DIVISION OF COMPUTER SCIENCE

AN OBJECT ORIENTED DESIGN OF A SPEECH DRIVEN USER
INTERFACE MANAGEMENT SYSTEM

Ray Frank

Jill Hewitt

Technical Report No.173

March 1991

AN OBJECT ORIENTED DESIGN OF A SPEECH DRIVEN USER INTERIFFACE
MANAGEMENT SYSTEM

Ray FRANK and Jill HEWITT, School of Information Sciences, Hatfield P

olytechnic,

College Lane, HATFIELD, Herts. AL10 9 AB ENGLAND. Tel: 07072 79359 e-mail:

comqrjf@hatfield.uk.ac

This paper describes an obj
System (UIMS) for an intel
which is based on a gene
used to represent the cl

ect oriented design of a User Interface Management
ligent speech driven interface to computer applications,
ric task model approach. An object-oriented method is
ass of models required in the system and a particular

example, a simple programming environment for the language Modula-2 is

described. The paper co
other more complex applications.

1. INTRODUCTION

As part of the Intelligent Speech Driven
Interfaces Project (ISDIP) at Hatfield
Polytechnic we are investigating the
usability of human-computer interfaces
using speech input (Hewitt & Furner
(1988),Hewitt and Zajicek (1990)). It is
important that such interfaces provide
transparent access to an underlying
application, but because of the imperfect
nature of speech recognition systems,
they should also provide some means of
error recovery and, for maximum
effectiveness, some degree of tailoring to
the individual user and to the application.
The design of an effective speech input
interface is a complex one, involving
consideration of the recognition
hardware, the user's speech patterns, the
syntax of the application and the user's
task model. The UIMS should therefore
be structured so that due consideration
can be given to these various factors by
researchers into particular areas and so
that the different aspects of the system
can be worked on independently.

We propose an object-oriented
architecture as providing the most flexible
approach to the UIMS design and the best

ncludes with a discussion of the extension of the method to

way of integrating the various
components of the system.

The advantages of such an approach are
well documented (Hewitt & Frank (1989)).
In particular, we identify the concepts of
inheritance, data integrity and the
independent development of objects as
important for our system design.

2. THE METHOD

The phases in the development of a
system are shown in Figure 1. The
system objects are identified once the
functional requirements of the system
have been established.

The steps of the Object Oriented Design
method have been described in a number
of other papers, particularly (Booch 1983),
however here each object is represented
as a subsystem containing three
component objects, an abstraction
component, a control component and a
display component (Frank & Hewitt, 1990)
as shown in Figure 2. The steps outlined
in this paper also include the allocation of
objects to MASCOT subsytems (Simpson
and Jackson 1979, Simpson 1986) to allow
the design to be implemented in a
concurrent procedural language, and the
specification of the dialogue to be used

between the user and the computer
system.

Establish Functional
Requirements

v

Identify the system
objects & design
Mascot3 System

]

v

v

y / Iterative desien cycle

Implement Develop Develop -design
the the the - prototype
Objects System End-User - evaluate with real users
Display Interface
Implement final
I] system
Need to
Modify/Ext
end Evaluate
System
Figure 1 The Object Oriented Method
) .
Representation of
Abstraction an object as three
components
Control
View

) MASCOT 3 sub-system

Figure 2 The Three Components of an Object

aclivity activity activity

activity

Channel

producer consumer writer

L

subsystem
Figure 3 MASCOT 3 Element Representations

abstraction h
state variables
Diagram to show
the communication
read/write read paths between the
L - —I] object components.
[l controller]

[display
_

Figure 4 Example Objects MASCOTS3 Subsystems

-

/

ut
message message I I
buffer buffer
control_component 1 control_component 2

Figure 5 The Communication between Object Components

2.1-Object Oriented Design in MASCOT 3

The next three phases, the development of
the abstraction objects, view and the end-
user interface components may then
proceed in parallel, each following an
iterative design cycle. As these phases
near completion, they may be combined to
give more realistic prototypes, eventually
contributing to a finished system; for
example, the view components may
initially be static screens, but once the
system is running they may be linked to it
to provide a dynamic representation.

