) 

The FSH5 series of fastenings was created specially for investigating the effect of the sheet 

surface condition on the fretting behaviour in light of the observation of fretting damage at 

the interface between the two riveted sheets. Alloy HS5754, which had the same 

mechanical properties as the NG5754 alloy but without the application of the wax-based 

surface lubricant, was used to produce the FSH5 series of fastenings with a (2mm+2mm) 

thickness combination. The FSH52 fastening was the same as the FSH51 fastening except 

that the former was prepared by inserting a PTFE tape at the interface between the two 

riveted sheets in order to examine if this could reduce or prevent fretting from taking place. 

The setting parameters used for the FSH5 series of fastenings was identical to those used 

for the FSN51 fastening. 
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3.2.1 Cross-sectional Examination 

Fig. 3.12 shows a cross-section of the FSH52 fastening. It was observed that the cross- 

sectional deformation characteristics of the FSH52 fastening were similar to the FSN51 

fastening despite the insertion of PTFE tape at the interface between the two riveted sheets. 

The FSH51 fastening also had satisfactory cross-sectional deformation characteristics 

similar to the FSN51 fastening, as shown in Fig. 3.1 (b). 

Figure 3.12 a cross-section of the FSH52 fastening 

3.2.2 Mechanical Test Results 

3.2.2.1 Shear Test Results 

The shear test results for the FSH5 series of fastenings are shown in Fig. 3.13. The FSH51 

fastening exhibited higher shear strength than the FSH52 fastening indicating that the 

insertion of the PTFE tape reduced the shear strength. 
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Figure 3.13 Shear test results for the FSH5 series of fastenings 

3.2.2.2 Fatigue Test Results 

Fig. 3.14 shows the fatigue test results for the FSH5 series of fastenings. The FSH51 

fastening exhibited longer fatigue endurance than the FSH52 fastening. This indicated that 

the insertion of the PTFE tape led to a reduction in the fatigue strength of the fastening. 
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Figure 3.14 Fatigue test results for the FSHS series of fastenings 
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3.2.3 Failure Modes 

The failure mode that occurred during shear testing for the FSH5 series of fastenings was 
the same as for the FSN5 series of fastenings, as shown in Fig. 3.15. The rivet was pulled 

out and led to separation of the two riveted sheets. 

ice. 

(a) 

9 

a 

ý, c 1 0* 

(b) 

Figure 3.15 Failure mode for the shear test, (a) rivet pull-out for a FSH51 fastening, 
(b) rivet pull-out for a FSH52 fastening 

The failure mode that occurred during fatigue testing for the FSH51 fastening was the 

same as for the FSN51 fastening, whilst for the FSH52 fastening was different from the 

FSN51 fastenings. At high applied loads, rivet fracture occurred for the FSH51 fastening, 

while at low applied loads, the FSH51 fastening failed by . sheet material failure. The 

black-coloured fretting scars formed at the interface between the two riveted sheets for the 

FSN5 series of fastenings also appeared at the interface of the FSH51 riveted sheets similar 

to the FSN51 fastening. However, for the FSH52 fastening rivet fracture dominated the 
failure mode at all applied loads. In addition, no visible black scars formed at the interface 

between the two riveted sheets for the FSH52 fastening except at a maximum load of 

4.5kN. These observations indicated that the PTFE insert prevented the interface from 

suffering fretting damage, but in addition, the failure mechanism changed. Fig. 3.16 shows 

the failure mode and the interface of the two riveted sheets for the FSH5 series of 

fastenings. 
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,0 ._ý. xm .ý.. _. . _a_ý. (b) 

Figure 3.16 Failure modes in fatigue tests: (a) a FSH51 fastening that failed at a 
maximum load of 3. OkN, (b) a FSH52 fastening that failed at a maximum load of 
3. OkN 

3.3 FSA6 Series 

The FSA6 series of fastenings were made for joining AA6111 and NG5754 sheets 

together. For all the FSA6 series of fastenings, the upper sheet was either 2mm or 0.9mm 

thick AA6111 sheet with a variation in shelf-life. The lower sheet was a 2mm NG5754 

sheet. The objective was to examine the effect of the shelf-life of the AA6111 sheet on the 

joint quality and behaviour. There were two different thickness combinations of 

(2mm+2mm) and (0.9mm+2mm) for the FSA6 series of fastenings. For each thickness 

combination, the setting parameters were kept identical. The FSA62 fastening was the 

same as the FSA62* except that the latter had been exposed to a paint-bake cycle. Apart 

from this, the only variation for the FSA6 series of fastenings was the shelf-life of the 

AA6111 sheet. Therefore any variation in joint quality and strength would be referred to as 

a different shelf-life of the AA6111 sheet. 

3.3.1 Cross-sectional Examination 

Cross-sectional examination was carried out on the FSA6 series of fastenings in order to 

clarify whether identical setting parameters could be used to join the AA6111 sheet with a 

variation in shelf-life and achieve good cross-sectional deformation characteristics. 

Fig. 3.17 (a) shows a cross-section of the FSA63 fastening, which had a 2mm AA61 11 
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upper sheet with a 21-month shelf life. The rivet head was set down to flush and after 

piercing the upper sheet, the rivet shank flared properly into the lower sheet. There was no 

evidence of any gap or crack formation and the rivet did not break through the lower sheet. 

This suggested that up to a 21-month shelf-life, the 2mm thick AA61 II could be joined by 

using identical setting parameters with an acceptable joint quality. A cross-section of the 

FSA66 fastening, which had a 0.9mm AA61 11 upper sheet with a 10-month shelf-life, is 

shown in Fig. 3.17 (b). Similar to the cross-section of the FSA63 fastening, the cross- 

sectional deformation characteristics of the FSA66 fastening were satisfactory indicating 

that up to a 10-month shelf-life, the 0.9mm thick AA6111 sheet could be joined by using 

identical setting parameters to material of a lower shelf-life. 

(a) (b) 
Figure 3.17 (a) a cross-section of the FSA63 fastening 

3.3.1.1 Shear Test Results 

(b) a cross-section of the FSA66 fastening 

Fig. 3.18 shows the shear test results for the FSA6 series of fastenings with a (2mm+2mm) 

thickness combination. The ultimate shear load for the fastenings involving AA6111 sheet 

material with a different shelf-life did not change significantly indicating that the shelf-life 

of the sheet material had little influence on the ultimate shear load. The average ultimate 

shear loads for the FSA6 series of fastenings with a (2mm+2mm) thickness combination 

are shown in Fig. 3.19. The FSA62 fastening exhibited about 6% higher average ultimate 

shear load than the FSA62* fastening. This indicated that the paint-baking cycle led to a 

small reduction in the ultimate shear load for the FSA6 series of fastenings. 
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Figure 3.18 Shear test results for the FSA6 series of fastenings 
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Figure 3.19 Average shear ultimate load for the FSA6 series of fastenings 

The shear test results for the fastenings with a (0.9mm+2mm) thickness combination are 

shown in Fig. 3.20. The FSA64* fastening exhibited a slightly higher shear strength than 

the FSA65* and the FSA66* fastenings indicating that the shelf-life of the 0.9mm thick 

AA61 II sheet had a minor influence on the shear strength of the fastenings. 

48 



Experimental Results Chapter 3 

3.5 

3 

Z 

2.5 

2 
41 

co 1.5 
a) 
1D 

.E1 

0.5 

0 

 Maximum 
  Minimum 

Figure 3.20 Shear test results for the FSA6 series of fastenings with a (0.9mm+2mm) 
combination 

3.3.1.2 Peel Test Results 

The peel test results for the FSA6 series of fastenings with a (2mm+2mm) thickness 

combination are shown in Fig. 3.21. The FSA62 fastening exhibited the highest peel 

strength of all the fastenings. The corresponding FSA62* fastening, which had been paint- 

baked had about 15% lower peel strength. This indicated that the paint-bake cycle slightly 

reduced the peel strength of the fastenings. The slightly higher ultimate peel load for the 

FSA62* compared with the FSA61* and FSA63* fastenings suggested that the shelf-life of 

the 2mm AA6111 sheet only had a marginal effect on the peel strength of the fastenings. 
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Figure 3.21 Peel test results for the FSA6 series of fastenings with a (2mm+2mm) 
combination 

Fig. 3.22 shows the peel test results for the FSA6 series of fastening with a (0.9mm+2mm) 

combination. The peel strength of the FSA65* fastening was the highest of the fastenings 

indicating that the shelf-life of the 0.9mm thick AA6111 sheet affected the peel strength of 
the fastening. 
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Figure 3.22 Peel test results for the FSA6 series of fastenings with a (0.9mm+2mm) 
combination 
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3.3.1.3 Pull-out Test Results 

Fig. 3.23 shows the pull-out test results for the FSA6 series of fastenings with a 
(2mm+2mm) combination. The FSA62 fastening exhibited the highest pull-out strength of 

the fastenings. The pull-out strength for the three types of fastenings that had been exposed 

to a paint-bake cycle was slightly different from each other and lower than that for the 

FSA62 fastening. These observations indicated that the paint-bake cycle led to a reduction 

in the pull-out strength and the shelf-life of the 2mm AA61 11 sheet had a minor influence 

on the pull-out strength. 
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Figure 3.23 Pull-out test results for the FSA6 series of fastenings with a (2mm+2mm) 

combination 

The pull-out test results for the FSA6 series of fastenings with a (0.9mm+2mm) 

combination are shown in Fig. 3.24. For all three fastenings, the pull-out strength was 

similar to each other indicating that the shelf-life of 0.9mm thick AA6111 sheet had little 

influence on the pull-out strength. 
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Figure 3.24 Pull-out test results for the FSA6 series of fastenings with a 
(0.9mm+2mm) combination 

3.3.1.4 Fatigue Test Results 

The fatigue test results for the FSA6 series of fastenings with a (2mm+2mm) combination 

are shown in Fig. 3.25. The fatigue strength of the FSA62 fastening was marginally lower 

than that of the FSA62* fastening indicating the effect of paint-baking on the fatigue 

strength. The slightly different fatigue endurance between the FSA61 *, FSA62* and 

FSA63* fastenings at a same applied load indicated that the shelf-life of the 2mm thick 

AA6111 sheet had only a minor influence on the fatigue endurance. 
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Figure 3.25 Fatigue test results for the FSA6 series of fastenings 
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Fig. 3.26 shows the fatigue test results for the FSA6 series of fastenings with a 

(0.9mm+2mm) combination. From the figure, it is difficult to identify which fastening had 

the highest fatigue strength due to the overlap in the fatigue data under different 

conditions. This might indicate that the shelf-life of the 0.9mm thick AA6111 sheet had 

little influence on the fatigue strength of the fastenings. 
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Figure 3.26 Fatigue test results for the FSA6 series of fastenings with a (0.9mm+2mm) 

combination 

3.3.2 Failure Modes 

The failure mode observed for the FSA6 series of fastenings during shear testing was Rivet 

pull-out. This behaviour was similar to that of the FSN5 series of fastenings. As shown in 

Fig. 3.27, the rivet was pulled out of the locked sheet leading to a separation of the two 

riveted sheets, whilst the rivet was still attached to the pierced sheet. Both pierced and 

locked sheets suffered deformation with the 0.9mm sheet having more distortion. The 

failure mode for the peel and pull-out tests was also the same as for the FSN5 series of 

fastenings. For fastenings with a (0.9mm+2mm) combination, the thinner sheet fractured 

leading to sheet material failure during peel testing. For the pull-out test, rivet pull-out 

dominated the failure mode with more deformation suffered by the thinner sheet. For the 

fastenings with a (2mm+2mm) combination, all samples failed by the rivet being pulled 

53 

5 5.5 6 6.5 7 



Experimental Results Chapter 3 

out of the lower sheet leading to the separation of the two riveted sheets. Rivet pull-out was 

the only failure system observed for fastenings with a (2mm+2mm) combination. 

0.9mm AA61 11 

s 

MW A* 

2mm NG5754 

2min AA61 11 

2mm NG5754 

Figure 3.27 Rivet pull-out failure for the shear test 

Fig. 3.28 shows the failure modes that occurred during fatigue testing. Similar to the FSN5 

series of fastenings with a (lmm+2mm) combination, the FSA6 series of fastenings with a 

(0.9mm+2mm) combination failed by sheet material failure, as shown in Fig. 3.28 (a). The 

0.9mm AA6111 pierced sheet fractured, while the rivet still connected the two sheets. At 

applied loads at and above 3.6kN, the FSA6 series of fastenings with a (2mm+2mm) 

combination failed by rivet fracture. At applied loads at and lower than 3. OkN, sheet 

material failure dominated the failure mode, as shown in Figs. 3.28 (b) and (c). At all load 

levels, sheet material fracture was suffered only by the locked sheet, whilst the AA6111 

pierced sheet underwent very little deformation. This was different from the observations 

of the failure mode for the FSN5 series of fastenings with a (2mm+2mm) combination. 

This indicated that the sheet material properties might affect the failure mode. Black- 

coloured fretting scars also formed at the interface between the two riveted sheets 

indicating that fretting had taken place. 
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3.4 FSP5 Series 

The FSP5 series of fastenings was created to join nominal 2mm NG5754 alloy sheets, 

which were pre-strained to different levels. The objective was to examine the effect of 

variations in the sheet strain level, which could occur during the sheet manufacturing 
procedure and the stamping process during car-body assembly, on the quality and 
behaviour of the joints. There were two groups in this series of fastenings. One group was 
exposed to a paint-bake cycle indicated by `*' in the fastening code, while the other was 
not. The setting parameters for all the FSP5 series of fastenings were identical to those of 
the FSN51 fastening, which was made from the 2mm thick NG5754 sheets with 0% pre- 
straining. The only variation for this FSP5 series of fastenings was the pre-straining level, 

which was indicated by the last number in the fastening code. For example, the fastening 

code FSP510 meant that the pre-straining level of the sheets joined by this fastening was 
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10%. Therefore any variation in the joint strength would be due to the effect of different 

pre-straining levels. 

3.4.1 Cross-sectional Examination 

The setting parameters that were used for all the FSP5 series of fastenings were identical 

despite the variation in pre-straining levels for the sheet material. The cross-sectional 

deformation characteristics of joints were assessed in order to examine whether good joint 

quality could be achieved by using identical setting parameters to join the sheet material 

with different pre-straining levels. Fig. 3.29 shows a cross-section of the FSP510 fastening. 

It is clearly shown that the rivet was set down fully flush and flared properly. The 

microscopic examination indicated that there were no cracks in the sheet material and no 

gaps between the riveted sheets. This indicated that identical setting parameters could be 

used to join the NG5754 sheet at up to 10% pre-straining successfully leading to good 

cross-sectional deformation characteristics. 

Figure 3.29 a cross-section of the FSP510 fastening 
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3.4.2 Mechanical Test Results 

3.4.2.1 Shear Test Results 

Fig. 3.30 shows the shear test results for the FSP5 series of fastenings that had not been 

exposed to a paint-bake cycle. The FSP5 10 fastening exhibited the highest ultimate shear 

load indicating that the increase in the amount of pre-straining had led to an increase in the 

shear strength of the fastenings. The results show that the ultimate shear load increased as 

the amount of pre-straining increased. The shear test results for the FSP5 series of 

fastenings that had been exposed to a paint-bake cycle are shown in Fig. 3.31. The ultimate 

shear load of the FSP50* fastening, which had not been pre-strained, was the lowest for the 

FSP5 series of fastenings. The results show that the higher pre-straining level, the higher 

the shear strength of the fastening even after paint-baking. Comparing Fig. 3.30 with 

Fig. 3.31, the FSP5 series of fastenings that had been exposed to a paint-bake cycle 

exhibited lower shear strength than the fastenings that had not been exposed to a paint- 

bake cycle. This indicated that the paint-bake cycle reduced the shear strength of the 

fastenings. 
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Figure 3.30 Shear test results for the FSP5 series of fastenings before paint-baking 
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Figure 3.31 Shear test results for the FSP5 series of fastenings after paint-baking 

3.4.2.2 Fatigue Test Results 

The fatigue test results for the FSP5 series of fastenings that had not been exposed to a 
paint-bake cycle are shown in Fig-3.32. The FSP510 fastening exhibited the longest fatigue 

life, whilst the FSP50 fastening, which had not been pre-strained had the shortest fatigue 

life of all the FSP5 series of fastenings. This suggested that the fatigue strength increased 

as the pre-straining level increased. The difference in the fatigue life between the FSP50 

and FSP53 fastenings was larger than that between the FSP55 and FSP510 fastening. This 

indicated that only a small increase in fatigue life occurred by increasing the pre-straining 
level above about 5%. 
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Figure 3.32 Fatigue test results for the FSP5 series of fastenings before paint-baking 

Fig. 3.33 shows the fatigue test results for the FSP5 series of fastenings that had been 

exposed to a paint-bake cycle. At maximum loads greater than 3.6kN, the FSP510* 

fastening exhibited the longest fatigue life. The increase in the pre-straining level led to an 
increase in the fatigue life after paint-baking. However, at maximum loads lower than 

3.6kN, the increase in the pre-straining levels was not accompanied with an increase in the 

fatigue life. This was probably attributed to the scatter of the fatigue data and poor 

sampling. 
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Figure 3.33 Fatigue test results for the FSP5 series of fastenings after paint-baking 
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3.4.3 Failure Modes 

The failure mode that occurred for the FSP5 series of fastenings during shear testing was 

rivet pull-out. This behaviour was the same as for the FSN5 series of fastenings with a 

(2mm+2mm) combination. All fastenings failed by the rivet being pulled out of the locked 

sheet leading to the separation of the two riveted sheets, whilst the rivet still remained 

connected to the pierced sheet. During fatigue testing, at applied loads above 3.6kN, rivet 

fracture, that was accompanied by fracture of the riveted sheet, occurred for the FSP50 

and FSP53 fastenings. At lower applied loads, only sheet material failure occurred. These 

observations were similar to those for the FSN51 fastenings. For the FSP55 and FSP510 

fastenings, sheet material failure was the dominant failure mode at all applied loads. 

Fig. 3.34 shows the failure modes that were observed during fatigue testing. At a maximum 

applied load of 4.5kN, the FSP53 fastening failed by rivet fracture with fracture of the 

locked sheet, whilst only fracture of the locked sheet occurred for the FSP5 10 fastening. 

The results indicated that the amount of pre-straining had an influence not only on the 

fatigue strength but also on the failure mode of the fastenings. Fretting was also observed 

to occur at the interface between the two riveted sheets indicated by the black-coloured 

fretting scars that formed at the interface. 

The failure modes for the paint-baked samples were the same as without paint-baking. 
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Figure 3.34 Failure modes occurred during fatigue testing, (a) rivet fracture in a 
FSP53 fastening that failed at 4.5kN after 224,770 cycles, (b) sheet material failure in 

a FSP510 fastening that failure at 4.5kN after 321,210 cycles 
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CHAPTER FOUR 

4. JOINT STRENGTH CHARACTERISTICS 

The strength characteristics of self-piercing riveted joints depend on a variety of factors. 

The process parameters including the setting force, the rivet design and the anvil profile as 

well as the thickness and properties of the sheet material are believed to be the major 
influential factors. Drawing from past experience (King, [22]) and through microscopic 

examination, the optimum process parameters were identified during the initial part of the 

study. The joints that were used for mechanical testing were manufactured using these 

optimum parameters. It must be noted that any alteration of the influential factors requires 

a different combination of setting parameters for optimum setting conditions. As a result, a 
direct comparison of data from samples having different process parameters can be 

difficult. 

4.1 Influence of Specimen Size 

The specimen size has an influence on both the ultimate shear load and the fatigue 

endurance. Fig. 4.1 shows the shear test results for the FSN51 and FSN56 fastenings that 
had a different specimen size from each other. The FSN51 fastening that joined sheets with 
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a 60mm width exhibited an ultimate shear load that was greater by about 35% than the 

FSN56 fastening, which joined sheets with a 48mm width. 
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Figure 4.1 Comparison of shear ultimate load 

During shear testing, the sheet material was subjected to a tensile stress with a non-uniform 
distribution along the discontinuous cross-section. Under the same load, the stress acting 
on the sheet for the FSN56 fastening was higher than that for the FSN51 fastening. 

Localised yielding might therefore occur earlier in the FSN56 fastening than in the FSN51 

fastening as the load increased. In addition, the sheet material adjacent to the rivet was also 

subjected to a bearing stress since the rivet was in bearing against the side of the two 

sheets. Initially, the bearing stress was concentrated at the point of contact and then 

yielding of the sheet adjacent to the rivet occurred as the load increased. After yielding, the 

embedment of the rivet on a larger area of contact led to a more uniform stress distribution 

and concentrated on bearing the end of the sheet material. The development of bearing 

stresses for a self-piercing riveted joint is supposed to be the same as for a conventional 

riveted joint that was reported by Kulak et al. [34] and is shown in Fig. 4.2. 

"Id AMR- quop- so 

(a) (b) (c) 

Figure 4.2 Distribution of bearing stresses: (a) elastic, (b) elastic-plastic, (c) nominal 
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Although the uniform stress distribution is not known, according to Kulak et al. [34], the 

maximum bearing resistance of the end of the sheet material ab can be expressed as 

. ý1sd-o. 7)Q, ah -( 
r 

0.7115d- 
Equation 4-1 

where l is the distance from the overlap end to the centre of the rivet, d is the diameter of 

the fastener and o represents the tensile strength of the sheet material. As the FSN51 and 

the FSN56 fastenings joined identical sheet materials using identical rivets the two 

fastenings had the same value of d and a, The value of 1, which was half of the overlap 

length, was smaller for the FSN56 fastening than that for the FSN51 fastening. As a result, 

the FSN56 fastening had a much lower bearing resistance than the FSN51 fastening. The 

failure mode that occurred during shear testing for both the FSN51 and the FSN56 

fastenings was rivet pull-out indicating that the bearing resistance of the riveted sheet was 

sufficient to prevent the rivet from tearing the riveted sheets. However, the lower bearing 

resistance for the FSN56 fastening led to more deformation at the end portion of the 

riveted sheets compared with the FSN51 fastening, as shown in Fig. 4.3. In addition, the 

rivet was subjected to both a shear and a bending force. The bending moment tended to 

pull out the rivet by overcoming the frictional force between the rivet shank and the riveted 

sheets. The earlier yielding and the lower bearing resistance for the FSN56 fastening 

facilitated the rivet to overcome the frictional force and contributed to the reduction in the 

ultimate shear load for the FSN56 fastening. 

FSN51 

Figure 4.3 Deformation that occurred at 
the edge of the overlap for the FSN51 and 
FSN56 fastenings 

FSN56 
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The effect of the specimen size on the fatigue behaviour is shown in Fig. 4.4. The FSN51 

fastening exhibited a longer fatigue endurance than the FSN56 fastening. 
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Figure 4.4 Comparison of fatigue endurance 

The different specimen size of the two fastenings led to a different stress distribution on 

the cross-section of the sheet material. At a given applied load, the stress acting on the net 

section of the FSN56 fastening was higher than that of the FSN51 fastening due to the use 

of riveted sheets of a lower width. Fatigue, as a progressive failure phenomenon, proceeds 

by initiation and propagation of cracks to an unstable size. This is normally determined by 

the magnitude of the stresses and the presence of defects. At an equivalent load, the stress 

acting on the FSN56 fastening was greater than that acting on the FSN51 fastening. This 

led to quicker initiation and propagation of cracks in the FSN56 sample than in the FSN51 

fastening. This contributed to the apparent shorter fatigue life of the FSN56 fastening. 

Fig. 4.5 shows the fatigue data that was plotted as the ratio of the maximum applied load to 

the average ultimate shear load for the FSN51 and FSN56 fastenings. As shown in the 

figure, when the maximum applied load was 70% of the ultimate shear load, the fatigue 

endurance of the FSN51 fastening was about 10% higher than that for the FSN56 
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fastening. At 106 fatigue cycles, the FSN51 fastening sustained about 62% of its ultimate 

shear load, whilst the FSN56 fastening sustained only 52% of its ultimate shear load. This 

suggested that the FSN51 fastening had a better shear and fatigue performance than the 

FSN56 fastening. 
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Figure 4.5 Ratio of max. applied load/ultimate shear load versus LogN 

4.2 Influence of Sheet Material Strength 

The sheet material strength had an influence on both the static and the fatigue behaviour of 

the fastenings. Fig. 4.6 shows the shear, peel and pull-out test results for the FSN51 and the 

FSA62 fastenings. The FSA62 fastening exhibited a higher shear strength, but a slightly 

lower peel and pull-out strength compared with the FSN51 fastening. 
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Figure 4.6 Influence of material properties on static tests 

The only difference between the two fastenings was that the FSA62 fastening had a pierced 

sheet of 2mm-thick AA6111, whilst the FSN51 fastening had a 2mm-thick NG5754 sheet 

as the pierced sheet. The locked sheet for both fastenings was a 2mm-thick NG5754 sheet. 

Therefore the variation in the joint behaviour was due to the different mechanical 

properties of the pierced sheet. 

