DIVISION OF COMPUTER SCIENCE

Using a neural net to determine the language in which a text is
written

Caroline Lyon
Calvin Matthews

Technical Report No.212

January 1995

Using a neural net to determine the language in
| which a text is written

Caroline Lyon and Calvin Matthews

Abstract

There are statistical patterns of letter sequences in natural lan-
guage, and different languages have different characteristic patterns.
This effect can be used to determine in which language a text is writ-
ten. The patterns are captured with a single layer, feed forward neural
net trained in supervised mode. The sequential dependencies of letters
are modelled by taking adjacent letter pairs and letter triples. Training
and test data are converted to sets of these tuples, which are the basic
elements classified by the network.

This approach is supported by information theoretic results on the
entropy of letter sequences for English. The architecture of the network
used is shown to be appropriate for data with the characteristics of
natural language letter sequences.

For 3 languages over 99% of test strings are correct. For 4 lan-
guages, including Dutch and German which are similar, over 92% are
correct.

1 Background from information theory

Shannon’s well known work on characteristics of the English language ex-
amined the entropy of letter sequences [1]. Taking an alphabet of 26 letters
he produced a series of approximations Hy, Hy, Hj ...to the entropy H of
written English. These approximations successively take more of the statist-
ics of the language into account, and H, can be called the n-gram entropy,
which measures the amount of entropy with information extending over n
adjacent letters of text.

Hy is taken by definition to be logs26 = 4.7 bits per letter. This represents
the average number of bits required to determine a letter with no statistical
information. H; is calculated with information on single letter frequencies.
If p() is the probability of letter © occurring, (z,y) is a tuple and p(z,y) is
the probability of the tuple occurring, and the conditional probability of y
given z is p(y |) then

26
Hy =~ Zp(k)loggp(k) =4.14
k=1
7,k=26
Hy =~ > p(j,k)logsp(k | j) = 3.56
J,k=1
1,J,k=26
i»jvk=1,

The derivations of these formulae are in Shannon’s original paper and sub-
sequent text books.

The entropy measures can be reduced if an extra character representing a
space between words is introduced. Consider the letter sequences in

TWOWORDS

If the space is included, there are less atypical sequences such as O W O
and therefore less uncertainty for H, where n > 0, even though the number
of choices has increased. “A word is a cohesive group of letters ...and the
n-grams within words are more restricted than those bridging words” [1].
Table 1 gives a comparison of results.

The fact that local dependencies of 2 and 3 letter tuples reduce the uncer-
tainty in letter sequences indicate that bigrams and trigrams hold implicit
information on the statistical properties of English. This suggested that
different languages could be characterised by sets of bigrams and trigrams.

This hypothesis is also supported by Zipf’s earlier work [2] showing that
certain morphemes are used frequently, particularly in highly inflected lan-
guges like German. Typical letter patterns are likely to occur in a small
amount of text. Zipf showed that linguistic elements like morphemes and
words have a distinctive distribution. The commonest elements occur very
frequently, while many elements occur rarely. It has been shown that the 14
most commonly used words in English account for 30% of all words [3] and
yet a modest vocabulary would be 15,000 words. Zipf’s empirical law for
words in English and other languages gives a relationship between the prob-
ability of a word occurring, p(w), and the rank of that word in a frequency
table, r.

log p(w) o Tog T

Atwell points out that the Zipfian type of distribution may be typical of
many linguistic phenomena [4, page 40]. Support for this hypothesis is
found in the work described here - see Section 5.

2 The language determination task

If different languages can be detected by the letter patterns in them, a neural
network is an appropriate classifying tool to use. One application for such
a system could be in support of an automatic tagging system like CLAWS
[5]. If a foreign quotation is met in a corpus of English text, the automatic
tagger will assume that the words are English and use morphological rules
to allocate tags. For a language other than English this is meaningless. If
text was run in parallel through a language determiner, this problem could

Ho Hl H2 Hg
26 letter 4.70 4.14 3.56 3.3
27 letter 4.76 4.03 3.32 3.1

Table 1: Comparison of entropy for different n-grams, with and without
representing the space between words

be picked up. Short sequences of foreign text can be automatically detected,
as little as 15 characters in the tests described here.

