TECHNICAL REPORT

Department of Computer Science

A Graphical Representation for Communicating Sequential Processes

Maria Kutar, Carol Britton and Sara Jones

Report No: 314

June 1997

|

A Graphical Representation for Communicating Sequential Processes

Maria Kutar, Carol Britton and Sara Jones
Department of Computer Science
University of Hertfordshire
College Lane, Hatfield, Herts, UK
AL10 9AB
Tel: 01707 285124 / 284354 / 284370
e-mail: M.S.1.Kutar, C.Britton, S.Jones @herts.ac.uk

Abstract

The use of formal notations has many advantages in the specification of interactive
systems. However, validating specifications written using formal notations is
generally difficult as these specifications are often hard to understand for those less
familiar with such notations. Whilst it is widely acknowledged that users should be
involved in validating requirements in order both to check that a specification says
what they intended it to say, and to assist developers in refining requirements relating
to the usability of the system, most users are not familiar with the formal notations
used by software engineers and cannot realistically be expected to validate formal
specifications in their raw state. One notation which has been found to be useful in
specifying the behaviour of interactive systems is CSP (Communicating Sequential
Processes). This paper presents a graphical representation of CSP which has been
designed with the intention of making it easier for users to understand, and hence
validate, specifications written in CSP. This graphical representation has been
evaluated by a range of potential users, and refined in the light of their comments. The
resulting representation is also analysed in terms of notational properties derived from
Green’s work on cognitive dimensions. Directions for further work are discussed.

1 INTRODUCTION

It is recognised that models constructed using mathematically based specification
languages can provide an effective yet precise means of communication between
software engineers and other stakeholders involved in the validation process [15].
Communicating Sequential Processes (CSP) [12] has been shown to be a suitable
formal notation to model not only system behaviour but also the interaction between
the user and the system, allowing for a clearer understanding of system requirements
[11]. However, in its original, text-based form CSP can be difficult for the untrained
user to understand.

It is accepted that user involvement in the requirements engineering process is
beneficial; this can, however, be difficult if formal methods are used, and evidence
suggests that graphical representations are more accessible to users who are untrained
in a notation. In this paper a graphical representation of CSP is introduced in order to
enhance understanding of the notation by the non-expert or untrained user. The aim is
to enhance the accessibility of the notation without change to the semantics. Whilst a
graphical representation of LOTOS, a very similar language to CSP, has been
proposed elsewhere [23], this was designed specifically with the developer rather than
the untrained user in mind, and therefore does not possess those properties which we
believe enhance accessibility of the notation.

In section 2 we present the motives behind the provision of graphics, arguing that they
can increase understanding, and in section 3 we go on to identify some specific
properties of notations which contribute to ease of understanding. In section 4 a
summary of the graphical representations of CSP operators is shown, followed by
CSP solutions to the problem of the ‘Dining Philosophers’ in both traditional and
graphical form. Section 5 presents the results of a small-scale survey in which our
proposals for graphical representation of CSP were evaluated by a number of
representative users. The representation is also analysed in terms of the notational
properties outlined in section 3. Finally in section 6 we summarise and give our
conclusions.

2 MOTIVES FOR THE PROVISION OF GRAPHICS:

2.1 Increasing Understanding:

Requirements engineering forms a cycle of knowledge acquisition, conceptual
modelling and validation [14]. During knowledge acquisition relevant parts of the
application domain are abstracted before being modelled. The process of user
validation requires the user and developer to ensure that the system modelled is the
same as that which the user requires.

For certain types of system, such as safety-critical systems, there are advantages in
writing the specification in a formal notation (i.e. using a mathematical or logic-based
notation, via which various properties of the system may be proved.) For the user, the
combination of this abstraction and a formal notation with which he is unfamiliar
results in a specification which he may find difficult to relate to his requirements.
Whilst the provision of graphics is not a panacea [17] a graphical representation can

assist the user in understanding a formal notation. ‘Graphical’ here can be taken to
mean ‘not purely textual’.