As discussed in section 4.1, during shear testing, the tensile stress and the bearing stress 

acting on the sheet material affected the ultimate shear load. The 2mm-thick AA6111 

pierced sheet for the FSA62 fastening had a higher tensile strength and a higher yield stress 

compared with the 2mm-thick NG5754 pierced sheet used for the FSN51 fastening, as 

shown in Fig. 4.7. Therefore, the AA61 I1 sheet of the FSA62 fastening could withstand a 

higher stress before localised yielding occurred. In the meantime, the bearing stress of the 

sheet material is proportional to the tensile strength, as shown in Equation 4.1, and 

therefore the AA61 II sheet was able to take up a higher bearing load. The higher yield 

strength and the higher bearing resistance of the AA61 II sheet therefore contributed to the 

higher shear strength of the FSA62 fastening. 
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Figure 4.7 Tensile test results for AA6111 and NG5754 

During peel and pull-out testing, the failure mode that occurred for the FSN51 and FSA62 

fastenings, was by means of rivet pull-out with both riveted sheets suffering a small 

amount of deformation. This indicated that the peel and the pull-out forces concentrated on 

the clinch button of the fastening. The clinch strength, which was mainly governed by the 

frictional force between the rivet shank and the two riveted sheets, was eventually 

overcome by the load transferred by the sheet material to the clinch leading to separation 

of the two riveted sheets. Therefore, the frictional force, which was affected by 

deformation of the sheet material and the flare of the rivet into the lower sheet, had an 

influence on both the peel and the pull out strength. According to King [22], the 

mechanical properties of the sheet material affected the deformation characteristics of the 

fastening during the setting process. The harder and stronger material required a higher 

setting force to allow indentation and deformation of the sheet material, otherwise, the 

rivet would not flare properly and consequently the joint strength would be affected. As 

shown in Fig. 4.7, the AA6111 sheet was stronger than the NG5754 sheet. In addition, the 

AA6111 alloy was also harder with a Vickers hardness value of 98 compared to 68 for the 

NG5754 alloy. Therefore a slightly higher setting force was probably required when 

joining AA6111 sheet. However, for comparison, the setting force used for the FSN51 and 

the FSA62 fastenings was identical. This could slightly affect the rivet flare into the lower 

sheet leading to a small reduction in the clinch strength. It should be noted here that the 
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surface of the AA6111 sheet differed from that of the NG5754 sheet in that the former was 

not covered by the wax-based solid lubricant. This could provide the interface between the 

rivet shank and the riveted sheet for the FSA62 fastening with a slightly higher coefficient 

of friction. However, the normal force (contact pressure) at the interface for the FSA62 

fastening might be much lower than for the FSN51 fastening due to the use of an identical 

setting force. The frictional force at the interface for the FSA62 fastening, even with a 

slightly higher coefficient of friction, was still possibly lower than for the FSN51 

fastening. As a result, the peel and pull-out strength of the FSA62 fastening were slightly, 
but not significantly, lower than that of the FSN51 fastening. These results suggested that 

the peel and the pull-out strengths were mainly dependent on the clinch strength, whilst the 

shear strength depended on both the sheet material properties and the clinch strength. 

In addition to the effect on the static behaviour, the sheet material properties also affected 
the fatigue performance of the fastenings. Fig. 4.8 shows the fatigue test results for the 

FSN51 and the FSA62 fastenings. At maximum loads greater than 3.5kN, the FSA62 

fastening exhibited slightly longer fatigue endurance, whilst at a maximum load lower than 

3.5kN, the fatigue endurance for both fastenings was almost the same. At loads exceeding 
3.5kN, rivet fracture was observed for both the FSN51 and the FSA62 fastenings, as 

shown in Figs. 3.11 (b) and 3.28 (b) indicating that the fatigue strength was dominated by 

rivet. At an identical applied load, the stress acting on the cross-section of the sheet 

material for the FSN51 fastening was more critical than it was for the FSA62 fastening due 

to the higher strength of the AA61 11 sheet. This contributed to the initiation and 

propagation of cracks on the NG5754 sheet material. Fracture of the NG5754 sheet for 

both the FSN51 and the FSA62 fastenings was observed to occur during the fatigue test. 

The fracture of both the pierced and the locked sheet for the FSN51 fastening aided the 

rivet fracture. In the meantime, the lower yield stress and bearing stress of the NG5754 

sheet for the FSN51 fastening facilitated the rivet pull-out. These factors contributed to a 

shorter fatigue life for the FSN5 I fastening compared with the FSA62 fastening. By 

contrast, the AA6111 pierced sheet did not fracture even at the highest applied load, as 

shown in Fig. 3.28 (c). Considering also the higher yield stress and bearing stress of the 

AA6111 sheet, the rivet pull-out for the FSA62 fastening did not occur as easily as for the 
FSN5I fastening. Therefore, the FSA62 fastening exhibited a longer fatigue life than the 
FSN51 fastening. At applied load levels below 3.5kN, the failure mode that occurred for 
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the two fastenings was sheet material failure, as shown in Figs. 3.1 1 (c) and 3.28 (c). This 

indicated that the fatigue strength was mainly dominated by the initiation and propagation 

of cracks on the locked sheet that failed during fatigue testing. The use of a NG5754 lower 

sheet therefore led to almost the same fatigue life for both the FSN51 and FSA62 

fastenings. 
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Figure 4.8 S-N curves for the FSN51 and the FSA62 fastenings 

The fatigue behaviour between the two fastenings can also be compared by plotting the 

fatigue data in the form of the ratio of the maximum applied load to the average ultimate 

shear load against LogN (number of cycles), as shown in Fig. 4.9. At an identical ratio, the 

FSN51 fastening exhibited better fatigue performance than the FSA62 fastening. This 

indicated that the FSN51 fastening had a better balance between the shear and fatigue 

behaviour compared with the FSA62 fastening. The high strength of the AA611 1 sheet was 

probably not utilised efficiently during fatigue testing. This was also suggested by the 

fatigue failure mode that occurred for the FSA62 and the FSN51 fastenings. Rivet fracture 

and locked sheet fracture with no visible cracks on the AA6111 pierced sheet were the 

only failure system for the FSA62 fastening. In contrast, both locked sheet and pierced 

sheet fracture were involved in the failure mechanism for the FSN51 fastening, in addition 

to rivet fracture. 
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Figure 4.9 Ratio of Maximum applied load/Average ultimate shear load versus LogN 

4.3 Influence of Sheet Material Thickness and Setting Force 

Fig. 4.10 shows the static test results for the FSN52 and the FSN53 fastenings. The upper 

sheet thickness differed between the two fastenings and consequently different setting 
pressure values were used, as listed in Table 2.6. The FSN52 fastening, which had a 2mm- 

thick pierced sheet and was pierced using a setting pressure of 120bar, exhibited a higher 

static strength than the FSN53 fastening, which had a1 mm pierced sheet and adopted a 

setting pressure of 100bar. This indicated that the sheet material thickness and possibly 

setting force had an influence on the static strength. 
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Figure 4.10 The influence of the thickness of the upper sheet 

During shear testing, the tensile stress acting on the cross-section of the 1 mm pierced sheet 

for the FSN53 fastening was twice the stress acting on the cross-section of the 2mm 

pierced sheet for the FSN52 fastening. In addition, according to Kulak et al [34], based on 

the assumption of a uniform stress distribution, the nominal bearing stress can be expressed 

as 

Qh - Equation 4-2 

where P denotes the load sustained by the rivet, t the sheet thickness and d the rivet 
diameter. The FSN52 and the FSN53 fastenings had an identical rivet diameter d. 

Therefore, under the same shear load P, the bearing stress acting on the 1 mm pierced sheet 

adjacent to the rivet for the FSN53 fastening was twice the bearing stress acting on the 

2mm pierced sheet for the FSN52 fastening. These factors caused an earlier localised 

yielding and more distortion on the 1 mm pierced sheet for the FSN53 fastening than on the 
2mm pierced sheet for the FSN52 fastening, as shown in Fig. 4.11. Once localised yielding 

occurred, the external load concentrated more on the rivet due to the embedment of the 

rivet which thus was in contact with a larger area of the riveted sheet leading to its pull out. 
The lower setting force that was used for the FSN53 fastening compared with the FSN52 

fastening provided the joint with a lower contact pressure leading to a lower frictional 

force at the interface between the rivet shank and the riveted sheets. The rivet for the 
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FSN53 fastening was therefore pulled out more easily than for the FSN52 fastening. These 

factors contributed to the lower shear strength of the FSN53 fastening. 

2mm pierced sheet 

ae .r.. 
+ä 

Figure 4.11 Deformation of the pierced sheet that occurred in shear test 

f" ., 

During peel testing, peeling and bending of the sheet material around the rivet head 

dominated the process. According to bending theory, the maximum bending stress acting 

on a rectangular-section beam, which is subjected to a bending moment M about the z-axis, 

can be expressed as 

Mh 
am 2 _6M Equation 4-3 

ar bh; bh 2 
12 

where b is the beam width and h is the beam height. The reverse square relationship 
between the maximum bending stress and the height, which was equal to the thickness of 
the sheet led to a very high bending stress on the 1 mm sheet. Under an identical bending 

moment, the maximum bending stress on the lmm-thick pierced sheet for the FSN53 

fastening was 4 times the stress acting on the 2mm-thick pierced sheet for the FSN52 

fastening. The I mm-thick pierced sheet failed to sustain the very high bending stress 
leading to eventual failure of the FSN53 fastening by sheet material failure, as shown in 

Fig-3.9 (b). In this case, the effect of the setting force was less critical and had little effect 

on the joint strength. For the FSN52 fastening, the 2mm-thick sheet material could sustain 
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the bending moment and therefore transferred the load to the joint. The load on the joint 

concentrated on the clinch button of the fastening and eventually overcame the clinch 

strength of the FSN52 fastening leading to the rivet being pulled out. 

During pull-out testing, the external load would overcome the clinch strength unless the 

sheet material failed to transfer the load to the joint. Both the FSN52 and FSN53 fastenings 

failed by rivet pull-out in the pull-out test indicating that the pull-out strength was 

dominated by the clinch strength. The lower setting force probably provided the FSN53 

fastening with a lower frictional force at the interface between the rivet shank and the 

riveted sheets leading to a lower clinch strength. This contributed to the reduction in the 

pull-out strength for the FSN53 fastening compared with the FSN52 fastening. 

The fatigue test results for the two fastenings are shown in Fig. 4.12. The FSN52 fastening 

exhibited a higher fatigue strength than the FSN53 fastening indicating the effect of the 

sheet material thickness and the setting force. 
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Figure 4.12The influence of the sheet material thickness on the fatigue test results 

Similar to shear testing, during fatigue testing, the stress acting on the cross-section of the 

1 mm pierced sheet for the FSN53 fastening was twice the stress acting on the cross-section 

of the 2mm pierced sheet for the FSN52 fastening. This speeded up the initiation and 

propagation of cracks on the I mm pierced sheet for the FSN53 fastening leading to 
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eventual failure by sheet material failure, as shown in Fig. 3.11 (a). The 1 mm-thick pierced 

sheet failed to sustain the fatigue loading resulting in a shorter fatigue life for the FSN53 

fastening compared with the FSN52 fastening. This indicated that for the FSN53 fastening, 

the behaviour of the 1 mm pierced sheet dominated the fatigue life rather than the clinch. It 

was therefore suggested that the setting force, which affected the clinch strength of the 
fastening might only have a minor effect on the fatigue strength of the FSN53 fastening. 

4.4 Influence of Setting Parameters 

The rivet and anvil design are normally selected in tandem. The setting force is generally 

selected based on the selection of rivet and anvil design as well as the properties of the 

sheet material to be joined. Details of the anvil profile are the property of Textron 

Fastening Systems and for confidential reasons cannot be reported here. This made it 

difficult to identify the factors that affected the joint behaviour individually. In this section 

the collective influence of the rivet and anvil design as well as the setting force is 

discussed. 

The setting parameters were observed to have an influence on both the static and the 

fatigue strength of the fastenings. Fig. 4.13 shows the static test results for the FSN51 and 

the FSN52 fastenings, which joined identical sheet materials by using a different rivet and 

anvil design and consequently a different setting pressure, as shown in Table 2.6. The 

fatigue test results for the two fastenings are shown in Fig. 4.14. The FSN51 fastening 

exhibited a higher static strength and better fatigue behaviour than the FSN52 fastening 

indicating the effect of the setting parameters. 
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Figure 4.13 Static test results for the FSN51 and the FSN52 fastenings 

During shear, peel and pull-out testing, the FSN51 and FSN52 fastenings failed by rivet 

pull-out with no fracture on the sheet material and the rivet. This indicated that the sheet 

material was strong enough to transfer external load to the rivet and the load capacity of 

the rivet itself was not exceeded. It was also concluded that the static strength of the two 
fastenings was mainly governed by the clinch strength, which was mainly dominated by 

the frictional force at the interface between the rivet shank and the riveted sheets. The sheet 
material used for both the FSN51 and the FSN52 fastenings was the same leading to an 

identical coefficient of friction. The rivet used for the FSN52 fastening was 1 mm shorter in 

length and 0.9mm smaller in diameter than that for the FSN51 fastening. Therefore for the 

FSN52 fastening, the contact area between the rivet shank and the riveted sheets was 

smaller than for the FSN51 fastening. The lower setting force probably provided the 

FSN52 joint with a lower contact pressure between the rivet shank and the riveted sheets 

compared with the FSN51 fastening. These factors resulted in a lower frictional force at 

the interface between the rivet shank and the riveted sheets leading to a lower clinch 

strength for the FSN52 fastening compared with the FSN51 fastening. This contributed to 

the lower static strength of the FSN52 fastening. The different anvil profiles between the 

two fastenings might also have affected the rivet flare and consequently the clinch strength. 

75 

Shear Peel Pull-out 



Joint Strength Characteristics Chapter 4 

_5 Z 
Y" FSN51 

.ä4.5 -  FSN52 
R 0 J4H1 
a, 
ä 3.5 f. ý 
CL  ý 
E3 -f " 
E "" 
'R 2.5 s 

  
2 

5 5.5 6 6.5 7 7.5 

Log N 

Figure 4.14 Fatigue test results for the FSN51 and the FSN52 fastenings 

During fatigue testing, both sheet material failure and rivet fracture occurred for the 

FSN51 and the FSN52 fastenings, as described in Chapter Three. This indicated that the 

fatigue strength of the FSN51 and the FSN52 fastenings was governed by the behaviour of 

the sheet material and the rivet. Under a cyclic load, the frictional force at the interface 

between the two riveted sheets sustained a part of the cyclic load with a maximum value of 

µN, where t is the coefficient of friction and N represents the normal load acting on the 

contacting surfaces. The higher the frictional force at the contacting surfaces the higher the 

load taken up by the interface. The lower setting force and the smaller rivet for the FSN52 

fastening might provide a lower normal load and consequently a lower frictional force at 

the interface since the coefficient of friction was the same for both fastenings. Therefore, 

under an identical applied load, the load sustained by the contacting surfaces between the 

two riveted sheets was lower for the FSN52 fastening compared with the FSN51 fastening. 

As a result, the load sustained by the sheet and the rivet for the FSN52 fastenings was 

greater than that for the FSN51 fastening. The rivet that was used for the FSN52 fastening 

was smaller than that for the FSN51 fastening, whilst the sheet material was the same for 

both fastenings. Therefore, the stress acting on the cross-section of the sheet and on the 

rivet for the FSN52 fastening was greater compared with the FSN51 fastening leading to a 

quicker initiation and propagation of cracks on both the sheet and the rivet. These factors 
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explained why the FSN52 fastening failed at a lower number of fatigue cycles compared 

with the FSN51 fastening. 

4.5 Influence of the Sheet Material Surface Condition 

The sheet material surface condition had an influence on both the shear and the fatigue 
behaviour of the fastenings. Fig. 4.15 shows the shear test results for the FSN5 1, FSH51 

and FSH52 fastenings. The FSH51 fastening had the highest shear strength of the three 
fastenings. 
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Figure 4.15 Shear test results for the FSN51, FSH51 and FSH52 fastenings 

The three fastenings were created for joining 5754 alloy sheet of 2mm-thickness by using 

identical setting parameters, as listed in Table 2.6. The only difference between the three 

fastenings was the sheet material surface condition and as a result the coefficient of friction 

at the interface was different in each case. This meant that the frictional force at the 

interface between the two riveted sheets and at the interface between the rivet shank and 

the riveted sheet differed from one type of sample to the other. Cross-sectional 

examination suggested that the sheet material surface condition had an influence on the 

clinch strength of the fastenings. Fig. 4.16 shows the locked sheet surface, which was in 
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contact with the rivet shank for the FSN51 fastening. The results of EDS analysis, shown 
in Fig. 4.17, indicated that a high level of Carbon, which was the main constituent element 

of the surface lubricant, was present at that surface. The dark grey colour represented the 

wax-based surface lubricant in Fig. 4.16. In addition, the wax-based surface lubricant was 

also detected on the surface of the pierced sheet surface, which was in contact with the 

rivet shank, as shown in Figs. 4.18 and 4.19. The results suggested that after setting, the 

wax-based surface lubricant still remained at the interface between the two riveted sheets 

and the rivet shank. A part of a cross-section of the FSH52 fastening is shown in Fig. 4.20. 

EDS analysis taken at the interface between the rivet shank and the locked sheet is shown 

in Fig. 4.21. The presence of a high level of fluorine and carbon indicated the presence of 

PTFE. The inserted PTFE tape was located in fragments at the interface between the rivet 

shank and the riveted sheets. It was understood that both the lubricant and the PTFE tape 

reduced the coefficient of friction at the interface with the PTFE tape reducing it the most. 

The sheet material joined by the FSH51 fastening had no surface lubricant on its surface 

and this led a higher coefficient of friction at the contacting surfaces. Therefore, the 

frictional force between the rivet shank and the riveted sheets for the FSH51 fastening was 

higher than that for the FSN51 fastening. The frictional force at the interface between the 

rivet shank and the riveted sheets was at its lowest for the FSH52 fastening. This 

contributed to the reduction in the clinch strength and therefore led to the FSH52 fastening 

having the lowest static strength. 

Figure 4.16 Locked sheet surface in 
contact with the rivet shank for the 
FSN51 fastening 
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Figure 4.17 EDS analysis results for the locked sheet surface shown in Fig. 4.16 
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Figure 4.18 The surface of the pierced 
sheet in contact with the rivet shank 
for the FSN51 fastening 
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Figure 4.19 EDS analysis results for the pierced sheet surface shown in Fig. 4.18 

Figure 4.20 Interface between the rivet 
shank and the locked sheet for the 
FSH52 fastening 
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Figure 4.21 EDS analysis results for the interface shown in Fig. 4.20 

In addition to the effect on the clinch strength, the sheet material surface condition also 
affected the frictional force at the interface between the two riveted sheets. However, this 
did not influence the ultimate shear strength of the fastenings. During shear testing, the 

shear load was initially transferred by the frictional force at the interface between the two 

riveted sheets. As the shear load increased, the frictional force was exceeded and overall 

slip of the joint started to take place. From this stage, the shear load was mainly transferred 
by means of shearing of the rivet and bearing of the sheet material and therefore the 
frictional force did not affect the shear strength of the joints. Although the frictional force 

between the two riveted sheets did not influence the shear strength of the fastening, it had a 

significant influence on the fatigue behaviour of the fastening. 

The fatigue strength of the three fastenings was different indicating that the sheet material 

surface condition affected the fatigue behaviour. As shown in Fig. 4.22, the FSN51 

fastening exhibited the highest fatigue strength of the three fastenings. The FSH51 

fastening, which had the highest shear strength of the three fastenings, did not have the 

highest fatigue strength indicating that the highest shear strength was not accompanied 

with the highest fatigue strength. The fatigue test differs from the shear test in that the 

failure process in the fatigue test is governed by initiation and propagation of cracks. In 

addition, during fatigue testing, the applied load changed from its maximum to minimum 
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value with a sinusoidal waveform. At an applied load lower than the frictional force at the 

interface between the two riveted sheets, there was no overall slip of the fastening. The 

interface between the two riveted sheets therefore transferred part of the applied load 

depending on the magnitude of the applied load and the frictional force at the interface. 

The change of the interfacial conditions therefore led to a variation in the load transfer 

mechanisms. The higher the load transferred by the contacting surfaces the lower the load 

sustained by the rivet and the sheet material. This could lead to a longer fatigue life for the 

rivet and the sheet material. However, fretting occurred at the contacting surfaces during 

fatigue testing and made the analysis more complicated. The surface condition affected the 

fatigue performance of the fastenings through its effect on the fretting behaviour. This 

contributed to the variation in the fatigue strength of the three fastenings and will be 

further discussed in Chapter Five. 
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Figure 4.22 Fatigue test results for the FSN51, FSH51 and FSH52 fastenings 
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4.6 Influence of Pre-straining level 

The pre-straining level had an influence on the ultimate shear load of the fastenings, as 

shown in Fig. 3.30. The variation of the ultimate shear load of the FSP5 series of fastenings 

before paint-baking along with the pre-straining level is shown in Fig. 4.23. The higher the 

pre-straining level the higher the ultimate shear load of the fastening. 
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Figure 4.23 Shear strength versus amount of pre-straining 

Pre-straining is a work-hardening process, which is accompanied with an increase in the 

strength and a decrease in the ductility of the material. Fig. 4.24 shows the increase in the 

tensile strength and the reduction in the elongation for the pre-strained NG5754 alloy 

sheets with different amounts of pre-straining. The decrease in ductility could affect the 

cross-sectional deformation characteristics of the fastening during the setting process. It 

was observed that this did not cause obvious problems to the riveting process as shown in 

Fig. 3.29 indicating that the reduction in the ductility of the pre-strained NG5754 alloy 

sheet was within acceptable limits. The shear test results suggested that the increase in the 

tensile strength of the pre-strained NG5754 sheet led to an increase in the shear strength of 

the fastening. This was due to the accompanying increase in the yield strength of the sheet 

material, which made the rivet more difficult to be pulled out. In addition, the higher 

tensile strength provided the sheet with a higher bearing resistance. These factors 
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contributed to the increase in the shear strength of the riveted samples as the amount of 

pre-straining level increased. 
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Figure 4.24 Properties of pre-strained NG5754 before paint-baking 

The effect of the pre-straining level on the fatigue behaviour is presented in Fig. 3.22, 

which shows the S-N curves for the FSP5 series of fastenings before paint-baking. The 

increase in the amount of pre-straining for the sheet material led to an increase in the 

fatigue strength of the fastenings. As a work-hardening process, pre-straining led not only 

to an increase in the yield strength, but also to an increase in the hardness of the sheet 

material. The hardness is considered to be one of the most important factors governing 

wear since hardness is the resistance of a material to plastic deformation. In addition, the 

true area of contact between the contacting surfaces is also related to material hardness. 

Bowden et al [42] reported that the real contact area A could be calculated as 

A_ 
N 
H 

Equation 4-4 

where N is the normal load and H represents the hardness of the softer of the two 

contacting materials. According to Waterhouse [43], wear is proportional to the real 

contact area, and therefore it is inversely proportional to the hardness. The harder the 

material the smaller the fretting area leading to less fretting damage and based on the 

experimental results, this was shown to be the true. Fig. 4.25 shows the fretting scars that 
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formed on the surface of the pierced sheets of the FSP5 series of fastenings that were tested 

at a maximum applied load of 4.5kN for 20 minutes. The size of the fretting scar at the 

pierced sheet with 3% pre-straining was smaller than that at the pierced sheet without pre- 

staining, as shown in Fig. 4.25 (a), but was greater than that at the pierced sheet with 5% 

pre-straining, as shown in Fig. 4.26 (b). The relationship between the pre-straining levels 

and the fretting area was clearly defined. The higher the pre-straining the smaller the 

fretting scar. The increase in the hardness therefore reduced the wear rate during the 

fretting process leading to an increase in the fatigue strength of the fastenings. 
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Figure 4.25 Relationship between hardness and fretting area 

1; 0 

The increase in the amount of pre-straining was accompanied with an increase in the 

fatigue resistance of the sheet material and this also led to an increase in the fatigue 

strength of the fastenings. However, the increase in the amount of pre-straining was not 

accompanied by proportionate improvements in the fatigue life of the sheet material and in 

the fatigue strength of the fastenings. Fig. 4.26 shows the average number of cycles at 

maximum applied loads of 3.6kN and 4.5kN as a function of the amount of pre-straining. 

