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Abstract

The entire history of software engineering informs us that failure to inter-
pret or reason correctly with software specifications causes developers to
make incorrect development decisions which can lead to the introduction of
faults or anomalies in software systems. Most key development decisions
are usually made at the early system specification stage of a software pro-
ject and developers do not receive feedback on their accuracy until near its
completion. Software metrics are generally aimed at the coding or testing
stages of development, however, when the repercussions of erroneous work
have already been incurred. This paper presents a tentative model for pre-
dicting those parts of formal specifications which are most likely to admit
erroneous inferences, in order that potential sources of human error may be
reduced. The empirical data populating the model was generated during a
series of cognitive experiments aimed at identifying linguistic properties of
the Z notation which are prone to admit non-logical reasoning errors and
biases in trained users.

1 Specification as a Medium for Communication

A software specification is an abstract description which seeks to delineate the
software components that a desired system will eventually comprise and is often
used as a basis for evaluating the correctness of the final system. A specification
is normally employed at various stages in a project life cycle including: contract
negotiation, planning, design or code derivation, and program maintenance.
Owing to the nature of these activities, it is likely that they will need to be
understood by different audiences, each with varying degrees of expertise. A
specification is typically produced as a joint venture between developer and
customer, between whom it represents a form of contractual agreement (Balzer
and Goldman, 1986; Imperato, 1991), but is intended to be read primarily by
members of the development team for whom it also serves as a constant source
of reference during the system’s construction and maintenance. It is generally
accepted that the specification process is an essential part of the development
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life cycle and the potential benefits that stem from a well written specification
are widely documented in the computing literature (Cohen et al., 1986; Potter
et al., 1996; Sommerville, 1992).

Although certain forms may be parsed, verified or animated by machines,
software specifications are written predominantly for human audiences. For
the members of a development team, a system specification represents an ac-
count of the software operations that must be implemented in order to meet
a customer’s requirements. Experience has shown that the errors which de-
velopers make when interpreting or reasoning about specifications are liable to
manifest themselves in, and propagate throughout, subsequent design and code
work, leading to the appearance of faults or anomalies in the system developed
(Fenton and Pfleeger, 1996). The most serious defects are often not detected
until integration or testing, by which time the costs of backtracking through
design, code and specification in order to rectify them will have increased dra-
matically (Sheppard and Ince, 1993). The costs of failing to discover the defects,
however, could be much higher, particularly where the system under develop-
ment is business or safety critical in nature.

It is clearly important that specifications capture a customer’s requirements
in as complete and consistent a manner as possible. In view of their central role
in project communication (Barroca and McDermid, 1992; Imperato, 1991), it
seems equally important that they are written in ways which are clearly and
unambiguously accessible to their intended audiences, with minimal potential
for admitting erroneous human reasoning. The early stages of software projects
are often critical to their success and software specifications have caused some
of the most costly and intractable development problems (Cohen, 1989a; Shep-
pard, 1990). It would therefore seem reasonable to hypothesise that expending
additional effort at the early specification stage, in particular, would substan-
tially reduce development effort overall (Hall, 1990; Potter et al., 1996). But
perhaps more importantly, it could help to reduce the numbers of latent defects
that find their way into “finished” software systems.

2 Claims for Formalisation

One of the main problems historically associated with the specification process
has been one of communication. Ambiguous software specifications are liable
to be understood in different ways by different people, with the danger that
not every member of the development team will work towards achieving the
same system solution. The problem has, in general, been attributed to the use
of natural language based specifications which are notoriously prone to impre-
cision (Gehani, 1986; Imperato, 1991; Meyer, 1985). This view is supported
in the linguistic literature which reaffirms that natural language is inherently
vague and ambiguous (Empson, 1965; Turner, 1986). It is argued that formal
methods alleviate the communication problem in this respect by giving rise to
precise and unambiguous specifications (Imperato, 1991; Jack, 1992). Based
on the assumption that the semantics underlying a formal notation gives to
every statement expressed in that notation a precise mathematical meaning, it
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is argued that formal specifications are open to only one form of interpretation
(Bowen, 1988; Liskov and Berzins, 1986; Thomas, 1993).

Human reasoning can either be formal, and based on well defined mathem-
atical rules with explicitly recorded intermediate steps, or informal, and based
on belief or intuition with implicit or undefined steps (Jacky, 1997). In the
context of software specification, an instance of formal reasoning might involve
checking via mathematical proof that relationships between a specification and
its implementation hold, whereas an instance of informal reasoning might in-
volve checking via subjective judgement that the system model corresponds to
the customers’ requirements. Based on the assumption that formal specifica-
tions are generally more concise and less ambiguous than their natural language
based counterparts, it is argued that formal methods support and encourage
disciplined reasoning (Rushby, 1995) and that it is easier to reason about formal
specifications, even at an informal level (Thomas, 1995). The justification for
this argument appears to stem from the belief that it is easier to manipu-
late and reason about problems expressed in mathematical logic than natural
language (Ince, 1992; Lemmon, 1993). Reichenbach (1966, p.3) argues “It is
true that simple logical operations can be performed without the help of sym-
bolic representation; but the structure of complicated relations cannot be seen
without the aid of symbolism”. Intuitively, there appears to be no reason why
the argument should not generalise to specification languages whose grammat-
ical foundations lie in these domains. This view is supported in the cognitive
literature which suggests that natural language sentences containing certain
common forms of logical connective are prone to evoke human reasoning errors:
“if” (Braine and O’Brien, 1991), “and” (Lakoff, 1971), “or” (Newstead et al.,
1984), “not” (Johnson-Laird and Tridgell, 1972), “some” and “all” (Erickson,
1978; Johnson-Laird, 1977). Providing the benefits are realised and the formal-
ists’ claims proven, the software community stands to make tremendous gains
from the adoption of formal methods because they could provide a long awaited
key to the development of safer systems.