One of the claims most commonly made in favour of graphical representation is that

communication involving graphical information can take place over a much higher
bandwidth than is possible using sequential text-based representations alone. This has
several implications. It means that users should find it much easier to obtain some
form of ‘gestalt’ or overview of the information from graphical representations than
from text. Scanning for salient information should therefore also be easier [13].

Another set of related claims concerns the way in which graphical representations of
information may map onto the users own internal or mental representations of the
same information. The strong claim here is that external graphical representations
may map directly onto internal mental images with which people can reason directly
using well-advanced visual recognition and pattern-matching capabilities. For
example Rumalhart er al [18] suggest that since relations among real-world, physical
objects are often understood in visual or spatial terms it should be easier to derive a
mental model of an unknown system structure from a graphical representation than
from a textual one.

The status of these claims is admittedly unclear, and it is certain that there are
individual differences in the extent to which people tend to ‘visualise’ information.
Indeed, Stenning and Gurr [22] found that not only do individuals differ in their
understanding of information, but that the efficacy of presentation of different types of
information, and the ability to uncover different types of error, varies according to the
media used. It does, however seem likely that for some users a graphical
representation might prove to be useful in providing exactly the kind of ‘cognitively
transparent representation’ which is needed for effective comprehension [20]. In
addition there is a great deal of evidence to support the claim that graphical
information is much more easily remembered than textual or verbal information [21].
A greater proportion of pictorial information is retained, with recall being significantly
better for pictures than words, and the capacity for recognition of pictures being
almost limitless when measured under appropriate conditions. These factors indicate
that for the user who is attempting to understand an unfamiliar notation, the provision
of graphics should both increase initial understanding and accelerate learning.

Formal methods encourage precise yet abstract specification. In addition to the fact
that the production of a specification necessarily results in a degree of abstraction,
many systems include abstract entities such as data or knowledge structures. During
the development of such systems it is necessary to represent this abstract information,
and if the user is to be able to assist in supporting the necessary design and
development tasks, we need to find some way of making the abstract concrete.
Scientists have long been familiar with the idea of representing abstract data in the
concrete form of graphs, pie charts, bar charts and histograms. These concrete
representations have proved useful in conveying an appropriate understanding of the
data, allowing users to compare, contrast and infer in useful ways. Diagrammatic
representations of software systems have long been used in design, development and
teaching. It therefore seems reasonable to assume that such representations have, to
some extent at least, been seen to be useful.

3 HOW CAN EASE OF UNDERSTANDING BE IMPROVED?

3.1 Cognitive Dimensions

One of the most useful concepts in the evaluation of notations for different purposes is
that of cognitive dimensions [7][8]. Cognitive dimensions are not a set of criteria
which may be satisfied to various degrees by different notations; rather they are
aspects of notations which may be important and useful in specific situations.
Cognitive dimensions are tools for thinking about notations, rather than detailed
guidelines. They are intended to support the evaluation of any type of information
structure and can be applied to programming languages, musical scores or even
telephone numbers [16]. The twelve dimensions described by Green aim to provide a
broad-brush assessment of the information structures to which they are applied. They
are outlined in table 1 below [16]. All of the dimensions are useful in the overall
evaluation of a modelling notation, but those shown in bold are those considered to be
most directly relevant to ease of understanding for novice readers [2].

Table 1: Overview of Green’s Cognitive Dimensions

DIMENSION INFORMAL DEFINITION

Viscosity Resistance to change

Hidden Dependencies Important links between entities are not
visible

Visibility and Side-by-Side-ability Ability to view components easily

Diffuseness/Terseness Succinctness of language

Closeness of Mapping Closeness of representation to domain

Progressive Evaluation Effort required to meet a goal

Hard mental Operations Operations that place a high demand on
working memory

Imposed Guess-Ahead Constraints on the order of doing things

Secondary Notation Extra information in means other than
program syntax

Abstraction Gradient Types and availability of abstraction
mechanisms

Role-Expressiveness The purpose of a program component is
readily inferred

Consistency Similar semantics are expressed in similar
syntactic forms

3.2 Properties of Notations Which Contribute to Ease of Understanding
Building on the work of authors such as Green [6][7][8][9][10], Petre [17], and
Sampson [19], Britton & Jones have identified the following properties that may
contribute to ease of understanding of representations.