The slope of the line indicated the increase in the rate of the fatigue cycles from one pre- 

straining level to another. The different slope of the line between two different pre- 

straining levels suggested that the increase in the pre-straining level of the sheet material 

had not provided the fastening with a proportional increase in the fatigue strength. As 

shown in Fig. 4.26, the slope was at its highest in going from 0% to 3% pre-straining. In 
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addition, the greatest amount of reduction in the fretting area also occurred from 0% to 3% 

pre-straining, as shown in Fig. 4.25. This indicated that the fatigue endurance could be 

effectively increased by pre-straining the sheet material by up to 3%. Further increasing of 

the pre-straining level only led to a marginal increase in the fatigue strength of the 

fastenings. 
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Figure 4.26 Average number of cycles versus amount of pre-straining 

4.7 Influence of Paint-bake Cycle 

4.7.1 The FSN5 series 

The paint-bake cycle only had a minor influence on the static strength of the FSN5 series 

of fastenings. Fig. 4.27 shows the static test results for the FSN53 and FSN53* fastenings. 

The only difference between the two fastenings was that the FSN53* fastening had been 

exposed to a paint-bake cycle, whilst the FSN53 fastening had not been. The FSN53 

fastening had a slightly higher shear and peel strength and a slightly lower pull-out strength 

than the FSN53* fastening. The reasons for this were believed to be due to the softening of 

the NG5754 sheet material and the change of the interfacial conditions following paint- 

baking. Tensile and hardness tests that were carried out prior to and after paint-baking for 

the NG5754 alloy sheet indicated that the paint-baking treatment led to a decrease in the 
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strength and hardness of the alloy NG5754, as shown in Fig. 4.28 and Table 4.1. The slight 

reduction in the yield strength and hardness of the NG5754 alloy sheet facilitated easier 

pull-out of the rivet during shear and peel testing leading to a marginal reduction in the 

shear and peel strength of the FSN53* fastening. In addition, during the paint-bake cycle 

the wax-based surface lubricant was removed and this led to an increase in the coefficient 

of friction at the interface between the rivet shank and the riveted sheets leading to a higher 

clinch strength. This probably contributed to the higher pull-out strength of the FSN53* 

fastening compared with the FSN53 fastening since the pull-out strength was mainly 

dominated by the clinch strength. The increase in the clinch strength following paint- 

baking did not lead to an increase in the shear and peel strength. This indicated that the 

increase in the clinch strength on its own was not sufficient enough to cause an increase in 

the shear and peel strength. It appears that the reduction in the yield strength and hardness 

of the sheet material were more influential factors in determining the shear and peel 

strength of the fastenings than the clinch strength. 
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Figure 4.27 Static test results for the FSN53 and the FSN53* fastenings 
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Figure 4.28 Tensile test results for the NG5754 sheet 

Table 4-1 Vickers' Hardness test results for the NG5754 

NG5754 (Hv) Avera e 
Before paint-baking 68.8 68.5 68.5 68.5 68.5 68.5 
After paint-baking 66.3 65.2 65.2 66.6 66.6 65.9 

The effect of paint-baking on the fatigue strength of the FSN53 and FSN53* fastenings is 

shown in Fig. 4.29. The fatigue strength of the FSN53* fastening dropped slightly 

indicating that the paint-bake cycle led to a reduction in the fatigue strength of the 

fastening. In addition to the effect of softening of the NG5754 alloy following paint- 

baking, the removal of the wax-based surface lubricant led to a change of the interfacial 

condition at the interface between the two riveted sheets and at the interface between the 

rivet shank and the riveted sheets. The change of the interfacial condition affected the 

fretting behaviour and therefore contributed to the reduction of the fatigue strength. A 

detailed analysis will be presented in the next chapter. 
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Figure 4.29 Fatigue test results for the FSN53 and the FSN53* fastenings 

4.7.2 The FSA6 series 

The FSA6 series of fastenings was created for joining AA6111 to NG5754 alloy sheets. In 

this joint combination, the AA6111 alloy was the pierced sheet and the NG5754 alloy was 

the locked sheet. During paint-baking, the NG5754 alloy underwent a recovery process, 

whilst precipitation hardening took place in the case of the AA6111 alloy leading to 

variations in the material properties for both the pierced and locked sheets. As a result, the 

paint-baking also had an influence on the FSA6 series of fastenings in addition to the effect 

of paint-baking on the FSN5 series of fastenings. 

Fig. 4.30 shows the static test results for the FSA62 and FSA62* fastenings. Similar to the 
behaviour of the FSN5 series of fastenings, the shear and peel strength of the FSA62 
fastenings decreased following paint-baking. The softening of the NG5754 sheet, which 
facilitated the pull-out of the rivet during shear and peel testing also caused the reduction 
in the shear and peel strength of the FSA6 series of fastenings. Following the paint-baking 
treatment, precipitation hardening led to an increase in both the tensile and yield strength 
of the AA61 l1 alloy sheet, as shown in Fig. 4.31. However, this did not lead to an increase 

in the shear and peel strength indicating that in this case, the shear and peel strength of the 
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fastenings were mainly dependent on the behaviour of the locked sheet and the clinch 

strength. Similar to the shear and peel strength, the pull-out strength of the FSA62* 

fastening was also lower than that of the FSA62 fastening indicating that the paint-bake 

cycle led to a reduction in the pull-out strength of the FSA6 series of fastenings. From a 
cross-section of the FSA6 series of fastenings shown in Fig. 3.17 in Chapter Three, it was 

shown that the rivet shank was in contact mainly with the pierced sheet, which had no 
lubricant on its surface. After paint-baking, the coefficient of friction at the interface 

between the rivet shank and the pierced sheet would not change significantly. Therefore 

the clinch strength before and after paint-baking was expected to show hardly any variation 

for the two types of condition. The softening of the locked sheet facilitated the rivet being 

pulled out and contributed to the decrease in the static strength of the FSA62* fastening. 
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Figure 4.30 Static test results for the FSA62 and the FSA62* fastenings 
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Figure 4.31 Tensile test results for the AA6111 alloy sheet 

The effect of paint-baking on the fatigue behaviour of the FSA62 and FSA62* fastenings is 

not significant. As shown in Fig. 4.32, the FSA62* fastening exhibited a marginally higher 

fatigue strength than the FSA62 fastening indicating that paint-baking might lead to a 

slight increase in the fatigue strength of the FSA6 series of fastenings. Both the FSA62 and 

FSA62* fastenings had a 2mm AA6111 pierced sheet and a 2mm NG5754 locked sheet. 

The two riveted sheets had different properties including hardness as shown in Table 4.1 

and Table 4.2. During paint-baking, precipitation hardening of the AA6111 alloy occurred 

leading to an increase in the strength and hardness of the AA6111 alloy sheet. In the 

meantime, recovery of the NG5754 alloy sheet took place leading to a decrease in the 

strength and hardness. As a result, after paint-baking the wear resistance for the AA6111 

alloy sheet increased, while it decreased for the NG5754 alloy sheet. The failure that 

occurred during fatigue testing for the FSA62 and the FSA62* fastenings was mainly 

dependent on the locked sheet as described in Chapter Three. Therefore it was reasonable 

to expect that the fatigue strength of the FSA62* fastenings would decreased. Therefore, 

the marginally higher fatigue strength of the FSA62* fastenings was unexpected. The 

fewer fatigue data that were collected for the FSA62* fastening and their high scatter could 

lead to inaccuracies. On the other hand, after paint-baking, the softer the locked sheet and 

the harder the pierced sheet led to a bigger difference in the hardness between the two 

91 

05 10 15 20 



Joint Strength Characteristics Chapter 4 

riveted sheets. According to Hogmark et al [44], who had carried out a study 

experimentally, the wear of the soft martensitic steel (500Hv) was less than that of a harder 

steel (700Hv) owing to the production of a protective black oxide on the soft material. 

However, whether wear of the softer locked sheet was less than that of the harder pierced 

sheet leading to an increase in the fatigue strength of the FSA62* fastening needs to be 

further investigated. 
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Figure 4.32 Fatigue test results for the FSA62 and the FSA62* fastenings 

Table 4-2 Hardness test results for the AA6111 alloy sheet 

AA6111 (Hv) Average 
Before paint-baking 99.7 97.8 99 97.1 98.4 98.4 
After paint-baking 102 100 102 105 105 102.8 
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4.7.3 The FSP5 series 

The paint-bake cycle had an effect on the shear strength of the FSP5 series of fastenings, as 

shown in Fig. 4.33. At all pre-straining levels, the shear strength for the FSP5 series of 
fastenings decreased following paint-baking. In addition, the paint-bake cycle also had an 
influence on the fatigue strength for the FSP5 series of fastenings, as shown in Figs. 4.34 - 
4.37. Similar to the shear strength, at all pre-straining levels the fatigue strength of the 
FSPS series of fastenings decreased following paint-baking. However, the amount of 

reduction in the fatigue strength differed at each pre-straining level. For the FSP50 

fastening the fatigue strength decreased marginally following paint-baking, whilst for the 
FSP510 fastening the fatigue strength reduced significantly after the paint-bake cycle. 
During paint-baking, the pre-strained alloy sheet was subjected to a recovery process, 

which reduced the amount of dislocations and led to a reduction in the strength and an 
increase in elongation and ductility. Fig. 4.38 and Fig. 4.39 show the variation in strength 

and elongation of the pre-stained NG5754 sheet before and after paint-baking. Evidently 

the strength decreased and the elongation increased following paint-baking. At the same 
time, the hardness decreased, as shown in Fig. 4.40. The reduction in the strength and the 

hardness of the riveted sheet material following paint-baking made the rivet pull out more 

easily during shear testing and probably speeded up crack initiation and propagation during 

fatigue testing. This led to the reduction in the shear strength and the fatigue strength of the 
fastenings. The higher the pre-straining level the greater the reduction in the strength of the 

sheet material following paint-baking, as shown in Fig. 4.38. This contributed to the 
different amount of reduction in the shear and fatigue strength at each pre-straining level. 

The burning of the wax-based surface lubricant during paint-baking also contributed to the 

reduction in the fatigue strength of the fastenings and will be further discussed in Chapter 

Five. 
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Figure 4.33 Shear test results for the FSP5 and the FSP5* fastenings 
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Figure 4.34 Fatigue test results for the FSP50 and the FSP50* fastenings 
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Figure 4.35 Fatigue test results for the FSP53 and the FSP53* fastenings 
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Figure 4.36 Fatigue test results for the FSP55 and the FSP55* fastenings 
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Figure 4.37 Fatigue test results for the FSP510 and the FSP510* fastenings 
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Figure 4.38 Tensile strength for the pre-strained NG5754 sheet material 

96 

0% 3% 5% 10% 

Pre-strain level 

After paint-baking -0 Before paint-baking 



Joint Strength Characteristics Chapter 4 

27 

25 

23 

c 0 21 

W 19 

17 

15 

After paint-baking   Before paint-baking 

Figure 4.39 Elongation for the pre-strained NG5754 sheet 
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Figure 4.40 Hardness test results for the pre-strained NG5754 sheet 
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4.8 Influence of Shelf-life 

The AA61 11 alloy sheets that were used as the pierced sheet for the FSA6 series of 
fastenings were expected to simulate shelf-life conditions. From a manufacturing point of 

view, the AA6111 alloy sheet in T4 condition can be used at any time before the self-life 

expires. However, during storage, heat-treatable aluminium alloys can undergo natural 

ageing which is accompanied by an increase in the yield strength and hardness of the alloy. 
There are cases where the property changes of the alloy can be quite significant resulting in 

poor joint quality and therefore poor joint performance. Therefore it is important to 

examine whether identical setting parameters can be used to join the AA6111 alloy sheet 

and maintain a good joint quality that will enable the joint to perform satisfactorily. During 

this study, the conditions that were used to simulate the shelf-life conditions were not 

scientifically monitored in a lab setting, but involved time spent in storage at Alcan, the 
University of Hertfordshire and Textron Fastening Systems as well as time spent in transit. 
For each batch of samples, the conditions were not consistent with each other and there 

were also shelf-life variations within each individual batch of samples. Some of the sheet 

material had most of its shelf-life in storage at Alcan, some at the University laboratory, 

whilst others at the Textron workshop in Canada. The shelf-life also included time spent in 

transit. This could lead to inconsistent material properties for the AA6111 alloy. In 

addition, according to Polmear [1], the NG5754 alloy sheets that were used as the locked 

sheet for the FSA6 series of fastenings might undergo age softening at ambient 
temperatures. Over a period of time, the value of tensile properties of the NG5754 might 
drop due to localised recovery within the deformed grains. The variation in the time spent 
in storage and in transit probably led to inconsistent age softening conditions. As a result, 

the tensile properties of the NG5754 alloy might also not be consistent. Therefore, from a 

scientific point of view, it was difficult to clarify the effect of shelf-life on the joint 

behaviour accurately due to the inconsistent shelf-life conditions. 

The shelf-life of the AA6111 alloy sheet had little effect on the fastening behaviour, as 
shown in Chapter Three. The static test results for the FSA6 series of fastenings with a 
(2mm+2mm) thickness combination following paint-baking are shown in Fig. 4.41. The 

marginally higher shear strength of the FSA61 * fastening, compared with the FSA62* and 
FSA63 * fastenings could be due to the slightly higher tensile strength of the AA6111 sheet 
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after a 5-month shelf-life, as shown in Fig. 4.42. However, the variation in the shear, pull- 

out and peel strength was not consistent and it was difficult to explain. The static strength 

of the fastenings was supposed to rely on the sheet material properties and the clinch 

strength. Therefore, the inconsistent variation in the static strength of the fastenings could 

be due to a number of possible reasons. One reason could be due to the variation of age 

softening of the 2mm NG5754 lower sheet since the age softening of the NG5754 sheet led 

to a reduction in the tensile strength and consequently affected the shear, peel and pull-out 

strength of the fastenings. In addition, the FSA61 *, FSA62* and FSA63* fastenings were 

paint-baked at different times and the variation in each paint-baking process could lead to a 

variation in softening of the NG5754 sheet since recovery occurred during the paint-bake 

cycle. Another reason could be due to the variation in the mechanical properties of the 

AA6111 alloy sheet since the 2mm-thick AA6111 sheet spent its shelf-life under different 

conditions. This could lead to inconsistent mechanical properties of the sheet material and 

therefore contributed to the inconsistent variation in the static strength of the fastenings. 
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Figure 4.41 Static test results for the FSA61 *, FSA62* and FSA63* fastenings 
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Figure 4.42 Tensile test results for 2mm AA6111 sheet after paint-baking 

The effect of shelf-life on the fastening behaviour also can be seen from the experimental 

results for the FSA6 series of fastenings with a (0.9mm+2mm) thickness combination. 

Fig. 4.43 shows all the static test results for these fastenings. The FSA64* fastening 

exhibited the highest shear strength of the three fastenings, whilst the peel and pull-out 

strength for the three fastenings were almost the same. The sheet material that was used for 

the FSA64* fastening had a 3-month shelf-life and exhibited the highest tensile strength 

compared with the sheet materials used for the FSA65* and FSA66* fastenings, as shown 

in Fig. 4.44. This contributed to the highest shear strength of the FSA64* fastening. The 

sheet material with a 10-month shelf-life had the lowest tensile strength and led to the 

lowest shear strength of the FSA66* fastening. This also suggested that the pierced sheet 

material properties affected the shear strength of the fastening that had an identical locked 

sheet. The low variation in the pull-out strength indicated that the different properties for 

the AA6111 upper sheet did not affect the setting process significantly and therefore the 

clinch strength for the three fastenings was about the same. The failure mode that occurred 
for the three fastenings during peel testing indicated that the peel strength of the fastening 

was dominated by the fracture of the thinner AA6111 sheet. However, the low value of the 

peel strength and the variation in the material properties made it difficult to explain the 

effect of shelf-life on the peel strength. 
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Figure 4.43 Static test results for the FSA64*, FSA65* and FSA66* fastenings 
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Figure 4.44 Tensile test results for 0.9mm AA6111 sheet after paint-baking 

The effect of shelf-life on the fatigue behaviour of the fastenings was difficult to identify 

due to the small number of tests that were carried out and the wide scatter of the data, in 

addition to the influence of the inconsistent shelf-life and age softening conditions. 
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4.9 Comparison between this study and literature 

In order to further understand the strength characteristics of self-piercing riveted joints, the 

experimental results were compared with the relevant published data. However, the 

diversity of test specimens and testing methodologies that were used by different 

researchers has made a comparison difficult. 

Krause et al [27] carried out a comparative study of the fatigue behaviour of spot-welded 

and mechanically fastened aluminium joints and reported that the self-piercing rivets 

offered the joints 100% improvement in fatigue strength at 106 cycles compared with spot- 

welds. The joints were therefore supposed to be optimised and it was worth comparing 

with the data obtained from the FSN51 fastenings by the current experimental work. In the 

study by Krause et al. [27], two 5754-0 aluminium alloy sheets in 2mm-thickness and 

25mm width with an overlap of 20mm were joined by a steel rivet. The 5754-0 alloy was 

also supplied by Alcan International Limited. Although the NG5754 alloy that was used in 

the current project was an updated type of the 5754-0 alloy, the mechanical properties of 

the two types of 5754 alloy did not differ significantly. The tensile strength of the NG5754 

was about 250MPa, while 224MPa was reported for the 5754-0. The steel rivets were 

manufactured by the Henrob Corporation, who also produced all the self-piercing riveted 

samples for the study by Krause et al, [27]. The rivets had a 6mm diameter and the shank 

length, although not given, was unlikely to be shorter than 7mm. The shear test for both 

projects was carried out at a 10mm/min speed. The fatigue test for the study by Krause et 

al. [27] was performed at a test frequency that varied from 0.5 to 20Hz depending on the 

magnitude of the applied load. The different setting parameters and test conditions between 

the two projects are listed in Table 4.3. 
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Table 4-3 Different setting parameters and test conditions 

Project Sheet 

(2mm) 

Rivet 

(mm) 

Setting 

pressure (bar) 

Anvil Test frequency 

(Hz) 

Krause et al 5754-0 06 x >7 Unknown Unknown 0.5-20 

UH NG5754 04.8 x7 240 64015 20 

Note: UH represents the University of Hertfordshire, where the current project has been 
carried out. 
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Figure 4.45 Comparison of shear test results 

Fig. 4.45 shows a comparison of the shear test results obtained by the two studies. The 

ultimate shear load obtained from the current project was higher than that obtained by 

Krause et al. [27] indicating the effect of setting parameters. According to King [22], the 

use by Krause et al. [27] of a bigger diameter and a longer rivet shank of the rivet should 

have provided the joint with a higher ultimate shear load. However, the slightly lower 

strength of the riveted sheet and the unknown anvil profile as well as the smaller samples 

that were used by Krause et at. [27] probably contributed to the lower ultimate shear load. 

A comparison of the fatigue data from the two projects is shown in Fig. 4.46. The fatigue 

endurance for the FSN51 fastening in the current project was longer at an identical applied 
load compared with the samples tested by Krause et al. [27]. The slightly lower sheet 

103 

Krause et al 



Joint Strength Characteristics Chapter 4 

material strength and the different anvil profile as well as the narrower specimen size, 

contributed to the lower fatigue endurance for the samples that were tested by Krause et al. 

[27]. The different frequency that was used by the two studies was probably another reason 

for the observed variation in the fatigue strength. 
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Figure 4.46 Comparison of fatigue test results 

Similar comparison was also made between the FSN51 fastening from the current project 

and the data published by Booth et al [28], who joined two 5754 aluminium alloy sheets of 

2mm gauge by using a steel rivet of a 5.3mm diameter and a 7.0mm length. The rivets used 

by Booth et al. [28] were bigger than the rivets used by the current project in both diameter 

and length. The setting pressure used by Booth et al. [28] was 275bar compared to 240bar 

used by the current project. The anvil profile differed for the two projects. A comparison of 

the shear test results for the two projects is shown in Fig. 4.47. The ultimate shear load for 

the current project was higher than that obtained by Booth et al. [28] indicating the effect 

of setting parameters. 
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Figure 4.47 Comparison of shear test results 

A study that was similar to the current project has been carried out by Fu and Mallick [29] 

at the University of Michigan (UM). In the UM study, two 5754-0 alloy sheets in 2mm 

gauge and 25.4mm width were joined by a steel rivet using a slightly lower setting force 

compared with the current project. The anvil profile also differed from that of the current 

project. A comparison of the ultimate shear load and the fatigue endurance together with 

the thickness combination and rivet parameters are shown in Fig. 4.48 and Fig. 4.49 

respectively. Both the ultimate shear load and the fatigue endurance for the UM study were 

lower than those for the current project. At an identical applied load, the fatigue endurance 

of the samples having rivets with a 3.9mm diameter and a 6.0mm length in the current 

project was even higher than that of the samples having rivets with a 5mm diameter and a 

6.5mm length in the UM study. This indicated the effect of the specimen size on the shear 

and fatigue strength of the joints. The best performance of self-piercing riveted joints is 

dependent on the combination of all the setting parameters. 
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CHAPTER FIVE 

5. FAILURE MECHANISMS 

5.1 Failure Modes 

Three distinct failure modes, defined as rivet pull-out, rivet fracture and sheet material 
failure were observed to occur in static and fatigue tests, as described in Chapter Three. 
Rivet pull-out refers to fastening failure that is due to the rivet being pulled out. Rivet 

fracture refers to fastening failure that is due to the fracture of the rivet. Sheet material 
failure refers to fracture of the sheet material leading to eventual sample failure. The 

examination of the failure mode that occurred during shear, peel, pull-out and fatigue 

testing identified the main influential factors on the joint strength characteristics. 

5.1.1 Failure Mode in Shear Tests 

In shear tests, all samples failed by the rivet being pulled out of the locked sheet, while 
deformation of the two riveted sheets had also taken place, as shown in Figs. 3.8,3.15 and 
3.27. Rivet pull-out was the only failure mechanism for the shear test and this was related 
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to the load transfer mechanism of the fastening. According to Kulak et al [34], when a 

conventional riveted lap joint was subjected to a shear load, the shear load was mainly 
transferred by the rivet and the sheet material by means of shear and bearing after overall 

slip of the joint took place. For a self-piercing riveted lap joint, shearing of the rivet and 
bearing of the riveted sheets are also expected to occur during the shear test. In addition, 
for the rivet with a countersunk head, tilting of the rivet also took place during shear 

testing. As illustrated in Fig. 5.1, when a shear force S was applied, two components, Si and 
S2, were created and formed a couple acting on the rivet. As a result, the rivet tended to tilt 

up by overcoming the frictional force between the rivet and the two riveted sheets. In the 

meantime, secondary bending also tended to pull out the rivet, as shown in Fig. 1.2. 

Therefore, for a self-piercing riveted lap joint, during shear testing, both the pierced and 

the locked sheets were in bearing against the rivet, while the rivet was subjected to a shear 

and a pull-out force due to tilting and the effect of secondary bending. The bearing force 

was initially concentrated on the contact point between the riveted sheet and the rivet. As 

the loading process proceeded, the riveted sheets suffered localised yielding leading to a 
large contact area between the riveted sheet and the rivet. A more uniform bearing stress 

therefore acted on the riveted sheet material adjacent to the rivet leading to more 
deformation of the sheet material. In the mean time, the shear and pull-out forces acting on 
the rivet also increased. The shear force was not sufficient to fracture the rivet, whilst the 

increase in the pull-out force enabled the rivet to overcome the frictional force at the 

interface between the rivet shank and the riveted sheets. Failure therefore occurred by the 

rivet being pulled out with some deformation of the riveted sheets. Figs. 3.8 (a) and (b) 

clearly show that the sample failed by rivet pull-out with localised yielding and 
deformation on both the locked and the pierced sheets. The I mm thick pierced sheet 

suffered more deformation than the 2mm-thick pierced sheet since the bearing resistance of 
the 1 mm thick sheet, as obtained from equation 4-2, was smaller. More deformation was 

experienced by the FSN56 fastening than the FSN51 fastening, as shown in Fig. 4.3. The 

reason for this was the fact that the FSN56 fastening had a shorter end-distance (or half of 
the overlap length) than the FSN51 fastening. The actual failure mode in shearing indicated 

that the yield strength and the bearing resistance of the sheet material as well as the clinch 
strength affected the shear strength of the fastening. 
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In addition, the side of the rivet head that had not been subjected to the shear component SI 

also fractured for most of the fastenings with a (2mm+2mm) thickness combination, as 

shown in Fig. 3.8 (c). This was because the rivet had a rotating tendency and this side 

probably sustained most of the load as it pressed against the pierced sheet. Fracture of the 

rivet head therefore occurred. 

Plowed sheet $ 
Piercing 

S ýýý j Rlvot 

ý_s 82 Locked sheet 

Figure 5.1 Loading process of shear test 

It should be noted here that the failure mode for a self-piercing riveted joint during shear 

testing was different from that for a conventional riveted joint. Iyer et al [45] reported that 
in a conventional riveted joint with a countersunk head rivet, rivet tilting also occurred. 
However, the tilting could not lead to rivet pull-out due to the existence of the forged 

button on the bottom sheet. Instead of pull-out, a tensile stress was introduced to the rivet. 
The rivet was therefore under both shear and tension. As a result, during shear testing rivet 
fracture was the most common failure system for a conventional riveted joint, compared to 

rivet pull-out for a self-piercing riveted joint. 