The project described in this paper originally intended to investigate per-
formance levels of different net architectures, single and multilayer feed for-
ward nets operating in supervised mode. However, the results from the single
layer net were sufficiently good (see section 5) that the use of multi-layer
nets was not pursued. Reasons why single layer nets should be competent
for this task have been examined by Lyon [6]. Initially the network dis-
tinguished between English and German, but was extended to differentiate
between Italian and Dutch too. These languages were chosen because text
was easily available on disk.

The texts used are reports written by students in English and German, and
Italian text from a computer network information file. Dutch text comes
from a story and also from an OS/2 help file.

3 Representing the input

The input is a string of text in English or German. Subsequently this was
extended to 4 languages, but the method used remains similar. There is
an alphabet of 31 characters, consisting of 26 letters, a space and 4 special
characters from German. There is also a start symbol. ThlS alphabet is
represented by the integers 0 to 31.

It may be argued that the use of the German special characters makes it
possible to perform the classification task without recourse to a neural net.
However, their frequency is less than 0.5%. Approximately 1 in 6 of the
German strings contain a special symbol. The percentage of strings that
were correctly classified was approximately the same for strings with and
without the special characters.

Punctuation is not represented, since it usually occurs at word boundaries
where a space is equally significant. Apostrophes within a word are ignored.

The string is bound by a minimum length of 15 characters, unless the 15th
character is not ar the end of a word; in this case the string is extended to
the end of the word.

16 18 15 7 18 1 13 13 1 20 21 21 18 32

language one

131 1417 518 32315 14 20 18 15 12 516 1 14 5 5 12 32
language one

19 53209 1514 32 6 1521 18 32 1 3 20 9 22 9 20 9 5 19 32
language two

23 89 12 19 20 3212032101575 18 32208 5 19 5 32
language two

9 14 3 12 21 4 54 32 14 21 13 5 18 15 21 19 32

language two

25231115 1432514321 141 12 2519 5 18 5 14 32
language one

32 22 919 9 20 19 32 20 15 32 1520 8 5 18 32 19 9 20 5 19 32
language two

NOHONONONOHROKO

Figure 1: Typical format of a preprocessed file. Strings of text are represen-
ted as a sequence of numbers, followed by the desired language classification

The input vectors for the neural network

A string of integers is converted into an input vector in the following way.
The elements of the input vector represent all possible pairs and triples,
adjacent integers taken together as a unit. Initially, all these tuples are
disabled, but when one occurs in a training string it is activated.

Using this representation, a word like QUEEN will be decomposed into
tuples QU, UE, EE, EN, QUE, UEE, EEN. A 5-letter word generates 7
tuples, which could appear in other words. Thus, the net is able to generalise
from the training data to unseen test data. This example shows intuitvely
how the network operates. A sequence like QUE is common in French as
well as English, but the sequence EEN is rare in French. The likelihood
of the set of all 7 tuples coming from English text will be higher than the
likelihood of them coming from French.

These bigrams and trigrams partially capture the sequential nature of the
input. They will not be able to represent distant dependencies. However,
Shannon’s work indicates that pairs and triples capture a significant amount
of the implicit information of the letter sequence. Table 1 shows how entropy

decreases as longer n-grams are used, but the rate of reduction declines as
n increases.

Language 1 Languag¢ 2

Output Layer

Connection Weights

Figure 2: The architecture of Hodyne. The net has a single layer of pro-
cessing nodes and an input layer. The net is not fully connected: the tuple
‘que’ is only connected to the output node representing language 1

4 The network architecture

The architecture of the net is simple. It is derived from the original Hodyne
net, introduced by Wyard and Nightingale, described in [7], with a learning
rule similar to that used in the perceptromn.

The input strings are binary vectors, presented to the network one at a time.
Each element of the vector represents a letter tuple, and if it is present in
the string it will be flagged. These elements are the input nodes. They
are linked by weighted connections to the 2 output nodes, which represent

“language 1” and “language 2”. The number of outputs was later extended
guag guag
to 4.

When a string is presented to the trained net the weighted links carry activ-
ation to the 2 output nodes, and these are summed for each of them. The
highest scoring node wins.