1 The number of different symbols in the notation

2 The degree of motivation of the symbols

3 The discriminability of the symbols
4 The extent to which the notation is perceptual or symbolic
5 The amount of structure inherent in the notation

(These are all discussed fully in [2])

3.3 A Word of Caution

As we have noted above, and many other writers have cautioned [1][3][5][24],
graphics is not a panacea. In [17] Petre explores some of the limitations of pictorial
and graphical media. She notes, inter alia, that ‘the success of a representation,
graphical or textual, depends on whether it makes accessible the particular
information the user needs - and on how well it copes with the different information
requirements of the user’s various tasks.” Additionally she argues that graphical
readership is an acquired skill and that structure, relationships and relevance are not
universally obvious. Perhaps most importantly, the point is made that ‘much of what
contributes to the comprehensibility of a graphical representation isn’t part of the
formal (programming) notation but a “secondary notation” of layout, typographic
clues and graphical enhancement that is subject to individual skill.’

‘Secondary notation’ refers to valuable layout clues that are typically not part of the
formal notation, but which may be used to exhibit relationships and structures that are
not otherwise apparent. It is this linking of perceptual clues to the important
information which can contribute to the understandibility of a graphical
representation. Consequently the ‘success’ of a representation is dependant on the
skill of the person who creates it as well as the notation he uses.

Finally, we should also be aware that whilst graphics have their limitations, they are,
in Petres’ words, ‘nevertheless persistently appealing’ and this appeal may have its
own value. The fact that a graphical representation is not necessarily a more coherent
or understandable one is of less importance if the user believes it to be inherently
more accessible.

4 GRAPHICAL CSP

4.1 Summary of graphical symbols for CSP

Table 2 outlines the proposed graphical symbols for the CSP operators. These
symbols build on the methods employed by Hoare [12] in his explanation of CSP, and
are designed with the intention that they are both intuitive and straightforward to
learn. Thus Hoare’s diagrammatic representation of parallel processes is abandoned
although that of events is retained. All other symbols are additional to those suggested
by Hoare.

Table 2 Graphical CSP Symbols

OPERATOR CSP SYMBOL GRAPHICAL NOTES
SYMBOL
Process Denoted by UPPER Process name will
CASE NME—-I remain in upper case to

follow the CSP
convention. Labelling
is included (see e.g.)

Event Denoted by lower case The circle shows the

: event_name :

process waiting for an
event to occur, the
arrow the occurrence of
the event

External choice

¥

The diamond replaces

(deterministic) D X the circle when waiting
for environmental
intervention

Internal choice [l Denoted by divergent

(nondeterministic) O arrows

P

Parallel composition

Processes connected by
parallel lines

Interleaving Overlapping processes
Il suggest interleaving
Sequential . Control passes from top
Composition ’ to bottom sequentially
A4
Input 9 x [Named input shown
: into the process
Output ! X Named output shown
. from the process
Catastrophe ? Lightning strike
I__—l_> 4 —pl:] retained as it is an
intuitive symbol
Interrupt P"Q Symbol chosen in
accordance with survey
results (see section 5.1)
Alternating ® The arrows show
p alternating transfer
between processes
Hiding \e event_name Hidden events will be
O O shown in italics
Restart A The arrow indicates
P [': that the process may

start again

4.2 Tllustration Of The Graphical Notation: The Dining Philosophers

In order to show the potential of this notation, Hoare’s CSP solution to the problem of
the dining philosophers [12] is shown both in the traditional CSP form and then
graphically. The problem of the dining philosophers is first outlined.