5.1.2 Failure Modes in Peel Tests 

Failure during peel testing occurred by either rivet pull-out or sheet material failure. The 

fastenings with a (2mm+2mm) thickness combination failed by rivet pull-out. The 

fastenings with a (lmm+2mm)/(0.9mm+2mm) thickness combination failed by fracture of 
the thinner sheet. During the peel test process, bending and peeling of the sheet material 

around the rivet head were observed. The bending stress was inversely proportional to the 

square of the sheet thickness, as shown in equation 4-3. Therefore under an identical 

bending moment, the bending stress acting on the thinner sheet was much higher than that 

on the thicker sheet. As a result, the peel samples with a (1mm+2mm)/(0.9mm+2mm) 
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thickness combination produced considerable distortion in the thinner sheet. The thinner 

sheet peeled off the rivet head and failed to transfer the peel load to the clinch leading to 

final failure of the fastening by sheet material failure, as shown in Fig. 3.9 (b). This result 

suggested that for the (1mm+2mm)/(0.9mm+2mm) sheet combination, the thinner sheet 

acted as a stress concentrator and the joint itself could withstand a higher peel load than the 

1 mm/0.9mm sheet. For the fastenings of (2mm+2mm) combination, the pierced sheet 

transferred the peel load to the clinch while the pierced sheet underwent deformation, as 

shown in Fig. 3.9 (a). Peeling then concentrated on the clinch button and caused the flared 

rivet shank to eventually be pulled out of the locked sheet. Thus rivet pull-out occurred for 

this combination. Therefore, in the case of the peel test, the determining factor that 

controlled the failure mode was the pierced sheet thickness. 

5.1.3 Failure Mode in Pull-out Tests 

The pull-out test was specially designed for measuring the clinch strength of the fastenings. 

Samples being tested by the pull-out test failed by means of rivet pull-out. Therefore rivet 

pull-out was the only system of failure in the pull-out test for all fastenings of both 

thickness combinations. In the case of the (1 mm+2mm)/(0.9mm+2mm) combination, the 

thinner pierced sheet suffered more distortion than the thicker component, as shown in 

Fig. 3.10. It was concluded that for the pull-out test, the behaviour was mainly dependent 

on the rivet retention and the flare into the material. 

5.1.4 Failure Modes in Fatigue Tests 

Rivet fracture and sheet material failure occurred in fatigue testing. The fastenings with a 
(2mm+2mm) thickness combination failed by rivet fracture or sheet material failure 

depending on the magnitude of the applied load, whilst only sheet material failure occurred 
for the fastenings with a (1 mm+2mm)/(0.9mm+2mm) thickness combination. For the 

fastenings with aI mm/0.9mm thick pierced sheet, the thinner pierced sheet suffered more 
distortion than the thicker one and this eventually led to failure. The thinner sheet fractured 

near the rivet head but the rivet remained undamaged still connecting the two sheets 

together, as shown in Fig. 3.11 (a). This suggested that the clinch strength was sufficiently 
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high and therefore the fatigue endurance for the fastenings with a 
(1 mm+2mm)/(0.9mm+2mm) combination was determined by the thinner sheet material. 
For all the fastenings with a (2mm+2mm) thickness combination, at high applied loads, 

rivet fracture and pull-out dominated the failure mode and fracture of the riveted sheet was 
also observed. At low applied loads, locked sheet fracture dominated the failure of the 
fastenings, as shown in Fig. 3.11 (b), (c). The results indicated that the rivet and the sheet 

material properties as well as the clinch strength had an influence on the fatigue strength of 
the fastenings. All samples that were fatigue tested formed visible black-coloured fretting 

scars at the interface between the two riveted sheets. This observation indicated that the 
failure mode in fatigue testing might also depend on the fretting behaviour and therefore 
further investigation of the fatigue failure mechanisms was carried out. 

5.2 Fatigue Failure Mechanisms 

5.2.1 Occurrence of Fretting 

Examination of the interface between the two riveted sheets and the interface between the 

rivet shank and the locked sheet of a fastening that was subjected to fatigue testing 

revealed the presence of fretting. A cross-section of a self-piercing riveted joint in Fig. 5.2 

clearly shows the positions where fretting was observed. As shown in Figs. 3.11 (b) and (c), 

black-coloured fretting scars formed at the interface between the two riveted sheets. 
Fretting, at position A in Fig. 5.2 took place as a result of repeated loading, which led to a 

relative movement at the contacting surface between the two riveted sheets. At position B, 

secondary bending and rivet tilting acted as oscillatory sources and caused fretting at the 

point of contact between the rivet shank and the locked sheet. Fig. 5.3 shows fretting scars 
that formed at the surface of the rivet shank and at the surface of the locked sheet, which 

was in contact with the rivet shank after 10,552,000 cycles at a maximum applied load of 
2.7kN. Under the effect of secondary bending and tilting of the rivet, the rivet head on the 

right-hand side of the joint (Refer to Fig. 2.5) pressed its head against the pierced sheet 
leading to fretting at position C, the interface between the edge of the rivet head and the 

pierced sheet, as shown in Fig. 5.4. 
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Applied Load 

Applied Load 

Figure 5.2 The three positions where fretting occurred 

Figure 5.3 Fretting scar formed at: (a) the surface of the rivet shank, (b) the surface 
of the locked sheet 

Figure 5.4 Fretting scar 
formed at the pierced sheet in 
contact with the edge of rivet 
head 

Fretting scar 
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5.2.2 Fretting Mechanisms 

The investigation of the fretting process that occurred at position A and position B revealed 
the involvement of ploughing and delamination. During the early stages of fretting, 

ploughing occurred as a result of relative movement between the two riveted sheets and 

this led to considerable roughening of the surface and to material transfer, as shown in 

Fig. 5.5 (a). Two-body fretting occurred at this stage. The riveted aluminium alloy sheet 

was initially covered by a thin protective oxide layer in addition to the surface lubricant. 

After wearing off the surface lubricant, the ploughing process dispersed the oxide layer and 

promoted ilirther contact leading to acceleration in the amount of surface damage. The 

debris was trapped on the fretted surface and acted as an abrasive leading to third-body 
fretting. As the fretting process proceeded, material was removed from the surface by a 
delamination process producing plate-like particles of debris, as shown in Fig. 5.5 (b). The 

material transferred or removed by either ploughing or delamination was ground between 

the two contact surfaces to form finer particles, which oxidised rapidly and generated dark- 

coloured fretting debris that could be seen clearly on the worn surface, as shown in 

Figs. 3.11 (b) and (c). The accumulated debris on the fretting surface was detected by SEM 

and is shown in Fig. 5.5 (c). EDS analysis of the debris is presented in Fig. 5.6 and shows 
high levels of aluminium and oxygen and low levels of magnesium which is the main 

alloying element in the 5754 alloy. The debris therefore, consisted of mainly A1203 with 

small amounts of MgO. This confirmed that the oxidation process had taken place during 

fretting. 
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Figure 5.5 (a) ploughing occurred at a 
locked sheet after 2.1 x 105 cycles at 4.5k-N, 
(b) delamination occurred at a locked 
sheet after 173,200 cycles at 4.5kN, (c) 
accumulated debris at a locked sheet after 
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Figure 5.6 EDS spectrum of the accumulated debris at the riveted sheet 
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Fig. 5.7 (a) shows the fretted surface of the rivet shank. It was apparent that the 

delamination process also took place at the surface of the rivet shank as a result of fretting 

at the interface between the rivet shank and the riveted sheet. Debris that accumulated at 

the end of the rivet shank was also observed under SEM, as shown in Fig. 5.7 (b). A 

spectrum from EDS analysis of the debris is presented in Fig. 5.8 revealing the presence of 

aluminium, magnesium, oxygen, carbon, iron, zinc and tin. The presence of iron in the 

debris suggested that the steel rivet had suffered from fretting damage following damage of 

the rivet coating that consisted of zinc and tin. The involvement of a high volume of 

carbon indicated that the wax-based surface lubricant was worn off in the initial stages. In 

addition to the rivet shank, the riveted alloy sheet that was in contact with the rivet shank 

also suffered from fretting damage indicated by the involvement of aluminium and 

magnesium. The high levels of oxygen in the EDS analysis suggested that oxidation of the 

worn metal also took place during the fretting process. 

'ýý 
;ý 

(a) (Ii) 

Figure 5.7 (a) delamination and associated fatigue cracks at the rivet shank after 
10,552,000 cycles at 2.7kN, (b) accumulated fretting debris at the rivet shank after 
139,200 cycles at 4.5kN 
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Figure 5.8 EDS spectrum of the debris at the rivet shank 

5.2.3 Fretting Damage 

5.2.3.1 Crack Initiation and Propagation 

Visible cracks generated from the buttonhole at the 3 and 9 o'clock positions in relation to 

the loading direction on the locked sheet can be seen in Figs. 3.11,3.28 and 3.34. In 

addition, all cracks that initiated and propagated on the sheet material were observed to be 

located at the interface between the two riveted sheets or at the interface between the 

locked sheet and the rivet shank where fretting had taken place. 

The micrograph of a locked sheet that failed after 489,300 cycles at a maximum load of 
3.6kN is presented in Fig. 5.9 (a). Evidently the rivet has fractured and cracks that formed 

at the buttonhole at the 3 and 9 o'clock positions in relation to the loading direction are 

visible. A section in the vertical direction of this sample was taken and presented in Fig. 5.9 

(b) which shows the surface of the locked sheet that was initially in contact with the shank 

of the rivet at the position designated as B in Fig. 5.2. Fig. 5.9 (b) also shows lots of small 

cracks that initiated on the fretting worn surface of the locked sheet. All cracks were 

generated and propagated oblique to the sliding direction. Most of the cracks propagated to 
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closed loops leading to possible delamination. A typical crack seemed to propagate deep 

into the metal sheet away from the contact surface at an angle about 35° to the sliding 

direction. It appeared that fretting, that occurred at the interface between the shank of the 

rivet and the locked sheet, resulted in the initiation and propagation of cracks. In addition, 

fatigue cracks due to fretting were also generated at the contact surface of the locked sheet 

at the point of contact with the pierced sheet, that is position A, in Fig. 5.2. As shown in 

Fig. 5.10, a crack formed and propagated into the locked sheet after 89,000 cycles, which 

was equivalent to 65% of the average fatigue life at a maximum load of 4.5 kN. The crack 

initiated about 35° oblique to the sliding direction and propagated to a depth of about 

120µm. The results suggested that fretting that occurred at the interface between the two 

riveted sheets led to crack initiation and early propagation at the locked sheet. 

Sliding direction 

(a) (b) 

Figure 5.9 (a) the locked sheet after 489,300 cycles at a peak load of 3.6kN with a part 
of broken rivet; (b) small cracks that initiated at the surface of the locked sheet in 
contact with the rivet shank 

-. 

Sliding direction 

E -ý 

Figure 5.10 cracks generated at the 
surface of the locked sheet in contact with 
the pierced sheet after 89,000 cycles at a 
maximum load of 4.5kN 
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Crack initiation and propagation due to fretting were also observed on the surface of the 

pierced sheet. Fig. 5.11 (a) shows the fretting surface as well as a crack designated as crack 
1 on the pierced sheet after 133,800 cycles at a maximum load of 4.5kN. In Fig. 5.11 (b), 

evidence is presented of another crack in the same sample designated as crack 2. It appears 

that the two cracks initiated at the edge of the fretted area close to the rivet and propagated 

out of it. A cross-section of the two cracks is presented in Fig. 5.11 (c) and shows that both 

cracks initiated at the fretting surface at an angle of about 40° to the sliding direction. 

Following early propagation of crack 2, part of the sheet material dropped off along the 

crack as circled in Fig. 5.11 (c). Crack 1 grew into the subsurface about 3004m deep, 

oblique to the sliding direction. This was followed by the formation of a knee-point with 

the crack changing direction and continuing to propagate perpendicular to the sliding 
direction through the thickness of the sheet. This crack was expected to continue to 

propagate in a straight line and to develop a crack tip, which is what would normally 
happen during fretting fatigue. However, this did not take place and the crack appeared to 

change direction. This observation was unusual and the reason why this took place was 
because a fatigue crack, designated as crack 3, initiated at the bottom part of the sheet and 

propagated to meet the crack 1. It should be noted that surface A shown in Fig. 5.11 (c), 

was originally in contact with the locked sheet, while surface B was in contact with the 

underside of the rivet head. Crack 3 initiated at surface B and propagated to meet crack 1. 

These observations suggested that the damage of the pierced sheet was caused by fretting 

at the interface between the two riveted panels and was assisted by failure at the interface 

between the underside of the rivet head and the pierced sheet. 
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(a) 

Figure 5.11 Cracks formed at the pierced 
sheet after 133,800 cycles at a maximum 
load of 4.5kN (a) crack located at the edge 
of fretted area; (b) cracks emerged at the 
edge of deformed sheet; (c) section across 
the cracks. 

(c) 

Fatigue cracks initiated at the contact surface oblique to the sliding direction and this was 
due to the combined effect of the tangential force and the applied load. In the case of 
fretting, an alternating tangential stress was applied to the contact surface due to the 

existence of a frictional force. Based on the elastic stress analysis in the interpretation of 

fretting fatigue failures that was carried out by O'Connor [46], the tangential force tended 

to put the sheet material ahead of the contact area into compression and the material behind 

into tension. In the meantime, a tensile stress was introduced to the sheet material by the 

tension-tension applied load. The contact surface was therefore in a state of compression at 
the contact area and in tension outside it. The combined effect of the compression and the 
tension led to crack initiation oblique to the sliding direction. As reported by Endo and 
Goto [47,48], the initiation of a crack relieved the stress concentration at the contact 

surface Fig. 5.9 (b), Fig. 5.10 and Fig. 5.11 (c) show that fatigue cracks initiated at the 

contact surface oblique to the sliding direction at both positions A and B. These 

characteristics of crack initiation are different from what would happen in normal fatigue 
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due to the effect of the tangential stress. However, according to Endo and Goto [47,48], 

the tangential stress was only effective within a certain depth from the contact surface. 
After early growth, the effect of the tangential stress was eliminated and the applied stress 
dominated further propagation of the cracks. As a result, at position A shown in Fig. 5.11 
(c), a knee-point in the propagation curve was generated and then the crack propagated 
perpendicular to the sliding direction. This was because before the knee-point, the 

tangential stress was sufficiently effective and combined with the applied load leading to 

the cracks oblique to the sliding direction. Afterwards, as the effect of the tangential stress 
became less and less, the applied load eventually took over and dominated the propagation 
of the cracks. The direction of the applied load was parallel to the sliding direction at 

position A and therefore the cracks propagated perpendicular to the sliding direction 

leading to tensile type of cracks. At position B, the applied load acted as a normal load 

rather than a tension-tension cyclic load which was the case at position A. Therefore no 

obvious knee-point and tensile-type cracks appeared in the propagation curve, as shown in 

Fig. 5.9 (b). Fig. 5.9 (b) also shows that most of the cracks propagated a short distance and 
formed closed loops. As fretting wear proceeded, the closed-loop material would be worn 
by delamination. According to Hurricks [49], the fretting process continues leading to new 

crack initiation and propagation following delamination. The crack that seemed to 

propagate deep and change direction shown in Fig. 5.9 (b) was probably caused by new 

crack initiation. 

According to O'Connor [46] and Endo [48], the combined stress of the tangential force and 
the cyclic load is known to reach a maximum value at the edge of the contact area or at the 

slip/non-slip boundary. That is why fatigue cracks generated at the edge of the contact area 

on the pierced sheet. This was also the reason why cracks generated at the 3 and 9 o'clock 

positions of the locked sheet in relation to the direction of the applied load since these 

positions formed the slip/non-slip boundary. In addition, during the riveting process, these 

positions of the locked sheet suffered more deformation than other parts in order to 

produce the buttonhole under the effect of the upset anvil. Weaker points were therefore 

produced at the locked sheet around the buttonhole. This could also contribute to crack 
initiation at these positions. It was therefore concluded that in a self-piercing riveted joint, 

crack initiation and early propagation were due to the combination of the applied stress and 
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the tangential stress at the contact surface, while further propagation of the crack was 
dominated by the applied load. 

5.2.3.2 Surface Work-hardening and Depth of Damaged Layer 

The microhardness across the section of a fretting scar that formed on the locked sheet for 

the FSN51 fastenings was measured 20µm below the fretting surface with a Leitz micro- 

hardness tester. The testing load was 15g and the loading time was 20 seconds. Fig. 5.12 

shows the variation of microhardness with the number of fatigue cycles. The average 

microhardness increased as the number of cycles increased until eventually failure was 

reached. This suggested that the fatigue test had led to considerable surface work- 

hardening of the riveted sheet. One of the factors that contributed to the increase in 

microhardness was the repeated loading that led to strain hardening of the alloy sheet. 

However, the fretting action was the most significant contributor to the increase in the 

microhardness. 
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Figure 5.12 Effect of the surface work-hardening of the locked sheet 

Fig. 5.13 shows the distribution of the microhardness that was obtained from two sectioned 

samples. One of the samples had been fatigue tested and failed after 133,800 cycles at a 

maximum load of 4.5kN, whilst the other had not been fatigue tested. The microhardness 

test for the sample that underwent fatigue testing was performed at the cross section of a 
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fretting scar that formed on the locked sheet. For the untested sample, the microhardness 

was obtained from the same position as for the sample that underwent fatigue testing. As 

shown in Fig. 5.13, after fatigue testing, the microhardness was much higher than before 

testing indicating that work-hardening of the riveted sheet had taken place during the test. 

The microhardness within the fretted area ranged from about 95Hv to 125Hv and was 

higher than it was outside the fretted area. The increase in the hardness outside the fretted 

area was caused by repeated loading, whilst within the fretted area this was due to fretting. 

This result indicated that fretting had led to a significant surface work-hardening of the 

riveted sheet. During fretting, debris was produced and built up between the contacting 

surfaces. The escape of the accumulated debris was restricted and as a result it became 

compacted and formed an oxide bed at the interface between the two riveted sheets, as 

shown in Fig. 5.5. Consequently the compacted oxide indented the contacting surface of the 

joint and caused plastic scratching leading to surface work-hardening. This is in agreement 

with the third-body approach of wear described by Godet [50], who established that 

compacted fretting debris might lead to surface work-hardening at the fretting surface. The 

increase in the number of cycles was accompanied with the increase in the fretting debris 

and led to an increase in the microhardness of the sheet material. 
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Figure 5.13 Distribution of the microhardness of the locked sheet 

122 

0 1098 2195 3293 4390 5488 6585 7683 8780 



Failure Mechanisms Chapter 5 

The microhardness was also measured along the distance from the fretting surface and the 

results are shown in Fig. 5.14. The microhardness decreased as the distance from the 
fretting surface increased. A rapid reduction in the microhardness took place near the 
fretting surface. Fretting occurred as a result of the combined effect of the repeated load 

and the tangential force. During the fretting process, the combination of the tangential 

stress and the repeated stress was at a maximum at the top of the contact surface leading to 

a significant amount of surface work-hardening at that area. As the distance from the 

contacting surface increased, the effect of the tangential force decreased. As a result, the 

combined magnitude of the two stresses decreased and this contributed to the reduction in 

the microhardness. The gradient of the plots in Fig. 5.14 became more negative at a short 
distance from the fretting surface, as the number of fatigue cycles increased. From an 
inspection of Fig. 5.14, it is evident that the rate of change of microhardness with distance 

from the fretting surface is almost constant at a low distance from the surface. At 

intermediate distance values from the surface, the gradient gradually becomes less negative 

and almost constant as the distance from the surface increases. The intermediate distance 

values represent the area where the gradient undergoes a transition from a high to a low 

negative value. From Fig. 5.10, it was established that the depth of crack propagation due to 

fretting for a sample that was subjected to fatigue testing at a maximum load of 4.5kN was 

about 120µm after 89,000 cycles. The direction of the crack changed after propagation to a 
depth of 120µm. The gradient in Fig. 5.14 for the plot at 89,000 cycles lies within its 

transition value at a distance between 100µm to 150µm from the fretting surface, as shown 
in Fig. 5.15. This transition value coincides with the depth of fretting fatigue crack 

propagation for this sample. A similar analysis was also conducted for the pierced sheet of 

a sample that was subjected to fatigue testing at a maximum load of 4.5kN for 133,800 

cycles. As shown in Fig. 5.16, the intermediate gradient value in this figure lies at a 
distance of around 250µm to 300µm. The depth of crack propagation due to fretting for 

this sample was established to be around 300µm from Fig. 5.11 (c). The value of the depth 

of damage due to fretting deduced from microhardness and microscopic examination was 

almost the same for both the pierced sheet and the locked sheet. The results therefore 

indicated the depth of the damaged layer due to fretting. The damage was caused by the 

combined effect of the repeated load and the tangential force. However, only the effect of 
the tangential force varied as the depth from the contacting surface changed and therefore 
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the results indicated the distance value up to which the tangential force had its greatest 

influence. As the number of cycles increased, the depth of the damaged layer also 

increased and this was attributed to the increasing debris that became compacted at the 

fretting surface. The microhardness at a distance of more than 500µm from the fretting 

surface was still higher than at the centre of specimen indicating that the depth that was 

affected by the combined effect of the tangential force and the repeated stress was 

considerably large. In addition, at the other side of the locked sheet where no fretting 

occurred, the microhardness also increased as the number of cycles increased indicating 

the effect of the work-hardening due to the repeated loading. 

120 T- -- - 

Z- 

u 00 N  

ü90 

ýA ß 
Ö80 

_ jj70 

60 
0 

f 133,800cycles 

  89,000cycles 

. 21,000cycles 

x Before testing 

-X) 
Mp 

KX XXX XXXXX 
"x 

X 

500 1000 1500 2000 2500 

Distance from fretting surface (pm) 

Figure 5.14 Microhardness measurements on the locked sheet 
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Figure 5.15 Variation of gradient versus distance from fretting surface 
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Figure 5.16 Microhardness measurements for the pierced sheet 
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5.2.4 Combination of Fretting and Fatigue 

In addition to fretting fatigue, evidence of normal fatigue that was not associated with 
fretting was observed. Fig. 5.17 (a) presents the right-hand side part of the rivet head of a 
joint, after 133,800 cycles at a maximum applied load of 4.5kN and shows fatigue cracks 
that formed on the underside of the rivet head. A cross-section of these fatigue cracks, as 

presented in Fig. 5.17 (b), indicated that the cracks initiated and propagated perpendicular 
to the interface between the underside of the rivet head and the pierced sheet. It should be 

noted that surface B shown in Fig. 5.11 (c) was in contact with the underside of the rivet 
head. The crack that formed at surface B was also perpendicular to the contact surface. 
This observation suggested that normal fatigue occurred at the interface between the 

underside of the rivet head and the pierced sheet and contributed to the fracture of the 

pierced sheet and the rivet head. During fatigue testing, the rivet head on the right-hand 

side of the joint pressed its head against the pierced sheet due to the effect of secondary 
bending and rivet tilting. Under the concentrated cyclic compression stress, cracks formed 

at both the rivet head and the pierced sheet. As a result of the deformation of the pierced 

sheet, the interface between the edge of the rivet head, and the pierced sheet along the 

thickness direction, was created. Fretting occurred as the rivet head continued to press its 

head against the pierced sheet. Normal fatigue produced fretting at position C, designated 

in Fig. 5.2 and led to the damage on the pierced sheet and the rivet head. Therefore, normal 
fatigue dominated the damage at position C, rather than fretting. 

Apparent fatigue striations and secondary cracks were also observed outside the fretting 

area, whilst, near the fretting surface, no obvious fatigue striations were found. An 

example is shown in Fig. 5.17 (c), which presents the fatigue striations and secondary 
cracks formed outside the fretting area of the fractured pierced sheet after 489,300 fatigue 

cycles at a maximum load of 3.6kN. These observations suggested that for a self-piercing 
riveted joint, failure during fatigue was due to the combination of fretting and fatigue. 
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(x) 

(c) 

(b) 

Figure 5.17 (a) Fatigue crack on the 
underside of the rivet head; (b) initiation 
of fatigue cracks on the underside of the 
rivet head; (c) fatigue striations and 
secondary cracks formed at the fractured 
pierced sheet after 489,300 at a maximum 
load of 3.6kN. 

5.2.5 Effect of the Number of Cycles on Fretting Damage 

The number of fatigue cycles had an important effect on the degree of fretting damage 

Fig. 5.18 (a) shows a light micrograph of the contact surface between the two riveted sheets 

after 21,000 cycles, which was equivalent to 15% of the average fatigue life at a maximum 

applied load of 4.5kN. Clearly defined fretting scars were noticeable on the surface of both 

sheets, with the central areas appearing to be bright, while the surrounding scars were dark. 

