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TOWARDS A SATISFACTION RELATION BETWEEN CCS
SPECIFICATIONS AND THEIR,  REFINEMENTS

Elizabeth Jean Baillie

Abstract

The thesis is concerned with the application and applicability of CCS and, in particular, the
problem of establishing a satisfaction relation between specifications and their refinements
in CCS. The problems encountered arise from the instability which in general results when
agents are composed and certain actions restricted. Bisimulation proves to be elusive in the
presence of leading 7’s in an expansion. Testing equivalence, the conjunction of may and
must equivalences, is investigated. may testing is unaffected by either divergence or internal
nondeterminism; must testing is affected by both. This is similarly hard to establish.

In the absence of equivalence we investigate testing preorders between specifications. We
use the example of a level crossing to test and illustrate the ideas developed. We specify
the required behaviour of the crossing when viewed as a single entity. The specification is
refined by decomposition into its lower level components, which are then composed. We use
the expansion law of CCS in conjunction with the Concurrency Workbench to analyse the
behaviour of the composed system. ‘ :

What we find is that may equivalence between a specifications and its refinements can be
achieved quite easily, though in general the model is intrinsically too weak to prove all required
properties of a system. Successive refinements of the specification are related by the must
preorder but in a counter-intuitive way, often entailing loss of liveness. In general, there is no
bisimulation between refinements.

In view of this we propose a conservative extension to CCS, called Concurrent CCS, which
sets out to remove what seems to be arbitrary nondeterminism in composed systems. It
provides a new action prefixing operator which ‘ties together’ its operands, and a concurrent
composition operator. The result is greater stability in the behaviours of composed systems,
though at a price. We prove a Concurrent Expansion Law for the extended calculus and
suggest some possible notions of equivalence.
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Chapter 1

Introduction

The need for a formal engineering discipline in the specification and design of software
is becoming increasingly recognized. As automated systems grow and proliferate, the
consequences of error and failure increase in cost, and not only in terms of time and
money. The object of applying formal methods at the early stages of software devel-
opment is to introduce such an engineering discipline through the use of mathematical
and logical tools. These provide a precise notation for the expression of system re-
quirements and their refinement and a deductive mechanism for reasoning about these

formalized specification and design statements.

Typically, system requirements are expressed in natural language by the customer and
then processed to produce a specification, also heavily dependent on natural language.
Experience has shown that it is at these early stages of the development that errors
are most likely to occur and at the later stages when they are most likely to manifest

themselves; to quote Ince [Inc88]:

.. .those notations which are most heavily dependent on natural language
are those which occur at the beginning of the software life-cycle where

undetected errors can lead to massive overruns or even total cancellation.

This leads to the view that investment is needed in the early stages of development to

ensure that the customer’s requirements are fully understood and precisely specified.




1.1 Safety-Critical Systems

It is in the area of safety-critical systems that the importance of correct and verifiable
software is most clearly recognized; we are only too well aware of the consequences of
software failure in civil aircraft, nuclear reactors and so on. The MOD draft document
Def Stan 00-55 [UK 91] sets out proposals for the use of formal methods in the devel-
opment of safety critical systems, which it defines as those whose failure may result
in loss of life. The standard is primarily concerned with the procurement of defence
software, but the concerns it expresses and the problems it is seeking to address have
relevance for a much wider field. Safety-critical systems are often concurrent, commu-
nicating, real-time systems of daunting complexity and there are no easy solutions to
the problems they present. Nevertheless, these problems must be addressed in soft-
ware engineering as in other, more traditional, branches of engineering. The fact that
the perception of software differs from that of, say, civil engineering projects should
not reduce the manufacturer’s degree of responsibility for producing a fully engineered
quality product. Funds are being made available for research into the development
of formal methods for safety-critical systems with a view to providing some practical

results.

1.2 Specification

There are a number of formal specification and design methods available. Some
are targeted at specific problem areas, others are intended as more general-purpose
tools. The languages fall into three broad (though not necessarily mutually exclusive)

categories:

e algebraic, e.g. OBJ, CLEAR, used particularly for specifying abstract data

types:

e model-based, typed set-theoretic, e.g. Z, VDM, the most widely used general-

purpose languages:

e process-based, e.g. CCS, CSP, designed to specify concurrent, communicating

systems.




Other languages such as LOTOS and RAISE aim to combine aspects of two or more
of the above, but it is usually found that the heightened expressive power of such
languages results in a lowering of analytical power. There are strong arguments on

both sides of this seemingly inevitable trade-off.

1.2.1 Concurrency

There are a number of well-established techniques in the literature for specifying
concurrent systems. For example, in Hoare’s CSP [Hoa85] a specification is a predicate
over traces; in CCS [Mil80, Mil89] a specification is usually a term, or family of
terms, in the algebra, though it may be expressed as a collection of modal formulae
[HM85]; Lamport [Lam83] suggests that concurrent systems can be specified in terms
of their safety and liveness requirements. Temporal and modal logics can also be
used to describe required behaviours. These methods are by no means mutually
exclusive; one may be implicit in another. For example, unsafe time orderings of
events can be implicitly excluded in a CCS specification; illegal or unsafe traces can
be prohibited in CSP; and the modal operator () together with the derived [] provide
an expressive language for stating both safety and liveness requirements. What we
need to remember when using any of these techniques, whether for concurrent or
sequential systems, is that we are building models of an intuitive idea about the
behaviour of a real system; that is, we are at least two steps removed from the real
world. When we prove something about a model we are not necessarily any nearer
guaranteeing that the physical running system will always behave in the same manner.
This is not an argument against building mathematical models; but we need to be

aware of the limitations of formal techniques as well as their benefits.

1.3 Refinement

Ideally, the engineering discipline should be a feature of the whole development pro-
cess, from the first question what? to the last question how?. Having specified a
system formally, we need to be able to proceed towards implementation through de-

sign steps which preserve correctness in some sense; we should like to be able to




establish a satisfaction relation between discrete steps of the development. Carroll
Morgan’s Refinement Calculus [Mor90] and the rules and proof techniques for refin-
ing (or reifying) data in VDM [Jon86] are examples of techniques which have been

developed to address this particular question.

Refining the behaviour of concurrent processes is particularly complex. In addition
to the problems that arise in sequential systems (which include the possibility of non-
termination) we also have to consider such issues as inter-process communication and
the consequent potential for internal nondeterminism and divergence. We need to
think very hard about what we mean when we say that a concurrent system ‘satisfies’
its specification. It is not appropriate to think of concurrent systems as simple map-
pings from input to output states, as we might think of sequential systems. We need
to ask such questions as: how much internal nondeterminism we are prepared to tol-
erate: how far we should be concerned about the possible divergent behaviour of one
or more components of the system; whether we are interested in the inner workings
of the system or just wish to view it as a black box and consider only its externally
visible behaviour: whether timing considerations are critical: whether there are safety
and liveness issues that need be to guaranteed: and all these questions on top of the

problems of data correctness.

In addition, there is the problem referred to by Medawar as emergence; in his series

of lectures entitled ‘Induction and Intuition in Scientific Thought’ [Med69] he says

Each tier of the ...hierarchy makes use of notions peculiar to itself....In
each plane or tier of the hierarchy new notions or ideas seem to emerge
that are inexplicable in the language or with the conceptual resources of

the tier below.

Medawar is here discussing the relationship of sociology to biology in the hierarchical
structure of Nature, but something similar is true in the development of software.
Programs run on finite machines whose limitations are very much the business of the
programmer but which may hardly impinge on the customer’s consciousness. How
far such issues are allowed to intrude into higher levels of specification, or, indeed,

whether they are in fact ‘inexplicable in the tier below’ (for ‘below’ read ‘above’!) is




not at all clear. Notwithstanding, they need to be taken into account in the process

of establishing the correctness of an implemented specification.

1.4 Overview of the thesis

To quote Milner [Mil89]:

People will use it [CCS] only if it enlightens their design and analysis of
systems; therefore the experiment is to determine the extent to which it
is useful, the extent to which the design process and analytic methods are
indeed improved by the theory. . .the degree of this usefulness is hard. . .to

predict from the mathematical nature of the theory.

The concern of the thesis is with the application and usefulness of CCS to the software
development process: in particular, with the problem of establishing a satisfaction re-
lation between specifications and their refinements in CCS, an important aspect of the
usefulness of the theory. It should be said that by ‘refinement’ here, we mean some-
thing very specific, namely, the decomposition of the specification into the physical
objects which go to make up the system. The process of identifying and specifying
these objects is referred to throughout as ‘agent decomposition’, the term ‘refine-
ment’ having acquired a connotation which might mislead in this case (though we feel

it properly describes the process).

We are considering the use of CCS in the early stages of the life-cycle, i.e., at a high
level of abstraction. We use the words ‘specification’ and ‘design’ interchangeably;
arguably, every level of abstraction is a specification of the level below and a design of
the level above—and every design must meet its specification. The problems encoun—A
tered in finding a satisfaction relation between the two in CCS arise from the internal
nondeterminism—in the form of the special action 7—which in general arises when
agents are composed under the Expansion Law and certain actions restricted. Bisim-
ulation, the CCS standard notion of equivalence, proves to be elusive in the presence
of leading 7’s in an expansion. Testing equivalence, due to de Nicola and Hennessy

[dNH84], is the conjunction of two distinct equivalences referred to as may and must
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equivalence. These depend upon the outcome of tests or experiments to which the
process may be subjected; testing equivalence is similarly hard to establish—or, at
least, the must part of the equivalence. may equivalence, which coincides with the
trace model of CSP [Hoa85], can usually be proved, but for most practical purposes
this on its own is too weak to prove all the required properties of a system. Test-
ing is not a standard notion of CCS but is usefully implemented in the Concurrency
Workbench, the software tool used throughout to construct equivalences and other

relations.

In the absence of equivalence, then, we need to ask what relationship between spec-
ifications we are prepared to regard as demonstrating satisfaction. There are three
main candidates, all preorders: prebisimulation, which orders processes on the basis
of their potential for divergent behaviour (convergent processes which are related by
prebisimulation are, in fact, bisimilar): and the two testing preorders, referred to
as may and must testing. Prebisimulation does not address the problem of internal
nondeterminism. As has already been stated, the may preorder depends only upon
the language, or traces, of a process; it is unaffected by either divergence or internal

nondeterminism. The must preorder, on the other hand, is affected by both of these.

We have used the example of a level crossing to test and illustrate the ideas developed;
it was chosen as being a safety critical system which is small enough to be modelled
without too much complexity but which nevertheless displays all the features we wish
to examine; and the importance of safety and liveness in such a system are clear. We
first of all specify at a very high level of abstraction the required behaviour of the
crossing when viewed as a single entity. We then identify the lower level components
of the system and specify these also. We use the expansion law of CCS in conjunction
with the concurrency workbench to analyse the behaviour of the composed system. We
can continue this process through as many stages as we wish, decomposing the higher

level components into more concrete objects, composing them within the calculus

‘and comparing the behaviour of each stage with its predecessor for equivalence or

preordering.




1.4.1 Preordering

What we find is that may equivalence between successive decompositions can be
achieved quite easily. We may regard this as establishing safety; the system at every
stage of decomposition is capable of the same sequences of actions as the level above
and, ultimately, as the top level specification. So if unsafe traces are prohibited in a
specification and may equivalence with the design has been shown to hold, we can be
sure they are also prohibited in the design. In general, however, neither bisimulation
nor must equivalence can be established; both are precluded by the presence of leading
7’s in the behaviour expressions of the composed systems. What we can demonstrate
without too much difficulty is the must preorder, rather than equivalence, but this

often means that we lose properties of liveness enjoyed by the specification.

The testing preorders relate successive decompositions in what seems to be a counter-
intuitive way; what we might expect as we add detail to the design is that it should
become more and more deterministic. This is the case in Morgan’s Refinement Calcu-
lus; the chain of specifications, or ‘programs’ as they are all called, has the specification
at the bottom! and the final implementation at the top. What we find in CCS, how-
ever, is that our chain has the specification at the top and the implementation at
the bottom. This is due to the internal nondeterminism which increases with decom-
position despite the fact that we are being more and more concrete in our designs.
This is inevitable in this model since nondeterminism is the basis of the ordering and
it is hard to avoid introducing it in the process of decomposition in CCS; but it is

unsatisfactory.

1.4.2 Concurrent CCS

In view of this, then, we propose a conservative extension to CCS, called Concurrent
CCS [Smi91], which sets out to remove what seem to be the arbitrary and misleading
cases of nondeterminism. All 7’s look alike, whether they arise from arbitrary system
choice or from responsible signalling mechanisms which we might regard as anything

but nondeterministic. It is the problems arising from this form of nondeterminism

1This refers to ‘starting point’ of the chain under consideration—not to be confused with L




which Concurrent CCS seeks to address. It provides a new action prefixing operator
which allows its operands to run in true concurrency; the result is greater stability
in the behaviours of composed systems, though at a price. We prove a Concurrent
Expansion Law for the extended calculus and suggest some possible notions of equiv-

alence.

1.5 Summary

Chapter 2 outlines the theoretical background to the calculus. It begins with an
informal look at process modelling, and in particular, how nondeterminism is modelled
in CCS and the algebra of Hennessy, which we refer to as ATP. We then go on to
look at the three principal ways in which the signatures for process algebras can
be given formal semantics: operational, denotational and axiomatic. In chapter 3
we examine a fairly lengthy case study which identifies some of the problems we
may expect to encounter when attempting to prove CCS designs equivalent to their
specifications. It becomes clear from this case study that we need to look again at our
notion of equivalence and ask ourselves exactly what we are trying to model. Chapter
4 examines some of these ideas, in particular, bisimulation and testing equivalence.
In chapter 5 we take a second, much simpler, case study and .use it as a testbed for
the ideas considered in chapter 4. We develop a satisfaction relation between CCS
specifications and their decomposition refinements which we believe is, in general, the
best that can be established, though it is not satisfactory. In chapter 6 we introduce
Concurrent CCS with a few examples of its application. We propose and later prove
the Concurrent Expansion Law. We then reconsider the case study of chapter 5 in
the light of the extended calculus and re-specify it making use of the new operators.
We consider some candidates for an equivalence over CCCS agents. In chapter 7 we

draw conclusions and suggest areas for further work.

10




Chapter 2

Theoretical Background

The seminal works of Milner ([Mil80, Mil89]) and Hoare ([Hoa85]) laid the founda-
tions for what have come to be known as process algebras. Although it is sometimes
convenient to classify formal specification languages into either algebraic, model-based
or process-based, in fact, process algebras fall into all three categories. They provide
initial semantics (that is, equality is subject to proof) for a signature whose operators
are, typically, action-prefixing, choice, restriction, relabelling and composition. Pro-
cesses (or agents), which may be finite or recursive, are modelled as nondeterministic
choices between sequences of atomic actions. Choice may be internal (made by the
system) or external (made by the environment), different algebras taking differing
views of internal nondeterminism. Interleaving semantics for concurrency are pro-
vided in general; true concurrency is not modelled, though work is being done in this

area [CH89a).

We begin by taking an informal look at how we can capture the behaviours of processes
in an algebraic notation. We see how different models of internal nondeterminism
describe quite different behaviours. In section 1, we introduce two theories in which
these behaviours are formalized, those of Milner [Mil80, Mil89] and Hennessy [Hen88].
In section 2 we look at three different semantics for the languages of processes, namely,
operational, denotational and axiomatic. In the last section we discuss briefly some

of the notions of refinement in the literature.

11




2.1 Process Modelling

We need to begin by asking ourselves what we are trying to model. It is not appropri-
ate to regard concurrent systems as mappings from input to output states; instead,
we model the behaviours of systems in a way that takes account of issues such as
action sequencing, the choices the system may present to the user, the ‘choices’ made
by the system itself, concurrency and interprocess communication, and recursion. We
discuss CCS and Hennessy’s algebra (which we shall refer to as ATP, for Algebraic
Theory of Processes, [Hen88]). We will motivate our consideration of these issues with
some toy examples. A glossary of symbols is given in Appendix A. By convention,
CCS agent identifiers use upper case letters and ATP, lower case. ATP also omits ‘.’,

the prefix operator.

2.1.1 Internal and External Nondeterminism

We begin with the example of an airport runway; modelled from the point of view of
the controller, we can say that a runway permits planes either to take off or to land,

and the controller may choose. We can express this choice as
Runwayl s takeoff .0 + land.0

This is a very expensive runway which may only be used once; the 0 after each action
indicates the inability of the runway to engage in further action. The + indicates
that a choice may be made by an observer who is outside the system (in this case, the
controller). We can specify a more realistic and much cheaper runway which may be

used indefinitely for the same purpose:

Runway?2 4ef takeoff . Runway2 + land.Runway?2

We shall consider recursion in more detail later; for the moment we concentrate on
the modelling of choice and action sequencing. We can see from this specification
that the runway is safe in that taking off and landing cannot both occur together.
However, if we take a wider view of the landing area we can see that planes need to

taxi to and from the landing strip itself and we might want to incorporate this part

12




of the process in the specification. So we have
Runway3 s tazi.takeoff . Runway3 + land.tazi. Runway3

What we now have is as follows: if a plane on the ground starts to taxi towards the
runway, it must be allowed to take off before anything can be allowed to land: if,
on the other hand, a plane has landed then it must be allowed to taxi (back to the
terminal building) before a plane on the ground can begin to move. The choice of
the first action in a sequence locks the system into that sequence, which must then
be completed before the system can return to its original (or any other) state. Both

CCS and ATP model sequencing and external choice in this way.

We now consider the same runway as seen by an observer standing in the spectators’
gallery. He has no control over the system but will be happy just to wait and see

what happens. In ATP this choice is expressed
Runway4 & taxi.takeoff . Runwayd @ land.tazi. Runway4

where @ represents internal nondeterminism. Both sequences are visible to the ob-
server but he cannot make the choice; it is made in a manner which is opaque to him.

In CCS this is represented
Runwayd s T.tazi.takeoff . Runwayb + r.land.taxi.Run'wayS

CCS provides only one choice operator. The nature of the choice is determined by the
structure of its operands. The action 7 is not visible but nevertheless locks the system
into the particular sequence which it leads. Runway5b is unstable, i.e., its expression
contains leading 7 actions; its behaviour cannot be predicted. These different models
of nondeterminism have profound consequences for their respective algebras; they
give rise to different notions of equivalence arising from different intuitions about the

behaviours of larger systems, as we shall see.

