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ABSTRACT. Let Z be a Banach lattice endowed with positive cone C' and an
order-continuous norm ||.||. Let G be a semigroup of positive linear endomor-
phisms of Z. We seek conditions on G sufficient to ensure that the positive
fixed points Cg of Z under G form a lattice cone, and that their linear span
Zy is a Banach lattice under an order-continuous norm ||.|Jo which agrees with
[I.]| on Cy, although we do not require that Zp contain all the fixed points of
Z under G, nor that Zy be a sublattice of (Z, C). We give a simple embedding
construction which allows such results to be read off directly from appropri-
ate fixed point theorems. In particular, we show that left-reversibility of G
(a weaker condition than left-amenability) suffices. Results of this kind find
application in statistical physics and elsewhere.

Definition 1. A semigroup G is called left-reversible iff for all Ty, Ty € G there
exist T3, Ty € G such that TYTyT5 = ToTyTy.

A right ideal of a semigroup G is a set of the form T'G where T' € G. Left-
reversibility of G is equivalent to demanding that every pair of right ideals of G
intersect non-trivially. Left-reversibility is a weaker condition than left-amenability
for discrete semigroups since the support of any left-invariant mean must be con-
tained in every right ideal. It is strictly weaker since (for example) the free group on
two generators is left-reversible (because it is a group) but is not left-amenable (be-
cause it is not solvable.) For a survey of the relationships between left-reversibility
and other properties of semigroups, see [6, §8].

Proposition 2. Let Z be an order-complete vector lattice with positive cone C,
and let G be a semigroup of positive order-continuous linear operators from Z into

Z. Let Co={ze€C:Tx=zforall T € G}, 7= Cy— Cs.
If G is left reversible then (Zp, Cp) is a vector lattice.

Proof. Choose z,y € Cy. Let A= {T(zVy):T € G}. Clearly

z+y=T(e+y)>T(zVy)>TeVTy=2zVy
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so A is order-bounded above by z + y, and hence has a least upper bound z. For
T1,T5 € G we have by left-reversibility of G that

Ti(zVy) <T1TTs(zVy) = LT Tu(z Vy) > Ta(z Vy)

which shows that A is directed as a subset of C', and hence A (considered as a net)
is order-convergent to z. The same argument shows that for each T € G, TA is a
subnet of A, whence Tz = z and so z € Cy. Clearly z is the least upper bound in
Cp of z and y. It follows that Cj is a lattice cone and hence that Z is a lattice. [

Under the conditions of Proposition 2, Z; need not contain all the fixed points
of Z under G, and need not be a sublattice of (Z, C) [1, Examples 2,3].

Proposition 3. Let (Zy,Co) be a vector lattice. Let Z be a Banach lattice en-
dowed with positive cone C' and order-continuous norm [|.||, and suppose that Z
can be embedded in Z in such a way that Cy is a norm closed subset of C.

Then Z, is a Banach lattice with positive cone Cy and order-continuous norm
|I.llo defined on Zp by |||lo = || |z|o|| where |.|o is the lattice modulus on (Zy, Co).

Proof. Straightforward, for details see the last part of the proof in [1, p 267]. O

Again, Zy may be alattice in the order inherited from C but fail to be a sublattice
of Z, in which case ||.|| will generally differ from ||.||o on non-positive elements of
Zo. Indeed, Zo need not even be closed in Z with respect to ||.|| [1, Example 4].
Conditions under which Z; is a sublattice of (Z, C) in Proposition 3 are discussed
in [2].

Propositions 2 and 3 combine to give us

Proposition 4. Let Z be a Banach lattice endowed with positive cone C' and an
order-continuous norm ||.||. Let G be a semigroup of positive linear endomorphisms
of Z.

If G is left-reversible then the positive fixed points Cp of Z under G form a lattice
cone, and their linear span Zj is a Banach lattice under an order-continuous norm
[|-|lo which agrees with [|.|] on Cy.

Proposition 4 may fail when G is a projection semigroup [1, Example 1] so
some condition is required on G. But frequently we can use a standard fixed point
theorem to recover the conclusion of Proposition 4 for semigroups which are not
left-reversible. As an illustration of this, we prove the following:

Definition 5. In the set up of Proposition 4 call G norm-distal iff Gu is norm
bounded away from zero for all u € Z — {0}.

Proposition 6. Proposition 4 remains true if G is assumed norm-distal in place
of left-reversible.

Proof. Adopting the notation of Proposition 3, pick z,y in Cy and let A be the
smallest subset of C containing « and y and closed under join and orbit, so that
for u,v € A and T' € G we have uVv,Tu € A. Now A is directed as a subset of
C, and hence convergent to z = sup A < = + y. Setting K to be the order interval
[z Vy, z], we have (using order continuity of the norm on Z) that the elements of G
act as continuous affine maps from the weakly compact set K into itself [8, §2.4].
Since G is distal, K must have a fixed point under G by the Ryall-Nardzewski fixed
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point theorem [10][9]. This fixed point must be z, which is therefore the least upper
bound of # and y in Cy. This is true for each choice of £ and y in Cg, so Cy is a
lattice cone and the conclusion of Proposition 4 is recovered. [

Different variations of Proposition 4 can be obtained by applying other fixed
point theorems to the compact convex set K defined in the proof of Proposition
6. See [5] for a selection of suitable fixed point properties. As well as yielding the
new results presented here, this approach also allows us to give simple transparent
proofs for a wide range of known results. Properties of this kind find application
in statistical mechanics [11], quantum physics [3], statistical decision theory [7,
Chapter 1] and elsewhere. See [1] for further discussion of the significance of these
and related propositions, and [4] for a range of recent related work.
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