4.1 The training process

Training strings are presented to the net one at a time. Then connections are
made between the input nodes and the desired output node, if they do not
already exist. Weights cre initially 1.0. Then the weights on the connections
to each output node are summed and the one with the greatest activation
will fire. If the desired result is obtained the weights are left unaltered.
However, if the desired result is not obtained the weights are adjusted. It
should be noted that the net is not fully connected. Some letter tuples
appear in both languages, others only in one.

When an unacceptable result is obtained the weights on the connections to
the wrong answer are decremented by an update factor, while those on the
connections to the right answer are incremented. Then the summing process
is repeated. The update factor is calculated from a function that has to
meet several requirements. It should always be positive, and asymptotic
to maximum and minimum bounds. The factor should be greatest in the
central region, least as it moves away in either direction. We are currently
still using the original Hodyne function because it works well in practice.
This is

6 * Wold
Wpew = |1+ —————1 w,
[L+ (8% wog)t]
where é= +1 for strengthening weights and § = -1 for weakeniﬁg them.

Graphs of the update function are shown in Figure 3, where the top curve
is the incrementing function, and the lower the decrementing one.

An incremental method of training has been found most effective. A subset
of strings from the training set are taken, and presented to the net one at
a time. FEach is fed forward and the result for the string is found. The
weights are adapted if necessary. If the percentage of strings correct for this
subset is below the training criterion specified then the net trains on this set
again. When the training criterion is met, then the next group of strings is
added to the current training set and the cumulative total is trained. This
is continued until the whole net is trained. The training step size has been
varied.

Update function

4 T T ¥ Y . . .
s
Pt
3.5 b X s |
incrementing ----- ’//
decrementing ----- s
/” o
I s N
: //, =
eyt
/,/ =
2.5 F ’/— -]
b o
5 -
o -
ES 2 F /—// |
1.5 F]
s
e
1 /’]
l/
l/
0.5 F ys |
L eaneee™”
........
° ! ! L = 1 t L
0 0.5 1 1.5 2.5 3 3.5 !

2
0ld weight

Figure 3: Relationship between old and new weights

4.1.1 Note on implementation

In training the strings from each language are selected at random, with
2 variations. First, the number of consecutive strings from one language
cannot exceed 4 while the net is in training mode. Secondly, the minimum
string length is limited: very short sentences are discarded in the training
phase. While evaluating this prototype similar restrictions are also applied
to the test data.

4.2 Testing

Once the net has been trained, weights are fixed and unseen data can be
processed. Sentences are decomposed into letter tuples, which are mapped
onto the input vector. These inputs are fed forward through the net, and
the output node with the highest activation fires. If a letter tuple has not
appeared in a training text it will not be connected and will make zero
contribution to the result. Occasionally, when a net has been trained on

TEST_RESULTS

WT Lang 1 WT Lang 2 Winner
1 30.764706 19.871134 Language 1
2. 12.764662 23.475702 Language 2
3. Incorrectly identified string 0 4 9 19 3 21 19 19'5 4 31
In language 1 actual string - DISCUSSED _
SE555>>>5> 21.000000 23.500000 Language 2
4. 14.500000 31.834433 Language 2

3. Can not classify the string 0 10 54 519 31 16 1 1 18 31
In language 2 actual string - JEDES_PAAR
SE5555>5>> 22.364161 20.128866 None

6. 21.393551 36.908714 Language 2

Sentences correct: 4 out of 6, 66.666667 percent correct

Figure 4: Typical format of output from the net. For correctly classified
strings the sum of the connection weights for each node and the classification
are displayed (strings 1,2,4,6). Incorrectly classified strings are displayed in
both numeric and alphabetic form as well (string 3). Where the net is unable
to classify a string it is displayed and counted as incorrect (string 5)

4.3 The learning algorithm

Learning algorithms can be divided into those that update weights whether
the desired result is obtained or not, and those that only adjust weights if the
desired result is not obtained. Classical Hebbian learning falls into the first
category: correct results are reinforced. The perceptron learning algorithm,
followed by the Widrow-Hoff method and the back propagation algorithm,
only adjust weights when the desired result is not obtained. Hodyne falls
into this second category. However, the Hodyne algorithm differs from these
others, where an internal error between desired and actual output is calcu-
lated. Then the weight adjustment aims to reduce this error to a minimum.
Hodyne weight adjustments are based on the existing weight values, not on
the internal error measure. This can be compared to the “semantic level
error feedback” used by Gorin et al. in “Adaptive Acquisition of Language”
[8]. Learning is driven by a penalty function.