We now consider a soft drinks vending machine which serves orange, lemon or cola.
The cans of orange have been loaded correctly but the assistant was distracted while

stacking the lemon and it got mixed up with the cola. In ATP we can write this as

vM1Y 50p.(orange. VM1 + (lemon.VM1 & cola.VM1))

13




V M1 takes the customer’s 50p then presents him with the choice of orange (which he
may always choose and be sure of getting) or else one of lemon or cola, ‘chosen’ by
the machine; the scope of @ is its immediate operands. In CCS we cannot model this

situation directly; if we were to write
vM2 Y 50p.(orange. VM2 + (T.lemon. VM2 + 7.cola.VM2))

the effect of the leading 7’s is to propagate the nondeterminism through the whole
expression. The instability of lemon and cola affects the choice of orange as well;
there is no way of predicting what we will get. We can model VM1 in CCS as

follows:
197504 50p.(.(orange.VM1' + lemon.VM1') 4+ 1.(orange.VM1' + cola.VM1"))

We exploit the fact that we cannot restrict the scope of 7; orange is an option in each

-summand of VM1'. But this is not a natural way to specify such a system; it does

not model our intuition about the machine’s behaviour (although its semantics are

the same as V.M1’s).

2.1.2 Concurrency and Communication

We return to the example of the runway and model the behaviour of the air-traffic
controller. He may send the ok signal either to the plane waiting to take off or to the

one waiting to land, and he can choose which to send.
Controller ¥ ok;.Controller + ok;.Controller

The overline, by convention, indicates an output signal. For Runway6 to communicate
with C'ontroller and admit one of these signals, it must contain complementary actions

appropriately placed:
Runway6 f ok, .taxi.takeoff . Runwayb + ok;.land.tazi. Runwayb

CCS provides a composition operator denoted by | which allows its operands to run
concurrently, by which we mean that the actions of the operands may interleave
arbitrarily, subject to the structure of each agent. The behaviour of composed agents

is governed by the Expansion Law of CCS whose use is demonstrated in later chapters;
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it enables concurrently composed agents to be expressed as a choice between sequences
of actions. (ATP has a corresponding equational law for the expansion of its composed
processes). We can restrict certain actions, that is, prevent them communicating
visibly; in this case, they may only communicate internally with their respective
complements, resulting in the special action 7. When 7 leads a sequence of actions in
an expression the resulting agent is unstable. In the above example it is natural to
restrict by the set {ok;, ok;}; we do not wish to send these signals to the environment.

So we have

Airport Runway6|Controller\{ok;, ok;}
= T.taxi.takeoff .Airport + t.land.taxi. Airport

We note in passing that this is the behaviour of Runway3, the spectators’ model.

2.1.3 Recursive Processes

We return to Runway?2 above which is defined recursively:
Runway?2 &f takeoff . Runway2 + land. Runway?2

The observer tracing the behaviour of the runway and taking notes might have

recorded something like
takeoff .land.land.takeoff .takeoff .takeoff . . .

The intuition that Runway?2 seeks to capture is that planes may either take off or land,
ad infinitum. We look at the formal interpretation of recursively defined processes in

2.2.3.

2.2 Formal Semantics

2.2.1 Signatures

The language constructs of CCS consist of a set Act of actions (including comple-
mentary actions and the distinguished action 7), and operations, or combinators, as

follows: action prefixing (denoted by . which is commonly omitted)), choice (+),

15




composition (|), restriction (\) and relabelling([f], where f is a relabelling function).
The constant agent NIL, or 0, is defined to be the agent which can engage in no
action at all. ATP’s signature is similar except that there is no action to correspond
to 7; internal nondeterminism is modelled by the binary operation @. Also, actions
are modelled by unary functions. The last point does not result in a difference in
semantics, though the operation @ does, as we have already noted. ATP’s signa-
ture also contains a distinguished symbol !, a function of arity 0, representing the
undefined process. We return to this in later sections. From the signatures we can
generate terms in each algebra by applying the appropriate grammar rules to give the
term algebra [Bai90]. Strictly speaking, these terms are purely syntactic and simply
give us a language for processes. The semantics are initial; agents are assumed to be
distinct unless and until they can be shown to be equivalent (by some definition of

equivalence).

2.2.2 Operational Semantics

The semantics of CCS is given as a labelled transition system (see Appendix A). So,
for instance, the agent a.NIL may engage in the action a and then evolve to NIL;
more formally, a.NIL = NIL, or in general, a.P > P for any process P. The
same transition relation is applied to the composition of agenfs such as P 5 P’ and
Q A Q'; we then have P|Q 5 P'|Q', meaning that the composition of P and Q
evolves unobserved into the state P’|Q)’. Hennessy defines a separate notation for

such silent transitions; so in ATP, pl¢ > p'|¢/, and p® q¢ > p, p® ¢ > q.

We can regard the CCS agent whose expression is 7.a+7.b as analogous to ATP’s a®b;
but for the CCS agent P = + 7.b, the ATP equivalent is less obvious. Informally,
this process will always allow action b but may sometimes pre-empt a; we can express
this in ATP as p ©yy (a ®b). The operator @ does not affect the first occurrence
of b in the expression; but if we want action a, we must take our chances with the
system, which may ‘decide’ to refuse and only allow b. Such ‘translations’ between

CCS and ATP are often, though not always possible.

1Q can be defined in within the constructs of each algebra. Hennessy defines € to be the process
given by recz.z; Milner describes an agent which he calls Infinite Chatter, defined as IC 10
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Labelled transition semantics are the standard model for CCS and give rise to a
behavioural equivalence over agents, namely, bisimulation. This is discussed more
fully in chapter 4; it is an elegant theory which has been automated in the Concur-
rency Workbench (also discussed in chapter 4). Hennessy defines two operational
equivalences—the kernels of two preorders—based on the tests that a process may
or must pass. The tests have a similar syntax to the processes being tested, except
for two differences; first of all, so that the tester or experimenter may have a greater
degree of control over the tests than the process being tested, he defines a special
action 1, representing a ‘transition’ made by the experimenter without the process’s
cooperation; and secondly, since we need to distinguish between successful and unsuc-
cessful tests, he defines an action w by which the experimenter reports success. The

interaction of a process p and an experimenter e is given by the transition relation
ese,pop =ellp— ey

The test aw, for example, establishes whether a process will admit action a; if so,
the experimenter is happy and will report success. If a process p will always pass the
test then we say that p must aw; if ¢ sometimes passes the test but might sometimes
not pass, then ¢ may aw. Examples in CCS are P tef a.NIL, which must aw;
and @) ©4.NIL + 7.b.NIL, which may aw but not must aw, since ¢ may silently
evolve to b.NIL which then cannot proceed with the test. (Although testing is due
to Hennessy and de Nicola [dNH84, Hen88] and is an integral part of ATP, we can
nevertheless test CCS agents in a similar way.) The test 1w is passed by all the
processes we have so far considered; the only process which fails this test under must
is Q, the divergent process whose behaviour is completely undefined; Q may pass
1w, but it is possible for Q to evolve internally for ever, resulting in the infinite and

unsuccessful computation
aw||Q — aw||Q — aw||Q — .

So the test 1w is needed in order to distinguish between 2 and any other process
under must testing, since @ must lw. Contrast this with NIL, the process which
does nothing, but whose behaviour is completely defined; we know precisely what to

expect of it. We will consider the significance of Q in more depth in 2.2.3.
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Hennessy concludes that all such experiments can be reduced to one of two forms:
lw+b(lw+...+b(lw+a)...)

or

lw+b(lw+by(lw+ ...+ bp(aw+ ...+ apw)...)

though it is not clear that an experiment of one of these forms will make the required
distinction (from the denotational and equational models) between the processes NIL
and a (taking the usual liberty of omitting NIL in a.NIL). From the other charac-
terizations of must testing, we should expect to find at least one test passed by NIL
but not a and one by a but not NIL, since they are not must related at all. The test
1w + @ must be passed by NIL but not by a since the computation

lw+al|la — NIL||NIL

does not report success; but in the second case, where we need a test to be passed
by a but not NIL, a test of the form a,a,...a,w (in this case, simply aw), with no
occurrence of 1w, is needed in order to make the distinction. Any test containing 1w

is always passed by NIL.

These tests are used to impose an ordering over ATP—and in the Concurrency Work-
bench, CCS—processes. p K,,,,¢ if every test that p may pass, ¢ may pass also; and
P Kusiq if every test that p must pass, ¢ must pass also. The testing preorder &
between processes is merely the conjunction of these two. All three are preorders,
that is, they are reflexive and transitive relations. Establishing preorders and the
assocjated equivalences in the operational model is not easy, though it is the motiva-
tion for more theoretical models. Operational semantics in ATP capture our intuition
about the behaviour of processes; the denotational and axiomatic models give more

tractable proof systems.
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2.2.3 Denotational Semantics

CCS semantics are expressed as a labelled transition system, with an axiomatization
(for finite-state agents only) which is complete with respect to it. There is no clear
denotational model comparable to ATP’s, though Milner does represent agents as trees
in a similar way?. In this section, though, we shall be concentrating on Hennessy’s

denotation.

Processes as strings

From the signature of ATP, we can interpret the terms in an algebra PS of strings,
or traces. We define a mapping from NIL to the set {e} (in effect, the empty string),
and from any process p to the union of this set with a prefix-closed subset S of Act*
(the set of strings of elements from Act), representing the sequences of actions p may
perform. By prefiz-closed we mean that if s € S, then any prefix of s is also in 5. So,
for example, the process

pdéf ab4 ac+ b+ be

is interpreted as the set {¢, a,b,ab, ac,bc}; this set is also the interpretation of
def
g = a(b+c¢)+bc+ NIL

We can think of the set as the language of p (and ¢) and refer to it as L(p). The choice
of this model reflects the fact that we are interested only in the sequences of actions
a process may perform. We require the mapping from the term algebra to PS to be
a homomorphism, that is, it should preserve structure. In this model, the operation
+ in the signature is realized by set union in PS. So then, because the mapping is a
homomorphism, the interpretation of the sum of two terms can be regarded as either
(i) the union in PS of the interpretations of each term taken separately or (ii) the
interpretation in PS of the sum of the terms in the syntax. This can be seen more
clearly from the commutative diagram below, showing the interpretation of p + ¢,

where p “ ab + ac and q L + be.

2This is not to say that a denotational model of CCS cannot be constructed.
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h
{e,a,ab,ac} = [¢,a,b,ab,ac,bc)
{g,a,b,bc} A
A

h(ab + ac) h(ab + ac + a + bc)
h(a + bc)

ab + ac + ab+ac+a+bc

a+bc >

Figure 2.1: The interpretation of p+ ¢

Equivalence in this model is then set equality, and the preorder (whose kernel the
equivalence is) is defined by set inclusion (see chapter 4). Hennessy shows that this

interpretation is equivalent to may testing in the operational model.

Processes as trees

We can interpret the terms of the signature as acceptance trees, AT. NIL is inter-
preted as the tree consisting of just one node and no branches. It is a closed node,
indicating that its future behaviour is completely defined. The process {2 is also rep-
resented by a single node, but this is open, indicating that nothing is known about

its behaviour.

@ O

Figure 2.2: The trees representing NIL and Q

In general, processes are represented as trees whose branches are labelled by actions
from Act and whose nodes have associated with them an acceptance set; the elements
in this set (which are themselves sets) indicate the internal states into which the
process may evolve, and the potential behaviour of the process in each state. A

simple example of a finite agent is given below. The acceptance set at each node
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contains only one element, indicating that the tree is fully deterministic; all choices
are made by the environment. We have shown the acceptance sets at every node here,

but in general, deterministic nodes are not annotated.

{{ab}}

{n {{}} ()

Figure 2.3: The tree a(b + ¢) + be

In this model we are interested in processes’ potential both for internal nondetermin-
ism and for divergence; the acceptance sets reflect this. For example, the process
P “ b+ acis implicitly nondeterministic; one way to capture this in set notation is

shown below:

{{b},{c}}

Figure 2.4: The tree p ©ab + ac

Its tree is the same shape as that for ¢ = a(b+ c), since only one branch from a node

may contain any given label; the nondeterminism is captured through the acceptance
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sets. The singleton sets {b} and {c} indicate that the process p may evolve into
one of two states: in one state, only action b is possible and in other, only ¢. The
environment does not make the choice between b and ¢; if it did, the acceptance set

at that node would be {{b,c}}, as is the case for .

This is not quite the model used by Hennessy. In ATP, trees are compared and ordered
on the basis of their acceptance sets at corresponding nodes. So that processes which
are equated in this model can have the same representation, acceptance sets are
saturated or closed. For a given acceptance set B, this involves adding sets to B,
giving ¢(B), so that ¢(B) is both union closed and convez closed, as follows:

(i) X,Y in B implies X UY € ¢(B) - union closure;

(i) X,Y € B,X C Z CY implies Z € ¢(B) - convex closure.

In the example above, the closure of B, where B el {{b},{c}}, is given by

e(B) = {{b}, {c}, {b,c}}
This is also the acceptance set at a for the tree representing p’ © ab+ac+ a(b+c); so

we have p = p/. Finite processes are ordered in this model on the basis of acceptance

set inclusion for corresponding nodes. (Note that nodes correspond to the strings of

PS.)

We recall from PS5 that the choice operator + was modelled as simple set union. In
this model, however, things are a little less simple. Choice between trees t; and t, is
modelled as the joining of trees at the roots, giving ¢3 def t; + to, with ¢3 determined
by three rules: the language L(ts) of ¢3 is given by L(t,) U L(%;): the acceptance set
at the root of ¢5 is the pointwise union of the acceptance sets at the roots of ¢; and t,;
and the acceptance sets at the other nodes of t3 are given by the closure of the union

of the individual acceptance sets.

Infinite processes

We consider the example of a Clock whose behaviour we define by
Clock ¥ tick.Clock or fix(X = tick.X)

in CCS or alternatively

Clock def recz.lickz
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The operational semantics for recursive terms in ATP is given by

rec ¢.t > t[recx.t/x)

that is, the behaviour of a recursive expression can be understood in terms of its
successive ‘unwindings’. This implies a succession of approximate meanings for the
expression as the recursion is unwound, with each approximation telling us a little
more about the behaviour of the whole. The approximations form a chain (see be-
low), each of whose members is a term in the algebra and is ‘better defined than’ its
predecessor. The limit of the chain is usually an infinite object which is taken as the

meaning, or denotation, of the recursive expression.

Semantic domains for recursive processes need to have extra structure defined over
them to reflect this. Before a recursive expression has been unwound once, we know
nothing about its behaviour; we need a special element in the domain to denote this,
the ‘0th’ unwinding. We need to define the relation between successive approximations
as the expression is unwound; and we need to accomodate the infinite object which
is the limit of the chain and gives the denotation of the recursive term®. We take the

example of the Clock above and look at the first few unwindings:

0th unwinding $)

1st unwinding tick.Q

2nd unwinding tick.tick.Q

3rd unwinding tick.tick.tick.Q

We see that the 0th unwinding is €2, since we know nothing about the behaviour
of Clock so far. The first unwinding tells us that the Clock ticks once, but then
its behaviour is unknown—a little more, though, than we knew before; and so on
with each unwinding. We can order these approximations to the behaviour of the
Clock with a partial order, that is, a reflexive, transitive and antisymmetric relation,

indicating our increasing understanding of the meaning of the Clock:
Q < tick.Q < tick.tick.Q < tick.tick.tick.Q. ..

The sequence is called a chain. The partial order is the testing preorder defined over

the algebra when quotiented by its kernel. Anti-symmetry follows from the fact that

3The denotation of a recursively defined term is not necessarily infinite; the denotation of recz.0
is the NIL process and that of recz.z is
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we are then applying the preorder over equivalence classes. The elements in the chain
are finite approximations to the infinite process; the meaning, or denotation, of the
process is the (usually) infinite object which is the limit of the chain. Any function
applied to the elements in the sequence is required to preserve the ordering, that is,
it should be monotonic. (Interpreted, monotonicity means that we cannot get more
information out of a computation than we put in.) Hennessy constructs the ideal
completion of his algebra, which amounts to extending the algebra so as to contain

all the required infinite objects. The technique depends upon the idea of directed

~sets. In a directed set, any pair of elements has an upper bound in the set, that is,

an element which is ‘above’ both of them with respect to the partial order. (Every
chain is a directed set, but not vice versa.) The technique of ideal completion involves
adding to the algebra the least upper bound ({ub) of each directed set, which is then
the denotation of the expression of which the elements in the set are approximations®.
In the case of recursive expressions, these lubs will typically be infinite objects. In
this case we need to extend the notion of monotonicity to continuity, that is we
require that any function defined over terms that are ordered in this way should also
preserve the lub. This constraint subsumes monotonicity; it can be interpreted to
mean that a finite amount of information put in to a computation can only result in
a finite amount of information out (otherwise we should be able to solve the halting
problem). To summarize, a semantic domain A for recursive processes must have the
following structure:

(i) A is endowed with a partial order <:

(ii) A contains a least element § satisfying Q < a for all a € A:

(iii) every directed subset of A has a lub:

(iii) functions (from the signature, ¥), defined over A are continuous.

The structure is called a ¥ domain.

We can represent the Clock as a sequence of acceptance trees, where the states which
we ‘understand’ are represented by closed nodes and those we do not understand, i.e.,

whose future behaviour is not known, are represented by open nodes:

*The approximations to a recursive process will always form a chain. Directed sets are needed
because the technique of ideal completion depends upon the fact that the union of directed sets is
also a directed set; the union of chains is not in general a chain. The technique gives us a mildly
generalized version of what we need for interpreting recursive processes
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Figure 2.5: The trees for the Clock unwinding

The denotation of the Clock is an infinite, though finite branching, tree, all of whose

nodes are closed.

Strong acceptance trees, AT, have open nodes only as leaves; this amounts to saying
that if a process can diverge, we are no longer interested in its behaviour from that
point (as we can see from the definition below). This models must testing, which

is intolerant of divergence. Weak acceptance trees, AT,, which model may testing,

have every node open, reflecting an indifference to divergence. A compromise between
these two, AT, imposes the condition that every descendant of an open node is also

open. This models the conjunction of may and must testing, allowing us to recognize

an open node and disregard it for must testing, but to take account of it for may

testing,.