It is convenient to develop separate user
interfaces for the end user, the system
developer and the human factors
evaluator to facilitate the iterative
development approach. Hence even
where an object has no view
representation to the end user, a view
component might still be required for the
viewing of diagnostic information.

3. THE MASCOT DESIGN METHOD

The MASCOT 3 design method (Simpson
1986) is based on the notion that we can
represent the structure of a concurrent

system in terms of a small number of
system elements:

1. Activity - essentially a process
representing a single thread of control

2. Intercommunication Data Area (IDA)
through

which the activities
communicate.
There are two main types :
(a) Channel this forms a

unidirectional pipe through which data
flows between activities. This data is
"produced” by producer activities and is "

consumed” i.e. destructively read, by
consumer activities.

(b) Pool this data is more
permanent and may be read any number
of times by reader activities before being
updated by writer activities

3. Access Interface -the interface between
the activity and the IDA, connecting a
port in an activity to a window in an IDA.
Figure 3 gives examples of the graphical

representation of these elements.

3.1 Communication between object
components

An object in the system can be
represented by an activity and IDA's
gathered together in a subsystem as
shown in Figure 4. Each object subsystem
contains three component objects, an
abstraction component representing the
real object, a control component and a
display component.

Within an object subsystem, the
components communicate through
defined channels. The abstraction
component contains the variables that
represent the object's state and a set of
allowed methods or operations that can be
invoked to change the state of the object.
These methods are invoked by the
controller in response to an external
stimulus to supply information or to alter
the object's state. The display component
may need to interrogate the abstraction
component to discover its current state
prior to outputting a representation of it,
but it should not have access to methods
that themselves change its state.

3.2 Communication between object
subsystems

Communication between object
subsystems is carried out through peer-

group protocols between control objects
and display objects.

The communication channels are shown
i MASCOT 3 as access interfaces
connecting ports and windows between
subsystems. For maximum flexibility
and to enable the distribution of
processing between objects, a message
passing protocol is implemented. Each
object component within a subsystem
contains its own message buffer and can
send and receive messages and replies (
see Figure 5).

3.3 The User Interface Objects

It is commonly accepted among human
factors practitioners that an early focus
on users 1s good design practice, and that

/

Application Objects

UIMS Modula-2
Generic Model Cless Dialogue Modula-2
Controller Task
UIMS Model
Dialogue * Generic .
Controller Task Mediator Log
Generic
Mediator Log Recognition System
Class
Recognition System
Figure 6
CreateProgram =
([70] Heading ->([90] Declarations -> ([95) Body
[3] Other)
[10] Other) -> General
[10] Declarations -> ([50] Heading -> ([90]Body
[10] Other)
[50]Body >
([80] Heading
{20] Other)) -> General
[10] Body > (t60] Declarations -> ([80] Heading
[20] Other)
[40] Heading -> ([80] Declaration

(20} Others)) ->General
[8] WriteComments > CreateProgram
[2] Other ->General

Figure 7a CSP Description of a Modula 2 Programming Task

Start: Scroll(25)
[] Search(25)
[} Up(20)
[} Down(20)
[] Page(5)
{1 Other(5)

Scroll: scroll up (50) > stop -> Start
[] scroll down(50) -> stop -> Start

Search: search ->(string(60) [] line number(40)) -> Start

Up: up ->{ number(.6) -> { up (30) -> Moreup
[] down (30) -> Moredown
- [Jright (15) -> Right

[1 left (15) -> Left
[Jother (10) -> Start }
[Jup(35) -> Moreup
{Jother(5) -> Start}

Moreup: up(30) -> Moreup
down(30) -> Moredown
right(15) -> Right
left(15) -> Left
other(10) -> Start

Figure 7b. Extract from a navigation task model

MODULE FirstProgram; (* Header Section *)
FROM InOut IMPORT WriteLn,WriteString, WriteCard, ReadCard;

VAR(* declaration section *)
first.second : CARDINAL;

BEGIN(* main body *)

WriteString ("Input two numbers ");
ReadCard(first);ReadCard(second);
WriteString(" The sum is =");
WriteCard(first + second); WriteLn;

END FirstProgram.