In ancient times, a wealthy philanthropist endowed a College to accommodate five
eminent philosophers. Each philosopher had a room in which he could engage in his
professional activity of thinking; there was also a common dining room, furnished
with a circular table, surrounded by five chairs, each labelled by the name of the
philosopher who was to sit in it. The names of the philosophers were PHIL,, PHIL,,
PHIL,, PHILs, PHIL,, and they were disposed in this order anticlockwise around the
table. To the left of each philosopher there was laid a golden fork, and in the centre
stood a large bowl of spaghetti, which was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he felt
hungry, he went to the dining room, sat down in his own chair, picked up his own fork
on the left, and plunged it into the spaghetti. But such is the tangled nature of
spaghetti that a second fork is required to carry it to the mouth. The philosopher
therefore had also to pick up the fork on his right. When he was finished he would put
down both his forks, get up from his chair, and continue thinking. Of course, a fork
can be used by only one philosopher at a time. If the other philosopher wants it, he
just has to wait until the fork is available again.

In traditional CSP form the representation of the dining philosophers is shown thus:

oPHIL; = {i.sits down, i.gets up, i.picks up fork.i, i.picks up fork.(i®1), i.puts down
fork.i, i.puts down fork.(i®1)}

where @ is addition modulo 5, so i®1 identifies the right hand nelghbour of the ith

philosopher. (0PHIL defines the alphabet of the Philosopher process, showing the

events in which he may engage.)

oFORK; = {i.picks up fork.i, (i © 1).picks up fork.i, i.puts down fork.i, (i © 1).puts
down fork.i}
where ©® denotes subtraction modulo 5.

Apart from thinking and eating, which we have chosen to ignore, the life of each
philosopher is described as the repetition of a cycle of six events:

PHIL; = (i.sits down — i.picks up fork.i — i.picks up fork.(i ©1) — i.puts down fork.i
— i.puts down fork.(i ©1) — i.gets up — PHIL;)

The role of the fork is a simple one - it is repeatedly picked up and put down by one of
its adjacent philosophers (the same one on both occasions)

FORK; = (i.picks up fork.i, — i.puts down fork.i, — FORK;
| i © 1).picks up fork.i — (i © 1).puts down fork.i — FORK;)

Each event except sitting down and getting up requires the participation of two actors,
a philosopher and a fork. The behaviour of the whole college is the concurrent
combination of the behaviour of each of these components:

PHILOS = (PHIL, Il PHIL, Il PHIL, Il PHIL; Il PHIL,)
FORKS = (FORK; Il FORK| Il FORK,; Il FORKj; Il FORK,)
COLLEGE = (PHILOS Il FORKS)

To a user unfamiliar with the CSP notation this is not particularly easy to understand.
However, once the CSP is shown in a graphical form, without change to the CSP

itself, things become a little clearer:

The PHIL process is shown as follows:

PHIL i

The inner box in the top left-hand corner shows the name of the process, that in the
top right corner, the label which denotes the specific PHIL. By labelling the process in
this way the events may be shown without their labels thus:

PHIL i
_}O
i1 Sits down
O
il picks up fork.i
O
picks up fork.i®1
@)
puts down fork.i
@)
puts down fork.i®1
©)

_J gets up

Whilst the inclusion of the label to specify the fork which the philosopher will use is
still necessary, the removal of the label referring to the philosopher himself improves
initial readability. The inclusion of arrows makes it clear that the events must follow

each other in succession and that the philosopher will engage in a repetition of this
cycle of events.

The FORK process which offers the possibility of choice is also made clearer with the
pictorial notation.