Ordering of infinite processes

The must ordering of infinite processes in AT P is a generalization of the finite case
which depends upon a process’s capacity for divergence. Hennessy introduces a nota-
tion for this; he writes

pT

if p has an infinite internal computation, and its complement

pl

if p has no infinite internal computation. He also defines the notation

pls

to mean that after the sequence s, p will always evolve to a convergent state (though
this does not necessarily imply that p can actually perform the sequence s). An

inclusion relation CC on acceptance sets is invoked, defined as follows:

Definition 2.1: A and B satisfy A CC B iff for every A € A, there exists B € B
such that B C A.

(This relation coincides with subset inclusion on the closed acceptance sets of the
trees model AT.) The may preorder is still based upon language inclusion, but the

must ordering is generalized as follows:

Definition 2.2: pK,,.,:q if p| s implies

(a) ¢l s and

(b) A(g,s) CC A(p, s)

We can see from Definition 2.2 that since Q71,  K,,.,:p for all processes p; and any
process with an initial divergent capability is must equated to £, whatever its may
properties. This is discussed further in 4.3.1. In the case of the Clock above, we can
see that each approximation as the recursion is unwound is related by K,,,,: to its

successor. It is also interesting to note that by this definition, the ordering
recz.(az ®0) K, .., a0

holds; despite the small capability of the finite process on the right, which can only
perform a and then dies, it is nevertheless above the infinite process on the left; this
may die at any time despite the possibility of its performing an infinite sequence of

a’s.
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2.2.4 Axiomatic Semantics

Milner gives an axiomatization of finite-state agents which is sound and complete
with respect to observation congruence. Finite-state agents are those constructed us-
ing only the dynamic combinators (prefix, summation and constants), and where only
finite summation and finitely many defining equations are permitted [Mil89, Mil86].
The axioms (see Appendix A) consist of some rules for recursion, the 7 laws, and the
monoid laws, namely, associativity, commutativity, idempotence and the identity of
NIL (or 0) under summation. These laws are useful, in conjunction with the expan-
sion law, for transforming CCS agents, though in general observation congruence is
established by bisimulation construction and a demonstration of stability. The monoid
laws, in particular, are strongly intuitive and tend to be assumed when transforming
agent behaviours generally. The expansion law provides a method of eliminating |,
the composition operator. It enables any composition of agents to be expressed as a
sum of agents prefixed by the actions which they may immediately perform. Its use
is illustrated in chapter 3. There is no finite axiomatization for CCS congruences in

general [Mol89].

ATP, on the other hand, has a sound and complete axiomatization for testing equiv-
alence. The monoid laws are as for CCS; however, the laws fqr internal and external
nondeterminism are illuminating and draw attention to the difference from CCS. ATP
has a distributive law for external choice over internal, and similarly for internal choice
over external:

e+ (y®2)=(e+y)d(z+2)

e@®(y+z)=(cdy)+(z&2)

We can illustrate the use of this by looking again at the example from 2.2.2, where we
considered the processes P = +7.band p Lyt (a @ b), which seemed to capture
the same behaviour. Using the first distributive law together with idempotence, we

can transform p as follows:

“b+(adb)
:(b-l—a)@b

We can see that our informal notion of the behaviour of p is still the same, even though
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the internal and external operators seem to have ‘changed places’ (this, of course, is
not generally the case; here it is because b+ b = b); p can always perform b but might

not always be able to perform a.

We can axiomatize an aspect of the trace model PS5 with the axiom schema
a(z+y)=ar+ay

generating an axiom for each a € Act. This distributive law for prefixing over external
choice holds when we are interested only in the sequences of actions a process may

perform. It may be deduced from the axioms

tdy<z+y (+01)

r<zdy w)
using the substitution rule. (The annotation is from Hennessy’s equations, page 157
of [Hen88].) The distributive law for prefixing over internal choice is axiomatic in

both the strong and weak models.

2.3 Refinement

Refinement in software development is the process of moving from the abstract (spec-
ification) towards the concrete (implementation), usually in discrete steps and with
some method of establishing that the result of each step of the development ‘satisfies’
its specification, namely, the result of the previous step. Each specification is in some
sense ‘more defined’ than its predecessor, usually meaning data refinement [Jon80].
Morgan’s Refinement Calculus [Mor90] provides numerous rules for the refinement of
a specification; when one of the rules is applied to a specification S1 to give a spec-
ification S2, then S1 C 52, or S2 refines S1. The result is a chain of specifications
with the most abstract at the bottom®of the chain and the implementation at the
top. There may be many such chains starting from the same specification, or in other
words, many correct implementations of a specification. The intuition of this applica-
tion of preorders seems to make good sense and is echoed in Cleaveland, Parrow and

Steffen’s report [CPS89] on the concurrency workbench. They write

5‘Bottom’ here refers to the starting point of the chain, i.e., the specification—not to be confused
with L
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We can interpret P C @ as “@) is closer to an implementation than P”.
This interpretation is based upon the idea of regarding divergence as a
means of marking underspecified states. For example, the totally divergent
state L can be seen as the totally unspecified state, allowing each process
as a correct implementation. “Loose” or “partial” specifications can be
used to establish that processes, although not being equivalent, may be

used interchangeably in certain contexts.

This point is well taken in cases where the difference between two processes is only
in divergent behaviour. However, as we see in the next chapter, when a specifica-
tion is written in CCS and ‘refined’ by successive decomposition of agents, then the
preorder relation holds in the other direction. Hennessy, in the introduction to his
book ‘Algebraic Theory of Processes’ [Hen88] says of the testing preorder (over finite

processes)

...p K¢ implies that ¢ is a more deterministic version of p. So £ could be

taken as a formalization of “is a correct implementation of”.

contrasting with the quotation above from [CPS89]. This is illustrated and discussed
further in the next chapter; it is worth noting, however, that for finite processes, S
implies =~ v This implication does not hold for recursive processes; =~ must be

ma may

established explicitly.

Another kind of refinement, called action refinement, is proposed by Aceto and Hen-
nessy [AH90, AH88]. Here, an action at one level of abstraction is refined to a process
at a lower level, while still preserving the synchronization structure of processes.
Lamport [Lam83, AL88] proposes refinement mappings between specifications, the
mapping being between the state spaces (both external and internal) of the specifi-
cations, from the steps of one state machine to the steps of the other. None of these
methods has been considered in depth, but the fact of their development suggests a
clear recognition of the need for a practical application of mathematical and logical

theories.
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Chapter 3

A CCS case study

In this chapter we épecify a safety-critical system, namely a level crossing, in CCS. We
aim to show that the specification, including safety requirements, may be captured
entirely within the language. In this way the analytical power of CCS can be used to
give a full and unified account of the system’s behaviour. The informal description
of the level crossing is taken from [Gor87]. In that paper the system requirements,
which are mainly safety-related, are specified in temporal logic; here we show that,
with a few reservations, the sequential and synchronization features of CCS enable us

to express the necessary causality within the language itself.

We begin with an informal description of the level crossing system as set out in
[Gor87]. In section 2 we give the main safety requirements, also taken from [Gor87]
and show how these may be translated into CCS. Section 3 consists of the CCS
specification, including a modified version in which the single system is divided into
two communicating subsystems, this being more manageable than the whole. In
section 4 we show that the two versions are congruent and having proved this, we
then examine the behaviour of the composed subsystems in section 5. Lastly, we
show that the system as specified satisfies the safety requirements, though there is no

bisimulation between the specification and the design.
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3.1 Informal description of the system

Fig.1 shows the layout of the crossing; the names and arrangement of the physical
objects are taken from [Gor87]. The two sensors on the approach side of the line
are located after the appropriate lights (in the direction of motion). The required
behaviour of the train driver is that he stops the train on a red A(pproach)Light
and proceeds when the light is green; in proceeding, the train necessarily crosses the
sensor T'A in the line. A signal is sent by T'A to Control which then changes the
I(n)Light to green as soon as the crossing has been cleared of cars. When the train
crosses the sensor T'I, a signal is sent to C'ontrol which then changes the I Light back
to red. Only after the train is clear of the crossing, that is, it has crossed T'O, is the
gate reopened and the RLight changed back to green. Cars making legitimate use of
the crossing are sensed by RSensor and are counted in and out. Required behaviour
of drivers is that they stop their vehicles when the light is red and do not proceed
until the light changes to green. This is not specified explicitly. Drivers attempting
to use the crossing after the light has changed to red are taking calculated risks and
should be aware that no account of this is taken in specifying the safety features of

the system.

Road vehicles l

D RLight
RSensor
TI TA
T L Gate - -

ATrain
G

Control

Figure 3.1: The crossing layout

31




3.2 Safety requirements

Global model

The top level safety requirement S1, or ‘global model’ [Gor87], is that there should
never be a train and a car inside the crossing at the same time. This main safety
requirement is achieved by the following lower level constraints on the application
domain. The temporal logic translations of S1 and the conditions below can be found

in [Gor87].

Application domain constraints

(1) For every train ¢, if ¢ is outside the crossing and the railway light is red, then ¢
remains outside unless it ‘sees’ the green light.

(2) After the road light has been switched to red, cars in the crossing will be allowed
to leave before the barrier is lowered.

(8) If the crossing is open for cars then the rail light must be red and there must be
no train in the crossing.

(4) If the crossing is open for trains then the road is blocked (gate down) before a
train enters the crossing. ‘

(5) If the gates are closed then the road lights must be red.

3.3 The CCS specification

The global model, 51, may be translated into CCS:

SafeCrossing & train, .traing:.SafeCrossing (S1,cs)
+
car;,.SafeCrossing.qs(1)
SafeCrossing.qrs(n) def car,.SafeCrossingears(n + 1)
+

CaT .. if n = 1 then SafeCrossing

else SafeCrossing.q.,s(n — 1)
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SafeCrossing is regarded as a shared resource; it may be used either by cars or by
trains but not by both together (since car and train signals cannot be interleaved).
It does not deadlock; there is no state in which both cars and trains are prevented
from using the crossing. Cars are counted in and out of the crossing and only when

it is clear of cars does the system allow trains to enter.

3.4 The CCS design structure

Sensors and track lights

The sensors, T A(pproach), TI(n) and TO(ut), are triggered by the train (t,, t;, t,)
and send signals to the control (a, ¢, 0) to indicate the train’s position (see Figure
3.1). The track lights are parameterized by colour; the ALight is initially green
and the I Light initially red. These change on receiving the signal from Control. A
function change is assumed with domain {red, green}, where change(red) = green

and change(green) = red.

TA ¥ ¢, @ TA

TI 4,3.T1
TO ¥ ¢,5.TO
ALight(z) % send,(z).change,. ALight(change(z))

ILight(y) = send;(y).change; ILight(change(y))
The train

Condition (1) of 3.2 is made explicit in the specification of the train. An approaching
train sees the ALight and stops if it is red. It ‘polls’ this light until the signal changes
to green, when it can proceed and cross T'A. Its behaviour is similar at the I Light.
When this is green and the train has crossed T'I it sends an observable signal train;,
to the environment. When the train leaves the crossing it sends an observable signal

train.,, just before crossing 7'0.
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ATrain & send,(red).ATrain + send,(green).I; ITrain!

ITrain & send;(red).ITrain + send;(green).t;.CTrain

CTrain %/ train;, .trainyg;.t,.ATrain

Road sensor

The Road sensor works in two ways. Firstly, it responds to the road light; when this
is red, the sensor simply waits for it to turn to green. On the green signal, waiting
cars are admitted to the crossing and are counted in and out by Cars. If there are no
cars waiting the sensor will just wait for the lights to change back to red, or for a car
to arrive, whichever is first. Each car is observed entering and leaving the crossing
through car;, and car,,; signals. Only when all cars have left, that is, when the
number of out signals is equal to the number in, does the sensor check the lights

again, so satisfying condition (2) in 3.2.

The lights might have changed to red in the meantime, modelling the situation in
which cars may choose to ignore red lights and hence prevent the train from using
the crossing. The sequential nature of Control makes it safe for them to do this. It
is important to note here, however, that while the sensor is reading the red light it
is not sensing cars on the crossing. Having checked once that the crossing is clear it
sends the acknowledgement sent to Control which then begins to close the gate. If
at this point a car enters the crossing it will not be sensed and an accident may be
caused; responsible behaviour of drivers is assumed (see caveat in 3.1). A car using
the crossing legitimately and breaking down before it has left will be sensed and will

therefore be safe.

Strictly, send, should be parameterized and followed by an ‘if then else’ statement
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RSensor &/ send,(red).sent.Stop

+
send,(green).Go

def

“ Stop = send,(green).sent.RSensor
| Go ¥ tar;,.Cars(1) + send,(red).sent.Stop
1 Cars(n) ! car;,.Cars(n + 1)

+

CaTou;. if n = 1 then RSensor

else Cars(n — 1)

Road lights and gate

RLight (which is initially green) is read by the road sensor. It continues to send

the ‘red’ signal until it is told by Control to change. The gate receives the signal

(a toggle) to change its state and having done so, sends the acknowledgement ‘done’

back to Control.
RLight(z) &/ send,(z).RLight(z)

_l_
change,.send,(change(z)).RLight(change(z))

Gate &/ movegate.done.Gate

Main control

All communications in conditions (3) to (5) in 3.2 take place through Control. These
are entirely sequential, so it can be seen by inspection in what order the operations
are performed, thus satisfying the conditions. Control, having sensed an approaching
train, first changes the ALight (furthest up the track) to red to prevent any more
trains entering the section. It then changes the road light to red and on receiving

an acknowledgement, closes the gate. Only when this has been acknowledged does it

change the I Light (on the track, closest to the crossing) to green to allow the train to
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proceed through the crossing. When it senses the train inside the crossing the I Light
is changed back to red. When the train has left the crossing (both track lights are still
red) the gate is opened, the road lights are changed to green and the traffic allowed
to proceed. Lastly, the ALight is changed back to green.

Control % a.change,.change,.sent.movegate.done.

change;.i.change;.o.

movegate.done.change,.sent.change,.Control

The composed system

The composed crossing system is given by

Crossing & ATrain|TA|TI|TO|ALight(green)|ILight(red)
|Control|RLight(green)|Gate|RSensor \ A
where
A= {a,i,o,t,t;,t,, change,, change;, change,,
send,, send;, send,., sent, movegate, done}
(see Figure 3.2) so that the only actions visible to the environment are train,,

train,yg, CaTin, CAT oz

We now wish to analyse the behaviour of the Crossing as a whole. We can do this by
applying the expansion law of CCS to the composed system; this provides a mecha-
nism whereby parallel processes may be unwound into purely nondeterministic ones.
Informally, it expresses the actions of a parallel (that is, interleaved) composition of
processes in terms of the the actions of the individual processes themselves. Chapter 3
of [Mil89] gives a clear and readable account of this law. However, attempts to apply
the theorem show that possible states for the whole system proliferate within one or
two lines; the proof becomes unmanageably complex. We should like, if possible, to
decompose the total system into smaller more manageable subsystems which may be
analysed independently and then composed. The following is an attempt to achieve

this.
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train_in train_out

car_out

Figure 3.2: The composed system ‘Crossing’

3.5 Divide and conquer

We propose to divide the crossing system into two subsystems: the road vehicles with
R_Control and the trains with T_Control. Only Control needs to Be changed to do
this; it is split into two smaller but communicating control subsystems, one each for
the road vehicles and the trains. The extra signals introduced are stopcars, gotrains,
gocars and restore; these are used to synchronize the two subsystems and prevent

any interleaving of trains and cars.
Road control

R_Control cannot act until it has received the stopcars signal from T _-Control. On
receiving this, R_Control changes the road lights to red and on receiving an acknowl-
edgement closes the gate. When this has been acknowledged, the signal gotrains is
sent to T'_C'ontrol and the signal gocars awaited. On receiving this, R_Control then
changes the road lights back to green and opens the gate. Finally the restore signal

is sent to T_Control.
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R_Control %/ stopcars.change,.sent.movegate.done.

gotrains.gocars.movegate.done.change,.sent.

restore.R_Control

Train control

T_Control having sensed an approaching train first changes the ALight to red to
prevent any more trains entering the section. It then sends the signal stopcars to
R_Control and cannot proceed until it has received the signal gotrains. On receiving
this from R_Control, it sends the signal to change the I Light to green to allow the
train to proceed through the crossing. When it senses the train inside the crossing
the ILight is changed back to red. When the train has left the crossing (both track
lights are still red) the signal gocars is sent to R_Control and the signal restore is

awaited. On receiving this the ALight is changed back to green.

T_Control % a.change,.stopcars.gotrains.

change;.i.change;.o.gocars.restore.

change,.T_Control

The composed road vehicle and R_Control subsystem |

The observable communications for the road subsystem are car;,, car,,;, stopcars,

gotrains, gocars and restore.

RX = RLight(green)|Gate|RSensor|R_Control

\{change,, movegate, send,, sent,done}

The composed train and T_Control subsystem

The observable communications for the train subsystem are train;,, train,,;, stopcars,

gotrains, gocars and restore.

TX = TA|TI|TO|ALight(green)|ILight(red)|T_Control|ATrain

\{a,1,0,1,,1:,t,, change,, change;, send,, send;}
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The subsystems composed

Crossing2 = ((TX \T)|(RX\ R))\ C

where
T = {a,i,o,t4t;,t,,change,, change;, send,, send;},
R = {change,, movegate, send,, sent,done} and
C = {stopcars, gotrains, gocars,restore}

Figure 3.3: The decomposed system ‘Crossing?2’

Before proceeding, we need to show that that Crossing2 above and Crossing (page
36) are congruent. We can then consider the composed subsystems in the confidence

that whatever is shown to be true for Crossing2 will also be true for Crossing.
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Equivalence of the single and decoupled systems

Before continuing, we recall the particular Restriction Laws which we shall be invok-

ing, and define some notation.