Figure 8

Begin words
CONST
TYPE

VAR

the Set of Standard types

the set of identifiers generated so far
the basic editing functions provided by the underlying editor

End words

BEGIN

Figure 9

.an terative design approach will be
necessary to develop a good user interface
(Gould & Lewis 1985). An advantage of the
object-oriented approach is that the user
interface can be developed as a separate
object subsystem which communicates
with the other objects through protocols
as defined above. We would envisage a
separate interface for the systems
developer which provides access to the
internal state of all the objects via their
view windows and one for subsequent
evaluation which allows access to
diagnostic information.

4

4. OVERVIEW OF THE DESIGN OF THE
UIMS

In view of the rapid progress being made
in the design of speech recognition
hardware, the UIMS must be capable of
adapting to maximise the usability of ever
more sophisticated recognition systems.
Our initial work has been carried out with
a Votan VPC 2000 isolated word speech
recognition unit which utilises a working
set of only 64 words, the challenge for the
UIMS being to provide the unit with the

most likely 64 words against which to
match an utterance.

Whereas more sophisticated systems can
cope with a working vocabulary of 1000 or
5000 words, and the newer breed of
phoneme recognisers provide a potentially
unlimited vocabulary, we maintain that
the recognition rate in any system will be
improved if we can accurately predict a

limited vocabulary to be considered at a
particular time.

Since the current vocabulary of the user is
restricted by the current task in hand ‘the
problem of prediction becomes one of
accurately identifying the current task,
and the probable strategy within that task
which is being employed. The
performance of the underlying speech
recognition system will affect the overall
recognition rate, but does not change this
premise; however the granularity of task
analysis will need to be finer to cope with
a system that deals with sets of 64 words
rather than one that can cope with 1000
words at a time. In the case of phoneme
recognisers there is no artificial limit

imposed on the number of words

considered at any time, it can be the exact

number that are relevant in the
particular task domain.

5. A GENERIC TASK MODEL

A generic UIMS will be developed from
which application specific systems will be
generated, these will be based initially on
a generic user model, but will tailor
themselves to the individual user.

The main components of such a system,
shown in Figure 6, are: the dialogue
controller, the generic task model, the
generic mediator, the use log and the
recognition system. Each of these is
represented by a high level object, and
communication between the objects is
achieved by message passing. An
instantiation of the UIMS for a particular
application will inherit some of the
characteristics of the generic model, but
will build a task model specific to the
application, instances of which will adapt
to individual users.

5.1 The Object Class Generic Task

The generic task model encapsulates a
structure for representing the task syntax
of an application, and the strategies for
achieving various goals and sub-goals
within it. It will generate instances, or
Application Task Models, which capture
the task syntax for the particular
application.

5.2 The Object Class Recognition System

This incorporates the interface to the
speech recognition unit and a generic
speech model. An instance of the speech
model encapsulates the physical
characteristics of the wuser's voice.
Initially based on a generic user model it
1s capable of being automatically adjusted
to provide the best possible performance
for a given user. Parameters such as the
recognition threshold and the input gain

would be contained within an instance of
this object.

5.3 The Object Class Dialogue Controller

This provides the mechanism by which
the UIMS communicates with the user.
It 1s totally separate from the underlying
application, typically being presented as
pop-up windows offering recognition
error recovery information or user input
to the recognition system in the form of
new words or changed parameters. In
our example we assume only a single
instance of this object, although of course
it is possible to envisage different
instances for different applications or
different users, for example a changed
presentation to cope with a particular
screen layout for an underlying
application, or a changed dialogue to

enable users to access the system via a
telephone link.

5.4 The Object Class Mediator

This provides a mediator or control
function by presenting information to the
other objects and deciding on the basis of
their responses whether to accept a
particular user input or whether to invoke
an error recovery routine.

Typically, an error recovery routine would
be invoked if the mediator model could not
determine (with a particular level of
confidence) what the user had said. They
might be asked to repeat the word, to
select it from a list of alternatives, or even
to spell it so that it could be added to the
existing vocabulary. Factors contributing
to the level of confidence would be not only
the recognition threshold but also the
probability that a particular word is likely
to occur in the current task or sub-task
being undertaken by the user.