FORK; = (i.picks up fork.i — i.puts down fork.i — FORK;
| (i ©1).picks up fork.i — (i ©1).puts down fork.i — FORK;)

FORK__| li

v
®)
a

i.picks up fork (i ® 1).picks up fork

i.puts down fork | |_ (i © 1).puts down fork

Then we may show the processes themselves running in parallel:

/ FORK | |2 |

/T =t

FORK| 4 | FORK | |1 |

PHLL | [4 PHIL| [0
Foﬁllg—/

/

The use of secondary notation, showing the philosophers and forks in the order they
will appear around the table aids understanding. However, it is possible to show the

processes simply joined together as in

COLLEGE = PHILOS Il FORKS

PHILOS] i | FORKS i |

As was discussed in section 3.3 it is the use of secondary notation which aids
undersandibility of graphics. Below, the processes PHILq,, FORK,, and FORK; are
shown in parallel. The use of secondary notation allows a clear view of the events on
which the processes must synchronise. We have underlined the events on which

synchronisation is required.

FORK

0 PHIL

picks up fork

puts down fork

I
O+—O0+«—0«—0+—0+—0

L

Sits down

picks up fork

picks up fork

puts down fork

puts down fork

gets up

FORK

v

O

picks up fork

puts down fork

The labelling of the processes allows the event names to be shown entirely without
labels, and it can be seen that, for example, on the first ‘picks up fork’ event, PHIL,
picks up FORK,. The processes are shown to be running in parallel and therefore it is
apparent that PHIL, and FORK, must synchronise on this event.

10

S EVALUATION OF GRAPHICAL CSP

In this section we present the results of a small survey designed to assess the ability of
this notation to be understood by the untrained user. We then go on to consider the
properties of this notation which contribute to ease of understanding.

5.1 Empirical Evaluation

5.1.1 Survey Details

To investigate whether this representation may be easily understood by the untrained
user we have conducted a small-scale empirical study involving two groups of
subjects who were broadly representative of the kind of users who might be involved
in systems validation. The first group, of ten subjects, consisted of employees of
Nortel. This group consisted of employees ranging from secretarial staff to senior
managers. The second group was made up of five postgraduate students from the
University of Hertfordshire. Some subjects from both groups had experience of formal
notations. None had experience of CSP. Subjects were asked to complete a
questionnaire without consultation with other members of the group and all
questionnaires were completed anonymously. The questionnaire was devised to enable
us to assess whether the graphical representations proposed in section 4 are intuitive
to the untrained user. It consisted of nine multiple choice questions asking for a
symbol to be selected which the subjects felt best represented the given word or
phrase, as in the example shown below. Details of the results of the survey and some
of the questions asked are included below.

Example of question asked of subjects.

You will see below a list of words and phrases used in everyday conversation.
For each of these, please circle the letter corresponding to the symbol that
you think best represents it. :

6 | output A B C D E

T B = =0 A\

5.1.2 Survey Results

The choices presented in the questionnaire were made up of the symbol which we had
designed to represent the CSP operator, any symbols which we felt might be confused
with our choice, and a random selection of the remaining symbols. Representations of
processes and events themselves were not included and we did not differentiate
between internal and external choice. In both cases this was in order to circumvent the
necessity of explaining the underlying CSP concepts to our subjects.

The following symbols which we had designed were selected by all fifteen subjects
(100%)

choice : o) input:

N —+]

output:

I

11

These symbols were selected by twelve or more of the subjects (80% +)

Parallel Composition: Catastrophe: Alternating:

L~ | [J—e—[] L]

The symbol for sequential composition: [

s

was selected by 10 subjects (66%) and was retained.

The two remaining symbols which were included in the survey, were selected by none
of the subjects. These were consequently altered to take into account the subjects’
answers as detailed below.

Our question regarding interleaving was as follows:

4 | interleaving A B C D E

=0 1 |-

Our choice of symbol had initially been (A), based on the traditional CSP notation -
itself. However, fourteen of the subjects (93%) selected (C), our symbol for
‘interrupt’.

The question relating to the interrupt symbol was posed as follows:

8 | interrupt A B C D E

=Y =0-a0—0

Twelve subjects (80%) selected (D) , the symbol for catastrophe, and none chose our
‘suggested’ symbol (B). Discussion with some of the subjects revealed that (D) was
chosen because they felt that the lightning strike symbolised an interrupt.