The Restriction Laws [Mil89]

(1) P\L=Pif L(P)n(LUT)=0

(2) P\K\L=P\(KUL)

(3) ...(not invoked)

(4) (PIQ\L=(P\D)(Q\L)i £(P)NE@) N (LUT) =0

Notation

T, R and C are as defined in 3.5. L(P) is the sort of P, that is, its label set. An

overbar above the name of such a set refers to the complement of that set. So

L(TX)= {a,i,0,141;,1,,change,, change;, send,, send;, stopcars,

gotrains, Gocars, restore, train,, train . }

L(RX)= {change,, movegate, send,, sent, done, stopcars, gotrains, gocars,

restore, Cat;py, Caryy:}
From this we note that

() TUR= A (as defined in 3.4)
(i) L(TX)N(RUR)=0
(t11) L(RX)N(TUT)=10
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Proving equivalence

First we need the following lemma:

Lemma 3.1 Control = (T'_Control|R_Control) \ C

The proofs of this lemma and Theorem 3.1 below are given as an indication of the
complexity of the technique. The proofs of all following lemmas and theorems are
given in Appendix C.

Proof

(T_Control|R_Control) \ C = (a.change,.stopcars.gotrains.change;.i.
W.O.W.restore.m.
T_Control|stopcars.change,.sent.
movegale.done.gotrains.gocars.

movegate.done.change,.sent.restore.

R_Control) \ C

= (a.change,.T.change,.sent.

movegate.done.T.change;.i.change;.o.

T.movegate.done.change,.sent.T.change,.

(T-Control[R-Control) \C)

= (a.change,.change,.sent.

movegate.done.change;.i.change;.o.

movegate.done.change,.sent.change,.

(T_Control|R_Control) \ C)

= Control O

We use this congruence in the following theorem.
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Theorem 3.1 Crossing2 = Crossing

Proof

Crossing2

(TX\DI(RX\ R)\ C

(TX\T\R)|(RX\ R))\C

(by (1) and (ii))

(TX\T|RX)\R\C

(by (4))

(TX\T|RX\T)\ R\C

(by (1) and (iii))

(TX|RX)\T\R\C

(by (4))

(TX|IRX)\C\TUR

(by (2))
(ATrain|TA|...|T_Control)|(R-Control|...|RSensor)
\C\ T U R) (by commutativity of ¢|)

ATrain|T Al ...|(T-Control|R_Control)|...|RSensor
\C\ T U R (by associativity)

(ATrain\ C|TA\ C|...|(T-Control|R-Control) \ C|
...|RSensor \ C)\ T UR (by (4))
(ATrain|TA|...(T-Control|R_Control) \ C|
...|RSensor)\ T U R (by (1))
(ATrain|TA|...|Control|...|RSensor)\TUR

(by lemma 3.1)
(ATrain|TA|...|Control|...|RSensor) \ A

by (i) |

Crossing
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3.5.1 Analysis of the subsystems’ behaviour

We use the theorem to analyse the behaviour of the two subsytems.

Expansion of the train subsystem

The following result gives the behaviour of the train subsystem as observed by its

environment at the lower level of composition:

Lemma 3.2
TX\T = r.stopcars.gotrains.train;,.

tTain ;. .gocars.restore. TX \ T

Expansion of the road subsystem

The following gives the behaviour of the road subsytem:

Lemma 3.3

RX\R = .

(CaTin (CUTi7, . CaT ouy)* . StOPCAT 5.(CAT 37 CUT guz ) CAT oz
gotrains.gocars.restore. RX \ R

_I_

stopcars.gotrains.gocars.restore.RX \ R

_l_

€T, .(CAT7,.CaT 457 )* COT 7. RX \ R)

_l..

stopcars.T.

(7.€aT3,.(CAT;;, TAT gy ) * CAT oys - gOtrains.gocars.restore. RX \ R

_I.

T.gotrains.gocars.restore.RX \ R)
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Expansion of Crossing2

From Theorem 3.1

Crossing = Crossing2

= ((RX\ R)|(TX\T))\C

By composing the subsystems above, we prove the following result, describing the

behaviour of the composed crossing system:

Theorem 3.2

Crossing = T.(CaT,.(CAT7,.CaT 4u7)* CAT 407 17 AN, AT AN 5y .CTOSSING
+
TAraIN;, 111Ny CTosSINg

+
CaTy,.(CAT 7. CAT 551 )* CAT 55 C T 05 8INY)

+

T.(T.CAT3,.(CAT 1. CAT gz )* AT 5y LT AN, AT AN s CTOSSING

+

T AP AN, ETAIN 4y . CT08SING)

We can simplify the appearance of this by making the following substitution:
Let

® 01 = TaT;p.(CATi7.CT o1 )* CAT 5z, (S0 Fcar;y, = #Hcaroy ) -

e 0y = ITain;, train,,, (either of these may include 0 or more 7’s)

o C = Crossing.

Then
C= 7.(01.05.C +1.02.C+ 0,.C)

+
7.(7.01.05.C + 7.05.C)
(See Fig.3.4)
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Figure 3.4: The graph of ‘C’

3.6 Discussion

We recall S1,., from 3.3:

SafeCrossing def train, train,.,,.SafeCrossing
+
cari,.SafeCrossing.qrs(1)
SafeCrossingeqrs(n) &f cari,.SafeCrossinggqrs(n+ 1)

+
CaToy; if n = 1 then SafeCrossing

else SafeCrossingeqars(n — 1)

Making the substitution as above with SC = SafeCrossing, we have

SC = Uz.SC + Ul.SC
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Figure 3.5: The graph of SC

Clearly this is not observation equivalent to C'. Every choice in C is unstable, that is,
it is (weakly) guarded by one or more 7 actions, representing either the reading of a
green light by RSensor, the sensing of an approaching train by T.Control, or some
other signal informing the system behaviour; the nondeterminism is internal to the
system. In S1,.,, however, the observer may make the choice between cars and trains;
the nondeterminism is external. We could remove this choice from the observer and
give it to the system by (weakly) guarding each summand in SafeCrossing with a 7

thus:

SafeCrossing’ def TATAINn TNy .Sa feCrossing’  (S1,,)

+

T.CaTin.Sa feCT08SING qrs(1)

Now, however, we are presented with the possibility of deadlock; the system might
‘slip” into the first state, allowing trains to enter (so barring cars from doing so)
when no train is approaching. 7’s arise because of hidden internal communications
whose nature is not known to the observer; all 7’s look the same, whether they arise
from a whim of the system or from responsible decision making procedures; and these
may include desirable failsafe mechanisms. We cannot distinguish between ‘good’ and
‘bad’ 7’s, and without knowing the nature of the hidden actions we cannot guarantee

liveness.

What we wish to model is the situation where the observer sees either a train or
cars (but not both at the same time) and is never prevented from seeing either, but

cannot choose between them; a proper ‘choice’ is made by the system, e.g., when an
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approaching train is sensed, actions are performed which will eventually allow the train
to cross. It might be possible to model this by guarding the choices in Sa feCrossing
with visible actions but this is moving further away from the real situation; the
observer, from his helicopter presumably, sees cars and trains and nothing else. The

kind of nondeterminism we wish to model falls somewhere between these two extremes.

We leave the question open for the present and make the above substitution in 51/,,,

giving

SC' = 1.05.5C" + 1.0,.5C"

There is, however, no bisimulation between this and C as can be seen from the Con-
currency Workbench (see Appendix D). The problem arises when trying to match
the actions of SC’ with corresponding actions of C'. Referring to figures 3.4 and 3.6
and taking (So,7,) as the starting point, T, may perform action 7 to become T}; this
means that Sy must either perform a 7 action, so moving into S; or S, and entailing
(51,T1) or (S5,T>) as a member of R, or remain in the same state, entailing (S5,7})

as a member of R. None of these closes the set R and so there is no bisimulation.

Figure 3.6: The graph of SC’

The hidden communications in the decomposition have given rise to an unstable out-
put from the expansion law. This has precluded equivalence between the composite
system and the specification for the reasons described above. In view of this unavoid-
able feature of the calculus, it would seem that we need to find some other satisfaction

relation between specifications—something less than equality, or even equivalence, but
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none the less well-defined and readily interpreted in the problem domain.

Several issues arise from this case study other than the particular one which will be
addressed in later chapters (that is, the problem of establishing a satisfaction relation
between CCS specifications and their refinements). Many of them could have formed
the basis for a research project and it is hoped that some will indeed be the subject

of further work.

The level crossing is a ‘real world’ application of CCS and as such, illustrates some
of the strengths and limitations of the language. Despite being a small system it is
nevertheless too large to be analysed as a whole due to the proliferation of states
quite early on in the analysis; and the concurrency workbench cannot, at the time
of writing, deal with parameter passing. (We could have rewritten the specifications
in pure CCS, but would have run into problems with the potentially infinite stream
of cars). However it was possible within the language to separate the single system
into smaller communicating subsystems, provably equivalent to the original, with each
subsystem smaller and so more amenable to analysis (though even here the states are
numerous).

The behaviour of the system may be summarized as follows:

e it has been shown that there can be no interleaving of cars and trains and so

the main safety requirement is satisfied;

e apparently the system can deadlock, since we know nothing about the nature
of the 7’s; the system may ‘choose’ to stay indefinitely in, say, the state which
allows cars to use the crossing and so prevent trains from doing so. We need to
assume that the hidden actions are taken responsibly and safely by the system,
but there is no mechanism within CCS for making this explicit and so liveness
cannot be guaranteed. Without the 7’s, SafeCrossing seems to allow the
observer to experiment with the system, rather than merely to observe it and
this also is undesirable. Nevertheless, it can still be seen that at no time are

both cars and trains prevented from using the crossing:

o the system may also livelock; a steady stream of cars all ignoring the lights may

continue indefinitely, blocking the trains; there is no mechanism in CCS for stat-
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ing that a communication must happen eventually. Cleaveland and Hennessy’s

[CH88] prioritizing of actions in CCS might well solve this:

e the system fails safe; cars must be counted out of the crossing before a train
may enter and the train must leave before cars may re-enter. If either a train
or a car enters the crossing but fails to leave (whether it breaks down or for
any other reason), the appropriate lights will remain on red, preventing other

vehicles from entering the crossing;:

o the required behaviour of the train (i.e., the driver) has been specified explicitly.
However, in the case of road vehicles, responsible behaviour of drivers has been
assumed. Drivers who attempt to use the crossing unlawfully do so at their own

risk.

By definition, CCS cannot detect the absence of a signal, only its presence. Since all
communications are synchronized, it is not possible, for instance, for Rlight just to
‘show’ green; something must be there to ‘see’ it and so allowance has to be made for
this in the specification of RSensor. If...then...else statements may be used to
test the parameters of an action, but not to test for the presence of the action itself;
we cannot model interrupts in CCS. This is not insurmountable here but in other

circumstances might give problems.

We were able to model the temporal safety constraints set out in [Gor87] in two ways.
First, it is possible to express temporal ordering in CCS and it is this ordering, rather
than time itself, which was required in safety conditions (3) to (5) of 3.2. Second, the
fact that all signals produced have to be consumed means that an acknowledgement
signal cannot be lost; Control will wait indefinitely before allowing further actions
and so the system as specified fails safe. On the other hand, as is stated in the proof
of Lemma 3.2, it is possible in the CCS system for the visible actions car;,, carqy,;
to prevent the change, action from being sent by R_Control to RLight; interpreted,
this means that a steady stream of cars may prevent the train from using the crossing
indefinitely; fairness in this case is not guaranteed. There is no way of forcing this
communication in CCS, whereas in temporal logic it could be made explicit that this
action must happen eventually (though as mentioned above, the prioritizing of actions

[CHS88] might be the answer). Process Logic (Hennessy—Milner[HM85]) presented in
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chapter 10 of [Mil89] is a modal logic which can be used as a language in which to
specify system requirements and give a characterization of observation equivalence.
In this system we could specify that a particular action must eventually occur; in this
case, though, we would be specifying a different crossing from the above. Any system

which is a direct mapping from CCS to PL will have the same shortcomings.

Condition (2), (which said that cars must have time to leave the crossing before the
gate is lowered), seems to need some means of measuring time explicitly (and this
could be expressed in Timed CCS [MT89, Tof89]). However, in the specification of
RSensor we have achieved the same end but by different means. Instead of measuring
time, we count cars in and out and only allow the gate to be closed after the crossing

has cleared. This is inherently safer than allowing a fixed period of time to elapse.

Several problem areas have been identified; unfortunately, time does not permit us to
examine them all in detail. The particular problem which we have chosen to address
in the following chapters is that of establishing a satisfaction relation between CCS
specifications and their refinements. Though the worked examples given in [Mil89]
(such as the jobshop) result in stable agents which are then provably equivalent to
their specifications, in general a stable output from the expansion law is by no means
guaranteed, especially in the case of safety-critical systems where signals may need to

be sent and received before a visible action is allowed to occur.

Before examining possible solutions to this problem, then, we need to take a closer
look at the nature of certain notions of equivalence; this is the subject of the next

chapter.
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Chapter 4

Equivalence

In this chapter we consider some notions of equivalence, beginning with an operational
view and the intuition we are trying to model. In section 2 we look at strong and
weak bisimulation with some examples to illustrate the advantages and limitations of
these as models of equivalence. We make a brief excursion into a version of modal
logic as it is interpreted for CCS processes and see how it can be used to give an
alternative characterization of observation equivalence. We look at two orderings over
CCS agents, namely simulation and prebisimulation, the latter forming the basis for
the implementation of the testing preorders over CCS agents in the Concurrency
Workbench!. In section 3 we look at testing equivalence and the testing preorders
which generate it. We examine issues of nondeterminism and divergence in terms
of their effect on the ordering of processes, and the way in which these properties
are captured by the notion of acceptance sets. In section 4 we look briefly at the

automated CCS tool, the Concurrency Workbench.

4.1 Operational view

CCS agents are generally understood in terms of transition semantics [Mil89]. The
language is a labelled transition system and the semantics of all the combinators are

expressed in terms of transitions, or in other words, the behaviours they induce. A

! All concurrency workbench environments for this chapter are included in Appendix B
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labelled transition system is a triple, (5,7, {Lite T}) where S is a set of states, T
a set of transition labels and 5C S x § a transition relation for each t € T. So if

S % S’ then § may admit the action (or transition) a, thereby evolving to a state S’

This notation and semantics captures our intuition about the behaviour of processes;
but if we wish to establish whether two agents or processes are computationally equiv-
alent then we need to understand at a higher level of abstraction precisely what
behaviours we intend to regard as equivalent (or, indeed, equal). For sequential pro-
grams the question is easier to answer. We should probably say that two programs are
computationally equivalent if, for any given input, they both give the same output;
a sequential program may be regarded as a function over the state space, mapping
inputs to outputs. In the case of concurrent communicating sytems, notions such
as input and output are less well-defined; a degree of nondeterminism induced by
internal communication between processes is almost inevitable. This suggests that
for any given input there may be a range of possible outputs depending upon the
behaviour of the system; it is this notion of behaviour that we wish to capture in

defining equivalence.

Several notions of equivalence of concurrent systems have been suggested, based on
the idea that a process may be understood in terms of its externally visible behaviour.
However, we are still left with questions such as how much internal nondeterminism
we are prepared to tolerate and how far a process’s potential for divergence should
influence our view of its visible behaviour. Bisimulation, the CCS standard notion of
equivalence, takes a fairly tolerant view of divergence compared with testing equiva-

lence, though is less generous about internal nondeterminism.

4.2 Bisimulation

Bisimulation is a cornerstone, as Milner describes it, of the theory of CCS, though it
was actually discovered by David Park [Par80] shortly after the publication of [Mil80].
Strong bismulation, which is a congruence, treats the silent action 7 in the same way
as the visible actions. Weak bisimulation acknowledges the difference between 7 and

other actions and characterizes observation equivalence; it js not a congruence.
/
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4.2.1 Strong bisimulation

We begin with the definition from [Mil89]:

Definition 4.1: A binary relation § C P x P over agents is a strong bisimulation,
denoted by ~, if (P,Q) € S implies, for all a € Act,

(i) Whenever P = P’ then, for some @', @ = Q' and (P',Q')€ S

(i) Whenever @ = @' then, for some P/, P = P’ and (P',Q")€ S

This is a very strict relation. It is an equivalence relation (in fact, it is a congruence)
which distinguishes between agents that for most purposes we would wish to be iden-
tified. Consider P and () defined as P = a.0.0,Q &t a.7.0.0; in strong bisimulation,
every 7 action must be matched between P and @, so in this example, P o Q. In
general this distinction is undesirable; in the case of @, after a has acted we might
have to ‘wait’ for the agent to admit § but there is no doubt about the next visi-
ble action. So in terms of visible actions, then, the two agents are indistinguishable.

For this reason—that such undesirable distinctions are made—Milner rejects strong

bisimulation as a general notion of equivalence.

4.2.2 Weak bisimulation and observation equivalence

First we recall the definition of the transition relation P =% P’ for o € Act. The double
arrow indicates that although the only visible action taking part in the transition is
a, there may be any number of silent actions either before or after « taking part in
the evolution of P to P’. The hat on a has the effect of removing all occurrences of 7
that might be interleaved with a. What is being said when this relation is used in the
definition below is as follows: when we are trying to match an « derivative of P with
a corresponding evolution of ¢), we don’t mind how many 7 actions are interleaved
with a in order to get to ()'—we are willing to ignore them all: when we are trying

to match a 7 derivative of P, then zero or more T actions of @ will satisfy.

Definition 4.2: A binary relation § € P x P over agents is a (weak) bisimulation if
(P,Q) € S implies, for all a € Act,

(i) Whenever P % P’ then, for some @', Q 2 Q' and (P',Q') € S

(ii) Whenever @ = Q' then, for some P’, P & P’ and (P,Q)eS
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Bisimilarity can be shown to be an equivalence relation (denoted by = and referring
to the largest such relation); that is,

P ~ @ if 3 bisimulation § such that (P,Q) € S

Bisimulation equivalence is not in general a congruence unless we impose an extra
condition of stability? on agents; a stable agent is one which has no leading 7’s. So
considering the example given in 4.2.1, @.8.0 ~ «.7.8.0 and since both are stable,
a.p.0 = a.7.5.0. The full congruence is defined as follows:

Definition 4.3: P and @ are equal or ( observation-)congruent, written P = @Q, if
for all

(i) Whenever P % P’ then, for some @', Q@ 2 Q' and P' =~ Q;

(ii) Whenever @ = Q' then, for some P/, P = P’ and P’ = Q'.