5.5 The Object Class Log

The use log object contains a record of all
user system dialogue. It may be
interrogated to provide a recent history of
use, and it may itself record statistics on

error rates and recency and frequency of
use of various words.

6. AN EXAMPLE APPLICATION -
A Modula-2 Programming Environment

The starting point for an interface for a
particular application is the instantiation
of the Generic Task Model which provides
a view of the typical types of tasks carried
out in the application. This application
task model should contain high level task
information as well as more specific
information about recency and frequency
of task and word usage. This may be
initially obtained by observation for input
to a static model, but where possible usage
should be directly logged by a diagnostic
program which is invisible to the user.
The user task model can then be updated
dynamically in use.

A Modula-2 Programming environment
consisting of an editor, compiler and
linker provides an excellent vehicle to
investigate the effectiveness of the
approach since the tasks of editing,
compiling, and linking are sufficiently
complex to allow the method to illustrate
its predictive features. However, the
Modula-2 language and the development
of a program in the language provide a set
of words which are sufficiently restricted
to allow full experimental speech driven
systems to be built and tested.

6.1 Initial Subtask Configurations

The UIMS applies the rules from the
Generic Task Model to create an
application task model using an initial set
of predictions. These initial predictions
are developed from observations of a
number of users carrying out the task; in
this case the development of a Modula-2
program. This would typically involve the
synthesis of data obtained from a high
level task analysis of a number of
representative users, using a method
such as TKS (Johnson et. al. 1988),
coupled with a low-level keystroke
analysis. For example these observations
may lead to a high-level task plan as
shown in Figure 7a. The notation used is
a form of CSP used by Alexander (1987)
with the addition of percentage
probabilities that each event will occur; a

statement of the {form:

x= (40]y
[60]2z) >p

should be read as "From state %, there is a
40% probability of y occurring and a 60%
probability of z occurring; after one or the
other has taken place, the only event that

can occur is p”" The absence of a number
thus indicates 100% probability.

The initial tasks shown for
CreateProgram represent the different
ways that people have been’observed to
begin-the task of creating a new program.
In each case the user may follow a well-
defined strategy such as "create heading,
write the declaration section, write the
program body” or they may deviate from
this as indicated by the event Other. It is
not possible to map all possible strategies,
but only the most likely ones. Once a
deviation from plan is detected the
mediator model assumes a General state
from which it will try to match the
beginning of a new sub-task from the
application. For Modula-2 such a
General state will include events for all
Modula-2 statement formats as well as all
the events from CreateProgram that have
not yet taken place. In addition to the
Modula-2 Task Model, a model of the
editing tasks is required, as an example
an extract of a navigation task model

developed for a speech-driven editor is
shown in Figure 7b.

The nature of Modula-2 statements are
such that predictions are reasonably easy
to make e.g. an IF statement is followed
by an expression, and techniques
normally used in compilers can be
applied. This means that an IF statement
sub-task object may create another sub-
task to handle the expression and then

return to the IF statement subtask to
complete it.

As soon as the beginning of a sub-task is
1dentified, the user will be assumed to be
following that sub-task's plan until a
deviation is detected, in which case it is
back to the General state.

The tasks involved in creating the simple
program in Figure 8 are CreateHeading,
CreateDeclaration, CreateBody and
WriteComments. The CreateBody task

contains subtasks such as
CreateWriteStatement, and
CreateReadStatement.

Each task is associated with a set of words
which represents the words most likely to
occur during the carrying out of that
particular task, including those words
that would normally be expected to begin
and end the task. Figure 9 gives a set

corresponding to the program declaration
section.

Dependent on the capability of the
recogniser this task may, if necessary, be
broken down further into sub-tasks with
more restricted word sets. For each word
in the task set we can associate a
probability that that word will occur and a
corresponding sub-task set to be created
when it is recognised.