5 Results

5.1 Comparison of tuple sizes - Test I

The results described in this section are based on 4 data éets, taken from
English and German text. The first 1/3 was taken for training, the remaining
2/3 for testing. Three sets have a minimum string length of 30, and consist
of the same data shuffled in different orders, so that the training and test
sets vary. The fourth set has a minimum string length of 15, derived from
the 2nd set.

These data sets were processed using pairs and triples, pairs only and triples
only. As Table 3 shows, performance is slightly better using triples alone.
Whereas a number of letter pairs occur commonly in both English and Ger-
man text, letter triples are more likely to be characteristic of one language
alone.

During training the threshold of acceptability was set at 95% and 100%. In
both cases the training sets reached 100% correct. In testing the incorrect
strings include proper nouns and foreign words - typically English words like
“programme” and “manager” in German text.

10

Files Used { Min. String | Total No. of | No. Training No. Test
Size Strings Strings Strings
SET 1 | Engl,Gerl 30 1064 354 710
SET 2 | Eng2,Ger2 30 1063 353 710
SET 3 | Eng2,Gerl 30 1064 354 - 710
SET 4 | Eng2,Ger2 15 1948 649 1299
-Table 2: Data sets used for training and testing - Test I
Pairs and Triples Pairs Only Triples Only
No. Strings | Percentage | No. Strings | Percentage | No. Strings | Percentage
Correct Correct Correct
SET 1 686 96.62 683 -96.20 702 98.87
SET 2 697 98.17 684 96.34 700 98.59
SET 3 686 96.62 686 96.62 700 98.59
SET 4 1236 95.15 1198 92.22 1239 95.38

Table 3: Results using pairs and triples, pairs only and triples only

11

No. Training No. Test No. Strings Percentage
Strings Strings Correct
TEST 5 710 354 352 99.44
TEST 3 354 710 702 98.87
TEST X 177 354 344 97.18
TESTY 88 354 339 95.76
TEST Z 44 354 340 96.05
TEST A 22 354 335 94.63
TEST B 11 354 329 92.94
TEST C S 354 264 74.58
TEST D 3 354 240 67.80
TESTE 2 354 206 58.19

Table 4: Results using different size training sets
5.1.1 Zipfian distribution of letter tuples

Inspection of the processing of this data showed that many tuples only occur
once or twice, whilst a few appear frequently. When the test sets are presen-
ted a significant number of the tuples have not appeared in the training sets.

This supports the general hypothesis that Zipfian distribution is typical of
many phenomena in natural language.

5.2 Comparison of training set sizes - Test II

These experiments were carried out on the same master data sets, parti-
tioned differently into training and test sets. Only triples were used, as this
representation had worked best previously. The results are given in Table 4.

The very slow degradation of performance is interesting. Training on only
11 strings still gives nearly 93% correct. The final 2 training strings were the
phrases “involved in a number of activities” for English and “marketingplan
der abteilung” for German.

These results indicate the high level of redundancy in the data.

12

6 Experiments with more languages

The neural net was modified to produce up to 6 outputs so that more lan-
guages could be determined simultaneously..

The processor next took in Italian text. The alphabet was extended from
30 to 31 characters, including the apostrophe as a special character. This
can occur in all 3 languages, but is commonest in Italian. Preliminary
experiments compared the 3 languages taken in pairs. Letter triples only
were used, and the threshold of acceptability for training was 95%. Results
are given in Table 5.

6.1 Distinguishing 3 languages taken together

A set of 1911 strings of mixed English, Italian and German were prepared.
These were first divided with 1/3 for training, 2/3 for testing, and then vice

versa. The results are given in Table 6. Once again, the performance is very
good.

As before the errors occurred in strings with proper names. “Carlos Simpson”
kept incurring an error. Another source of difficulty was again the inclusion
of foreign words, such as “input” and “output” in the Italian text.