The two clauses differ from those in the previous definition only in one respect, namely,
that in replacing 2 with £ we are insisting that each action of P is matched by at
least one action of ), and vice-versa. Note that this only applies to initial actions;

after that, only bisimulation is required. This is Milner’s adopted notion of equality.

Weak bisimulation alone is not a congruence as it is not preserved by summation;
leading 7’s in unstable agents are pre-emptive in the context of choice (though the
relation is preserved by all the other operators of the calculus). The simplest example
of a pair of agents which are bisimilar but not congruent is P and 7. P; P = 7.P, but

the pre-emptive power of 7 means that @ + P #Q + 7.P.

The transition semantics of CCS do not distinguish between external and internal
action in the context of +. In CCS,

P % P implies P+Q > P

P L P impliesP+Q = P
that is, the internal action 7 is pre-emptive; the evolution of P to P’ means that @) is
no longer an option for the environment. By contrast, in ATP we have

p = p' implies p+ ¢ = p'
p > p implies p+ g > p' +¢q

The internal transition affects only the state of p and does not pre-empt the choice of

2This condition is sufficient but not necessary since pairs of unstable agents may be bisimulation
congruent.
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g. Some of the problems we shall be addressing in this thesis are a direct consequence

of this transition rule for CCS.
Example 1

Consider the example of a petrol filling station with a single pump. The required
behaviour of the station is that petrol is delivered and then paid for; no more petrol
may be served until the previous customer has paid his bill. We may specify this

behaviour simply as follows:
FSSpec  deliver Petrol .paid.F5 Spec

An implemented petrol station consists of three agents: a petrol pump, PP, a T4l
and a Cashier. The petrol pump, which is connected to the till, delivers petrol and
registers the cost on the till. Payment may be in cash or by credit card. Cash payment
is simple. In the case of credit payment, the till (which of course is a PC with integral
modem) registers the card number and checks with a central credit reference facility.
If all is well, the customer’s signature secures payment; if not, the customer’s IOU
will do the trick. As soon as the transaction is complete the cashier resets the pump
and the next customer can start to fill up. The behaviour of the these agents is given

as follows:
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PP

Cashier

T3l
Term

EFT
HQ

FS

+

= deliverPetrol.amount.reset. PP

= getcash.paid.reset.Cashier

getcard.(sign.paid.reset.Cashier + getIOU.paid.reset.Cashier)

paid

=  HQ|Term\ {ok,notok,dialup}

=  amount.(EFT + getcash.Term)

= getcard.dialup.(ok.sign.Term + notok.getIOU .Term)
= dialup.(ok.HQ + notok.HQ)

= PP|Cashier|Till\ {amount, getcard, getcash, sign,getIOU, reset}

(

getcard

getcdsh

reset

sign

ou

\

deliverPetrol

amount

Figure 4.1: The filling station F'S

We invoke the expansion law to transform the expression for F'S before constructing

a bisimulation between it and its specification, F'SSpec.
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FS = PP|Cashier|Till\ {amount, getcard, getcash, sign, getIOU, reset}

Till = HQ|Term)\ {ok,notok,dialup}
= amount.((EFT + getcash.Term)|HQ)
= amount.(getcash(Term|HQ)+ EFT|HQ)
= amount.(getcash.Till + getcard.r.(r.sign.Till + 7.9etIOU.Till))

|
i
|
|

FS = PP|Cashier|Till\ {amount, getcard, getcash, sign, getIOU, reset}
= deliver Petrol.t.(reset. PP|Cashier|getcash. Till + ...)
= deliver Petrol.r.(1.paid.T( P P|Cashier|Till) + .(r.7.paid.7.FS + 7.7.paid.T.F 5))
= deliver Petrol.t.(t.paid.T.FS + 7.(r.7.paid.T.FS 4+ .7.paid.T.FS))

The bisimulation between this expression and F.SSpec is given by R, where

R = {(FSSpec,FS),(51,FS51),(51,FS2),(S1,FS3),(51, FS4),(FSSpec, FS5),
(51, FS56),(51,FS87),(S1, FS8), (FSSpec, FS10),(FSSpec, FS11)}

All states after S1 and F'S1 lead to the visible action paid (see Figure 4.2). But by
; invoking the equational laws in the expanded expression for F'S, we can show equality
' of F'S and FSSpec. The laws we invoke are:

j (i) idempotence, and

(ii) a.7.P = o.P, the first 7 law.

The equational laws of CCS are given in Appendix A.

FS = (deliverPetrol.r.(r.paid.T.F§ + r.(r.7.paid.7.FS + 7.7.paid.7.FS))
= deliver Petrol.7.(T.paid.FS 4 7.(t.paid.F S + T.paid.F§)) (7 law 1)
4 = deliver Petrol.(t.paid.F'S + 7.(7.paid.FS)) (idempotence)
‘ = deliver Petrol.(r.paid.FS + T.paid.FS) (7 law 1)
= deliver Petrol.7.paid.F'S (idempotence)
= deliver Petrol.paid.F S (7 law 1)
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deliverPetrol

deliverPetrol

Figure 4.2: FS§Spec and its implementation, F'S

Example 2

For our second example the bisimulation construction is less obvious. Consider the

agents
P=aP+71b.P

Q=0aQ+7(a.Q+75Q)+7.0.Q
The bisimulation R is given by

R =A{(P,Q),(P,Q1),(P1,Q2),(P1,Qs)}

(see Figure 4.3)

In the example of the filling station F'.S and FSSpec are not only equivalent but

congruent. This is not generally the case and in particular is not true of Example 2.
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Figure 4.3: The agents P and Q

Divergence does not in itself preclude the bisimilarity of agents; for example, the
agents P “ 4.0+ 7.P and Q % 4.0 are bisimilar. Milner defends his equivalence on
three grounds: simplicity: the ability to establish convergence by other means: and
the fact that the theory allows the relative speeds of agents to vary unboundedly and
so it would seem natural to allow them to vary infinitely. For example, we can define
R to be the agent () running concurrently with the divergent agent D = 7.D, that
is, R = Q|D (see Figure 4.4); @ is convergent, and is not made less so by the fact
of having D running alongside it. The visible behaviour of R is identical to that of
() so there is a strong argument in favour of equivalence. However, it is also true

that R may exhibit no visible behaviour at all, an argument against permitting the

equivalence of such agents.
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Figure 4.4: The agents ) and R

Observation equivalence

Weak bisimulation characterizes observation equivalence. Agents are identified or
distinguished on the basis of their observed behaviour, which means that under some
circumstances, such as the example quoted in 4.2.1, we may ignore the effect of T
actions. Intuitively, then, we might expect any two agents which are not identified
under bismulation to be distinguishable by an observer or user of the system treating
it as a black box. We find that this is not always the case. Consider the following

pairs of agents.
Example 3

AY ra 04700+ 7.(a.0 4 b.0)

A ra0+700

In this example, informally, A’ may or may not admit action a and similarly for b;
it is hard to see how an observer could distinguish it from A. The observer would
have to know that A was capable of moving into a state in which the choice between
e and b was made by the environment. The CCS model seems to make the implicit
assumption that this is the case; we might think of ¢ and b as buttons on a machine
connected to lights which came on when the appropriate choice was available. In
this situation the user would always know when the choice between a and b could be
made by him; but that state is one of three initial options between which the system
‘chooses’ nondeterministically, and that choice is hidden from the external observer.

A and A’ are testing equivalent (see 4.3).
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Example 4

P=a0+7b.0

P =71b+71.(a.0+5.0)

This example is similar; we might informally describe its behaviour by saying that
it always admits action b and sometimes action a. In order to infer anything more
about either of these pairs of agents, the observer would need to ‘open the box’ and
look inside. He would have to know something about the machine’s hidden actions;
their visible behaviour is insufficient to distinguish between them, though there is no

bisimulation in either case. Again, P and P’ are testing equivalent.

Lastly, consider the following examples; they are both specifications of an unreliable

vending machine.

Example 5

(1) VM1 = coin.drink.VM1 + coin.BV M1
BV M1 = coin.BVM1

(2) VM2 = coin.drink.VM2+ r.BV M2
BV M2 = coin.BV M2

The first vending machine does not break until a coin is inserted; in fact, it would seem
that it is precisely the insertion of the coin which causes the machine to break. The
second machine breaks internally and is in the broken state before a coin is entered.
But the only means that the observer has of finding out whether the machine is
working or not is the insertion of a coin, and in each case the result is the same:
either the machine is working correctly, in which case it will return a drink, or else
no drink will be delivered, and the machine will be happy to accept all the coins it
is offered, ad infinitum. As before, there is no bisimulation between VM1 and VM2,

though they are testing equivalent.

In each pair of examples, there is no means by which an external observer may distin-
guish between the two agents; he needs ‘inside knowledge’ in each case. The equiva-

lence generated by bisimulation is not truly observational; leading 7’s can also mislead.
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4.2.3 Hennessy-Milner logic: a modal characterization of observa-

tion equivalence

An alternative method of specifying the required behaviour of processes uses a simple
modal logic called process logic, or PL, by Milner [Mil89, HM85]. It consists of the
smallest class of formulae containing the following (M in PL):

(i) T, or true

(ii) (@) M, a possibility (where o € Act)

(iii) ~ M, a negation

(iv) Aser Mi, a conjunction of formulae (I an indexing set)

So for example, if the formula (a)(g)true holds of a process P then, informally, it
is possible for P to engage in an « experiment, thereby reaching a state P’, say,
which can then engage in a [ experiment. This is not to say that every a experiment
on P can be followed by a [ experiment; if that property were to hold for P we
could say that it is not possible not to engage in an a experiment (followed by a
beta experiment), written —(a)-(8) true. We introduce another modal operator as a

shorthand for —(a)-, written [a]; that is
[(I)]M déf - :1:)-1M

A satisfaction relation |= is defined between formulae and processes-as follows:
HPET

(ii) P | (@)M if, for some P/, P> P' and P = M

(i) P - M if P [£ M (i.e., it is not the case that P = M)

(iv) P = Ny M; if, for all i € I, P |= M;

Consider the process P = a.b.0+a.c.0+b.c.0. The following are a few of its properties

(there are always alternative formulae to express a property):
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Property of P Modal formula: P |=
1. a successful a experiment may be (a)(b) true
followed by a successful b experiment
2. not every successful a experiment can be -[a](b) true
followed by a successful b experiment
3. every successful b experiment is followed [b][c] true
by a successful ¢ experiment
4. a c experiment is not possible —(c) true (or[c] false)

5. P has properties 1 and 3 (a)(b) true A [b][c] true

The modal language of P, £(P) is the set of formulae which are true for P under |=.
Hennessy and Milner [HM85] showed that this gives an alternative characterization
of observation equivalence: two processes in CCS are observation equivalent iff they
have the same modal language. A sound and complete modal characterization of
observation equivalence over a small subset of CCS has been demonstrated by Stirling
[Sti85]; when this subset of the language is extended to permit hidden action so that
the equivalence is no longer a congruence, he gives a sound and complete proof system
for observation congruence. However, there is no modal proof system for full CCS

observation congruence.

Close consideration of this method of specifying the required behaviour of processes is
outside the scope of this thesis; however it would seem that there are correspondences
(i) between the modal operator (), the may preorder and the notion of safety (see
below), and (ii) between the modal operator [ |, the must preorder and the notion
of liveness. It is hoped that future work might include an examination of these

relationships.
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4.2.4 Simulation

This is the preorder obtained by taking ‘one direction’ of a bisimulation. We may

define a simulation S as follows:

S is a simulation if PSQ implies that, for all a € Act,
If P> P’ then, for some Q’, Q 3 @' and P'SQ’

From this we can recover an equivalence, though the equivalence turns out not to be
bisimulation and actually equates the two processes P %S 4.6.0 and Q 460 + a.0.

This is not generally desirable.

4.2.5 Prebisimulation

This is a behavioural preorder based on bisimulation but taking account of divergent

behaviour. First, a definition of the divergence relation {} from [Wal88b]:
P 1 iff either for some @, P = @ and Q T, or P(5)

where | represents infinite internal action or ‘incomplete description’ [Wal88b]. So
that the preorder should be closed under action prefixing, it is necessary to define a

local divergence relation {f} ala € A}:
P 1 a iff either P f, or for some @, P = Q and Q |

| is the complement of this. The relation {}a seems to coincide with Hennessy’s ‘1 s’
predicate, described in 2.2.3. Prebisimulation is then defined as follows:
A relation Pre € P x P is a prebisimulation if (P,Q) € Pre implies
(a) for all w € AU {e},if P = P’ then for some @', @ = Q' and (P',Q’) € Pre
(b) for all w € AU {e},if P | u then
i) Q U,
(i) if @ = @', then for some P/, P % P’ and (P',Q’) € Pre.

P is prebisimilar to @, written P C @ if 3 prebisimulation Pre such that (P,Q) € Pre
For pairs of convergent agents, prebisimulation coincides exactly with bisimulation.

This relation is used in the implementation of the concurrency workbench (see 4.4).
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4.3 Testing equivalence

This equivalence is due to Hennessy and de Nicola [{NH84, Hen88] and is the con-

junction of two distinct equivalences: may equivalence, denoted by =,

If two processes P and @ satisfy P~ @, then P, Q

oy » @0d must
equivalence, denoted by =

must’
and P =

st @+ Must equivalence is close to Hoare’s failures model—for convergent

processes they coincide—and may equivalence coincides with the trace model [Hoa85].
Intuitively, these equivalences are constructed on the basis of tests that a process may
(sometimes) pass or must (always) pass. Unlike bisimulation, testing equivalence is
affected by the divergent behaviour of agents; a divergent agent can never be testing

equivalent to a convergent agent.

4.3.1 The testing preorders

The testing equivalences are generated by the testing preorders; a preorder being
reflexive and transitive means that we can recover the equivalence through the sym-

metric cases, that is, the kernel of the preorder.

We recall that the may preorder depends upon language inclusion and the must
preorder upon both convergence and the acceptance sets for each node. Using the
notation

L(P)={s € (Act—{r})*|3P'.P = P'}

for the language of P, we can define the may preorder as follows:

Definition 4.4:
P K,..,Q iff L(P) C L(Q)

We use S(P) to refer to the immediate successors of P, that is,
S(P) = {a € Act|P >}
The acceptance set of P after s is defined for CCS agents as

A(P,s) = {S(P")|P > P' AP }}
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that is, A(P, s) is a set of the (stable) successors of P after s. This definition for CCS
differs somewhat from that given in chapter 2 for Hennessy’s own algebra [Hen88].
However, in each case the acceptance sets have to do with the stable, or deterministic,
agents reachable from the given node and so the difference is largely cosmetic. The

must preorder is defined as follows:
Definition 4.5:
PE,..QifVs € (Act—{7})*,P | s= (Q | sA A(Q,s) CC A(P,s))
where CC is the relation defined in 2.2.33
Exarhple 6
Consider the process

P =4a.b0+b.c.0+ a.(b.0+c0)

Its language L£(P) is given by
L(P) = {¢,a,b,ab,ac,bc}

Each s € L£(P) denotes a node of the acceptance tree for P. The acceptance sets,

A(P,s), for each s are as follows:

A(Pye) = {{a,b}} A(P,a) = {{b},{b,c}} A(P,b)={{c}}
A(P,ab) = {0} A(p,ac) = {0} A(P,be) = {0}

The sequence ba, for example, is not in £(P) and so A(P,ba) = (), the empty set.
Example 7

Consider the two processes
P =a.b.0+a.c0

Q@ =a.(b.0+c.0)
Here we find that L(P) = £(Q) = {¢,a,ab,ac} and so immediately we have may
equivalence (which is merely trace equivalence). The acceptance sets at each node of

P are as follows:
A(P,e) = {{a}} A(P,a)={{b},{c}}
A(P,ab) = {0}  A(P,ac) = {0}

84 and B satisfy A CC B iff for every A € A, there exists B € B such that B C A.
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The corresponding sets for ) are

A(@,¢) = {{a}} A(Q,a)={{b,c}}
A(Q,ab) = {0}  A(Q,ac) = {0}
We need only consider the acceptance sets at a since all the others are identical for each

agent; we find that {{b,c}} cC {{b},{c}}and so P §,,,,;@. There is no bisimulation
between P and Q.

Example 8

Consider the process P = a.(b.0 4 ¢.0) 4+ @.b.0 4 b.c.0 + a. (5.0 + 7.c.0)
Note that A(P,a) = {{b,c}, {b},{c}}; the last term in P gives rise to the acceptance

set {c} after a since by the definition of the acceptance set, all states represented in

A(P, a) must be stable.
Example 9

Consider the processes P = a.(b.P+ 7.c.P), @ = a.b.Q + a.c.Q.
Again we find that L(P) = £(Q) = {e,a,ab, ac,aba,aca,ababd, ...}, that is the pro-
cesses have the same language and are therefore may equivalent. The acceptance sets

for the first three nodes of each tree are as follows:

A(Pe) ={{a}} A(Pa) = {{c}}
A(P,ab) = {{a}} A(P,ac) = {{a}}

A@,¢) = {{a}} AQ,a) = {{o},{c}}
A(Q,ab) = {{a}} A(Q,ac) ={{a}}

Considering A(P, a) and A(Q, a), we find that A(P,a) CC A(Q, a), thatis, @ 5, P.

There is no bisimulation.
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Example 10

We now consider an example of a divergent agent
P=qa.(b.P+c.P)+T1.P
and compare its behaviour to that of a similar but non-divergent agent

Q=0a(0.Q+cQ)

Clearly P and @) are may equivalent. From the definition of K,,,,;, we need to
compare acceptance sets at nodes where the convergence relation is satisfied; there is
no such node, since one of the conditions which must hold is P | ¢, and this is not

the case for P. So P =

sy 4 it has the potential for infinite internal computation

despite its capability of stabilizing itself (temporarily) following the action a. With

this in mind, we now compare P with R where
R=S+7.R S=a(bS+cbH)

Again, by the Definition 4.5 of the must preorder, R | ¢ does not hold and so R, ,,{2,
despite the fact that the behaviour of R is quite different from that of P. R is capable
of stabilizing itself permanently once the action a is admitted; from the point of view
of an experimenter, from then on its behaviour is totally predictable, but neither
testing nor bisimulation distinguishes P from R (P, @ and R are bisimilar). A test
to make this distinction—one that did not allow initial divergence to block all further

tests—would be useful. It is not considered further here but might be the subject of

future work.