12

As a consequence of these results, we changed the interleaving symbol to that which
was selected by the subjects, and designed a new symbol for interrupt incorporating a
lightning strike.

The new symbol was created with the consideration that two symbols incorporating a
lightning strike could be easily confused. The CSP definitions for the two operators
are as follows.

Catastrophe:
P% Q behaves initially as process P. On the occurrence of the catastrophic event
only, control will pass to Q.

Interrupt:
PAQ behaves initially as process P. On the occurrence of the first event from the
alphabet of Q, control passes to Q and P is never resumed.

Thus we designed the following symbol for interrupt:

1]
|

The lightning strike inside the process indicates that the second process may interrupt
the first on the occurrence of the initial event within its alphabet. Keeping the
lightning strike outside the process in the symbol for catastrophe indicates that the
catastrophic event is required in order for control to pass between the two processes.

5.2 Theoretical Analysis of the Notation’s Properties

In section 3.2 above we defined the properties of notations which contribute to ease of
understanding. In this section we show that the graphical CSP representation
possesses many of these properties.

5.2.1 The number of different symbols in the notation.

This property is constrained by the original CSP. We have defined symbols for
fourteen CSP operators, but many of these build on the symbol for a process using
motivated symbols such as arrows (see below). Thus the overall number of new
symbols which a user must learn is minimised. Some of the operators which in the
original version of CSP are represented by symbols introduced specifically for this
purpose (e.g. the ‘;” which is introduced to denote sequential composition, the ‘?’ to
denote input, and the ‘!’ denoting output) are represented in our graphical version
simply by new arrangements of a smaller set of symbols. We believe that this will
tend to improve understandibility so long as it does not lead to problems with
discriminability (see section 5.2.3 below).

5.2.2 The degree of motivation of the symbols.
This property is perhaps the least self-explanatory but it is related to the cognitive
dimensions of closeness of mapping and role expressiveness. The concept of

13

motivated and arbitrary notations has been described by Sampson [19]. A notation
may be considered to be motivated if there exists a natural relationship between the
elements of the notation and objects or ideas that they represent. Many of the
characters in Chinese script are motivated, for example:

)
an - g
J 7 5F 5F
meaning tree meaning forest

Not only does the form of the symbols suggest trees, but the symbols also preserve the
idea that a forest is made up of many trees.

In an arbitrary notation there is no natural relationship between the object and the
representation; the symbol *, for example, bears no obvious relation to the notion of
multiplication and the logic symbol — does not suggest negation.

While intuitively we may guess that symbols used in traditional CSP such as ‘?” and
‘I’ denoting input and output, and ‘®’ denoting alternation will not be seen as natural
by those not familiar with formal notations, the results of our survey suggest that at
least some of the alternatives provided in our graphical version are seen as natural
representations of the concepts they represent. For example the symbols representing
input and output appear to be strongly suggestive of the ideas they represent and were
selected by 100% of the subjects.

—| | I

Input Output

In designing these graphical symbols for CSP, motivation was a key priority. The
survey results shown in section 5.1 indicate that the symbols we have chosen are
indeed strongly motivated and it is hoped that this will assist the untrained user in
understanding the notation.

5.2.3 The discriminability of the symbols.

This refers to the ease with which the symbols may be distinguished from each other.
The nature of the CSP operators, showing mainly the relationship between processes
tends to reduce the discriminability of the symbols. The fact that our graphical
notation often represents new concepts by using new arrangements of existing
symbols rather than by introducing new symbols, as described above, may also tend to
reduce a readers’ ability to discriminate between the representations of different
concepts. However, if representations are highly motivated, the effects of any lack of
discriminability may be less apparent. Further work is needed to investigate whether
the representations used in our graphical version of CSP are sufficiently
discriminable.