EDS analysis revealed the presence of a high carbon content within the bright area, 

indicating that the wax-based lubricant was still on the surface of the alloy, while the dark 

area consisted mainly of fretting debris of A1203. As the fatigue cycles increased to 89,000, 

equivalent to 65% of the average fatigue life at a maximum applied load of 4.5kN, the 

bright central area that was present after 21,000 cycles had vanished, whilst the oversize 
127 



Failure Mechanisms Chapter 5 

size of the surface damaged area remained the same, as shown in Fig 5.18 (b). Only one 
fretting region existed at this stage. 
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Figure 5.18 Fretting scars at the interface between the riveted sheets: (a) two regions 
emerged after 21,100 cycles at 4.5kN, (b) one region existed after 89,000 cycles at 
4.5kN 

According to Mindlin's [51] theory that has been widely used to describe elastic contact, 
for sphere-plane contact, under tangential loading before incipient gross slip, a slip annulus 

and a stick zone develop at the contact surface. During the initial stages of fretting a slip 

region and a stick region developed at the interface between the two riveted sheets. The 

bright central region in Fig. 5.18 (a) is the stick region where no slip occurred, while the 

outer dark region is the slip region and contained debris. The fretting process within the 

slip region was accompanied by micro-slip. These two regions developed during the 

fretting process and their size can be calculated using the following equation derived by 

O'Connor [46], 

a' 
_ ,_ 

7' ý]" 

a uN 
Equation 5-1 

where, a' represents the radius of the central region, a is the radius of the outer region, T is 

the tangential force, N is the value of the normal load and µ is the coefficient of friction at 
the interface between the two contacting surfaces. In the present investigation, N was 
proportional to the principal cyclic load, Sin addition to the effect of setting force. As the 
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number of cycles increased, the decrease in the bright central area meant that the a' term 
decreased, while the fretted area remained the same indicating that a was constant. 
Therefore the value of (a'/a) decreased as the number of cycles increased. An explanation 
for this comes from consideration of the effect of the fretting debris. According to 
Waterhouse [43], due to the effect of the debris that forms and becomes compacted at the 
fretting interface, the coefficient of friction, µ, increases during the early stages of fretting 

before it reaches a constant value at a steady-wear state. As a result, the tangential force 

increased as the number of cycles increased until the µ reached a constant value and the 

tangential force approached the value of µN. From equation 5.1, when the tangential force 

reached µN, a1=0. Therefore, the bright central area, which was the stick region, can be 

expected to disappear and macroscopic sliding to commence over the entire contact area, 

as was observed. It was further observed that during the fretting process, the real contact 

area, A, which can be described by a, remained constant. This is also consistent with the 
local conditions suggested by Waterhouse [43], that the relationship between the real 

contact area and the normal load can be expressed as 

A=N Equation 5-2 
No 

where No is related to the material properties. The value of N is proportional to the applied 
load, leading to a fixed maximum contact area A. In other words, the value of A and a 

remained constant as the number of cycles increased. The number of fatigue cycles 

therefore had an important effect on the fretting damage by increasing the tangential force 

leading to a reduction in the stick region during the early fretting process. 

5.2.6 Effect of Applied Load on Fretting 

The interface of the sheets in a joint that was subjected to a maximum applied load of 
2.7kN for 845,900 cycles, which was equivalent to 10% of the average fatigue life, is 

presented in Fig. 5.19. Compared with Fig. 5.18, the fretting scars at the lower fatigue load 

were less clearly defined and covered a smaller area than at the higher fatigue load. This 
indicated the effect of the applied load on fretting damage. 
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Figure 5.19 Fretting scars at the interface 
between the two riveted sheets after 845,900 
cycles at 2.7kN. 

A number of contact surfaces exist for a self-piercing riveted sample. It is understood that 

after joining, a closure load provided by the setting force exists in the joint between the 

riveted components and holds them together. This induces the possibility of fretting at 
these contact surfaces when the sample is subjected to cyclic loading. According to Forsyth 

[52], most examples of fretting that are associated with fasteners can be resolved into two 

types: flange-face fretting and pin-bore fretting. The reason for making a distinction 

between the two classes of fretting is not that the local physical process of fretting is 

different, but that in flange-face fretting the normal load is virtually independent of the 

cyclic load, whereas in pin-bore fretting the normal load and the cyclic load are 
interdependent. For a self-piercing riveted joint, the closure load acted as the normal load 

at the interface between the two riveted sheets and was therefore led to flange-face fretting, 

which was not affected by the magnitude of the principal cyclic load. However, the 

experimental results showed that the fretting damage at the interface between the two 

riveted sheets was in fact affected by the principal cyclic load, as shown in Figs 5.18 and 
5.19. 

The applied load (S) affected the fretting damage at the interface between the riveted 

sheets through its effect on the normal load at the interface. In addition to the effect of 

secondary bending, tilting of the rivet occurred during the fatigue loading process. As 

shown in Fig. 5.1, once the load S was applied, two components, S, and SZ, were induced at 

the head and the flared shank of the rivet respectively. The two components can be 

determined by the principal load, S, and by the geometry of the rivet. For joints with 
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identical thickness combination and setting parameters, the principal load, S, was the only 
variable. These two components, Si and S2, which increased with the principal load S, 
formed a couple and caused a tendency for the rivet to tilt. Due to the absence of a pre- 
drilled hole, the rivet head was forced to lift on the left-hand side and press on the right- 
hand side against the upper sheet. As a result, on the left-hand side of the joint, the 
interface between the riveted sheets lost contact, while on the right-hand side of the joint, 

the normal load at this interface increased as the principal load increased. Consequently, 

fretting did not take place at the interface between the two riveted sheets on the left-hand 

side of the joint, whilst fretting occurred at the interface between the two sheets on the 

right-hand side of the joint and was affected by the cyclic load. According to Waterhouse 

[43], the real contact area, A, is directly proportional to the normal load, N, as shown in 

equation 5.2. This implies that an increase in the normal load results in an increase in the 

contact area. Since fretting only occurs at the contact area, it is expected that this will be 

accompanied with an increase in the fretted area. Therefore, the fretted area between the 

riveted sheets increased as the principal cyclic load increased, as shown in Figs. 5.18 and 
5.19. Furthermore, fatigue cracks were initiated on both the pierced and the locked sheets 

at a higher load level since a higher normal load resulted in more severe fretting damage 

and fatigue damage. 

The principal cyclic load also affected the fretting damage at the interface between the 

shank of the rivet and the sheets. In addition to the effect of secondary bending, tilting of 

the rivet and bearing against the riveted sheets adjacent to the rivet led to pin-bore fretting 

at the interface between the rivet shank and the riveted sheets. Tilting acted as an 

oscillatory source and caused the relative movement at the interface between the rivet 

shank and the riveted sheets on the left-hand side of the joint (refer to Fig. 2.5), while the 

principal cyclic load still acted as a normal load to this interface. As a result, fretting took 

place on the left-hand side of the interface between the shank of the rivet and the locked 

sheet. The oscillatory force and the normal load at this interface increased as the principal 

cyclic load increased. Therefore, at a relatively higher load level, more severe fretting and 
fatigue occurred, leading to crack initiation and propagation at the rivet shank. The 

samples therefore failed by rivet fracture at a high applied load during fatigue testing. At a 
lower load level, fretting and normal fatigue were not sufficient to lead to fracture of the 

rivet. As a result, the sheet material fractured and dominated the failure mode that occurred 
131 



Failure Mechanisms Chapter 5 

at lower applied loads during fatigue testing. In addition, the experimental results indicated 

that fretting did not take place at the interface between the rivet shank and the riveted 
sheets on the right-hand side of the joint. This was because the relative movement between 

the rivet shank and the riveted sheets on the left-hand side of the joint was stopped by the 

rivet head on the right-hand side of the joint. Instead of sliding at the interface between the 

rivet shank and the riveted sheet, the rivet head was subjected to a high pressure leading to 
fracture of the rivet head, as shown in Figs. 5.17 (a) and (b). Consequently, the 3 and 9 

o'clock positions formed the boundary between the fretting and the non-fretting region, 

where the combined stress of the tangential force and the cyclic load reached a maximum 

value. In order to relieve the high stress concentration, fretting cracks initiated at the 3 and 
9 o'clock positions of the locked sheet in relation to the direction of the applied load. 

In addition to the effect on the normal load, the principal cyclic load also affected the 
initiation and propagation of fatigue cracks. At the interface between the riveted sheets, 
fatigue cracks initiated obliquely to the sliding direction. After early growth, the direction 

of crack propagation became perpendicular to the sliding direction and therefore, a tensile- 

type crack, also referred to as a stage II crack by Waterhouse [53], was formed. The reason 

why fretting cracks initiated at an angle to the sliding direction was due to the combination 

of the tangential force and the cyclic load, as explained above. The higher the applied load 

the easier the crack initiation and propagation. It should be noted that the sliding direction 

at the interface between the two riveted sheets was parallel to the principal cyclic load, 

which directly acted as a tensile stress on the riveted sheets. After early crack growth the 

effect of the tangential force was less effective and normal fatigue dominated the 

propagation of the cracks leading to a tensile type of crack. At the interface between the 

shank of the rivet and the locked sheet, fretting cracks initiated at the fretting surface of the 

locked sheet at an angle of about 35° to the sliding direction, as shown in Fig, 5.9 (b). This 

was also due to the combination of tangential force and the cyclic load. However, no 
tensile-type crack was formed at this interface and this was because at this interface, the 

principal cyclic load was perpendicular to the tangential force rather than parallel to it. 

It should be noted here that the variation in the normal load was also accompanied with a 
change in the tangential force. According to O'Connor [46], for the limiting case of 
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incipient sliding, the maximum tangential force is equal to µN. Therefore, as the normal 
load increased the maximum tangential force also increased leading to possible worse 
fretting damage by promoting crack initiation and propagation. On the other hand, 

according to Waterhouse [43), the increase in the normal load might reduce the slip region 
by reducing the slip-amplitude leading to a possible reduction in the fretting damage. 

Therefore the change of the normal load triggered these two reverse tendencies. The 

present investigation has shown that the morphology of the fretting scars varied with 
different applied load levels. The trace of the micro-slip was more obvious at high load 

levels, as shown in Figs. 5.18 and 5.19, suggesting that the slip-amplitude might be greater 

at higher load levels than at low levels. Based on these observations, the larger principal 

cyclic load probably created more serious fretting damage by increasing the normal load 

and the slip amplitude. As a consequence of this, two different failure modes took place 
depending on the level of the applied load. However, the effect of the normal load and the 

cyclic load on the slip-amplitude needs to be further investigated. 

5.2.7 Effect of Interfacial Conditions on Fretting 

The observation of fretting damage during this study led to an investigation to examine 

ways to prevent this type of fretting damage. Since fretting only occurs at contacting 
interfaces the condition of the contact surface might affect the fretting behaviour. 

Therefore the FSH5 series of fastenings was created for examining the effect of the sheet 

surface condition on the fretting behaviour. 

Fig. 5.20 shows the fatigue test results for the FSN51, FSH51 and FSH52 fastenings that 

had different interfacial conditions at the interface between the two riveted sheets. The 

FSN51 fastening, which joined sheets that had been coated with a wax based lubricant 

exhibited the longest fatigue life. At lx 106cycles, the fatigue strength of the FSH51 

fastening, which joined uncoated sheets, was at least 10% lower than that of the FSN51 

fastening. The FSH52 fastening, which had a PTFE insert at the interface between the two 

riveted sheets, had the shortest fatigue life. At 1x 106 cycles, the fatigue life of the FSH52 

fastenings was almost 7% shorter than that of the FSH51 fastening. 
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Figure 5.20 Fatigue test results for the FSN51, FSH51 and FSH52 fastenings 

5.2.7.1 Fretting Behaviour 

Typical fretting scars at the interface between the two riveted sheets for the FSN51 

fastening are shown in Figs. 3.11,5.18 and 5.19. The fretting regimes vary from 5 to 8 mm 
in length and from 2 to 4 mm in width at a maximum load of 4.5kN. The figures also show 

the effect of the number of cycles and the magnitude of the applied load on the fretting 

damage. Ploughing and delamination were observed to occur at the interface between the 

two riveted sheets for the FSN51 fastening, as shown in Figs. 5.5 (a) and (b). The fretting 

behaviour for the FSH51 fastening was very similar to the FSN51 fastening. Fretting scars 

developed at all applied load levels during fatigue testing for the FSH51 fastening. 

Figs. 5.21 (a) and (b) present evidence of fretting scars on the surface of the pierced sheet 

and delamination occurred on the surface of the locked sheet of a FSH51 fastening after 

215,060 cycles at a maximum applied load of 4. OkN. However, the fretting behaviour for 

the FSH52 fastening was somewhat different from the FSN51 and FSH51 fastenings. 

Inserting a PTFE tape at the interface between the two riveted sheets prevented direct 

contact between the two riveted sheets. Examination of the interface between the two 

sheets following fatigue testing at a maximum load of 4.5kN, revealed the presence of 

small fretting scars on both the pierced sheet and the locked sheet, as shown in Figs. 5.22 

(a) and (b). The size of the fretting region was 5mm in length and 2mm in width and this 
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was much smaller than that observed for the FSN51 fastenings. In spite of the fact that the 

two sheets were separated by the PTFE layer, surface damage characterised by 

delamination was also observed, as shown in Figs. 5.22 (c) and (d). At a maximum load of 

3. OkN, there were no visible fretting scars on the surface of the two riveted sheets after 

fatigue fracture of samples. Fig. 5.23 (a) shows the surface of the pierced sheet indicating 

that the presence of PTFE prevented the formation of any fretting scars on the riveted 

sheets tested at a maximum load of 3. OkN. SEM examination of samples that fractured at a 

maximum load of 3. OkN in Fig. 5.23 (b) revealed surface damage of the PTFE tape even 

though no fretting scars formed on the riveted sheets for this sample. 

(a) ýý'1 

Figure 5.21 After 215,060 cycles at 4. OkN for a FSH51 fastening, (a) fretting debris on 
the pierced sheet, (b) delamination on the locked sheet. 

135 



Failure Mechanisms Chapter 5 

(C) (d) 

Figure 5.22 Contact surfaces of a FSH52 fastening after 97,890 cycles at 4.5kN, (a) 
fretting scars on the pierced sheet, (b) on the locked sheet, (c) damaged surface of the 
pierced sheet, (d) damaged surface of the locked sheet. 

,S 

(a) (h) 

Figure 5.23 after 604,403 cycles at 3. OkN of a FSH52 fastening (a) no fretting scars on 
the pierced sheet, (b) damaged surface of the PTFE tape. 
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5.2.7.2 Effect of the Solid Lubricant on Fretting 

The fretting damage at the interface between the piercing and the locked sheets was 
observed to occur in two stages. During the first stage, ploughing took place due to the 

cyclic micro-sliding movement leading to roughening of the alloy surface as shown in 

Fig. 5.5 (a). At this stage, slip and non-slip (stick) regions developed as shown in Fig. 5.18 

(a). An SEM, micrograph of the two regions is presented in Fig. 5.24 (a). Under the SEM, 

the appearance of the two regions was reversed with the stick region appearing dark. EDS 

analysis revealed the presence of a high carbon content within the stick region indicating 

that the wax-based lubricant still covered most of the alloy surface at this region. The light 

grey areas represented the regions where the alloy surface had been exposed. Analysis of 
the white particles showed that they represented fretting debris of A1203. As the number of 

cycles increased the stick region vanished, as shown in Fig. 5.18 (b) indicating that the 

wax-based solid lubricant had been removed from the alloy surface. Once the alloy surface 
became exposed, the aluminium alloy started to suffer from fretting damage. Delamination 

of the alloy material occurred as a result of a continuous wear process, as shown in Fig. 5.5 

(b). This produced more debris as shown in Fig. 5.5 (c) and Fig. 5.24 (b). EDS analysis of 
the debris shown in Fig. 5.24 (b) revealed that the black-coloured debris represented the 

solid lubricant, as shown in Fig. 5.25. The grey-coloured area represented the exposed alloy 

surface, as revealed by the EDS analysis in Fig. 5.26. The debris produced by the wear 

process accumulated at the contact surface and formed a third-body particle to promote 
further three-body fretting. For the FSN51 fastening, the sheet material prior to testing was 

covered by the solid lubricant and therefore the fretting process initially involved removal 

of the solid lubricant followed by fretting damage of the alloy surface. The presence of the 

solid surface lubricant was effective in reducing fretting damage during the early stage of 
the test. It was therefore concluded that the solid surface lubricant delayed the onset of 
fretting wear at the alloy surface leading to a higher fatigue life for the FSN51 fastenings. 

On the other hand, it appears that for the FSH51 fastenings, fretting damage started to take 

place at the alloy surface virtually at the beginning of the dynamic test, resulting in a short 
fatigue life. 
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I""" Tur, 

(a) (b) 

Figure 5.24 (a) Wearing of the wax-based lubricant, 

(b) accumulated debris on the contact surface after 173,200 cycles at 4.5kN. 

Figure 5.25 EDS analysis of dark area shown in Fig. 5.24 (b) 
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Figure 5.26 EDS analysis of grey area shown in Fig. 5.24 (b) 

5.2.7.3 Effect of the PTFE Insert on Fretting 

The PTFE tape prevented direct contact of the two riveted sheets at the critical zone where 

fretting between the two riveted sheets had previously been observed. However, it appears 

that fretting took place at the newly-created interfaces between the sheets and the PTFE 

insert. Support for this was provided by the fact that the accumulated debris was located on 

both sides of the PTFE tape as shown in Fig. 5.27. The EDS analysis shown in Fig. 5.28 

revealed that the debris consisted of aluminium oxide particles and fragments of PTFE. 

The presence of fluorine indicated that the PTFE tape also suffered from damage due to 

fretting that occurred at the interface between the two riveted sheets. The initial cyclic 

micro-sliding movement led to two-body fretting at the alloy sheet/PTFE interface. At a 

maximum load of 4.5kN, the two-body fretting created fretting debris which became 

trapped at the alloy sheet/PTFE interface and resulted in three-body fretting, leading to 

surface damage of both riveted sheets, as shown in Figs. 5.22 (c) and (d). Therefore, the 

PTFE tape could not prevent fretting at a maximum load of 4.5kN. At the lower load level, 

two-body fretting led to the surface damage of the PTFE tape, as shown in Fig. 5.23 (b). 

However, under these conditions, the two-body fretting was less severe and did not 

produce enough debris for three-body fretting. Therefore there was no fretting damage of 

the riveted sheets at a maximum load of 3. OkN and below. 
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Figure 5.27 Debris accumulated on the 
PTFE tape of a FSH52 sample after 97,890 
cycles at a maximum load of 4.5kN 
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Figure 5.28 EDS analysis of the debris shown in Fig. 5.27 

5.2.7.4 Effect of Coefficient of Friction on Fretting 

The coefficient of friction between the pierced and the locked sheet for the FSN5 1, FSH51 

and FSH52 fastenings was measured using a direct shear apparatus. The objective of this 

part of the work was to examine the effect of the coefficient of friction on the fretting 

behaviour. The essential features of the apparatus are shown diagrammatically in Fig. 5.29. 

A vertical (normal) force, N, is applied to the specimen through a loading plate and a shear 

stress is gradually applied on a horizontal plane by causing the two halves of the box to 
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move against each other. The shear force, T, is measured when a relative movement occurs 

and reaches a steady state. The coefficient of friction is then calculated by using equation 
5.3: 

T 
µN Equation 5-3 

Three pairs of specimens for each fastening were tested and the average of the three values 

was adopted as the coefficient of friction at each interface. The test results are shown in 

Table 5.1. 

N 

Loading plate 
... ý. 

ý. 
- nl 

h Pierced sheet Box Q 

Extra sheets 
T 

Locked sheet 

Figure 5.29 Direct shear apparatus 

Table 5-1 Coefficient of friction at different interfaces 

Fastenings Interface Coefficient of friction 

FSNS 1 Pierced sheet/Locked sheet 0.26 
FSH51 Pierced sheet/Locked sheet 0.24 
FSH52 Pierced sheet/PTFE//Locked sheet 0.03 

In a self-piercing riveted joint, the normal load is directly proportional to the applied load. 

The lower the applied load the lower the normal load leading to a smaller fretting area, as 
discussed in section 5.2.6. This also suggested that the lower the frictional force the 

smaller the fretting area. The inserted PTFE tape induced a very low coefficient of friction 
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at the interface between the PTFE tape and the riveted sheet, as shown in Table 5.1. 

Consequently, the frictional force at this interface was about 10 times less than that at the 
interface between the two riveted sheets at an identical normal load. This resulted in a 

much smaller fretting area in the PTFE-insert samples. In addition, the frictional force is 

directly related to the tangential force in the case of incipient sliding. The lower frictional 

force therefore led to a lower tangential force at the contact surface. According to Alaham 

et al [54], when the tangential stress was small, the amount of ploughing and delamination 

would be expected to be less since the probability of asperity interactions drops and the 

amount of adhesive transfer is less. However, in a fretting fatigue degradation process, 

ploughing and delamination are important in establishing a surface morphology, which is 

long-lasting and therefore influences the future course of wear. The third-body of fretting 

is produced mainly at this stage. For a PTFE-insert sample, ploughing is unable to occur at 

the interface between the PTFE tape and the alloy sheet since the PTFE tape is very soft 

and the tangential force was very low in the case of incipient sliding. However, 

delamination might occur depending on the cyclic normal load and the cyclic frictional 

force. At a higher applied load, the normal load was higher resulting in a higher frictional 

force at the interface between the PTFE tape and the riveted sheet. Consequently, 

delamination occurred at the alloy surface and produced oxide debris leading to three-body 

fretting. Therefore fretting scars were observed at a maximum load of 4.5kN although the 

fretting area was much smaller compared to tests without PTFE. In contrast, at a lower 

applied load the normal load and the frictional force were also lower and therefore 

delamination at the sheet surface did not take place. As a result, there was insufficient 

oxide debris production to carry out three-body fretting. The low frictional force at the 

interface between the PTFE tape and the riveted sheet reduced the fretting damage. 

Based on the load transfer mechanism of a lap joint, the lower the frictional force the lower 

the load transferred by the interface. As a result, the load transferred by the rivet was 
increased leading to an increase in the normal load at the interface between the rivet shank 

and the sheet. The increase in the normal load at this interface was accompanied with an 
increase in the shear stress acting on the rivet shank leading to severe fatigue of the rivet. 
In addition, the tangential force at this interface increased as the normal load increased 

leading to severe fretting at this interface. EDS analysis of the debris shown in Fig. 5.27 

also revealed the presence of small amount of zinc and tin. The presence of zinc and tin 
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indicated that the rivet coating had worn off due to fretting and the debris that formed at 
the interface between the rivet shank and the sheet had been transferred to the interface 

between the riveted sheet and the PTFE tape. A PTFE insert induced a small frictional 

force at the interface between the PTFE insert and the riveted sheet, resulting in a short 
fatigue life for the FSH52 fastening due to the load transfer requirements of the lap joint. 