Both bisimulation and testing equivalence are invoked in chapter 5 where case studies
are considered. It would seem that testing equivalence gives a rather better model of
externally visible behaviour, at least in the view of this writer. For reasons outlined
above it is felt that the characterization (by bisimulation) of observation equivalence
is not always true to its name. Testing equivalence is more generous and equates all
the pairs of agents described in 4.2.2 which are distinguished by bisimulation. It is

also a congruence?.

“must equivalence is not a congruence over CCS agents; @ and r.a are not interchangeable under
must testing, but a=,,,,,,, T.@.
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4.4 The Concurrency Workbench

To quote from the abstract of [CPS89]:

The Concurrency Workbench is an automated tool that caters for the
analysis of networks of finite-state processes expressed in Milner’s Calculus
of Communicating Systems. Its key feature is its scope: a variety of
different verification methods, including equivalence checking, preorder
checking and model checking are supported for several different process

semantics.

This makes it an ideal software tool for our purposes; it is used in later chapters to
establish bisimulations and the testing preorders. Without the concurrency workbench
the expansion law of CCS would have to be used manually, as in the case study
of chapter 3; this is a very time-consuming and error-prone business owing to the
proliferation of states quite early on in the expansion, even for comparatively small

systems (see [Bai91]).

The interface accepts the abstract syntax of CCS and parses it, converting it to a
transition graph consisting of nodes (with one distinguished node at the root), and
edges labelled by actions. Each node has associated with it an inforrﬂation field whose
contents vary according the compuation being performed on the graph. For example,
to establish may equivalence all that is needed is the language of the graph. This
equivalence is not influenced by non-deterministic choices so a conversion is made to
a deterministic graph, that is, with all internal choices removed. To establish must
equivalence the acceptance sets at each node are required, and also information about
divergence; the information fields at each node of a must graph, therefore, contain

this information.

It is interesting to note that all the equivalences are modelled as versions of bisimula-
tion, referred to as C-bisimulations. If g; and g, are two transition graphs with node
sets Ny and N, and N = N; U N, (disjoint) then C C N x N is a particular notion
of equivalence, or ‘compatibility of information fields’ [CPS89, CH89b]. Similarly, the

preorders are modelled as C-prebisimulations [Wal88b]; in this case, C reflects a notion
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of ‘ordering on information fields’. An example of such an ordering is the CC relation

over acceptance sets described in 2.2.3; this relation must hold for must equivalence.
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Chapter 5

Decomposition preordering

In this chapter we present a small case study which will be used as a vehicle for
developing some of the ideas discussed in the previous chapter. The example is that
of a simple level crossing, considerably less complex than the case study of chapter 3.
This is for two main reasons: first, we wish to use the Concurrency Workbench! to test
the behaviour of our specifications and, at the time of writing, parameter passing is not
implemented: second, a large, complex system is not needed to illustrate the issues;
the problems we will be addressing occur in quite simple examples. In addition, by
considering a safety-critical system, attention is focussed on tlie importance of safety

and liveness issues.

We begin in section 1 by looking briefly at the meaning of safety and liveness before
moving on to our case study. In section 2 the system is specified at a very high level of
abstraction then, in sections 3 and 4, taken through several stages of decomposition
for each of two designs. Each decomposition is compared with its predecessor in order
to establish either an equivalence or an ordering between them. The Concurrency
Workbench is the software tool used for this purpose. We conclude that in general,
the best orderings that can be established are inadequate as notions of satisfaction

between specifications.

1ALl concurrency workbench environments for this chapter are included in Appendix B
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5.1 Safety and liveness

Lamport [Lam83] suggests that concurrent systems may be specified in terms of their
safety and liveness properties. Informally, safety is to do with the bad things a process

may not do, and liveness with the good things it must do.

We consider these properties of specifications as they may be interpreted in CCS
(rather than in temporal logic, as Lamport). There is no facility in CCS for defining,
_for example, invariant properties of a process that will guarantee its safety throughout
its execution, or for translating the temporal logic assertion that a particular action
must eventually occur, thereby guaranteeing liveness. Instead, we shall discuss the
safety of a process in terms of the sequences of actions in which it may engage—
that is, its traces—and liveness in terms of the sequences of actions in which it must

engage.

5.1.1 Safety

We define safety in CCS as the prohibiting of unsafe interleavings. For example,
we can specify a system in which the only visible actions are ¢ and b and where all

sequences are safe except for those containing 2 or more a’s together:
def
Spec = a.b.Spec+ b.Spec

We can state that may equivalence between any design and this specification is a
proof of this particular safety property. If it has been shown that a specification
contains no unsafe traces and also that a design is may equivalent to that specifica-
tion then we can be sure that the design also is safe. Clearly any design D of which
we can write D K,,,, Spec will also be safe vis-d-vis Spec; and since safety does not
require that a process does anything at all then, theoretically, at least, this is satisfac-
tory. To the software engineer, however—and certainly to his customer—this is quite
unsatisfactory; {2 may be safe, but it has few practical uses. We can think of may

equivalence as a maximal safety condition.
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5.1.2 Liveness

In general, liveness is the property of a system whereby every action which is required
to occur does eventually do so. Given that in CCS we have no guarantee of fairness,
we interpret this in its negative sense: a system is defined to be live if it is not
unnecessarily prevented from making progress. Internal nondeterminism may block

such progress.

The liveness condition will be stated in terms of the required behaviour (that is, suc-
cessful must testing) of a specification under restriction; the question we shall ask
in order to establish liveness is whether, when certain actions are prevented from
occurring, progress must be made by the remaining visible actions. Internal nonde-
terminism may preclude this. For example, the process

PYaPtrbP

is not live with respect to a; if we restrict by b the leading 7 may still prevent a. It

is, though, live with respect to b.

If a specification can be shown to possess a particular liveness property—that is to
say, it is not unnecessarily prevented from behaving in a required manner—and must
equivalence can be shown to hold between that (possibly restricted) specification and
a (similarly restricted) design, then that design will enjoy the same iiveness property.
We see in the case study that the safety of a CCS implementation vis-d-vis its CCS

specification can be established satisfactorily; in general, liveness cannot.

5.2 Specification

The level crossing admits one car or one train at a time (i.e., the car or train must
leave the crossing before anything else is admitted). The signals car_app, train_app
are sent by approaching vehicles; car_cross, train_cross are sent by vehicles which
have been allowed to cross or, in other words, are inside a mutual exclusion zone. Note
that in this model, trains always have priority; cars may be held up to allow a train (or
trains) to cross, but never the other way around. This specification implicitly states

the safety condition, namely, that cars and trains cannot interleave on the crossing.
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Spec = car_app.(car_cross Spec + train_app.train_cross Spec’)
+

train_app.(train_cross Spec + car_app.train_cross Spec')

d ) .
Spec Yl car-cross Spec + train_app.train_cross Spec

Making the substitution ¢ for car_app, d for car_cross, u for train_app and v for

train_cross, we have

Spec wf c.(d.Spec+ u.v.Spec’)
+
u.(v.Spec+ c.v.Spec’)

Spec wf d.Spec + u.v.Spec’

Figure 5.1: The Level Crossing

The safety condition may be defined in terms of legal and illegal traces; for example,
cduv, uved, cuvd, ucvd are all legal traces. The last two may be interpreted to mean
that if a car is seen to approach the crossing either immediately before or immediately
after a train has been observed, the train must be allowed to proceed before the car.
Theoretically, any number of trains may be permitted through the crossing, causing
the car to wait indefinitely: cuv(uv)*d and ucv(uv)*d are all legal traces. This may
be unlikely in practice but is nevertheless safe behaviour. Examples of illegal traces
are cudv and uedv; the implication of each of these is that a car has been allowed to

enter the mutual exclusion zone before the train has sent the signal that it has left.

74




We also require that in the absence of a train, the crossing behaves like a road and

similarly, in the absence of cars, like a track. That is to say, we wish that
Spec\ {u,v} = Road where Road “ ¢.d.Road

and

Spec\ {c,d} = Track where Track Yy Track

We find that Spec\ {u,v} = c.d Spec\ {u,v} and that Spec\ {c,d} = u.v Spec\ {c, d},

which is what is required. This is the liveness property.

5.3 Design 1

5.3.1 First Decomposition

We first define two agents, a road Light and a Driver; the light shows green if no
train is approaching, i.e., it also acts implicitly as a train sensor. The gone signal is
received when the car has crossed safely. (This would seem to imply that the train is
physically stopped if a car gets stuck, though we need not be concerned with that at

this level of abstraction.)

Lightl wf green.gone. Lightl + u.v.Lightl

. def .
Driver = c.green.d.gone.Driver

Then
DY Lightl|Driver \ {gone, green}
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The expansion law gives

D1 = c¢.(rd.D1+uv.D1))

+
w. (v D1+ c.v.D1Y)

D1 = r1.d.D1+4+u.n.D1}

Figure 5.2: First decomposition: D1

The Concurrency Workbench gives D1 Ry O PC and D1 Emustdpec. The introduc-
tion of the two hidden actions gone, green has created internal nondeterminism such
that bisimulation and must equivalence between the specification and the design are
both precluded. However, =, .~ guarantees that D1 cannot admit illegal traces such
as ucdv or cudv (allowing cars to interleave trains) so safety is assured. This equiva-
lence is essential; we need to be sure that the implementation allows no illegal traces.
In addition, the testing preorder 5 does not imply the equivalence may for recursive
processes (though the implication does hold for finite processes); by insisting on =,

ay
we prevent the chain of preorders degenerating to (.

We also find that
D1\ {u,v} = c.d. D1\ {u,v}

and

D1\ {e,d} = u.v.D1\ {c,d}

that is, the liveness property is preserved.
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5.3.2 Second Decomposition

The arrival of a train now explicitly changes the Light to red. Because communications
are synchronized this must be ‘seen’ whether there is a car approaching or not; hence

the need for the Observer who merely acts as a sink for this signal (in the absence of

Driver).
Light2 = green.gone.Light2 + u.red.v.Light2
User “ Driver + Observer
Driver % c.Checklights
Checklights s green.d.gone.User + red.Checklights
Observer & red.User
Then

D2 Light2|User \ {red, green, gone}

Figure 5.3: Second decomposition: D2
The output from the expansion theorem is

D2 = ¢ (1.d.D2+ u.v.D2")

+
u. (7.v.D2 + ¢c.v.D2')

D2 = 7d.D2+4 uwv.D2

The liveness property is preserved; that is, D2\{u,v} = Road and D2\{¢,d} = Track.

We also have D2= D1 and D2 = D1 (observation congruence) from the concurrency
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workbench. Since each of these equivalences is a congruence we conclude that D1
and D2 are fully interchangeable; that is, the introduction of the red signal, together
with the necessary adjustments to Driver (the User of D2) made no difference to the
overall behaviour of the system. Both D1 and D2 are more non-deterministic than
Spec; neither testing equivalence nor bisimulation holds in either case. Even so, all
the desired properties of safety and liveness are preserved and so we might argue that

D1 and D2 satisfy the specification. We continue to refine D1.

5.3.3 Third Decomposition

An agent T'rain, is introduced such that T'rain, | Light3 is a decomposition of Lightl.
Train, sends the visible signals u and v to the environment, and the hidden signals

sensin and sensout to the agent Light3.

. de g .
Train, tef u.sensin.sensout.v.I'rain,

Light3 &f green.gone.Light3 + sensin.sensout.Light3

The relationship we wish to investigate is that between Lightl and T'L3,, where

TL3, ™ Train, | Light3 \ {sensin, sensout}

Figure 5.4: Third decomposition:D3

With T'rain, specified in this way, the concurrency workbench shows that Lightl
and TL3, are not related by the must preorder, and that Lightl 5,,,, T L3,. This is

~may

because of the possible interleaving of the action u with green and gone; this would
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seem to be giving a car permission to cross after a train has been observed. This
is sufficient to give a sequence of observable actions that imply that the system is
unsafe; and when the composed system has been expanded and the actions of the
sensors have been hidden, there is no guarantee of safety. It would seem that the

train needs to cross the sensor (sensin) before being observed in order to be safe.

If the specification of the train is changed to

. de = .
Train, tef sensin.u.sensout.v.T'rain,

with
TL3y = Train, | Light3 \ {sensin, sensout}

we can see that now the train is sensed before it is observed. By the time the observer
has seen the train (u), the signal sensin has been sent to, and received by, Light3,
which is therefore committed to sensing the T'rain, leave before allowing the car to
pass. The visible signal v, however, need not be sent immediately; we may think of
this as the observer choosing to watch the car cross safely, and only then turning his
eyes to see the train disappear into the distance. The system has operated safely, but
external nondeterminism has created a different impression. As in the above case, the
actions of the sensors have been hidden in the expansion and so again, no assurance
of safety can be given. The preorderings between Lightl and T'L3; are as for Lightl
and TL3', that is, Lightl Nmay 1 L3y with no must ordering.

If we now change the specification of the train yet again, to

. def q .
Train = sensin.u.v.sensout.Train

with TL3 = Train| Light3 \ {sensin,sensout} so that the train is observed to
leave before it is sensed by the system, we find that T'L3 imay Lightl and that
TL3 K,,.,:Lightl. TL3 is not capable of interleaving the action u with green and

gone, though intuitively we might feel it was operating the same way as before.

We have opened ourselves to the charge of hacking here. The difference between
Train, and the other two specifications of the train is arguably an honourable one
of safety; but between T'rain, and Train we have simply altered the specification of

the physical object’s behaviour in order to accommodate the CCS model. This runs
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counter to common sense but is, perhaps, a feature of mathematical modelling. We

specify with one eye on our proof rules.
So, then, if we define

D3 = TL3| Driver \ {green, gone}
we find, from the concurrency workbench, that

D3=_Dl=__ Spec

may ~may

and

D3 E’mustDl E"mustspec

In the case of the third decomposition, however, we find the liveness property weak-
ened, i.e.,

D3\ {¢,d} = Track

but
D3\ {u,v} # Road

However, it is true that

D3\ {u,v}=,,,, Road and D3\ {u,v} K., Road
From now on we shall use the following notation:

C
A ~Mmust

that is, D3\ {u,v} K,.;Road.

5.3.4 Fourth decomposition

We now add an agent Control such that Control | Light4 is a decomposition of Light3.
Control receives the signals sensin, sensout from the Train. Where no train is
approaching, ok is sent by Control to Light4 signalling that it is safe to show green,

and the signal gone is now sent to Control and not to Light4.
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Control ¥ ok.okt.gone.Control + sensin.sensout.Control

Light4 = ok.green.okt. Light4

Then

CcL4 Y Control | Light4 \ {ok, okt}

Figure 5.5: Fourth decomposition: D4

From the concurrency workbench, C'L4 S may Light3 and CL4 K,,,,, Light3. If we now

define TI4 ¥ CI4 | Train\ {sensin, sensout} then we have TL4 K,,,TL3 and

DAK,,,D3 where D4 %! TL4|Driver \ {green, gone}

In this case the liveness property has been weakened still further. We now find that
D4\ {¢,d} K, ,;Track and D4\ {u,v} K,, Road

Equality has been lost through internal nondeterminism. Summarizing, the orderings
are

Di=< D3= Dl;‘cmay Spec

may may
and

D4k, D3 Kpust D1 K, SPEC

~Ymust
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What we have shown is that safety (may equivalence with Spec) is relatively easy to
establish; liveness, however, is affected by internal nondeterminism which precludes
both bisimulation and must equivaence. By way of comparison, we give an alternative

decomposition from the same specification.

5.4 Design 2

5.4.1 First decomposition

We present a second design based on two Controls, one each for the train and the
road traffic. The hidden communications take place between agents as follows: when
a train approaches, T'Control sends the signal stop to RControl; when the train has
been observed to leave the crossing (or when no train is approaching), TControl sends

ok (see Figure 5.6).

RControll %! stop.(ok.RControll + c.ok.RControll’) + c.RControll'
RControll’ % stop.ok.(RControll’ + d.RControll) + ok.d.RControll

TControll * stop.u.v.0k.TControll + ok.TControll

Then

c1¥ RControll|TControll \ {stop, ok}

From the concurrency workbench we find that LC1 &,,,Spec. However, the liveness
property has been weakened; we find that LC1 \ {¢,d} = Track (both testing and
bisimulation), but LC1\ {u,v} K,,,Road.
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Figure 5.6: First decomposition: LC1

5.4.2 Second decomposition

We now decompose the Controls by introducing agents T'rain and Car such that
TControl2 | Train is a refinement of T'Controll and RControl2| Car is a refinement

of RControll.

de - —
Car % C.CaT 4,y .gTeen.d.CaT on..Car

=9
g

e

RControl2 = cary,.,.(stop.ok.green.cargone. RC ontrol2
+ok.green.cargone. RControl2)
+stop.ok.RControl2

Then

RC2% Car| RControl2 \ {cararr,caryone, green}
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stop

ok

Figure 5.7: Second decomposition: RC2

TControl2 train,,,.stop.okt traing.n..ok.T'Control2 + ok.T'C ontrol2

. def ——— N— .
Train = iraing.,.okt.w.viraing.,. T'rain

and

TC2 Y Train | TControl2\ {traing.,,traingn., okt}

Then

LC2 =TC2| RC2\ {stop, ok}

stop
ok

Figure 5.8: Second decomposition: TC2

The concurrency workbench shows that TC'2 &,,,7Controll and RC2 K,,, RControll.
LC2= LC1 though there is no bisimulation. The liveness property of LC?2 is as for
LC1,i.e., LC2\{¢c,d} = Track and LC2\{u,v} K,,; Road.
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5.5 Discussion

What has been illustrated in the above case study is the following: that when an
expanded composition contains unstable agents then, in general, it is not possible
to prove any equivalence with a higher specification stronger than may equivalence.
Leading 7’s often preclude the possibility of either bisimulation or must equivalence.
The best we can hope for in general is K,,;, the conjunction of =~ __ v and K,
together with a ‘walkthrough’ of the specification in order to satisfy the customer
that various conditions are indeed satisfied. Where may equivalence with the top
level specification is provable we can say with confidence that the model is safe—or
at least, as safe as its specification. But the liveness condition is weakened (within
the limits of the expressive power of the calculus) by internal nondeterminism. This
is not satisfactory. In the next chapter we suggest an alternative; it is a conservative
extension to CCS which addresses some of the problems described here and, we think,

moves towards a tentative answer.
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Chapter 6

Concurrent CCS

In this chapter we consider an extension to CCS, called Concurrent CCS (CCCS). It is
introduced with formal semantics in [Smi91]. In the first section we give an informal
introduction to the new operators and motivate this extension to CCS. In section
2 we give the transition semantics of CCCS. In section 3 we state the Concurrent
Expansion Law; the proof is left till section 5. In section 4 we take another look at
the case study from chapter 5 and respecify both the overall behaviour of the system
and the behaviours of its components, taking advantage of the extra capabilities of the
new operators. We show that previously unstable agents may be stabilized, though at
a price. In section 6 we make some tentative suggestions for modelling equivalence in
the extended calculus and show that the tests in the form given by Hennessy [Hen88]

are inadequate for distinguishing between CCCS agents.