6.2 Dynamic Subtask Configurations

As the user develops more and more
programs the prediction model updates
the probabilities to suit the new user.
Unused paths in the parent model will be
discarded and new paths developed; in
this way a task model specific to the user
is developed gradually and the

performance of the system should thereby
improve.

An example MASCOT 3 design for this
environment and a description of the
communication between objects is
presented in Appendix 1.

7. CONCLUSION

In this paper we have described a generic
task model approach to the design of the
user interface management system for an
intelligent speech driven interface to a
computer application. The use of an object
oritented approach allows the separate
development of the various models in the
system and facilitates the creation of

user-dependent instances where
applicable.

The design of a simple application with a
well known structure, i.e. a Modula-2
programming environment, has been
considered 1n the first instance to provide

. a learning experience.

At the moment we have implemented a
version of the UIMS in C running on a
PC, and have developed a task model for
Modula-2. We are currently Investigating
implementations in Ada and C++ which

will allow us to more fully represent the
object oriented design.

This approach can be extended to a
consideration of other applications which
require less restrictive word sets and
more complex task strategies. We are also
working on a task model” for word
processing legal business letters, based on

an analysis of Wordperfect users (Hewitt
et al. 1990).

REFERENCES

Alexander H. (1987) "Formally-Based
Tools and Techniques for Human-
Computer Dialogues”, Ellis Horwood.

Booch, G. (1983) "Software Engineering
with Ada", (Benjamin-Cummings 1983).

Cox B.J. "Object Oriented Programming
An Evolutionary Approach”, (Addison
Wesley Publishing Company. 1987).

Frank R.J. & Hewitt (1990). "An Object-
Oriented Design Method for a Real-Time
Control System", in Simulation and the

User Interface, Taylor and Francis Ltd.
Chapter 5.

Hewitt J.A. & Furner S. (1988). "Text
Processing by Speech: Dialogue Design
and Usability Issues in the provision of a
System for Disabled Users", in People &

Computers IV, Jones D.M. & Winder R.
(eds.)

Hewitt J.A. and Frank R.J.
(1989)"Software Engineering in Modula-2

- an Object- Oriented Approach”,
Macmillan.

Hewitt J.A. and Zajicek M. (1990) "An
investigation into the wuse of Error
Recovery Dialogues in a User Interface
Management System for Speech

Recognition"”, Interact '90 Cambridge
August.

Hewitt J.A. Halford P.G.R. & Zajicek M.
(1990) "Improving the Usability of systems
with non-standard input (speech and
switch mode) by utilising a task model.
presented at "Interacting with
Computers: Preparing for the Nineties",
Noordwikerhout, Dutch Ergonomics
Society.

Johnson P., Johnson H, Waddington R, &
Shouls A, (1988) "Task Related Knowledge
Structures : Analysis, Modelling and
Application”, in People & Computers IV,
Jones D, & Winder R (eds) Cambridge
University Press.

Gould J.D. & Lewis C. (1985) "Designing
for Usability: Key Principles and What
Designers Think" Human Aspects of
Computing. Henry Ledgard (Ed) ACM.

Simpson H.R.,Jackson K.L. "Process
Synchronisation in MASCOT ",The
Computer Journal,Vol 22 No 4 1979.

Simpson H.R., "The MASCOT Method"
,JEE Software Engineering Journal,Vol
1,No 3, May 1986

~ Appendix

>
ul Lo
7~ J ~ ul Mod2 Task Model
creat l"’ [)
reate <|create
retrieve I oP1
L Mod?2
°g Task
Model
- update
p2
next
. S —— ®
v,
a_diag ©oul_
contrl . current
a mediator task
4 A T) ST
Pl & 1 2. P pl. create
keys in 1 L
Dialogue Mediator j Prob_list
Controller p8 & 1
& !dmm Current
Task
|
error | aP3 r7 ¢ I reload
activate p2
p2 4 p5 pé | ®
o J PP P) \. J
ul rec sys
4 N
oP!
imatches l
create
Recognitioi
System
params word |
lcad set
J
S

e

Figure 10 The Top Level UIMS Design

An example of one of the object classes of the above design is shown in
Figure 11.

4 ™)
data
retrieve setup
4
g ® \
ipl } !