5.3 Comparison between this study and literature 

The failure modes that were reported by previous studies and the current project were 

compared in order to obtain a better understanding of the failure mechanism of self- 

piercing riveted joints. King [22] has summarised the failure modes that occurred during 

static tests in his study. The most prominent failure mode that was observed by King [22] 

for both shear and peel tests is shown in Fig. 5.30 (a). The rivet together with part of the 

locked sheet were pulled out from the buttonhole. This was due to the fact that breaking- 

through took place in many of his samples. Failure by rivet pull-out, shown in Fig. 5.30 (b) 

was believed by King [22] to occur in poor quality joints. For the joints with different sheet 

thickness combination, the thinner sheet was torn for both shear and peel tests, as shown in 

Fig. 5.30 (c). These observations from King's [22] study differ from observations from the 

current project. Failure by tearing of the thinner sheet was only observed to occur in the 

peel test in the current study. The smaller overlap length used by King [22] provided the 

riveted sheets with a smaller bearing resistance. This factor, coupled with the effect of 

thickness on the bearing resistance, led to tearing of the thinner sheet during the shear test 

in King's study [22]. The failure mode that was believed to occur in poor quality joints by 

King [22] and shown in Fig. 5.30 (b) was the only failure system that occurred for the joints 

with an equal sheet thickness combination in shear and peel tests in the current project. The 

most prominent failure mode, that occurred in King's study and is presented in Fig. 5.30 

(a), did not take place in the current project. According to cross-sectional examination, 

there was no breaking-through in any of the samples tested in the current project and the 

failure mechanism observed during shear and peel testing did not involve separation of part 

of the locked sheet from the buttonhole. 
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Figure 5.30 Failure modes (After King 1221) 

Fatigue failure modes were also reported by previous studies although there was no 

detailed analysis. Krause et al [27] described the failure mode that occurred in the fatigue 

test for aluminium self-piercing riveted specimens as an eyebrow crack. In the study by 

Westgate et al [26], different failure modes were observed to occur in steel and aluminium 

specimens. Fracture of the upper sheet around the head of the rivet led to failure of the 

aluminium joints. Fu and Mallick [29,30], who carried out a similar project to the current 

project, also reported that fracture of the upper sheet dominated the fatigue failure. In the 

current project, different failure modes were observed depending on the magnitude of the 

applied load. At high applied loads, fracture of the rivet shank dominated the failure mode, 

whilst at low applied loads, sheet material fracture was the only failure system. The 

different failure modes that occurred in previous studies and the current project were 

probably due to the different specimen size and test methodologies. In the current project, 

the highest magnitude of the applied load was about 80% of the average ultimate shear 

load and this contributed to the fracture of the rivet shank. The narrower the sheet material 

the higher the stress acting on the sheet under an identical load and this could lead to 

failure of the sheet rather than the rivet. In addition, the criterion for ultimate failure in the 

current project was fracture of the joint, whilst in other studies it may have been a specific 

displacement value experienced by the joint. This difference in the failure criterion may 

have led to the observation of different failure modes. It is therefore further suggested that 

the specimen geometry and testing methodology need to be standardised in order to relate 

test performance to in-service performance. 
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CHAPTER SIX 

6. EXAMINATION AND ANALYSIS OF SECONDARY 
BENDING 

6.1 Aims of the Examination and Analysis 

Secondary bending is an inherent feature of single lap joints like those that were used 
throughout this study. It is important to examine and analyse the effect of secondary 
bending on the mechanical behaviour and in particular on the fatigue performance of self- 

piercing riveted single lap joints, because fatigue fracture usually occurs on a cross- 

sectional discontinuity. In addition, the resulting bending stress can locally exceed the axial 

stress by several times and can have a decisive effect on the fatigue behaviour. Previous 

studies investigated the influence of secondary bending on the fatigue behaviour of 

conventional single lap joints by comparing results between specimens without secondary 
bending and single lap joints with secondary bending. In both studies by Hartman [35] and 

Schütz et al [36], the specimens without secondary bending were either symmetric butt- 

joints or double -shear joints that were produced by using the same setting parameters as for 

single lap joints. However, it is difficult to retain the same rivet quality as for single lap 

joints by using the same parameters to make double-shear specimens and symmetric butt- 

joints. According to Schütz et at [36], the load transfer mechanisms of symmetric butt- 

joints and double-shear joints differ from that for single lap joints. In addition, the pressure 
distribution is different in single lap joints compared to symmetric butt-joints and double- 

shear joints. In symmetric butt-joints and double-shear joints, a higher applied load is 
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transferred by the frictional force between the riveted sheets, whilst in single-shear joints 

this is encountered far less frequently. This leads to a significant difference in the fatigue 

strength between either symmetric butt-joints or double-shear joints and single-shear 
joints. These differences in behaviour are inseparable and in the case of single lap joints 

they are affected by secondary bending. As a result, the data obtained from symmetric butt- 

joints and double-shear joints would be incomparable to the data for single lap joints and 

could not reflect the effect of seconding bending. For a self-piercing riveted lap joint, it is 

even more difficult to make a symmetric butt-joint or a double-shear joint by using the 

same setting parameters as for a single-shear joint. Therefore, a single lap joint was used to 

examine the effect of secondary bending. 

Rivet-bonding joints were introduced for strain measurement by combining riveting and 

adhesive bonding. This was carried out in order to compare the strain measurement results 

and to identify the effect of adhesive bonding on secondary bending. 

The purpose of the examination and analysis reported in this chapter is to determine the 

distribution of secondary bending in some representative fastenings. The principal aims of 

the examination and analysis are listed below: 

1. To determine the distribution of secondary bending of the fastenings. 

2. To determine the secondary bending ratio k (k = 
absn, M8 ). 

° 
no min a! 

3. To identify the factors that influence the secondary bending ratio. 
4. To clarify the effect of bonding and riveting for a rivet-bonding joint. 

5. To predict the effect of secondary bending on the mechanical behaviour and in 

particular on the fatigue strength. 
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6.2 Procedure of the Examination and Analysis 

Secondary bending is not constant over the whole of the cross-section of samples. The 

maximum secondary bending for a single riveted lap joint occurs at the central cross- 

section of the rivet. The value of the secondary bending can be determined mathematically 

or empirically. As defined in Fig. 1.2, for a single lap joint, the maximum secondary 
bending can be expressed as 

Mx = PW = EIw Equation 6-1 

By using computer techniques and introducing some assumptions, it is possible to 

determine the value of the bending. However, the calculated results can be very inaccurate 

due to the complex deformation and load transmission mechanisms of single lap joints. 

Secondary bending is mostly restricted to a very small region, where localised yielding 

occurs due to stress concentrations. The deformation and load transmission mechanisms 

are rather complicated and not amenable to calculation. Alternatively, an empirical 

measurement using a bending-strain gauge can be employed to determine the bending 

distribution. The problem with this approach is the fact that the cross-section of interest is 

usually accessible only from one side. Both of these methods for determining the 

secondary bending on riveted single lap joints have been examined by Schütz et al [36), 

who indicated that the results from the empirical measurement were more accurate than 

those obtained from the mathematical determination. Bending-strain gauges were therefore 

used in the present study to quantify the bending distribution in self-piercing riveted single 
lap joints. 

The position where maximum bending occurs can only be accessed from one side since the 

other side is covered by the riveted sheet. Therefore, two bending-strain gauges were 
placed on the pierced sheet at each side of the rivet head, as shown in Fig. 7.1 in order to 

obtain the most accurate results. 

Two bending-strain gauges (FLA-6.350-1 1) with a length of 6mm and a gauge factor of 
2.13±1% at 23°C were bonded on a clean surface of the pierced sheet at each side of the 
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rivet head, as shown in Fig. 7.1. The gauge factor represents the percentage change in the 

electrical resistance of the wire and corresponds to a change of 2.13±1 % in length. 

After the strain gauges were bonded, they were then connected to a data logger. An Orion 

Delta 3530 Data logging system was used to record the resulting strains at 0.2 seconds 

intervals. Each specimen was placed in the tensile test rig and the strain gauges were 

calibrated to zero before commencement of the test. The data logger recorded the results 

for the strain in micrometers and the external load in kN. The tensile test rig used for the 

strain measurement was an Avery Denison tensile test rig with a load capacity of 500kN. 

U 
___ 

Figure 6.1: Positions of strain gauges 

The rivet-bonding samples were produced in two stages. Both the pierced sheet and the 

locked sheet were cleaned with acetone to remove all traces of oil, grease and dirt at the 

overlap area. Araldite 420 A/B Aerospace Adhesives was then applied at the overlap area 

with a layer of adhesive 0.05 to 0.1 mm thick. Curing was performed at room temperature 

for 24 hours under a 5kg load followed by treating at 70°C fier 30 minutes. Riveting was 

then performed using the same setting parameters as for the fastenings without adhesive 
bonding. The geometry of the rivet-bonding samples was also the same as for the 

fastenings without adhesive bonding. 
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6.3 Results and Discussion 

6.3.1 Bending Distribution of the FSN51 and the FSN56 Fastenings 

Fig. 7.2 shows the strain measurement results against the external load for the FSN5I and 

the FSN56 fastenings. The strain values of the FSN56 fastening were slightly higher than 

those of the FSN51 fastening. 
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Figure 6.2: Strain gauge measurement results 

The external loads can be converted to axial nominal stress, 6nominal, by dividing by the 

gross cross-sectional area. At an external load of 4.5kN, the axial nominal stress was 
46.9MPa for the FSN56 fastening and 37.5MPa liar the FSN51 fastening which was larger 

in size. Based on these data, it is reasonable to assume that the sheet material is still within 
its elastic range. Therefore, the strain, E�c, minab corresponding with the axial nominal stress 

could be calculated from equation 7.2: 

ý' - 
ýIllllllilla/ 

Equation 6-2 
rlu turn rl/ - 

where E is the young's Modulus of the sheet material. By using this equation, the nominal 

strain values were calculated and plotted in Fig. 7.3 against the observed strain values. 
Under the axial nominal stress, the nominal strain value was positive. Under a combination 
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of the axial nominal stress and the secondary bending, the observed strain value changed 

from positive to negative leading to a compressive stress, which was imposed on the axial 

nominal stress. These results showed that the secondary bending compensated the positive 

strain value and resulted in a negative strain value. The difference between the nominal 

strain value and the observed strain value represents the strain that was caused by 

secondary bending and is shown in Fig. 7.4. The bending strain value of the FSN56 

fastening was slightly higher than that of the FSN51 fastening. 
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Figure 6.3: Observed strain vs. Nominal strain 
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Figure 6.4: Secondary bending strain distribution 
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By using the bending strain values shown in Fig. 7.4 and assuming elastic behaviour, the 

bending stress, a ending. can be calculated by using equation 7.3: 

6hrnding = ehenI 
gx1: 

F: (1IUatiOfl 6-3 

where Et, �d, ng is the bending strain. The bending distribution of the FSN5I fastening can 

then be presented by the axial nominal stress, ? nominal, and the bending stress, aixnding. 

against the external load, as shown in Fig. 7.5. The bending stress was higher than the axial 

nominal stress. An extra stress was therefore imposed on the axial nominal stress due to 

secondary bending. At bending stress values below about lOOMPa, the bending stress 
increased linearly as the external load increased. At an external load of 2kN, the bending 

stress, 6bending, was almost double the axial nominal stress, 6non, in;, i, indicating that the 

imposed stress due to the bending had almost double the axial nominal stress, on�n, in; 1i at this 

load level. At bending stress values exceeding 100MPa, the bending stress increased 

sharply as the external load increased. This result suggested that localised yielding of the 

sheet material might occur at about I OOMPa. 
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Figure 6.5: Bending stress and Nominal stress fier the FSN51 fastening 

Fig. 7.6 shows the bending distribution for the FSN56 Fastening. Similar to the FSN56 

fastening, the bending stress, rn, c,,, i;,, g, was greater than the axial nominal stress, (7,,,,,,,;,,;, i 

leading to an imposed stress on the sheet material. At bending stress values exceeding 

! OOMNa, the bending stress increased sharply with the external load. This was the same 
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result as for the FSN51 fastening suggesting that localised yielding of the sheet material 

occurred at about 100MPa. 
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Figure 6.6: Bending stress and Nominal stress for the FSN56 fastening 

Fig. 7.7 shows the tensile test results of the sheet material used fier the two fastenings. The 

result indicates that the yield stress of the sheet material was about I IOMPa. 't'his explains 

why localised yielding of the sheet material started to take place at about I OOMPa, which is 

close to the yield stress of the sheet alloy. 
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Figure 6.7: Tensile test results of NC 5754 sheet 
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Based on bending theory, the maximum bending moment about the z-axis, which resulted 

in the bending stress at the sheet with a rectangular-section, can be calculated by equation 

7.4: 

bj2 

Mma- - Equation 6-4 
6 

where b is the width of the sheet and t represents the thickness of the sheet. 13y using the 

above equation, the bending moments for the two fastenings were calculated and are 

shown in the Fig. 7.8. The FSN56 fastening was subjected to a slightly lower bending 

moment than the FSN51 fastening. This result indicated that the specimen sizes that were 

used for the FSN51 and the FSN56 fastenings had only a small effect on the bending 

moment. 
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Figure 6.8: Maximum bending moment 

The distribution of secondary bending can also be presented by the secondary bending 

ratio k, which is defined as 

k- 
(TI'veding 

Equation 6-5 
ano 

min eil 
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By using this equation, the secondary bending ratio for both the FSN56 and the FSN51 

fastenings can be calculated and the results are shown in Fig. 7.9. For instance, at an 

external load of 2kN, the axial stress of the FSN51 fastening is an,, m; nai= 
2000 

=2x 
60 

16.67 MPa 

and the bending stress is Q ending = 6nominai xk= 16.67 x 2.1 = 35MPa. By using the bending 

ratio, the bending stress can be calculated. 
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Figure 6.9: Secondary bending ratio for the FSN51 and the FSN56 fastenings 

Fig. 7.9 also shows the effect of specimen size on the secondary bending ratio. The slightly 
different ratios between the FSN51 and the FSN56 fastenings indicated that based oil the 

fastening conditions, the specimen size had a little influence on the bending ratio of' the 

fastenings. However, Schütz et al [361 reported that a bigger overlap length was 

accompanied with a smaller bending ratio if' the overlap length was the only variation 
between samples. In this case, the sample size of the FSN56 fastening differed not only in 

overlap length but also in specimen length and width which also affected the bending ratio. 
"therefore it is difficult to identify the major influential factors on the bending ratio for 

these two fastenings. 
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6.3.2 Bending Distribution of the FSA61* and the FSA64* Fastenings 

The strain measurement results for the FSA61 * and the FSA64* fastenings are shown in 

Fig. 7.10. At an identical external load, the FSA64* fastening suffered more straining than 

the FSA61 * fastening. 

0123456 

' -1000 

-2000 
N 

Z -3000 
N 

0 
-4000 

-5000 

Figure 6.10: Strain gauge measurement results 

By performing the same analysis and calculation as for the FSN51 and the FSN56 

fastenings, the stresses acting on the pierced sheets due to the axial external load and the 

bending moment for the FSA61 * are shown in Figs. 7.1 1. The stress due to bending was 

much higher than that due to the axial load and the point where the bending stress 

increased sharply was about 20OMPa. This value is approximately equal to the yield stress 

of the AA61 11 alloy, as shown in Fig. 7.12. This indicated that yielding of' the sheet 

material would take place at that point. 
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Figure 6.11: Bending stress and Nominal stress for the FSA61* fastening 
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Figure 6.12: Tensile test result for the AA6111 sheet 

Fig. 7.13 shows the bending stress and the nominal stress for the FSA64* fastening. The 

bending stress increased sharply above lOOMPa. This value is much lower than the yield 

point of the AA6111 alloy. The reason fier this discrepancy was due to the effect of the 

thickness on the bending stress. In this case the bending stress is inversely proportional to 

the square of the thickness of the riveted sheet, as shown in equation 4.3. The FSA64* 
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fastening had a 0.9mm sheet thickness, whilst the other samples that were examined had a 

2mm thickness. The square value of the 0.9 resulted in a rapid increase in the bending 

stress as the bending moment increased and this probably led to inefficient elastic 

behaviour. In addition, the average ultimate shear load for the FSAb4* fastening was only 

2.7kN. Therefore at an external load of 2.1kN, where a rapid increase in the bending stress 

started to take place, bearing of the 0.9mm sheet might have occurred due to the relative 

lower bearing resistance of the 0.9mm sheet. As a result, the point where the bending stress 

increased sharply was not the yield point of the sheet material. This observation also 

indicated that the sheet thickness had a significant effect on the bending distribution. 
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Figure 6.13: Bending stress and Nominal stress for the FSA64* fastening 

The secondary bending ratio for the FSA61 * and the FSA64* fastenings is shown in 

Fig. 7. l4. At an external load of 2.1 kN, the bending stress was almost 2.5 tines of the 

nominal stress for the FSAGI* and the FSA64* fastenings. When above 2. lkN, due to 

inefficient elastic behaviour tier the FSA64* fastening, the bending ratio shown in Fig. 7.14 

was probably not accurate enough. however, the et'tcct of the increasing load on the 

bending ratio for the FSA64* fastening suggested that the sheet thickness had a significant 

effect on the bending distribution. 
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Figure 6.14: Secondary bending ratio for the FSA61 * and the FSA64* fastenings 

6.3.3 Bending Distribution of the Rivet-bonding Sample 

Fig. 7.15 shows the strain measurement results for the rivet-bonding sample which had the 

same riveting parameters and geometry as for the FSN51 fastening. Positive strain values 

were observed for the rivet-bonding sample indicating that the adhesive layer eliminated 

the effect of the bending moment on the riveted sheet. Under elastic assumption, the 

nominal strain values of the riveted sheet were calculated and compared with the observed 

strain values, as shown in Fig. 7.16. The nominal strain value at each load was higher than 

the observed strain value indicating that the adhesive layer sustained not only the bending 

moment but also part of the external load leading to a smaller positive strain value for the 

riveted sheet. 
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Figure 6.15: Strain measurement results for the rivet-bonding sample 
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Figure 6.16: Observed strain vs. Nominal strain 
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6.4 Effect of Secondary Bending 

As a result of the inherent eccentricity of the lap joints, secondary bending was induced. 

The secondary bending led to an additional axial stress acting on the sheet material 

discontinuities, whilst a tensile component was also introduced to the rivet. Consequently, 

the mechanical behaviour of the fastenings was affected by the secondary bending. 

Fig. 7.17 shows the shear test results for the FSN51 fastening and the rivet-bonding 

samples. The rivet-bonding samples exhibited much higher ultimate shear load than the 

FSN51 fastening. This was due to the application of the adhesive layer, which withstood 

the bending moment and eliminated its effects. However, from these results, it was difficult 

to conclude whether the ultimate shear load would increase if' secondary bending was 

prevented or minimised. According to Kulak et al [34], the shear strength of a conventional 

riveted single lap joint was about 10% less than that for a symmetric butt joint, which was 
formed using the same setting conditions. The design of a symmetric butt joint is such that 
it eliminates secondary bending. It is therefore reasonable to assume that elimination of' 

secondary bending could lead to a high ultimate shear load for a self-piercing riveted joint. 
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Figure 6.17: Shear test results for the rivet-bonding and the FSN51 samples 
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The failure mode that occurred during the shear testing of a self-piercing riveted sample 
was also affected by secondary bending. As discussed in Chapter 5, pull-out of the rivet 
was the only failure system for the shear tests. In addition to the effect of tilting of the rivet 
and yielding as well as bearing of the sheet material, the introduction of the additional 

secondary tensile component which acted on the rivet, facilitated the rivet pull-out leading 

to eventual failure of the fastenings. This behaviour was different from that for a 

conventional riveted joint. According to Kulak et al [34], for a conventional riveted lap 

joint, rivet fracture was the most likely failure system during shear testing. The secondary 
tensile component facilitated the fracture of the rivet rather than pull-out of the rivet due to 
the existence of a forged button on the lower sheet. 

In addition to the effect of secondary bending on the shear behaviour, secondary bending 

also affected the fatigue behaviour. The additional secondary tensile component was 
believed to facilitate the fracture of the rivet. The additional axial bending stress combined 

with the nominal stress and resulted in high local stresses at areas of discontinuities of the 

sheet. This facilitated crack initiation and propagation within the sheet material. The higher 

bending stress that was suffered by the 0.9mm sheet due to the effect of the low thickness 

on the bending moment contributed to the fracture of the 0.9mm sheet at all applied loads 

during fatigue testing. The combination of the bending stress and the nominal stress 

contributed to the failure of the joints during fatigue testing. The bending stress therefore 

needed to be taken into account in order to understand the fatigue behaviour of samples. 
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Figure 6.18: Fatigue strength of the FSN51 and the FSN56 fastenings 

Fig. 7.18 shows the fatigue strength of the FSN51 and the FSN56 fastenings using stress 

versus the number of cycles. The stress was obtained by using the maximum applied load 

divided by the gross area of the sheet and can be presented by the equation or 
ft 

P 
IIll I111i111ý I 

The actual stress of the critical area of the sheet material was a combination of, the nominal 

stress and the bending stress and could be expressed as 

_P 6romhined =A+ 

My 
Equation 6-6 

As discussed in section 7.3.1, the combined stress could also he obtained by using the 

equation, 

0eombinni -6noininnl +t7hending -onuminnl( 
1 +k) Equation 6-7 

From this equation, it was reasonable to predict that when considering the effect of 

secondary bending, the fatigue strength fl or a self-piercing riveted single lap joint was 
higher by (l+k) times. For example, at an external load of 2kN, the predicted fatigue 

strength for the FSN51 fastening would be 

Upnrlirlirl = l7romhinni = 47nri 
min ril 

(I +k)= ann 
min rd `I 

} 2. I) = 3.1gnu 
min rd 
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whilst for the FSN56 fastening, 
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The slightly higher bending ratio for the FSN51 fastening led to a higher fatigue strength 

value by taking secondary bending into consideration. Fig. 7.19 shows the nominal stress 

and the predicted (combined) fatigue stress versus the number of'cycles for the FSN51 and 

the FSN56 fastenings. It was suggested that the secondary bending led to a significant 

reduction in the fatigue strength depending on the magnitude of the secondary bending 

ratio. 
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Figure 6.19: Fatigue strength presented by nominal stress and combined stress 

By performing the same calculation as for the FSN51 and the FSN56 fastenings and 

considering the effect of secondary bending, the fatigue strength of the FSA61 * and the 

FSA64* fastenings are presented in Fig. 7.20. Since the nominal fatigue strength of the 
FSA64* fastening was calculated by using the maximum applied load divided by the gross 

area of the 0.9mm pierced sheet and taking into account the effect of the high bending 

ratio, a very high fatigue strength was predicted for the FSA64* fastening. 
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Figure 6.20: Fatigue strength presented by nominal stress and combined stress 
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CHAPTER SEVEN 

7. CONCLUSIONS 

7.1 Cross-sectional Deformation Characteristics 

The cross-sectional deformation characteristics of the riveted joints were examined by 

standard optical and scanning electronic microscopy prior to testing. Based on this 

examination, the following conclusions can be drawn: 

I. The processing conditions can be optimised to achieve good-quality joints. 

2. Any variation in rivet geometry size, anvil profile and sheet thickness as well as the 

setting force will alter the joint quality and in turn affect the strength characteristics 

of the joints. 

3. The change of the thickness combination from (1 mm+2mm) to (2mm+1 mm) will 
lead to a poor cross-sectional deformation of the joint. 

4. The pre-straining levels of the 5754 alloy and the shelf-life time of the 6111 alloy 
do not affect the cross-sectional deformation characteristics significantly. 

S. Identical setting parameters can be used to join the 5754 alloy sheet with up to 10% 

pre-straining and still achieve good-quality joints. 

6. The AA61 11 sheet can be joined satisfactorily after a shelf-life of 21 months by 

using the same setting parameters as for fresh AA6111. 
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7.2 Strength Characteristics 

The strength of riveted joints was measured via standard shear, peel and fatigue tests and 
also by a specially developed pull-out test. The strength characteristics of riveted joints 

were thus identified. 

The shear strength of the riveted joints of all the combinations examined in this study was 

mainly dependent on the clinch strength of the joint. The yield strength and bearing 

resistance of the sheet material also had an effect on the shear strength. In addition, the 

surface condition of the sheet material had an influence on the shear strength of the joints. 

The failure mechanism during the shear test was by pull-out of the rivet and was therefore 
dependent on the clinch strength. The clinch strength was related to the frictional force at 

the interface between the riveted sheets and the rivet shank as rivet pull-out was taking 

place. The high strength of the sheet material was accompanied with a high yield strength 

and bearing resistance and led to a high shear strength of the joints. Paint-baking reduced 

the shear strength of the joints by reducing the strength of the riveted 5754 sheet via 

recovery. Pre-straining increased the strength of the sheet material leading to an increase in 

the shear strength of the joints. A thinner sheet material and a shorter overlap length led to 

a reduction in the bearing resistance of the sheet material and this resulted in a reduction in 

the shear strength of the fastenings. The use of a shorter rivet was accompanied with a 

smaller contact area between the rivet shank and the riveted sheets and therefore at an 
identical contact pressure the frictional force at the interface was reduced leading to a 
decrease in the shear strength of the joints. 

The peel strength of the riveted joints with a (2mm+2mm) thickness combination was 
dominated by the clinch strength. Therefore any factors that affected the clinch strength 

such as coefficient of friction, had an influence on the peel strength. For the joints with a 
(lmm+2mm)/(0.9mm+2mm) thickness combination, the peel strength was dependent on 

the strength of the thinner sheet rather than the clinch strength since the maximum bending 

stress was inversely proportional to the square of the sheet thickness in this case. 

166 



Conclusions Chapter 7 

The pull-out test was developed specially for measuring the clinch strength of the joints 

and therefore the clinch strength governed the pull-out strength of the joints of all 

combinations examined in this study. 

The fatigue strength of the joints of a (2mm+2mm) thickness combination was dominated 

by both the fatigue performance of the rivet and that of the sheet material adjacent to the 

rivet depending on the magnitude of the applied load. At high applied loads, the fatigue 

strength of the joints was mainly dependent on the performance of the rivet since fracture 

of the rivet dominated the failure mode. At low applied loads, the sheet material governed 
the fatigue strength of the joints since fatigue cracks of the riveted sheet led to failure of 
the joints. For the joints with a (lmm+2mm)/(0.9mm+2mm) combination, failure of the 
joints was due to fracture of the thinner sheet indicating that the behaviour of the thinner 

sheet dominated the fatigue strength of the joints. The fatigue strength of the joints was 

also affected by the interfacial condition between the two riveted sheets since any change 
to the interfacial conditions altered the load transfer mechanism. The lower frictional force 

at the interface between the two riveted sheets the greater the load sustained by the rivet 
leading to a reduction in the fatigue strength of the fastenings due to fracture of the rivet. 

7.3 Failure Mechanisms 

The failure mechanisms of the riveted joints during static and fatigue testing were 

examined. Three failure modes, designated as rivet pull-out, rivet fracture and sheet 
material failure were observed to occur in both types of test. 