6.1 Introduction

CCCS is an attempt to address some of the problems identified in the case study of
chapter 3 and highlighted in chapter 5. These are mainly to do with the internal
nondeterminism created by unstable agents in the output from the expansion law.
Some of the instability seems artificial; it can sometimes be removed by changing the
order of an observable action and a restricted action within a sequence, as shown in

5.3.3. Intuitively, we feel that the behaviour of the T'rain (and also that of the wider
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system of which the train is a component) is unaffected by the order in which these
actions are admitted, and yet by judicious sequehcing of the actions the system can
be made to ‘satisfy’ its specification (by which we mean k,,;) where otherwise there
is no ordering between them. This raises questions about how we regard the sanctity
of specifications and whether we think it is permissable to rewrite (hack?) them in

the light of later results.

In other circumstances, a leading 7 is unavoidable since it is the result of a safety
signal which must necessarily be communicated before a particular visible action can
be admitted, as in 5.3.4. It may be an integral part of the safe operation of the
system—precisely the required behaviour, and yet when resolved into a leading 7 by

the expansion law, can seem to be arbitrary and may preclude liveness of the model.

The motivation, then, for Concurrent CCS was the wish to remove such apparently
artificial instability. A new action prefix operator is introduced, denoted by e , which
‘ties together’ its operands so that they occur simultaneously. Since we know that
we cannot observe simultaneity [Mur91], the notion is captured pragmatically by the
following conditions: in @ e b, @ and b act simultaneously and so a eb = bea. In
particular, and most significantly for our purposes in this chapter, rea = a e T = a.
This is the result that was aimed for in the design of CCCS; in the process, however, we
have developed a concurrent extension to CCS which allows and, indeed, sometimes

forces multiway synchronization.

Having introduced the notion of simultaneous actions (which we shall refer to as
true concurrency, other notions of the term notwithstanding), we need a new parallel
composition operator with a different semantics from the interleaving composition of |.
Apart from the fact that simultaneous actions arise naturally when two or more agents
act concurrently, the operator is necessary in order to prevent the deadlock which may
occur due to restriction of two or more elements in a multiset of simultaneous actions.
If we have a process p, say, which contains a multiset of which a and b are elements
and we restrict by {a, b}, then p may need to communicate with two distinct agents in
order for the restricted actions a and b both to occur. We need to develop multiway
synchronization to address this. We are not concerned here with synchrony in the

sense of wishing agents to proceed in lockstep, as in SCCS [Mil83]. CCCS agents
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may still proceed at indeterminate relative speeds, just as CCS agents, so we do
not need to make explicit the action of waiting. There is no assumption of a global
clock; CCCS agents may proceed independently or simultaneously. We are enabling
synchrony rather than assuming or forcing it. One consequence of this is that parallel
composition in CCCS does not distribute over summation, whereas in SCCS, the
product combinator (denoted by x and corresponding to our parallel composition)

does indeed distribute over summation.

The new parallel composition operator, denoted by ||, allows its operands to run in
true concurrency, so far as considerations of synchronization will permit, as well as
allowing them to run independently. || will be used anywhere that we wish to admit
the possibility of simultaneous execution of processes. So in the case of an agent
containing @ e b which is composed under || with other agents, ¢ and b will always
act in the same context, that is, they act simultaneously with each other and may
act simultaneously with appropriate multisets of actions from the other agents in the

composition.

6.2 Formal semantics of CCCS

6.2.1 Notation

Act, in CCCS is the commutative group {Act.,7,e, - } with identity 7. We use u, v
to range over Act,. We will use the notation p = p' to mean that p may engage in
the multiset of actions u (which may be empty) and evolve to p'. For each s € Act,,
we define the multiset s’ as follows:

(i) if s is atomic, then s’ = {s}

(i) 7 = {}

(iii) if s = w e v then &' = u' W v’ where ¥ here denotes multiset union.

So for each s € Act,., s’ denotes the multiset of observable actions that occur simul-

taneously. Action complementation is defined as follows:

{}¢={}, {a,b}° = {a,b}, where @ = a.
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We need to define one more piece of notation: let v and v be any two multisets. Then
uiv={sWt|]sCu,t Cv,u—s={v—1}°}

where ‘—’ denotes multiset difference. (It can easily be shown that { is associative.)

For example, consider the multisets v = {a,b,¢}, v = {@, c}. Then

U ." V= {{b}7 {a7—a'-7 b}’ {b’ 676}7 {a7a-7 b’ C,-C-}}

; The intuition here is that either an action and its complement are both visible, or
‘ they have communicated internally. For instance, the set {b} indicates that both
a and ¢ have communicated through their respective complementary ports; the set
{a,@,b} indicates that ¢ has communicated internally but a and its complement are
visible. So then, interpreting this as the possible actions of P||@Q where P “gebet

def __
and @ =faoc, we have

Pl|Q=b+aeaeb+becect+aedaebecec

6.2.2 Transition semantics

We use s to range over actions in Act., and P, () to range over processes.

Action Prefixing
se P LN P

Choice
P 5 P implies P+ Q = P’
Q@ = Q' implies P+ Q = @’

Constants

PP and Q% Pimply Q> P

Interleaved composition
P 5 P’ implies P|Q = P'|Q
Q = Q' implies P|Q = P|Q’
P4 P, Q 5% Q implies PIQ 8 P|Q’
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The semantics for this operator are substantially those for pure CCS. We are effec-
tively regarding multisets of actions as atomic units; only two-way synchronization is

permitted and then only between multisets which are uniquely complementary.

Concurrent Composition
We define this by case analysis.
(i) each component of P ||Q may proceed independently and interact with its envi-
ronment, or
(ii) agents may proceed concurrently and interact with their environment and/or with
each other. Formally,

P 5 P'implies P||Q = P'||Q

Q@ = Q' implies P||Q & P|| Q'

P35 P, Q= Q implies P||Q 5 P'|| Q' for every r € u {v.

Restriction
Let L be any set of actions, 7 ¢ L. Then
P 5 P implies P\L & P\LifunL=0and u*nL =0.

Relabelling
P P implies P[f] 'Y P'[f]
where f is a relabelling function and f(u) is the multiset {f(a)|a € u}.

We will give some examples to illustrate the use of the calculus, but first we need a

mechanism for expanding agents composed under ||.
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6.3 The Concurrent Expansion Law

Proposition 6.1

Let P = (P}||P|...||P.), n> 1. Then

P = S{ui(Pi|...|[P/||...||P.)} where P; 4 Ff

?

S{ra.(Po|| . NP P || Py) for every 7y € u; f uy,
where P; % P/, P; = Pi}

+

+ E{rs.(Pol .- PP - BRI o P) for every 75 € (us 1 uy) T oug,
where P, % P/, P; &4 P!, P, = P}

+

+ X{rn.(P|...||P!||...||P.) forevery r, € (...(us ] us)...T%)...7un),

where P, & P/,1< i< n}

Informally, this means that the P; may run independently through their observable
actions (the first line of the law) or else they may run concurrently in any combination
of tuples up to and including the case where all n are running concurrently. As can be
imagined, this makes for an explosion of states very early on in the expansion in cases
where there are no occurrences of the e operator and no restriction. The operator o,
however, has the effect of reducing the number of possible states quite significantly,

as we shall show.

Example 1

Consider the agents P “ae b.0, @ = ¢.b.0, first of all composed under |:

PlQ = c(P|b.Q)+aeb(0|Q)
= c.(aeb.(0[b.Q)+0b.(P|0))
+a e b.c.b.(0]0)
= c(a0b.b.0+b.aeb.0)
+a e b.c.b0

If we restrict by b the compositon is deadlocked after the first action ¢, that is

PQ\{b} = c.(P|0.Q)\{b}
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Considering the same agents composed with || we have

PlQ

|
e(P|[5.Q)+asb.0]|Q) |
taebec.(0|5Q) 1
= ¢(aob.(0][0.Q) +5.(P|[0) + a.(0]0))
+a e b.c.b.(0]|0)
= c.(aeb.b.0+b.aeb.0+a.0)
+aeb.ch0

Restriction by b gives the result P|| Q\{b} = c.a.0\{b}.
Example 2

Consider the agents P =a e b.P and Q = ¢.b.Q

PlQ =c(PlbQ)+aeb(P|Q)
=c(a0b.(P|0.Q)+b.(P|Q))+aeb.(P|Q)
=c(a0b.aeb.(P|b.Q)+aebdb(P|Q)+b(P|Q))+aeb(P|Q)

Let r = P|5.Q. Then
r=aebr+0.P|Q

So we may rewrite
Pl|Q=cr+aeb(P|Q), where r=aebr+5.P|Q

If we restrict by b, the composition would deadlock following the first term of the first

line of the expansion, that is,

PQ\{b} = c(P[5.Q)\{}

a and b must act together and also synchronize with b, which is not permitted by |.

Now consider P and @ composed with ||:

PllQ =c(P||b.Q+aeb(P||Q)+aebec.(P|b.Q)
=c.(a.(P||Q)+aeb(P||5.Q)+b.(P||Q))+aebec(b(P||Q)+aeb.(P|bQ)

Without completing this expansion it can be seen that the combinations are numerous

when there is no restriction. However, if we were to restrict by & the result is

Pl Q\{b} = c.a.(P||@)\{} |
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Example 3

P=aebP, Q=1dced(

Again, we consider both compositions, first of all without restrictions:
PlQ =aeb(P|Q)+T(P|cedQ)
=aeb(P|Q)+dced(P|Q)

a and @ cannot perform a silent communication because a occurs in the context of aeb

in P. If we were to restrict the composition by a the system would be deadlocked.

PIlQ = aeb(P[|Q)+b(P|lcodQ)
+a.(P||cod.Q)

= aob(P||Q)+b.(cod(P|Q)+aeb.(P]lcedQ)
+aebeced(P||Q))
+a.(aeb.(P||cod.Q)+cod(aeb.P||Q)

+aebeced.(P|Q))

Again we find that without restriction, the states are numerous. However, if we

restrict by a the result is P || Q\{b} = b.ce d.(P]| Q)\{b}
Example 4

Lastly we consider a composition of four terms: P = a.b.P, Q = a.b.QQ and two copies
of R = cea.R. We restrict by a and b. We find that the composition P|Q | R| R\{a, b}

cannot proceed; it is deadlocked from the beginning. On the other hand

Pl QI R|| R\{a,b}

c.(P|0.Q| R|| B) + c.(b.P|| Q| ]| R)

+eoc.(b.P||0.Q| Bl R)\{a,b}

= c.c.(b.P||b.Q|| R|| R) + c.c.(b.P||5.Q || R|| R)
teec(P||Q|| R|| R)\{a,b}

= cc(Pl|Q|IR||R)+cec.(P|Q] R|| R)\{a,b}

What we see from these examples is that composition under || gives rise to a larger
state space than composition with . This is what we should expect, particularly
where there is no restriction of actions and no use of e. Care is needed in the design
of agents which are to be allowed to proceed in true concurrency; there will clearly

be undesirable ‘clashes’ and certain time orderings to be avoided. Agents which
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will eventually become part of a truly concurrent system will need to be specified
in conjunction with one another and not as more or less independent units. It can
be argued that the operator | is unnecessary in CCCS; where agents are specified
using the e prefix operator, it is unlikely that we should then wish to restrict their
composition to interleaving only. However, without |, CCCS is not a conservative
extension to CCS—that is, unless it is possible to embed CCS in CCCS using only
the || operator for composition, though on the face of it this seems unlikely. More
work is needed on the development of the calculus before we decide we can dispense

with |.

6.4 Case study

We re-examine the case study from the previous chapter and make some changes
in the light of the new operators described above. Now that true concurrency is
permitted we can rewrite the specification to take account of the extra possibilities.
For example, a train and a car might arrive at the crossing simultaneously, modelled
by ¢ e u; we must ensure that in this case the system behaves safely. Similarly, a car
may arrive simultaneously with a train leaving the crossing, that is, c e v. Since the
crossing needs to be clear before a car is allowed to cross, no other simultaneity may

be permitted. So the revised specification is as follows:
§* = e.(u.v.8" + d.§*) + u.(v.5" + cov.5*) + ue cv.5

where

S* = w08 +d.S*

Informally, this says that there are three initial possibilities: a car arrives first (then
either stops for a train or is allowed to proceed): a train arrives first (and is allowed
to proceed, though a car may arrive at the same time): a car and a train arrive at
the same time (in which case the car must give way to the train). The agent §*' is
invoked when a car has been held up for a train; it says that the car may have to wait
indefinitely while trains continue to use the crossing, or else it may itself be allowed

to cross.
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6.4.1 Design 1
First decomposition

Now we consider D1 from chapter 3 and examine its behaviour when the hidden action
green is tied to the visible action d; that is, when the car crosses as soon as the driver
sees the green light (see Figure 6.1). Strictly speaking, these communications are not
simultaneous; however, we wish to regard them as indivisible (the driver is in a great
hurry and has the car in gear). So we have

Lightl def green.gone.Lightl + u.v.Lightl

. de - .
Driver* c.green e d.gone.Driver*

Then
D1+ ¥ Lightl||Driver*\{gone, green}

d gone u

green

Figure 6.1: First decomposition D1*

The concurrent expansion law gives

D1* = c.(Lightl||green e d.gowe. Driver*) + u.(v.Lightl|| Driver*)
+u e c.(v.Lightl||green ... Driver*)
= c.(woD1* +d.7.D1*) + u.(v.D1* + c e vD1*) + uw 0 c.v.D1*)
= c(uwvD1* +d.D1*) 4+ u.(v.D1* + co vD1*) + u e co.D1*
where
D1* = Lightl||green e d.goneDriver*
= ww.D1* +d.D1*

i.e., D1* = §*; we have equality between D1* and S*.
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Second decomposition

Now we examine D3’ from chapter 4 and consider the case where the observed action
u is seen at precisely the same time that the system receives sensin; that is, we wish
to tie the actions u and sensin (and similarly, v and sensout) so that they occur

simultaneously.

The train is now specified as

. de - .
Train* L u o sensin.sensout o v.Train*

and

TL3* Y Train*|Light3\{sensin, sensout}

Figure 6.2: Second decomposition D3*

The output from the concurrent expansion law is
TL3* = u.v.TL3" + green.gone. T L3*
that is, TL3* = Lightl, so

D3* = Driver* | TL3*\{green, gone}
= Driver* | Light1\{green, gone}
= D1* (see Figure 6.2)
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Third decomposition

From the previous chapter we have

Control ok .okt.gone.Control + sensin.sensout.Control

Lightd & ok.green.okt.Lightd

We define Light4* as

Light4* Lok e green.okt.Light4

| that is, the ok signal from Control causes the light to show green simultaneously.

Then
CL4* = Light4* | Control\{ok, okt}

= green.T.gone.C L4 + sensin.sensout.C L4\ {ok, okt}

= green.gone.C L4 + sensin.sensout.C L4\ {ok, okt}

Figure 6.3: Third decomposition D4*

H
{

If we now define

TL4* % CL4* || Train*\{sensin, sensout}
the concurrent expansion law gives

TL4* = green.gone. TL4* + uwv. T L4*
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that is, TL4* = Lightl.
D4* is then

D4* = Driver* || TL4*\{green, gone} (see Figure 6.3)

We have the result that D4* = D1*. For this design and the use we have made
of e, we have proved equality between each specification. This is very pleasing but
probably not typical; we need to define a formal equivalence relation and also a

:1 (possibly weaker) satisfaction relation. However, previously unstable agents have

been stabilized, reducing the level of internal nondeterminism. The price of this is
the increased number of states, though in the above example those states represent

realistic potential behaviour of a level crossing.

Next we consider the second design given in chapter 5.

6.4.2 Design 2

This is based on two control systems, one each for the road and rail traffic. Since we
are allowing true concurrency we can admit more possibilities than before. The first

l decomposition is as follows:

1 RControl1* stop.(ok.RControl1* + c.ok.RControl1*') + c.RControll*
+stop e c.ok.RControll*
RControll* 2 stop.ok.(RControl1* + d.RControll*) + ok.d.RControll*

TControll* = stope u.ve ok.TControll* + ok.TControll*

Then
crr ¥ RControl1*|T'Controll* \ {stop, ok}

98




]
I
]
i
|
i
!
1
|

We can expand this as follows:

LC1* = wu.(ok.RControll* + c.ok.RControl1*)||v e ok.TControl*)
+
u o c.(ok.RControl* ||v e ok.TControl*)
+
c.(RControl1*'||TControl*)
= u.(v.LC1* + ¢ o v.RControll*'||TControl*)
+
w e c.(v.RControl1* ||TControl*)

+
c.(RControl1*'||TControl*)

Let LC1* = RControll* ||TControl*. Then the expansion law gives
LC1* = uw.LC1¥ + 1.d.LC1*

So the final result is

1

LC1* = u.(v.LC1* 4+ c 0 v.LC1*) + u.(v.LC1* + c 0 v.LC1*') + c.LC1*
where LC1* = w.v.LC1* 4 1.d.LC1*

stop

RControl1* ok TControl1*

Figure 6.4: First decomposition LC'1*

In this case we have one unstable agent in the output, namely, the second term of

LC1*. We could remove this if RControll*' were specified as

RControl1*" % stop. ...+ ok e d.RControll*

99




that is to say, the car crosses at the same instant that the signal is given. This is the
case in the previous design and may well be a close model of real life; it would also be
very convenient here, since once again we should have equality with the specification.
Purists might say that looking at the output of a proof and then altering a specification
to fit was nothing more than hacking; but if the alteration is viable, that is, it models
the requirements in an equally satisfactory way, then a case can be made (it’s a lot
cheaper than rewriting an implementation). The important point of safety here is
that the car cannot proceed before the signal is sent that it is safe to do so, and that

condition is satisfied by RControl*”.