—ts—teprl create
—teo—tep2 prob_list} l

control rehmd! !

ip2
display
draw
NE— J
e e J
Windows
retrieve -> returns current state of the object
setup -> sets up current task information
create -> creates a new current task object
prob list -> returns list of most likely words
reload -> signal to reload the current word set
draw - outputs the current state of the object
Ports

pl gets next set from parent task model

p2 loads words for current task set into recognition system
ipl sets up the data for this object

1p2 retrieves the current state of the object

Figure 11 The Current Task Object Class

Example of the messages passed between objects when setting up and
beginning a Modula-2 program creation activity for a user (ul)

Message Passed
from ->to Method
1. System > Log create (ul_Log)
2. System ->Mod2 Task Model create (ul_Mod2 TM)
3. System -> Recognition System create (ul_rec_sys)
4. ul_Mod2 T™™M

create (ul_current_task,task set)

5. ul_current_task

load_set (start_task_words)
6. REPEAT
6.1 ul ->ul_rec_sys

6.2 ul_rec_sys ->a_mediator

6.3 a_mediator ->ul_rec_sys

64 a_mediator ->ul_rec_sys

6.5 a_mediator ->ul_current_task
(most_likely_words)

- Current Task

->ul_rec_sys

word_in (spoken_word)
activate
matches

params(any_warning_signs)
prob_list

6.6 IF a good match is found by a_mediator

THEN

6.6.1 a_mediator
keys_in(keystrokes)

-> a_diag_contrl

6.7 ELSE invoke ERROR_RECOVERY_ROUTINE

WAIT for
a_diag_contrl -> a_mediator
END

UNTIL ul is finished

7. ERROR RECOVERY RQUTINE

7.1 a_mediator ->a_diag contrl
7.2 a_diag_contrl
load_set(error_handling_words)

7.3 REPEAT
ul ->ul_rec_sys
ul_rec_sys ->a _mediator
a_mediator ->ul_rec_sys
(list_of_matched_words)

done

error{details)
->ul_rec_sys

word_in(spoken_word)
activate
matches

IF a good match is found by a_mediator

THEN
a_mediator ->a_diag contrl

keys_in(keystrokes)

- ELSE invoke ERROR_RECOVERY ROUTINE

END
UNTIL done

8. PARALLEL ACTIVITIES

8.1. Getting the next task set

IF current task is finished
THEN

ul_current_task -> ul_Mod2_TM
next(task set)

ul_Mod2_ TM ->ul_current_task
create(ul_current_task,task set))
END

8.2. Updating the Log -~

a_mediator -> ul_log update (list of updates)
a_diag contrl ->ul_log

update (list of updates)

8.3. ing the Application Task Model

ul_Mod2_TM ->ul_log
retrieve (latest updates)

Description

The controlling System sets up a run-time UIMS (steps 1-3) with the Log,
Mod2 Task Model and Recognition System specifically tailored for this user
(the Mediator and Dialogue Controller are assumed constant)

A set of words for the expected starting task is generated (step 4)

The words corresponding to the starting task are loaded into the recognition
system (step 5)

The system is now ready for use and is activated when the user speaks a word
into the microphone (step 6.1). The recognition system activates the mediator
(step 6.2) which retrieves a list of likely spoken words from the recogniser (step
6.3) along with an update of the speech parameters (step 6.4) in case any
warnings to the user are needed (e.g. "speak louder please"). The mediator

asks the current task object which are the most likely words in the current
context (step 6.5).

If the mediator considers a good match has been found for a spoken word, 1t
passes the keystrokes corresponding to it to the dialogue controller (step 6.6.1)

which passes them on to the application, no further action is needed until
another word is spoken.

If the mediator does not find a good match for the spoken word, it will pass a
message to the dialogue controller telling it to invoke one of its error recovery
routines (step 6.7). In this case, the dialogue controller will load the set of

words needed for error recovery (often just "yes" and "no") into the recognition
system (7.2)

Some activities can be carried out in parallel:- the retrieval of the next task
from the application task model (8.1), the continuous updating of the use log
(8.2) and the subsequent updates of the application task model (8.3).