It was evident that pull-out of the rivet was the only failure system that occurred during the 

shear tests. The effect of secondary bending and tilting of the rivet were believed to 
contribute to the failure system, whilst yielding and bearing of the sheet material facilitated 

the pull-out of the rivet. During peel testing, the joints with a (2mm+2mm) combination 
failed by rivet pull-out since the 2mm pierced sheet was strong enough to sustain the peel 
load and therefore the peel load concentrated on the clinch leading to pull-out of the rivet. 
For the joints with a (lmm+2mm)/(0.9mm+2mm) combination, the lmm/0.9mm pierced 
sheet peeled off around the rivet head and this was because the thinner sheet failed to 
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sustain the peel load due to a high stress concentration. The pull-out test was specially 
designed to measure the clinch strength of the joints and therefore pull-out of the rivet was 
the only failure system for all samples tested by this means. 

The fatigue failure mechanisms were more complicated than those observed in the static 
tests. Fretting was observed to occur mainly at the interface between the two riveted sheets 

and at the interface between the rivet shank and the riveted sheet and played an important 

role in the fatigue failure mechanisms. Both rivet fracture and sheet material failure 

occurred in fatigue tests depending on the magnitude of the applied load as well as the 
fretting behaviour. For the joints with a (lmm+2mm)/(0.9mm+2mm) combination, fracture 

of the thinner sheet was the only failure system. This was attributed to the combined effect 

of the axial applied load and secondary bending, which superimposed an additional stress 

on the sheet material leading to fracture of the thinner sheet material. Fretting at the 
interface between the two riveted sheets led to initiation and early propagation of cracks 

and therefore facilitated the fracture of the thinner sheet. At high applied loads, the joints 

with a (2mm+2mm) thickness combination failed by fracture of the rivet shank with some 
deformation of both the riveted sheets taking place. At low applied loads, sheet material 
fracture dominated the failure system. At high applied loads, major slip was most likely to 

take place. As a result, the rivet sustained high shear and bearing stresses. At the same 
time, a high tensile stress also acted on the net-section of the riveted sheets. These factors 

contributed to the fracture of both the rivet and the riveted sheets. By contrast, at low 

applied loads, major slip was less likely to occur. Therefore, the applied load was mainly 

sustained by the frictional force at the interface between the two riveted sheets. Hence the 
load sustained by the rivet was lower and the sheet material became more critical. Fretting 

at the interface between the two riveted sheets and at the interface between the rivet shank 
and the riveted sheets contributed to the initiation and propagation of fatigue cracks within 
the riveted sheets. In addition, the deformation that occurred during the riveting process 
produced weak points around the buttonhole of the locked sheet. Fracture of the locked 

sheet at these points therefore occurred leading to eventual failure of the joints. This study 

also examined ways to prevent fretting by inserting a PTFE tape at the interface between 

the two riveted sheets. It was observed that the PTFE tape could reduce the fretting damage 

at the interface between the two riveted sheets. However, more fretting damage and fatigue 
damage occurred at the rivet leading to rivet fracture. This was attributed to the very low 
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coefficient of friction at the interface between the two riveted sheets, which led to a change 
in the load transfer mechanism of the riveted lap joint. In this case the rivet had to sustain a 

greater load and therefore failed. It was therefore concluded that reducing the frictional 

force at the interface between the two riveted sheets was not an effective way to improve 

the fatigue performance of self-piercing riveted joints. 

7.4 Examination and Analysis of Secondary Bending 

Secondary bending as an inherent feature of single lap joints has been examined and 

analysed in this study. The distribution of secondary bending for the riveted joints was 
determined by means of strain measurement. Based on the experimental results and 

analysis, the following conclusions can be drawn: 

1. A self-piercing riveted single lap joint has a very high secondary bending ratio. 
2. The thickness of the riveted sheet had a significant effect on the distribution of 

secondary bending. This was probably due to the fact that the bending stress was 
inversely proportional to the square of the thickness. 

3. Rivet-bonding can prevent secondary bending because the adhesive bond 

eliminated the effect of secondary bending by sustaining the bending moment and 

part of the external load. 

4. Secondary bending had a significant influence on the mechanical behaviour and in 

particular on the fatigue strength of self-piercing riveted single lap joints by 

introducing an additional axial stress on the riveted sheet and an additional tensile 

component on the rivet. 
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CHAPTER EIGHT 

8. RECOMMENDATIONS FOR FURTHER WORK 

Based on the knowledge gained during the project, the following five principal areas of 

work could be further explored in order to extend the current understanding of the 

mechanical behaviour of self-piercing riveted joints: 

1. Further analysis of the fretting behaviour. The effect of fretting on the crash 
behaviour will certainly be of interest. The fretting behaviour of the fastenings that 

join sheets of different hardness values should also be considered. 
2. Simulation of the behaviour of self-piercing riveted joints by means of finite 

element analysis. 
3. Investigation of the behaviour of multi-riveted samples. Of particular interest 

would be the examination of the effect of rivet-pitch on the mechanical properties 

of joints. 

4. Further examination of secondary bending in order to enable an accurate prediction 

of its magnitude and its effect on the fatigue strength of self-piercing riveted joints. 

5. Investigation of the behaviour of rivet-bonding joints. 

8.1 Further Analysis of Fretting Behaviour 

During the current study, fretting has been observed to play an important role during 
fatigue failure. According to Waterhouse [53], the effect of fretting on the initiation and 
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propagation of fatigue cracks leads to a reduction of fatigue strength. The current project 
has shown that the presence of a wax-based solid lubricant at the interface between the two 

riveted sheets can delay the onset of fretting and extend the fatigue life. However, it was 

also evident that the reduction of fretting at the interface between the two riveted sheets by 
inserting a PTFE layer led to a reduction of the fatigue strength of the joints. The reason 

was because the inserted PTFE tape led to a change in the load transfer mechanism. 
Therefore the effect of fretting needs to be investigated further. The study has shown that 

reducing the coefficient of friction at the interface between the two riveted sheets will not 

necessarily improve the fatigue performance. Further work is required to establish the 

effect of the coefficient of friction and of different coatings on the fretting behaviour. In 

addition, the current project has also shown that fretting led to an increase in the hardness 

of the riveted sheets and to crack initiation. It is therefore important to examine the effect 

of these factors on the crashworthiness of joints and in turn on car passenger safety. 

Results from the current project have indicated that fretting leads to work hardening which 
in turn changes the hardness of the riveted sheets. Both work hardening and the hardness of 
the riveted sheets can affect the fretting behaviour of the joints. Further examination on the 

effect of hardness on the fretting behaviour of the joints and in particular, of joints between 

sheets of different hardness values, is recommended. 

8.2 Simulation of the Behaviour of Self-piercing Riveted Joints 

During the current study, it was attempted to simulate the deformation behaviour of a self- 

piercing riveted lap joint under shear loading by using ANSYS, a finite element analysis 
software package. Fig. 8.1 shows the deformation results. The effect of secondary bending 

on the deformation behaviour is clearly shown in the figure. Although this part of the work 
was not one of the objectives of the current project, the preliminary results have shown the 

potential of simulating the behaviour of self-piercing riveted joints using the finite element 

method. In the case of joints, the main features to be modelled are the amount of load 

transferred by the fastener and the amount of secondary bending of the joint. There is 

currently very little data available on these values in real-life structures and in particular on 
self-piercing riveted joints. Therefore a definite scope exists for further research in 
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developing a valid finite element method to simulate the behaviour of self-piercing riveted 

joints for commercial use. However, due to the unusual configuration ofthe fastener, the 

modelling process will not be easy. In addition, the contact between two components of the 

joints needs to be taken into account in order to simulate the fretting behaviour and this 

will make the simulation even more difficult. Coupled with the consideration of' the effect 

of secondary bending, the simulation process will certainly be a challenge. 

8.3 Investigation of Multi-riveted Joint Behaviour 

This study has focussed on the behaviour of self-piercing riveted single lap joints. It is 

necessary to extend this to multiple joint samples to gain a better understanding of' the 

performance of self piercing riveted structures. One of the primary influences of' the 

behaviour of multiple joint samples is the rivet-pitch and this therefore needs to be 

examined. In addition, secondary bending varies with specimen configuration and will 

probably be affected by the rivet-pitch. 

8.4 Further Examination on Secondary Bending 

Secondary bending has been examined and analysed fier single riveted lap joints during this 

study. Since secondary bending is affected by many factors such as overlap length and 

sheet thickness, it is important to have a good understanding of' the elect of' these 
influential factors. In addition, a method to predict the fatigue strength by taking 

172 

Figure 8.1: Simulation of the deformation hehaN iour of a self-piercing riveted joint 



Recommendations for Further Work Chapter 8 

consideration of the effect of secondary bending has been introduced. However, there are 

no experimental results to support this prediction. Therefore further experimental work is 

necessary to obtain data in order to understand the behaviour of secondary bending and its 

effect on the fatigue strength of self-piercing riveted joints. 

8.5 Investigation of Rivet-bonding Joints Behaviour 

During the current project, rivet-bonding samples were used in the examination of 

secondary bending. It was observed that rivet-bonding can eliminate secondary bending 

and its effects. As rivet-bonding joints are used by the automotive industry, it is therefore 

important to investigate their behaviour. 

As a relatively new joining method, self-piercing riveting is still being developed. There 

are certainly many areas that can be developed further in the near future. One important 

area is to develop aluminium alloy rivets. This will eliminate galvanic corrosion that may 

occur between the steel rivet and the aluminium sheet and will also be beneficial to 

recycling. Another important area is the development of Non-Destructive Test (NDT). This 

can be coupled with the process monitoring system that has already been developed to 

make self-piercing riveting more reliable, more practical and more attractive. 
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APPENDIX A: DATA TABLE 

Table A- 1: Shear test results for the FSNS series of fastenings Units: kN 

Test number 
Code 

1 2 3 4 5 6 7 8 

FSN51 5.6 5.6 5.7 5.5 5.7 5.7 5.6 5.9 

FSN51* 4.5 4.6 4.7 4.6 

FSN52 3.4 3.7 3.6 3.5 

FSN53 2.7 2.8 2.7 2.8 

FSN53* 2.6 2.5 2.7 2.5 

FSN55 1 0.9 0.8 1 

FSN56 5.2 5.4 5.5 5.1 

Rivet-bonding A 21 20.6 20 21.5 

Table A- 2: Peel test results for the FSNS series of fastenings Units: kN 

Test number 
Code 

1 2 3 4 5 6 7 8 

FSN51 2 1.9 2 2.2 2.2 2.1 2.1 2 

FSN52 1.3 1.2 1.4 1.2 

FSN53 0.7 0.6 0.7 0.7 

FSN53* 0.5 0.6 0.6 0.6 

FSN55 0.1 0.1 0.1 0.1 
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Table A- 3: Pull-out test results for the FSN5 series of fastenings Units: kN 
Test number 

Code 
1 2 3 4 

FSN51 3.6 3.5 3.9 3.7 
FSN52 2.3 2.3 2.2 2.2 
FSN53 2 2 2 1.9 

FSN53* 2 2 1.9 2 

Table A- 4: Fatigue test results for the FSNS series of fastenings (Number of cycles) 
Applied Load (kN) Number of Cycles 

FSN51 Fastening 

4.5-0.5 139200 173200 107300 133800 135800 
4.0-0.5 412050 489140 402540 

3.6-0.5 489300 636700 570300 411500 920870 

3.0-0.5 4140310 9940420 2634340 

2.7-0.5 6983250 6663470 8325100 10552000 10098200 

FSN51* Fastening FSN52 Fastening 

4.5-0.5 138650 136790 

3.6-0.5 478900 467660 

3.2-0.5 927850 

3.0-0.5 5671720 3360970 1087740 

2.7-0.5 1654660 

2.5-0.5 5322680 

2.2-0.5 

2.6-0.5 
FSN53 Fastening 

95170 

16234100 

FSN53* Fastening 

93870 
2.4-0.5 307460 
2.2-0.5 970440 376030 
2.0-0.5 1127110 920350 
1.7- 0.5 3820170 3296250 
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I FSN56 Fastening 
4.5-0.5 36690 41600 35180 39400 35940 
4.0-0.5 83440 100660 
3.6-0.5 102590 152180 151930 220882 184720 
3.0-0.5 482750 472120 
2.7 -0.5 853630 766110 570580 783420 670490 

Table A- 6: Fatigue test results for the FSH5 series of fastenings (Number of cycles) 

Applied Load Number of Cycles 
(kN) FSH51 

Fastening 
FSH52 Fastening 

5.0-0.5 58860 

4.5-0.5 101140 123890 97890 98550 112180 101560 

4.0-0.5 215060 118640 187060 

3.6-0.5 573660 257550 320190 323270 272850 251600 

3.0-0.5 1208920 1148210 664430 

2.7-0.5 3751210 1532930 1736180 1765630 2479100 3292360 
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Table A- 7: Shear test results for the FSA6 series of fastenings Units: kN 

Test number 
Code 

1 2 3 4 

FSA61* 6 6.2 6.4 

FSA62 6.2 6.2 6.1 6.1 

FSA62* 5.8 5.9 5.8 5.8 

FSA63* 6 5.8 6.1 6.4 

FSA64* 2.6 2.8 2.9 

FSA65* 2.5 2.6 2.5 2.5 

FSA66* 2.4 2.5 2.4 2.4 

Table A- 8: Peel test results for the FSA6 series of fastenings Units: kN 

Test number 
Code 

1 2 3 4 

FSA61* 1.5 1.5 1.6 

FSA62 2.1 1.9 2 

FSA62* 1.7 1.8 1.7 

FSA63* 1.5 1.4 1.4 1.4 

FSA64* 0.5 0.5 0.6 0.6 

FSA65* 0.6 0.6 0.6 0.6 

FSA66* 0.6 0.6 0.5 0.6 

Table A- 9: Pull-out test results for the FSA6 series of fastenings Units: kN 

Test number 
Code 

1 2 3 4 

FSA61* 2.8 3.3 2.9 3.0 

FSA62 3.61 3.48 3.68 3.48 

FSA62* 2.96 3.03 3.15 3.2 

FSA63* 3.5 3.1 3.5 3.5 

FSA64* 2.2 2.1 2 2.2 

FSA65* 2.32 2.24 1.94 2.72 

FSA66* 2.49 2.18 2 2 
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Table A- 10: Fatigue test results for the FSA6 series of fastenings (Number of cycles) 
Applied Load (kN) Number of Cycles 

FSA61* Fastening 

4.5-0.5 464280 183870 

3.6-0.5 1596550 1872160 

3.2-0.5 3853570 3151960 

FSA62 Fastening FSA62* Fastening FSA63* Fastening 

5.0-0.5 92760 134740 81210 

4.5-0.5 168560 230570 138200 

4.0-0.5 421200 346130 
3.6-0.5 995690 969300 616240 
3.2-0.5 1813990 3032580 3660010 

FSA64* Fastening FSA65* Fastening FSA66* Fastening 

2.4-0.5 231630 202720 305290 

2.3-0.5 425300 

2.1-0.5 959680 575740 693300 
1.9-0.5 1651540 1052840 1306270 

1.7-0.5 2851920 2165110 2764520 
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Table A- 11: Shear test results for the FSP5 series of fastenings Units: kN 
Test number 

Code 

1 2 3 

FSP50 5.4 5.7 5.8 
FSP53 5.4 5.7 5.9 

FSP55 5.7 5.7 5.8 

FSP510 5.7 5.7 6.1 

FSP50* 4.5 4.6 4.7 

FSP53* 4.5 4.9 5.2 

FSP55* 4.7 5.1 5.1 

FSP510* 5.1 5.1 5.2 

Table A- 12: Fatigue test results for the FSP5 series of fastenings (Number of cycles) 
Applied Load (kN) Number of Cycles 

FSP53 Fastening FSP55 Fastening FSPS10 Fastening 

4.5-0.5 224770 334220 330510 342800 344130 321210 

3.6-0.5 1525860 1502330 2080450 1987970 3059430 3122140 

3.2-0.5 3289390 5484330 

3.0-0.5 8691810 10600000 7139030 11022480 

FSP53* Fastening FSP55* Fastening FSP510* Fastening 

4.5-0.5 154800 148280 139510 178140 316590 235370 

3.6-0.5 1005830 955660 1059456 1401050 1112860 1052200 

3.0-0.5 1815350 2528380 1770170 2312500 2176160 1629420 
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APPENDIX 

B: WEIBULL ANALYSIS OF FATIGUE DATA 

B. 1 Aims of the statistical analysis 

In view of the large scatter in fatigue data, a single observed value is not reliable and 
therefore, repeating the fatigue test a number of times under identical conditions is 

required. However, this is usually difficult not only because fatigue tests are expensive and 
time consuming, but also because the data will differ from test to test even under uniform 
test conditions. Therefore a single set of co-ordinates has to be defined by means of its 

reliability distribution. Statistical analysis estimating the properties of the joints has thus to 
be introduced in the analysis of fatigue data. 

There are a number of statistical methods that may be used to describe a scattered data 
distribution measured in a set of experiments. The results obtained from different methods 
might vary depending on the focus of the method. As a feature of statistical analysis, the 
accuracy of the results that strongly depend on the number of samples might also alter 
from one method to another. The Weibull distribution is one of the statistical methods in 

reliability engineering. It was originally designed to analyse the yield strength of steel 
alloys [1] and therefore it is most widely used in this kind of analysis. Weibull analysis can 
also be used to analyse the fatigue behaviour in various conditions [2,3], but it requires 
considerable use of engineering judgment for meaningful application. 
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The purpose of using statistical analysis is to determine the reliability of fatigue life 

measurement and failure mechanisms and therefore provide a basis for comparing different 

designs and choosing the best design from the reliability point of view. The principal aims 

of the statistical analysis are as follows: 

1. To determine the number of cycles that the joints can perform their required 

functions without failure. 
2. To predict the number of cycles to failure. 

3. To create P-S-N (Probability-Stress-Cycle) curves to predict the probability of 

failure at any number of cycles. 
4. To determine failure patterns of the joint behaviour. 

It must be emphasised that the results obtained here are not accurate enough due to pool 

sampling. 

B. 2 Procedure of the Statistical Analysis 

The three fastening conditions, FSN51, FSN56 and FSH52 shown in Table 2.6, were tested 

and the resulting data were used for the statistical analysis. Each fastening condition was 

tested at 5 different load levels. The maximum applied load levels were 4.5kN, 4. OkN, 

3.6kN, 3. OkN and 2.7kN. The statistical analysis for the three fastenings was performed at 

three load levels having a maximum load of 4.5kN, 3.6kN and 2.7kN. From the statistical 

point of view, the more the number of samples the more accurate the results. Ideally, at 
least 5 samples of each fastening condition have to be tested at the five load levels in order 

to perform the statistical analysis and obtain accurate results. However, due to cost and 
time limitations, only five of each fastening condition were tested at three load levels of 
4.5kN, 3.6kN and 2.7kN. 
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B. 2.1 Weibull Distribution 

There are three principal parameters that are derived from the Weibull distribution each 
having an important effect on reliability. These parameters are designated ß, il and y. ß is 

the shape parameter and describes the type of distribution. The effect of the shape 

parameter on a distribution is reflected in the shape of the probability density function, the 

reliability function and the failure rate function. For values of 0<ß<1.0, the failure rate 
decreases as the time increases beyond the value of 1. For values of 0>1.0, the failure rate 
increases as the time increases. y is the location parameter and represents the time that 

must elapse before failure can begin to occur. In the majority of cases, such as in the 

analysis of the yield stress of steel alloys, y is usually zero which represents a two- 

parameter Weibull distribution, implying that failure starts at the origin. A positive location 

parameter indicates that failure cannot occur unless the value of y is exceeded. Apparently 

the location parameter has a positive value since most materials and mechanical 

components have a failure-free period during fatigue testing. It is also possible for the 

location parameter to have a negative value which indicates that failure can occur before 

the component is used, e. g. items with shelf-lives. il is known as the characteristic life 

parameter or scale parameter and defines where the bulk of the distribution lies or how 

stretched out the distribution is. In the case of the normal distribution, the scale parameter 
is the standard deviation. For Weibull distribution, it is defined as the time taken for the 
reliability to fall to 36.8%. 

Using the three parameters, the cumulative failure rate in a Weibull manner is defined by 

the following format: 

_(-y )' 
F(t) =1-e n-r Equation B-1 

-(=r), 0 
where t is the time at failure. The term of e '-' represents reliability R(t). 
Inverting each side, 
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1 )=exp('-y 
Equation B-2 

1-F(t) r7-y 

Taking the natural logarithm of both sides of the equation yields, 

In 1 
)=(, 

y 
1-F(t) 

Equation B-3 
i -y 

Taking the natural logarithm of both sides again, 

1n 1n 1=Q In t- y)] - [Q In (q - y)] Equation B- 4 11-F(t) 

Equation B-4 is linear of the form Y=bx+a, where x is a variable. Therefore the Weibull 

distribution should be in the form of a straight line. 

Using the above formula it is possible to calculate the reliability of an item. However in its 

basic function, this can be extremely difficult unless all the three parameters are known. 

Therefore, the estimate of the three parameters is the first step to perform the Weibull 

analysis. 

B. 2.2 Estimation of the Weibull parameters 

The three parameters can be estimated graphically using probability plotting paper. 
Weibull probability graph paper is based on the proof of the distribution and takes the form 

of a Inln scale. The time to failure is plotted on the X-axis, while on the Y-axis the 
cumulative percentage of failure rate is plotted. The latter is normally divided into groups 
of 10% to reflect the sample size. Median rank positions are used instead of other ranking 
methods because median ranks are at a specific confidence level of 50%. The Median rank 
can be found tabulated in many reliability books and can also be estimated using the 
following equation, 
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MR%= i-0.3 
x100% 

n+0.4 
Equation B-5 

where i is the failure order number and n is the total sample size. 

Plotting the data of the time-to-failure and their corresponding ranks on Weibull 

probability paper, a straight line can be obtained as shown in Fig. B-1. This implies that 
failure starts at the origin which means that the location parameter y= 0. Then by drawing 

a line through the slope indicator, parallel to the one just obtained, the value of the shape 

parameter ß can be estimated. In this case f=1.4. At the F(O = 63.2% ordinate point, a 

straight horizontal line is drawn until it intersects the fitted straight line. A vertical line is 

then drawn through this intersection until it crosses the abscissa. The value at the 
intersection of the abscissa represents the characteristic life parameter q. In this case q is 

equal to 76 hours (this is always at 63.2% since F(t) =1- 
V= 

I- L 0.632 = 63.2%. ) 

Any reliability value for any mission time t can therefore be obtained. For example, the 

reliability for a mission of 15 hours, or any other time, can be obtained either from the plot 

or analytically. In order to do this, a vertical line is drawn from the abscissa, at t= 15 
hours, to the fitted line. A horizontal line is then drawn from this intersection to the 

ordinate and F(t) is read. In this case F(t) = 9.8%. Thus, R(t) =1- F(t) = 90.2%. This can 
also be obtained analytically, from the Weibull reliability function equation (1), since the 
three parameters are known. 

R(t =15) = kýq-r JO = 
l76 

0). ý 
90.2% 

151.4- '76) 
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Figure B-1: Estimation of shape parameter ß and characteristic life ri 

However, for fatigue data, the location parameter yis not zero. On the Weibull probability 

paper, the X-axis represents the number of cycles-to-failure (ti). The median rank MR 

plotted against the t; points does not fall on a satisfactory straight line originally. "These 

points fall on a curve as shown in Fig. B-2. The curve normally appears as a convex shape 
for fatigue data. In order to obtain a straight Iine, the location parameter yhas to be known. 

An estimate of the location parameter can be obtained by plotting three equally spaced 

points on the Y-axis, as shown in Fig. B-2. The corresponding values, t1, t, and t, on the X- 

axis are placed into the following equation: 

_ 
(t3 -t2)(t2-tl) iý - tz - Equation B-6 (t3 

-t2)-(t2 -tl 
) 
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Figure B-2: Estimation of location parameter y 

The location parameter y can then be obtained from equation B -6. By subtracting the value 

of y from t� new data can be obtained and re-plotted on the paper to produce a straight line, 

as shown in Fig. B-2. It is important to note that the x-axis scale for the straight line 

becomes (t; -yj since the term t; has been used to subtract a positive value of y. The straight 

line can then be used to estimate the other two Weibull parameters Band 17. The reliability 

at any time to failure can then be obtained graphically, as described above. Alternatively, 

the reliability at any time to failure can also be obtained from the Weibull reliability 

function R(t) =e "-r since the three parameters are known. 