14

5.2.4 The extent to which the notation is perceptual or symbolic.

Perceptual representations are those in which we perceive meaning directly without
having to reason about them. Most modelling notations contain both perceptual and
symbolic elements. Both the original and graphical versions of CSP are both
perceptual and symbolic to a certain extent. The original version, whilst
predominantly textual, may still use perceptual cues in layout and formatting of a
specification; the graphical version, while having a strong perceptual flavour due to its
reliance on graphical symbols still uses text, for example to name processes and
events. We believe that the greater use of perceptual features will allow readers to
benefit from the advantages of graphical representations outlined in section 2,
however, further studies are needed to determine the extent to which this will affect an
untrained users’ ability to understand a specification.

5.2.5 The amount of structure inherent in the notation.

The design of the graphical CSP symbols incorporates a certain amount of structure,
encouraging structurally clear representations. This is largely due to the increased
scope for the use of secondary notation (see section 3.3). In the example of the Dining
Philosophers above, we believe that greater clarity of structure has been achieved with
the graphical version of CSP through careful layout of the processes with thought
being given to the relationships which will be implied by the structure. Thus graphical
CSP specifications are not inherently more structured than textual versions, but the
graphical notation does at least provide the specifier with the possibility of making the
structure of a specification clearer to its readers.

6 SUMMARY AND CONCLUSIONS

It is accepted that formal specifications provide a precise method of communication
between developers and users, and that effective systems development requires that
the user of the system is able to validate requirements at an early stage. Given that
users are generally unfamiliar with formal notations which a developer may use, this
is a difficult task, particularly in light of the fact that modelling requires a certain
amount of abstraction away from the system. Whilst the provision of graphics does
not in itself provide a solution to this difficulty we have argued that they can both
improve understanding and increase retention of information for some users.

Those properties of a notation which we believe to be directly relevant to the ease of
understanding have been identified with reference to Green’s cognitive dimensions.
An important contributory factor for comprehension, additional to the properties of
the notation itself, is the effective use of secondary notation. If a graphical
representation is badly laid out, with little thought given to the relationships suggested
by, for example, the grouping of objects in a diagram the reader is likely to draw
incorrect conclusions. Thus graphical notations must be carefully used if they are to
promote rather than hinder understanding.

CSP is a notation which may be used to model both system behaviour and the user
interface and therefore it is a particularly suitable notation for the development of

15

interactive systems. We have introduced a graphical representation of CSP, which
allows for the graphical depiction of a CSP specification without any changes to the
semantics of the notation. Its potential has been illustrated through a worked example.
Subsequently we have conducted a small-scale survey to assess the ease of
understanding of this representation by the untrained user. The results suggest that the
symbols we have chosen are intuitive. The properties of this representation which
contribute to improved understanding have been discussed, although the fact that we
are working with an existing notation means that we have been constrained in our
ability to fully satisfy those properties. In order to fully assess the effectiveness of the
graphical representation further studies need to be carried out to compare the novice
users’ understanding of the two different forms of CSP.

The representation is currently only in a paper based form, but it is hoped that it will
provide a basis for a dynamic form which would allow users and developers to
explore the interaction between processes which are used in CSP to represent the
dynamics of the system. This could potentially be used as a graphical front end for
existing CSP tools, such as FDR or ProBE [4] available for refinement and
verification. This should help to overcome the difficulty of ‘scaling-up’ inherent in
graphical notations and would be beneficial for both the user and the developer.
Whilst the work has been carried out with specific regard for the user, systems
developers may also find the graphical representation beneficial.

Acknowledgements
The authors would like to thank Ben Potter for his advice and assistance in the
development of this representation.