Languages No. Training | No. Test | No. Correct | Percentage
Strings String Strings
English & German 710 354 352 99.44
English & Italian 756 378 376 99.47
German & Italian 756 378 377 99.74

Table 5: Results on 3 languages taken in pairs

13

No. No. Test No. Percentage
Training String Correct
Strings Strings
SET 7 637 1274 1243 97.57
SET 7 1274 637 632 99.22
SET 8 637 1274 1261 98.98
SET 8 1274 637 632 99.22

Table 6: Results for English, German and Italian together

Languages No. No. Test No. Percentage
Training String Correct
Strings Strings
Dutch, English & German 1218 609 594 97.54
Dutch, English & Italian 1499 750 744 99.20
Dutch, German & Italian 1465 733 722 98.50

Table 7: Results for English, German, Italian and Dutch 3 at a time
6.2 Distinguishing 4 languages

This time Dutch was added to the set of languages to be distinguished. Since
Dutch is quite closely related to German this tests the processor further.
Part of the Dutch text was taken from an OS/2 help file. English text
was edited out, but some English words remained. Preliminary results for
the languages taken 3 at a time were slightly less good, as shown in Table
7. It was noted that the order in which the languages were presented to
the pre-processor affected results. This may be due to a problem with the
random number generator, which determines how many adjacent strings of
each language are taken into the training set. There is 2 pattern in the
numbers which leads to one language being under represented. However,
this should not have a significant effect if redundancy is high.

14

Ordering of | No. Training | No. Test No. Correct | Percentage
languages Strings String Strings
SET 13 D.E G,1 1670 836 780 93.30
SET 14 G,D,LE 1670 836 770 92.12
SET 15 G,LED 1670 836 798 95.45

Table 8: Results for English, German, Italian and Dutch together

Finally, all 4 languages were taken together. The preprocessor was slightly
modified so that a maximum of 2 consecutive strings were taken from any
one language. The results are shown in Table 8.

6.3 Processing speeds

The time taken to train and test a data set varies from 8 seconds for 710
training strings in 2 languages, to 40 seconds for 2548 training strings in 3
languages. These times were reduced by an order of magnitude when the
net was trained in advance and then saved. The net then only carried out

the testing process in real time, taking between 1 and 2 seconds of CPU
time.

7 Conclusion

Languages can be characterised by the letter patterns in their texts, and a

single layer neural network is an appropriate tool for capturing these pat-
terns.

The network’s pattern of connectivity is suitable for linguistic classification
tasks as the data seems to have a Zipfian distribution. Since there are a
significant number of seldom occurring triples we wish to capture informa-
tion from some of them. Letter triples that do not occur in the training set
make no contribution to the decision on classifying test data. But if a triple
occurs once, then its connection weight to the desired output is initialised to

1.0, which can have a significant influence on the outcome. The weights on
triples that often occur in more than one language tend to be diminished.
Seldom occurring triples can trigger an adjustment to the weights.

Preliminary experiments were made with a 5th language, French, and similar
results to those given above were obtained. This indicates that the method
of language determination introduced here could possibly be extended.

References

[1]

[2]

(8]

C E Shannon. Prediction and Entropy of Printed English. Bell System
Technical Journal, 1951.

G K Zipf. Human Behaviour and the Principle of Least Effort: an In-
troduction to Human Ecology. Addison Wesley, 1949.

L P Hyvarinen. Information Theory for Systems Engineers. Springer
Verlag, 1970.

R Pocock and E Atwell. Treebank trained probabilistic parsing of lat-
tices. School of Computer Studies, Leeds University, 1994. In the Speech-
Oriented Probabilistic Parser Project: Final Report to MoD.

R Garside. The CLAWS word-tagging system. In R Garside, G Leech,
and G Sampson, editors, The Computational Analysis of English: a cor-
pus based approach. Longman, 1987.

C Lyon. The representation of natural language to enable neural networks
to detect syntactic structures. PhD thesis, School of Information Science,
University of Hertfordshire, 1994.

P J Wyard and C Nightingale. A single layer higher order neural net and

its application to context free grammar recognition. Connection Science,
4, 1990.

A L Gorin, S E Levinson, A N Gertner, and E Goldman. Adaptive
acquisition of language. Computer Speech and Language, 1991.

16