The three parameters can be estimated graphically as described above. The reliability at 

any time to failure can also be obtained from the estimated parameters. However, the 

accuracy of the estimation and the drudgery of hand calculations and plotting are not 

desirable. As a result, ReliaSoft's Weibull ++ 5.0 software was used in this study making 

the application much easier. 
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B. 2.3 ReliaSoft's Weibull++ 5.0 

ReliaSoft's Weibull ++ 5.0 software is designed to accurately determine the three 
parameters analytically. It works, in essence, by the same methodology as the probability 
plotting method and uses the principle of least squares to determine the line through the 

points. For a two-parameter Weibull distribution, the median-rank MR versus time-to- 
failure plotted on a Weibull probability paper, falls on a straight line. Therefore linear rank 

regression on both the X and Y-axis is performed. A straight line is fitted mathematically 
to a set of data points such that the sum of the squares of the horizontal and vertical 
deviations from the points to the line is minimized. For a three-parameter Weibull 

distribution, the plot of MR versus time is a curve instead of a straight line. Therefore, 

non-linear regression on both the X- and Y-axis is used to fit a curve through the data 

points. Based on non-linear regression with linear terms and employing the ordinary least 

squares method, the three parameters can be obtained analytically. The accuracy of the 

estimation can be characterised by a coefficient of determination, also known as the R- 

squared value that ranges from 0 to 1.0. This value reveals how closely the calculated 
values correspond to actual data. As this value approaches 1.0, the more accurate the 

values become. Since Weibull ++5.0 performs the non-linear and linear regression 

analytically, it is able to determine the values of the three parameters in such a way that the 

coefficient of determination is as close to 1.0 as possible. 

B. 2.4 P-S-N Curves (Probability-Stress-Cycle curve) 

Basic fatigue data can be conveniently displayed on a plot of cyclic stress level versus the 
logarithm of number of cycles, as presented in Chapter Three. These plots, called S-N 

curves, constitute design information of fundamental importance to materials, machine 
parts and components subjected to repeated loading. From the reliability point of view, this 
S-N curve has a 50% reliability meaning that 50% of the samples are expected to fail 

above this S-N curve and the other 50% below it. Because of the scatter of fatigue life data 

at any given load level, it is important not only to have a normal S-N curve for a given 
material or component, but also to have S-N curves showing the probability of failure at a 
given set of conditions. These curves are called P-S-N curves or curves of constant 
probability of failure on a stress versus lifetime plot. 
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To develop a P-S-N curve, the probability of failure P obtained from the Weibull analysis 
has to be introduced to interconnect with the two other main quantities S and N to form the 
P-S-N curve. For instance, if the number of cycles with a 10% probability of failure at 
4.5kN, 3.6kN and 2.7kN were known, the number of cycles versus the three load levels 

could be plotted and connected as a curve. This procedure gives the S-N curve with a 10% 

probability of failure or 10% unreliability. 

B. 3 Results and Discussion 

B. 3.1 Probability of Failure 
B. 3.1.1 FSN51 Fastening 

The probability of failure versus the number of cycles for the FSN51 fastening at the three 
load levels were plotted by ReliaSoft's Weibull++ 5.0 software and are shown in Figs. B-3 

- B-5. The original fatigue data fall on a curve with a convex shape. After adjusting for y, a 

straight line was plotted. The R-squared value represented by p was also shown in the 

figures indicating the accuracy of the estimation. Figs. B-3 - B-5 also present the three 
Weibull parameters. The location parameter had a positive value at all three load levels 

providing an estimate of the earliest time-to-failure for such a fastening. At a maximum 
load of 4.5kN, failure of the fastening would start to occur after a value of y of 6.4x 10° 

cycles. The location parameter yincreased as the applied load decreased indicating that the 
lower the applied load the longer the failure-free time. The characteristic life parameter q 

representing the time taken for the probability of failure to reach 63.2% also increased as 
the load level decreased. At a maximum load of 4.5kN, a 63.2% probability of failure was 

reached after 6.3 x 104 cycles, whilst at a maximum load of 2.7kN, the same probability was 

reached after 3.7x 106 cycles. The shape parameter. 8 had a value greater than 1.0 at all load 

levels and this meant that the failure rate increased as the number of cycles increased. The 

fatigue behaviour of this fastening was therefore reliable at all load levels. 
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Figure B-3: Probability plot for the FSN51 at 4.5kN 
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Figure B-5: Probability plot for the FSN51 at 2.7Kn 

From the probability plot, the probability of failure at any number of cycles can be 

obtained graphically as described previously in section 6.2.2 or mathematically by using 

equation B-1. It is important to remember that the adjusted straight line was obtained by 

plotting a reliability against (t-Y). For example, at a maximum load of' 2.7kN, at 301.1ýo 

probability of failure, the corresponding value on the X-axis indicating the number of' 

cycles was 1.1 x 106, as shown in Fig. B-5. The true number of' cycles having 30% 

probability of failure was (1.1 x 106) + (5.34x l0`') -- 6.44x106. The characteristic life 

parameter rJ shown in the figures was also obtained from the adjusted straight line, and 

therefore the location parameter yneeds to be added to rJ to obtain the true value of rr For 

instance, at a maximum load of 4.5kN, the true value of' r7 was (6.27,, 10' + 8.42, - 10") 

=1.47x 105 cycles. Using the true value of q, the number of cycles t with it given probability 

of failure, e. g. 99.9%, can be calculated as follows: 

1-84157.5 
2.0 

'1,27( M41S7s o4 

99.9% =1-P ((, 2705.83,84157.5)-84137.3 
]=1-Ps. 

MA 
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1-84157.5 2*(M 

e 62705.83) 
_ 0.001 

In 
1_ t-84157.5 

0.001 -( 62705.83 

t= 62705.83 x2 In 
1+ 

84157.5 = 245871.5 z 2.46 x 10' 
0.001 

The probability of failure at any number of cycles, e. g. 1x 10 5, can also be obtained by 

using the above equation. 

1 00000-841 5 7.5 2.04 100000-84157.5 )2114 I S84' S 04 

F(t) 
=1-Q 

L(62705.83+84157.5)-84157.5i 
_1-e 

62705.93 1=1-2ý 6'705'. 83 

F(t)=1-too(, =0.059=5.9% 

Table B-1 shows the number of cycles with 0% and 99.9% probability of failure tier the 

FSN51 fastening at three load levels. The observed fatigue data of the FSN51 fastening 

from the fatigue test at five load levels, representing 50% reliability are also listed in the 

table. 

Table B- 1: Number of Cycles with Different Probabilities of Failure for the FSNSI 

Load 

(kN) 

Number of cycles with 
0% failure probability 

Number of cycles with 
99.9% failure probability 

Observed Data with 

50`10 failure probability 

4.5-0.5 8.42X10 2.46x10 137860 

4.0-0.5 l. t"1; 70 

3.6-0.5 3.6x 10 l . 86x 10 605730 

3.0-0.5 S S7I 090 
1 2.7-0.5 5.34x 10 1.76x 10 8524400 
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B. 3.1.2 FSH52 Fastening 

Figs. 13-6 - 13-8 show the probability plot for the ES1152 fastening conditions at different 

load levels. The three Weibull parameters and the R-squared value are also presented in the 

figures. A positive location parameter y representing the 0'%% failure probability existed at 

all three load levels and increased as the load level decreased. At a maximum load of' 
4.5kN, failure would not occur below 9.77x 104 cycles, whilst at a maximum load of 2.7kN, 

the fastening would not be expected to fail below 1.49x 10(' cycles. The characteristic life 

parameter r7 varied with the load level. The probability of failure reached 63.2% aller 
7.67x 103 cycles at a maximum load of 4.5kN and aller 7.01 x 105 cycles at a maximum load 

of 2.7kN. The shape parameter P was less than 1.0 at all three-load levels meaning that the 

failure rate decreased as the number of cycles increased. This suggested that the fatigue 

performance of this fastening was not reliable. 
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Figure B-7: Probability plot for the FS1152 at 3.6kN 
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By performing the same calculations as for the FSN5I fastening, the reliability at any 

number of cycles or the number of' cycles at any probability of' fiiilure für the FSN5I 

fastening can be obtained. The number of cycles at two critical probabilities of failure and 
the experimental fatigue data which represent 50% reliability are listed in 'f'ahle 13-2. 

Table B- 2: Number of Cycles with Different Probabilities of Failure for the FS1152 

Load 

(kN) 

Number of cycles with 
0% failure probability 

Number or cycles with 

99.9% failure probability 

Observcd Data 

50% lüilurc probability 

4.5-0.5 9.77x10 4.94xIos 106810 

4.0-0.5 1 ý'Xýn 

3.6-0.5 2.5x 10 1.08x 10" 285090 

3.0-0.5 QH)(, s'u 
1 2.7-0.5 1.49 x 10 1.22 x 10 2161240 

B. 3.1.3 FSN56 Fastening 

The probability plot, the three parameters and the R-squared value for the FSN56 fastening 

at the three load levels are shown in Figs. B-9 13-11. A positive location parameter was 

obtained at each of the three load levels indicating that the FSN56 fastening also had a 
failure-free time at each load level. At a maximum load of 4.5kN, the FSN56 had a 0% 

probability of failure at a number of cycles below 3.48x 10°, while at a maximum load of 

2.7kN, the fastening would not be expected to fail below 4.1 x 105 cycles. The characteristic 

life parameter' increased as the load level decreased. At a maximum load of 4.5kN, the 

reliability dropped to 36.8% after 3.24x 10; cycles, whilst at a maximum load of' 2.7kN the 

reliability dropped to 36.8% after 3.78x 10` cycles. The shape parameter 11 was less than 

1.0 at 4.5kN, whilst at both 3.6kN and 2.7kN, it was greater than 1.0. F he results meant 

that the failure rate at a maximum load of 4.5kN decreased as the number of' cycles 
increased, whilst at maximum loads of 3.6kN and 2.7kN, the failure rate increased its the 

number of cycles increased. it was therefore suggested that at a maximum load of 4.5kN, 

the fatigue behaviour of this fastening was not reliable, whilst at maximum loads of z. 6kN 

and 2.7kN, the fatigue pertörmance of this tiistcning became reliable. 
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Figure B-9: Probability plot for the FSN56 at 4.5Kn 
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Figure B- 11: Probability plot for the FSN56 at 2.7kN 

The same calculations as for the FSN51 and the FS1152 fastenings were pcrtiormcd to 

obtain the number of cycles with a 99.90/0 probability of täilurc. I'he location parameters 

representing the number of cycles with 01% probability of t'ailurc, the number of cycles 

having a 99.9% probability of failure and experimental data are shown in "fable 13-3. 

Table B- 3: Number of Cycles with Different Probabilities of Failure for the FSN56 

Load 

(kN) 

Number of cycles with 

0%, failure probability 

Number of cycles with 

99.9"rß, failure probability 

Observed Data 

(Number of cycles at 

Failure) 

4.5-0.5 3.48x 10 6.47x 10 37762 

4.0-0.5 `ß'O11 () 

3.6-0.5 9.85x10 3.54x 105 162460 

3.0-0.5 .1'.; t, 

2.7-0.5 4.05 xI0 I .0' 10' 728840 
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B. 3.1.4 Probability Density Function 

The probability of failure for the three fastenings can also be described by a probability 

density plot, as shown in Figs. B-12 13-14. 
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Figure B- 12: Probability density plot at 4.5kN 

205 



Generated by: ReIiaSO8'S Weibul +n 5.0 - www WBNwNOom - 868-886-0410 

Probability Donsity I uni Nv n 

1.00E-5 

8.00E-8 

LL 
6 00E-6 

Of 
2) 

LL 4 ODEM 

2.00E-6 

0 

WaLbu l 
Dntn I 

FSN51 

FSH52 

Data 3 
FSN56 

04 )OF . 'ß B 00f *. t -')I .01 80E. (3 2 00t .6 

Number of cycles 

ß1=1.16,11=2.83E+5, r1=3.60E+5, p=1.00 
02=0.62, i2=36881.78, y2=2.50E+59 N0.98 

03=1.66,113=79643.69, yi t 1. ). 05, l) 0')%' 

Figure B- 13: Probability density plot at 3.6kN 
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From the probability density plot, the failure-free time, whose value is indicated by the 

start point of the plot, can be easily derived. At a maximum load of 4.5kN, the failure-free 

time of the FSH52 fastening was the longest one out of the three fastenings that were 

examined. However, at maximum loads of 3.6kN and 2.7kN, the FSN51 fastening had the 
longest failure-free time. As described in Chapter Five, the PTFE tape, which was inserted 

at the interface between the two riveted sheets of the FSH52 fastening, prevented severe 
fretting at the interface by transferring most of the applied load to the rivet. By contrast, at 
the same load level of 4.5kN, severe fretting occurred at the interface between the two 

riveted sheets for the FSN51 and the FSN56 fastenings leading to fracture of both the rivet 

and the sheet material. The prevention of severe fretting at the interface between the two 

riveted sheets probably contributed to the longer failure-free time of the FSH52 fastening 

at this load level. At lower loads of 3.6kN and 2.7kN, fretting that occurred for the FSN51 

and the FSN56 fastening conditions was less severe leading to a longer failure-free time 

than at a maximum load of 4.5kN. The FSN51 fastening had a higher load capacity than 

the FSN56 fastening due to the effect of geometry of the joints. Therefore the FSN51 

fastening had the longest failure-free time of the three fastenings at lower load levels. 

In addition to the failure-free time, the probability density plot also presents the failure 

rate. As shown in these figures, the failure rate of the FSH52 fastening decreased 

monotonically at all load levels after the number of cycles exceeded the value of y. This 

was also reflected by the value of ß<1.0. This result suggested that most of the fastenings 

failed almost immediately once the number of cycles reached the value of y. For the 

FSN51 fastening, the failure rate plot had a bell shape with a right tail at all load levels 

indicating that the failure rate increased gradually as the number of cycles increased. This 

was also suggested by the value of ß>l. 0. This result therefore suggested that the fatigue 

performance of the FSN51 fastening was more predictable and reliable compared with the 
FSH52 fastening. The FSN56 fastening had a different type of probability density plot at 
different load levels. At a maximum load of 4.5kN, the failure rate of the fastening 

decreased as the number of cycles increased leading to the value of ß<1.0. This indicated 

that the applied load of 4.5kN was too high for the FSN56 fastening. The failure rate plot 
for the FSN56 fastening had a convex shape as for the FSH52 fastening, indicating that 

most of the fastenings failed within a very short time. It was therefore suggested that at this 
load level, the fatigue behaviour of this fastening was not reliable. At maximum loads of 
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3.6kN and 2.7kN, the failure rate plot for the FSN56 fastening appeared as a bell shape as 
for the FSN51 fastening, leading to a gradual increase in the failure rate as the number of 
cycles increased. This is also indicated by the value of A, which became greater than 1.0. It 

was therefore suggested that at a lower applied load, the FSN56 fastening could perform 

with a predicable probability of fatigue failure and the fatigue behaviour of this fastening 

was reliable. 

Besides the failure-free time and the failure rate, the probability density plot also indicates 

the spread of the fatigue data. The area under the bell shape represents 100% failure, whilst 
the width indicates the spread of the fatigue data. At a maximum load of 3.6kN and 2.7kN 

the width of the bell shape for the FSN56 fastening was narrower than that for the FSN51 

fastening. This meant that at these loads the fatigue data from 0% to 100% failure for the 
FSN51 joints exhibited a wider scatter than for the FSN56 joints. This indicated that the 

probability of failure for the FSN56 fastening was more predicable than that for the FSN51 

fastening at low load levels. A possible cause of this was the fact that the FSN51 fastening 

was larger than the FSN56 fastening and probably contained a greater number of material 
defects which might be involved in the crack initiation and propagation process. 

B. 3.2 P-S-N Curve 

Fig. b-15 shows the P-S-N curve of the FSN51 fastening plotted by using the data shown in 

Table b-1. In addition to the normal S-N curve having a 50% reliability, a S-N curve with a 
0% probability of failure and another S-N curve with a 99.9% failure probability were also 
plotted in the figure. The S-N curve having a 0% probability of failure indicated that all 

samples would perform their desired function without failure below this curve. Moving to 
the right of this curve, the probability of failure gradually increased. The S-N curve with a 
99.9% probability of failure meant that failure of all samples would have occurred at all 
values indicated by this curve. Between the two curves, failure could occur at any time 

with different probabilities. It must be mentioned here that some data slightly deviated 
from the curves with different failure probabilities, as shown in Fig. B-1 5. This is because 

the curves were plotted by performing power regression, in which inaccuracy always 
depends on the number of tested samples. In addition, Fig. B-15 does not include the 
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observed average fatigue life (marked in red colour in 'Table 13-1) at maximum loads of 

4. OkN and 3. OkN since those values were not used in the Weibull analysis. Although the 

data at 4. OkN and 3. OkN are located between 0% and 99.9% probability curves, as shown 

in Fig. B-16, the inclusion of these data could result in changes to the curve leading to 

inaccuracy of the results. 
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Figure B- 15: P-S-N curve for the FSN51 fastening 
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The P-S-N curve with three probabilities of failure for the FS1152 fastening condition is 

shown in Fig. B-17. The S-N curve having a 0% failure probability was very close to the S- 

N curve with a 50% reliability. At a maximum load of 4.5kN, the 0% and the 50%) P-S-N 

curves are almost touching. By contrast, the S-N curve with a 99.9% probability of tiiilure 

was far away from the S-N curve with a 50% failure probability. i'he failure probability 
increased sharply from 0% to 50%, whilst the rate of increase from 50% to 99.9% was 

much slower. It was therefore suggested that 50% of the fastenings failed within a very 

short time. Same as for the FSN51 fastening, the application of regression led to deviation 

of some data and the fatigue life at maximum loads of 4. OkN and 3. OkN were not included 

in Fig. B-17. Inclusion of these data would have resulted in changes to the 50'Y% failure 

probability curve which is shown in Fig. B-18 leading to unreliable results. 
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Figure B- 17: P-S-N curve for the FSH52 fastening 
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Figure B- 18: P-S-N curve for the FSH52 fastening including data at 4. OkN and 
3. OkN 

The P-S-N curve showing three probabilities of failure for the FSN56 fastening is shown in 

Fig. B-19. Below the S-N curve with a 0% probability of failure, no fastenings would he 

expected to fail. Above the S-N curve with a 99.9% failure probability, failure would have 

occurred. Between these two S-N curves with the two critical probabilities of failure, the 

fastening would fail at any time with a different failure probability. The figure also shows 
that at a maximum load of 4.5kN, the failure-free number of cycles was close to the 

number of cycles with a 50% failure probability. 't'his indicated that 50%% of the joints 

failed at an early period of the test at this load level. The analysis also suggested that the 

probability of failure from 0% to 50% occurred over a narrow range of fatigue cycles at 

this load level, whilst at lower load levels, this range widened. Same as for the FSN51 and 

FSH52 fastenings, the problems due to the application of regression have arisen again and 

some samples survived beyond the predicted 99.91%, failure probability. 
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Figure B- 19: P-S-N curve of FSN56 fastening 

B. 3.3 Failure Patterns 

7 

According to Abernethy [4], there are three different types of failure patterns for 

continuous probability distributions used in reliability studies. The three most common 

ones are: early failure or infant mortality, chance failure or random failure and wear-out 

failure. These three patterns can be expressed by the failure rate, which is important in 

describing the life-history of a product. For early failure, the product begins its litt at a 

high failure rate and exhibits a decreasing failure rate. For chance failure, the failure rate is 

constant. For wear-out failure, the failure rate increases as time increases. In a Weibull 

distribution, all the three patterns might occur depending on the appearance of the Failure 

rate which is determined by the value of the shape parameter ß. 

The value of the shape parameter fß has a marked effect on the failure rate or the Weibull 

distribution since the Weibull instantaneous failure rate, f(t), is given by: 

f(t) = 
F(t) 

.Qt-y Equation B-7 
R(t) 17 r7 

Inferences can be drawn about a population's failure characteristics just by considering 

whether the value of 6 is less than or greater than one. 
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Figure B- 20: Failure rate versus time plot at 4.5kN 

Fig. B-20 shows the failure rate versus time plot at a maximum load of 4.5kN liar the three 

fastenings. The value of Q for the FSN51 fastenings is greater than 1.0 but close to 2.0. 

This meant that at this load level the failure rate for the FSN51 fastening increased as the 

number of cycles increased. The failure rate exhibited a straight line relationship between 

f(t) and t, starting at a value of f(t) =0 at t =y. Thereafter the failure rate increased at a 

constant rate as t increased. This suggested that the FSN5I fastening exhibited wear-out 

failure indicating that the fatigue behaviour of this fastening was reliable. 

Both the FSH52 and the FSN56 fastenings had a value of ß less than 1.0. This indicated 

that at this load level the failure rate decreased as the number of' cycles increased. The 

Weibull failure rate plots were convex. At t ythe failure rate was infinity and decreased 

thereafter monotonically, approaching the value of iero as t-->, X) and J(OO) -0. This indicated 

that at this load level, an early failure (infant mortality) occurred tier both the FS1152 and 
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the FSN56 fastenings and therefore the fatigue performance of the two fastenings was not 
reliable. From the reliability point of view, such behaviour is not desirable. For the FSH52 
fastening, this was thought to be caused by the insert of the PTFE tape at the interface 

between the two riveted sheets. Because of the very low frictional force at the interface 

between the two riveted sheets, there was a significant increase in the load transferred to 

the fastener. The load transfer system of such a fastening was unbalanced and this is not 
desirable for a clamp-type of joint. As a result, early failure occurred by fracture of the 

rivet for all the FSH52 fastenings. The FSN56 fastening had an average ultimate shear load 

of 5.3kN, while the average ultimate shear load for the FSN51 fastening was 5.7kN. The 

former failed at a lower ultimate shear load due to the effect of sample size, as described in 

Chapter Four. The applied load of 4.5kN represented about 85% of the ultimate shear load 

for the FSN56 fastening and about 78% for the FSN51 fastening. Fatigue, as a progressive 
failure phenomenon, proceeds by the initiation and propagation of cracks to an unstable 

size. The relatively high applied-load for the FSN56 fastening led to relatively easy crack 
initiation. Once crack initiation occurred, propagation followed reaching to an unstable 

size and leading to fracture of the narrower sheet material of the FSN56 fastening within a 

very short period of time. The applied load was too high for the FSN56 fastening to allow 

the failure probability to increase gradually. This contributed to the early failure for the 

FSN56 fastening at this load level. 

The failure rate versus time plot at a maximum load of 3.6kN for the three fastenings is 

shown in Fig. B-21. At this load level, both the FSN51 fastening and the FSN56 fastening 

had a value of .B greater than 1.0, but less than 2.0 meaning that the failure rate increased as 
t increased. This suggested that at this load level, wear-out failure occurred for both the 
FSN51 and the FSN56 fastenings and therefore the fatigue behaviour of the two fastenings 

was reliable. However, the value of fi for the FSH52 fastening was still less than 1.0 
indicating that at this load level, the fatigue behaviour was still not reliable. The failure rate 
remained infinity at a number of cycles equal to y and thereafter decreased as t increased. 
This suggested that early failure still occurred for the FSHS2 fastening at this load level. 
The imbalance of the loading transfer system caused by the inserted PTFE tape dominated 
the fatigue failure mechanisms of these joints. 
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Figure B- 21: Failure rate versus time plot at 3.6kN 

Fig. B-22 shows the failure rate versus time plot at 2.7kN for the three fastenings. The 

failure rate plot for the FS1152 fastening at this load level still indicated that early failure 

occurred for this fastening and the fatigue behaviour of this fastening was still not reliable. 

In the case of the FSN51 and the FSN56 fastenings, wear-out type of failure occurred at 

this load level indicating that the fatigue performance for the two fastenings was reliable. 

The value of 6 for the FSN5I fastening was between 1.0 and 2.0 leading to a convex- 

shaped plot as shown in Fig. 6.20. The value ofßlbr the FSN56 fastening was 4.20, that is, 

it was greater than 2.0 and therefore led to a concave curve as shown in Fig. 13-23. 'Flic 

failure rate for both the FSN51 and the FSN56 fastenings increased as the number of 

cycles increased. However, compared with the FSN5I fastening, the fI ilure rate tier the 

FSN56 fastening increased rapidly as the number of cycles increased indicating that lix the 

FSN56 fastening wear-out failure would occur within a relatively shorter period of time. 
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Figure B- 22: Failure rate versus time plot at 2.7kN 
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Figure B- 23: Failure rate versus time plot of FSN56 fastening at 2.7kN 
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B. 4 Conclusions 

Statistical analysis of fatigue data has been carried out by means of the Weibull 

distribution for the FSN51, FSN56 and FSH52 fastenings. Although limitations are 
involved in crating P-S-N curve leading to an inaccuracy results, the following conclusions 

still can be drawn: 

1. The FSN51 fastening had the best fatigue performance at all tested load levels in 

the three fastening conditions. Wear-out failure was the only type of failure that 

was expected by this fastening. 

2. The FSH52 fastening had the worst reliability of fatigue performance. Early failure 

was the only type of failure that occurred for this fastening and therefore it was not 

suitable for structure application. 
3. The FSN56 fastening exhibited good fatigue behaviour at low load levels. Early 

failure occurred at high load levels, and wear-out failure occurred at lower load 

levels. 
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