References :

[1] Ambler,A., Burnett,M.: Influence of Visual Technology on the Evolution of
Language Environments. IEEE Computer, 22, October 1989

[2] Britton,C., Jones,S.: The Untrained Eye: What Makes A Representation Easy For
Novice Readers To Understand? University of Hertfordshire Technical Report no 308
1997

[3] Chang,S.: Visual Languages: A Tutorial And Survey. IEEE Software January 1987
[4] CSP Archive: http://www.comlab.ox.ac.uk/archive/csp.html

[5] Fitter,M.J., Green, T.R.G.: When Do Diagrams Make Good Computer
Languages? In Alty,J. L., Coombs, M.J., (Eds) Computing Skills and the User

Interface. Academic Press 1981

[6] Green, T.R.G. Programming as a Cognitive Activity. In Smith, H.T., Green,
T.R.G. (Eds) Human Interaction with Computers. Academic Press 1980

[7] Green, T.R.G.: Cognitive Dimensions of Notations. People and Computers (HCI
89) Sutcliffe and McCauley (Eds) CUP 1989

16

[8] Green, T.R.G.: Describing Information Artefacts with Cognitive Dimensions and
Structure Maps. People and Computers, Proceedings of the HCI’91 Conference,
Diaper, D., Hammonds, N. (Eds) August 1991

[9] Green, T.R.G., Petre, M., Bellamy, R.: Comprehensibility of visual and textual
programs: A Test of Superlativism against the Match Mismatch Conjecture. In
Koenemann-Belliveau, J., Moher, T., Robertson, S. (Eds) Empirical Studies of
Programmers Fourth Workshop, Norwood, NJ. 1991 Ablex pp121-146

[10] Green, T.R.G., Blackwell, A.F.: Thinking About Visual Programs. In Thinking
With Diagrams IEE Colloquium Digest No. 96/010. 1996

[11] Harrison, M., Barnard, P.: On Defining Requirements for Interaction. In
Proceedings of RE93, Second International Symposium on Requirements
Engineering. IEEE Computer Society Press 1993

[12] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
1985

[13] Jones, S.: Three-Dimensional Interactive Connection Diagrams for Knowledge
Engineering. PhD thesis, City University 1993

[14] Lalioti, V., Loucopoulos, P.: Visualisation for Validation. CAISE’93, 5t
International Conference on Advanced Information Systems Engineering, Paris,
France, June 1993. In Rolland, C., Bodart, F., Couvet, C. (Eds) Lecture Notes in
Computer Science 685.

[15] Miller, S.P., Srivas, M.: Formal Verification of the AAMP5 Microprocessor: A
Case Study in the Industrial Use of Formal Methods. In Proceedings of the Workshop
on Industrial-Strength Formal Specification Techniques. IEEE Computer Society
1995

[16] Modugno, F., Green, T.R.G., Myers, B.A.: Visual Programming in a Visual
Domain: A Case Study of Cognitive Dimensions. In People and Computers IX,
Proceedings of HCI’94, Glasgow, August 1994

[17] Petre, M.: Why Looking Isn’t Always Seeing. Readership Skills and Graphical
Programming. Communications of the ACM, June 1995, Vol. 38, No. 6.

[18] Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.E.: Schemata and
Sequential Thought Processes in PDP Models. In McClelland, J.L.., Rumelhart, D.E.,
and the PDP Research Group (Eds) Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 2: Psychological and Biological Models. MIT
Press 1986

[19] Sampson, G. :Writing Systems. Hutchinson 1985

17

[20] Seely Brown, J.: From Cognitive to Social Ergonomics and Beyond. In Norman,
D., Draper, S. (Eds) User Centred System Design, Chapter 22, Lawrence Erlbaum
Associates 1986

[21] Standing, L. Learning 10,000 Pictures. Quarterly Journal of Experimental
Psychology . Vol. 25 1973

[22] Stenning, K., Gurr, C.: Formal Methods and Human Communication. In Formal
Aspects of the Human Computer Interface BCS-FACS Workshop. Sheffield Hallam
University 1996

[23] Winstanley, A.C., Bustard, D.W.: Expose. an Animation Tool for Process-
Oriented Specifications. Software Engineering Journal, November 1991 pp 463-475.

[24]Wolf, C. (organiser) The Role of Laboratory Experiments in HCI: Help,
Hindrance or Ho-Hum? In Proceedings CHI89 1989. (Panel Session)

18