6.5 Proof of the Concurrent Expansion Law

We recall the law from 6.3.
Proposition 6.1

Let P = (Pi||Ps]|...||P.), n> 1. Then

P o= S{u(Pl...||P||...[|P): P = P}
+ Z{re (BB PP
for every r, € u; t u;, where P; “ P!, P; <% P!}
b S rs (Bl B PP P
for every r3 € (u; t u;) t uy, where P, 5 P/, P; 5 P/, P, % P}
+
+ S{ra (B[ B P

for every 7, € (.. (w1t uz)...tu)...tu,), where P, & P/ /1< i< n}
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Proof
The proof is by induction on n. For n = 1 we need to prove that
Pl ZE{Ul.P{: Pl -u—1>P1/}

which follows immediately. Assume the result for n and consider R = P||P, ;. From

the transition rules we have that

R

Y{u;.(P'||Poy1) : P 5 P}
+E{tns1.(P||Pry1) : Panr oy P}
+3{rs.(P'||P.,y) ¢ for every 75 € ut upyq, where P 5 P/, Py 23" PIY
= Ri+R,+Rs

From the inductive hypothesis, the first two terms of R expand to give

Rl + R2 = E{u,(P;lH ...||.P1;I” . .||Pn||Pn+1) . R _u_; ,P‘/, 1 S i S TL}
+ Z{ro(Po| BB || Pl | Pragr) ;o for every 7y € ug toug,
where B, % P/, P, & P}
+ S{ra(Bll BB B - Pal| Paga)
for every 3 € (u; t u;) { w, where P; & P/, P; 4 P/, P 5 P

+ E{ra (PP P P S
for every 7, € («..(us fug) ... f%;)...1 u,), where P, 2 P/,1 < i< n}
+ S{u Pl P Pall Paga) = Prgs 4 Pl

The first and last lines of the above can be combined, giving the required extension
to the first part of the law to accommodate P,,; (that is, the part that says that
each agent may act independently). So far P,,; has taken no part in any communi-
cation; the third term of R gives us this. For P,,; to communicate with P it may be

communicating with just one of the P;, or with two of them, or three, etc., as follows:

Ry = S{ra.(Pil[.. |[P/|].. || Pal| Phyy) o for every 75 € u;  tpya,
+3{ra.(Pu|| . AP N B]] ... Pal|Phyy) : for every r3 € (ui t uy) t tngs,

+E{rnp (Pl PPl Prg)
for every rpq1 € ((L. o (ug fug) oot )t un) | 2y,

where P, & P/, 1<i<n+1}
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When we place the summand Rj together with R; + R, above, all the terms in Rg

except the last term are absorbed. So we have

R = X{u.(Bll...[IFIl... | Pal| Prsy1) : P; = P/}
+ E{ra.(Pol]- P NPl - || Pall Payr) : for every o € u; t uy,
where P; = P!, P; at P}
+ E{rs.(Pul AP WP VP PallPaga) o for every g € (us tuy) 1w,
where P; *4 P/, P; 4 P!, P, = P}

|
|
|
|

+ E{ra.(Pl PP Paga) o for every mn € (oo (un Fu) oo f ). fun),
where P; 2 P/,1<i< n}
+ Z{rapn (Bl CIE PR Prgy) ¢
for every rpy1 € ((-o (ur fu2) oo T %) ev ot Un) T Ungi,
where P, X P/,1<i<n+1} O
The proof may be extended to accommodate restriction and relabelling. The Ex-

pansion Law of CCS remains substantially unchanged except that occurrences of «,

representing atomic action, are replaced by u, representing multiset action. Inter-

nal communication may only occur between complementary multisets (which may be

simply complementary atomic actions).

6.6 Equivalence in Concurrent CCS

6.6.1 Bisimulation

We need to define a notion of equivalence over CCCS agents; the model which suggests

‘ itself immediately is a generalized bisimulation.

Definition 6.1: A binary relation S € P X P over agents is a (weak) bisimulation if
(P,Q) € S implies, for all v € Act,,

(i) Whenever P % P’ then, for some @', Q % Q' and (P',Q") € S

(i) Whenever Q 2 @' then, for some P/, P 2 P’ and (P',Q") € S

In fact, the more general form of the transition relation L is only necessary in the

case when u is atomic; all occurrences of 7 in multisets of actions are absorbed by |
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definition. In this model there can be no equivalence between pairs of agents where
one contains simultaneity (i.e., the operator e) and the other does not; equivalences
between standard CCS agents are preserved and so the relation is a conservative

extension of weak bisimulation.

This model, while seemingly a natural extension of bisimulation, is nevertheless sus-
pect. Bisimulation models observation equivalence; the u referred to in the definition
are multisets of actions occurring simultaneously, not all of which, therefore, can be
observed. We need to permit sets of observers if we wish to adopt this model of

equivalence. Notwithstanding, we illustrate the notion with two examples.
Example 5

Consider the agents

P=aebP
Q=aQ
R=0b.R

The composition Q||R yields

QIR = a.b.(Q||R) + b.a.(Q|R) + a ¢ b.(Q|R),

clearly not equivalent to P; but if we use the signal ¢ to synchronize @ and R as

follows
Q' =aec.Q’
R/ = b ® E.Rl

and restrict by ¢ we have

Q'lIR\{c} = a 0 b.(Q"|R)\{c} = P
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Example 6

We now consider the agent Spec defined as

Spec et a.Spec+ a e a.Spec

and implemented by I'mp, defined by

Imp® P||P\{b}, where P ¥ a.P+b.Q, Q¢ a.P

The expansion of I'mp gives

Imp = a.(P||P)+ a.(P||P)+aea(P||P)+7.(QlQ)
= a.(P||P) + a e a.(P||P) + 7.(a.(P||P) + a ¢ a.(P||P))
= 7.(a.(P||P)+ a e a.(P||P))
~ Spec

I'mp is equivalent to its specification Spec. It is not congruent to Spec, owing to the

instability of I'mp.

6.6.2 Testing

We recall Hennessy’s tests from 4.3.1. Tests of the form
lw+b(lw+...+b,(lw+a)...)

or

lw+b(Qlw+b(lw+ ...+ by(arw+ ...+ apw)...)

are sufficient to distinguish between any two processes which are not testing equivalent
(but see 2.2.2). However it is not clear that there is a test to distinguish between
P = a0+ 5.0 and @ = a e b.0. The test aw + bw is certainly passed by P and
intuitively we might feel that @ ought also to pass such a test since it can deliver
either a or b. In order to distinguish between them (which we clearly wish to do) tests

of a different form need to be designed.

Related to this question, we might ask how we are to extend the notion of traces to
include simultaneity and what sort of trees might be the denotation of CCCS terms.
We suggest the following model, exemplified by the agent P “ gebecdlin Figure
6.5:
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SO

S1

Figure 6.5: The tree for the CCCS agent @ “ gebec.do

What we see from this is that in order for P to evolve from the state S, to the state
S; all three actions a, b and ¢ must have occurred. However the observer can take
only one path through the tree, though he has three choices for this, namely, ad,
bd, cd. This suggests trace (or may) equivalence with the agent Q ' ad + bd + cd,

represented by the tree shown in Figure 6.6.

So
a b C
S1 S2 S3
d d d

Figure 6.6: The tree for the CCCS agent Q </ ad + bd + cd

Indeed we may well not wish to distinguish between these two in the trace model; an
experimenter who can only observe one thing at a time (in keeping with the relativistic
view) is subject to severe limitations on his capability. In that case, it is intuitively

right to identify P and @ in this model. We then have that
L(P)=L(Q) ={e,a,b,c,ad,bd,cd} *
However, if we feel that, notwithstanding the real limitations of experimenters, this
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identification is too generous and we wish to distinguish between processes such as P

and @ then we might express the language of P as
L'(P) = {e,{a,b,c},{a,b,c}d} *x

to suggest the choice of any element of the set {a, b, c} but also implying a difference
from L(P) above. In this case, unfortunately, language inclusion is no longer the
model for may preordering. The intrinsic weakness of the trace model together with
the nice properties it enjoys lead us to think that there is no need for this distinction
and to accept L(P) as a model of the traces of P, identifying as it does the agents
P and @. Unfortunately, this means that we need to define a different class of test
for the explicit purpose of establishing must preordering only, and only where CCCS
agents are involved (the tests are redundant otherwise); we shall explore this a little

further.

Extending the set of tests: restriction

In order to distinguish P “ 4 eb from Q “/ 4 + b we need to design tests which
exploit the simultaneity of @ and b in P; though it may be true that we can see either
a or b (but not both) in P, we cannot see a without b also occurring, or b without a.
This suggests tests which include restriction. The question whose answer will enable
us to distinguish between P and @ is: can we see a if b is restricted? or b if a is
restricted? We could design an experiment, ey, such that e, = aw\{b}; this test—and
its complement e; = bw\{a}—is passed by @ (both may and must) but not by P
(neither may nor must). If we wish to retain the trace model *, then, we need to

confine the use of this type of test to must testing only.

It is difficult to think of any test that P should pass but not ¢, bearing in mind
that we are interested in observable results rather than purely theoretical ones. This

would give us the orderings P~__ @ and P K,,,,;Q, with the must preordering

may
here not relating to internal nondeterminism; in the notation of chapter 5, P 5,,,Q@.
This would be a very unsatisfactory satisfaction relation for a vending machine that
purported to give the choice of tea or coffee but, regardless of the choice, delivered
both every time. The fact that the observer of the machine can see only one of the

outputs will be of little comfort to the manufacturer. On the other hand, when we
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visit a cinema with two screens, we choose just one to watch, though both will run
concurrently regardless of our choice. In this case, the satisfaction relation might

indeed be perfectly satisfactory.

We now consider the agents r “aeb taand s aeb+a + b; to recap, we have

P aeb

QY a+b

R qeb+a

SYaebta+b

and the tests ey = aw\{b} and e, = dbw\{a}. We find that Q mustey, r musteg,

smust eg, () must ey, smuste; but r myst e; giving
C C —
P NmuatR NmustQ ~Mmust 5

and accepting the usual trace model, as * above, we have

The type of test exemplified by e, and e; does not distinguish between @ and S. In
the case of @}, the choice of a, say, implicitly precludes b; if we don’t want b to occur,
we simply choose a (or make no choice at all) and we can be sure of no b action. In
S, by contrast, we should need to exclude b explicitly, otherwise s contains implicit
nondeterminism. Since must testing is intended to detect this and order process at
least partly on that basis, this suggests that we would want to distinguish between @

and S, if so, then the new tests are still insufficient.

Extending the set of tests: multiple experimenters

So far we have avoided using tests which include the operator e; this is because the
experimenter has always been assumed to be singular and therefore unable to observe
simultaneous actions. In now introducing this operator into tests we make an implicit
assumption that there is one experimenter to observe each simultaneous action. We

should still like to keep the trace model so use these new tests only for must testing.

Tests of the form a;easw+a,0a,0a3w+. . 4-a,0a, . . .0a,win addition to Hennessy’s set

of tests will distinguish between CCCS agents, and also between CCCS and standard
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CCS agents. In particular, the test e, = a o bw will distinguish between ¢ and s
, in 6.6.2. This, alas, give us @ 5,,,,:5: not what we want. Intuitively, must testing
distinguishes between processes on the basis of nondeterminism and divergence; S
contains a degree of nondeterminism which ought to be detected under must testing
and which should result in S being below @ in the must preordering. We need a test
which formalizes the question: can we engage in action a successfully and be sure

that no other action has occurred? Tests that involve hiding do not quite answer this

|
!
!
|

question. This is the subject of future work.

|
!
|
'1
|
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Chapter 7

Conclusion

What we have shown in chapters 3 and 5 is that any attempt to specify a system in
CCS and then refine it by decomposition is likely to encounter difficulties in estab-
lishing satisfaction. Notwithstanding results such as those given in [Par87, Wal88a,
Mil89], the presence of unstable agents after composition and expansion is the rule
rather than the exception. This is likely to preclude both bisimulation and must
equivalence with the specification, though may equivalence can usually be established.
We can think of may equivalence as establishing safety vis-d-vis the specification (of
the CCS model, of course; not necessarily of the real system it represents); must

equivalence gives liveness.

In chapter 3 we found that by specifying the level crossing to contain a degree of inter-
nal nondeterminism we could establish bisimulation with the implementation. This
begs several questions: how do we model the required kind of nondeterminism? What
is the scope of the observer? How far should we permit the rewriting of specifications
to fit their implementations? The answer to the last question might be to write par-
tial, rather than total, specifications. We might express the safety requirements of the
system as a set of modal formulae, say, which stated that we should never see both
a train and a car in the crossing together, that trains took precedence over cars, and
so on. A full modal specification is a characterization of observation equivalence; but
a partial (minimal) specification might in some circumstances be adequate and less

difficult to satisfy.
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7.1 Nondeterminism

Internal nondeterminism—how to model it and how to interpret it—lies at the heart
of the problem of establishing satisfaction. The CCS model allows a single leading 7 in
* an agent expression to propagate nondeterminism to the whole expression. Contrast
this with Hennessy’s model, where internal choice is modelled as a separate operator
affecting only its operands. So, for example, in the CCS agent P © atbt.. Am+T.0,
the last term has the effect of pre-empting the actions a to m, whereas in the process
p=a+b+...4+1+ m®n, only the choice between m and n is uncertain; all the
others are available to the experimenter'. The choice between these models is partly
a matter of suitability; we need to ask ourselves exactly what we are trying to model
and therefore which is more appropriate. But it is a drawback of CCS that we cannot

restrict the scope of 7.

The fact that all hidden actions, whatever their nature, are resolved into 7 creates
problems. Whilst we may have confidence in our designs, their safety, liveness and so
on, there is no way around the fact that once actions have been restricted in a CCS
expansion, the only indicator of their existence is 7, and all 7’s look the same; in the
design, the restricted actions may be enabling liveness, say, whereas after expansion

they may seem to be precluding it. This makes satisfaction difficult to establish.

7.2 Equivalence, preordering and satisfaction

Both bisimulation and testing are elegant theories with good intuition. However, for
reasons outlined in chapter 4, the preference is for testing over bisimulation. Having
said that, and despite the fact that, in general, testing is a more generous equivalence
than bisimulation, its intolerance of divergence borders on the churlish; all processes
with an initial capacity for divergence are must equated to £, even those with the
capability of stabilizing themselves (see Example 4 in 4.3.1). The testing preorders

are useful in establishing relations between processes which are not equivalent but

!Example VM1’ in 2.1.1 indicates how p can be modelled in CCS. The point being made here
is not that the semantics of p cannot be translated into CCS, but rather that our intuition about p
cannot be modelled in a ‘natural’ way.

110




whose behaviours are related; however, the direction of the preorders in CCS—the
fact that the closer we get to implementation, the more nondeterministic our results—
is counter-intuitive. The best we can manage in general between CCS specifications
(after decomposition) is the relation 5,,, as defined in chapter 5. This relation would
allow, for example, the agent I'mp b + a.c as a satisfactory implementation of
Spec et a.(b+c); the choice between b and ¢ after a in Spec is arguably of the essence
of Spec, whilst Imp removes that choice and forces one of b and ¢ on the environment.
This is not satisfactory; we are forced (though with great reluctance) to conclude that

for these purposes—that is, refinement of specifications by decomposition—CCS does

not provide the best model.

7.3 Concurrent CCS

Concurrent CCS seeks to remove some of the internal nondeterminism described in
7.1; often such nondeterminism is the result of the time ordering of hidden and visible
signals which we might feel is arbitrary and should not have such a profound effect
on demonstrating satisfaction. By tying two actions together so that they always
occur simultaneously we derive a commutative operation which can therefore remove

instability.

The effects of permitting concurrency in this way are much more far reaching than
merely the stabilizing of agents. We find that concurrent composition generates nu-
merous states, far more than the interleaving composition of CCS. Specifying agents
which are to be allowed to run in parallel needs, unsurprisingly, careful thought and

circumspection.

Finding a suitable notion of equivalence over CCCS agents is difficult; traditionally
we depend, whether in bisimulation or testing, on a single observer or experimenter.
Nevertheless, in chapter 6 we have made some suggestions based on both a single
observer and multiple observers. We believe that these are capable of being developed

into a theory of equivalence for CCCS.

CCCS is similar in many ways to Milner’s SCCS; Milner’s product of actions (X)
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corresponds to our e operator, though the same combinator is used by Milner to
compose agents, whereas we have defined a separate parallel combinator || while still
retaining interleaving composition. Qur operator || enables its operands to run in
parallel but does not force them to do so, unlike x. We also, like Milner, achieve
multiway synchronization. We have retained the standard restriction mechanism;
SCCS restricts to a subgroup of actions rather than by a set of actions. In addition,
the motivation for CCCS was quite different. Milner set out to design a synchronous
calculus and found that asynchrony could be embedded in it by designing an explicit
wait action; CCCS, by contrast, was not seeking to model synchrony explicitly, but
rather to remove internal nondeterminism. Concurrency modelling was, ironically, a

side-effect of the search for stability.

7.4 Future work

In chapter 4 we suggested the close relationships between (a) safety, may testing
and the modal opera,t(ﬁ' (), and (b) liveness, must testing and the modal operator
[ ]. These relationships will be investigated further. We also noted in example 10
of chapter 4 that there are still some distinctions we would wish to make between

standard CCS agents, which are not made by Hennessy’s tests.

The work done here has cleared the way for further research into the development
of a theory of equivalence over CCCS agents. This will probably mean devising an
extended set of tests which will make the desirable distinctions and identifications,

but without breaching the relativistic view of simultaneity.
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