3 Limits of Formalisation

In the context of software engineering, the term “method” tends to evoke images
of an ordered, prescriptive set of procedures which can be followed to guide the
development of software, such as stepwise refinement or object oriented design
(Cooke, 1992; Hinchey and Bowen, 1995). In the context of software specifica-
tion, the term “formal method” suggests a precisely defined set of procedures
for developing or manipulating specifications. Yet the processes of writing,
refining or verifying a formal specification rarely comprise any predefined sys-
tematic steps of action whatsoever. It is in fact only the notations in which
formal specifications are written that are formally defined, owing to their pre-
cisely defined grammatical foundations (Woodcock and Loomes, 1988). The
development processes associated with formal methods are guided mainly by
the spontaneous judgement and ingenuity of individual developers (Bottaci and
Jones, 1994; Bowen and Hinchey, 1995; Jacky, 1989; 1997; Oakley, 1990), and




the lack of support for developmental methodology in this sense has led much of
the software community to regard the term “formal method” itself as somewhat
misleading (Barden and Stepney, 1993; Bowen and Hinchey, 1994; Jacky, 1997;
Macdonald, 1991; Woodcock and Loomes, 1988).

“So ‘Formal Methods’ (only) provides a framework in which programs can
be developed in a justifiable way. It does not dictate, or even advise, on
how manipulations should be applied. There is still a need for the program
developer to make decisions and to determine appropriate programming
strategies” (Cooke, 1992, p.420).

Formal methods provide software developers with a selection of tools that
can be used to produce, and possibly verify, specifications, but, like any other
form of tool, it is possible for formal methods to be misused (Bowen and
Hinchey, 1995). Software engineering has always been predominantly driven
by human judgement and no conceivable developments in the formal methods
community are likely to change this. So despite their mathematical founda-
tions and much reputed scientific basis (Cohen et al., 1986; Hall, 1990), errors
will continue to arise in, and from, formal specifications simply because of the
natural fallibility of their human users (Bowen and Stavridou, 1993; Hall, 1990;
Hinchey and Bowen, 1995). Although supporting tools, guidelines and stand-
ards might help to reduce the numbers of errors committed, they will not be
able to prevent errors from arising completely (Cohen, 1989b). In this light,
Hoare’s (1984) vision of future software engineering practice, in which mathem-
atical techniques are used to guarantee that specifications can no longer give rise
to software defects and conventional testing methods are discarded in favour
of formal reasoning, now seems unrealistic and unachievable (Loomes, 1991).
The possibility that incorrect development decisions might continue to emanate
from specifications, however, is disconcerting in view of the increasingly crit-
ical engineering questions being asked of the software community (MacKensie,
1992) and the high degrees of confidence that tend to be placed in systems
developed using formal methods (Wing, 1990).

“Formal methods cannot guarantee correctness; they are applied by hu-
mans, who are obviously error prone. Support tools - such as specification
editors, type checkers, consistency checkers, and proof checkers - might
reduce the likelihood of human error but will not eliminate it. Systems
development is a human activity and will always be prone to human whim,
indecision, the ambiguity of natural language, and simple carelessness”
(Bowen and Hinchey, 1995, p.60).

Formal methods research has historically concentrated on developing new
notations and supporting tools. This research has mostly been conducted in
purely academic environments and without a full understanding of the types
of development problem experienced by industry (Garlan, 1996). Aside from
resulting in a proliferation of tools that are often awkward to use, unreliable
and unsuited to the types of problem faced by real engineers in industry (Hollo-




way and Butler, 1996), this near exclusive preoccupation with formal methods’
supporting technology seems to have distracted computing research from the
most important element of the design process; the human users of formal meth-
ods themselves. It seems appropriate that computing research should at least
pause to consider the cognitive implications of using such technology. Empirical
research has, in particular, failed to question the extent to which the human
potential for error will remain after formalising the specification process.

4 An Empirical Basis for Assessment

“One difficulty we encountered in determining the relative advantage of
formal methods is the lack of strong scientific evidence that the technology
is, in fact, effective. Various surveys have provided reasonably systematic
anecdotal evidence of effective industrial use of formal methods. However,
none of the formal methods application projects has used strict, scientific-
ally based, measurement data” (Craigen et al., 1995, p.407).

The increasing interest in formal methods shown by the software community
(Bowen and Hinchey, 1994; Oakley, 1990) may be attributed to the much pub-
licised claims that formalisation of the specification process will lead to greater
benefits than are currently realised with informal methods. Many of these
claims, however, are based on subjective belief or isolated case studies from
which results can be difficult to generalise (Craigen et al., 1995; Fenton, 1996).
That software research has yet to produce substantive evidence which might
refute such claims appears, for many, to support the case for formalisation (see
for example: Bowen, 1988; Hall, 1990; Sommerville, 1992; Potter et al., 1996).
But irrespective of how plausible they might appear at face value, such claims
rest on anecdotal, rather than empirical, grounds.

“In the absence of a suitable measurement system, there is no chance of
validating the claims of the formal methods community that their models
and theories enhance the quality of software products and improve the
cost-effectiveness of software processes” (Fenton and Kaposi, 1989, p.293).

During the course of this research a series of cognitive studies have been
conducted in order to determine the linguistic properties of formal specifications
which are particularly likely to elicit human errors or biases. Later in this paper,
the results of these experiments are recast in terms of a descriptive model
designed to yield quantitative measures of complexity in formal specifications.
Given that the results were independently and objectively generated, the model
also provides an empirical basis for assessing two of the claims associated with
formal methods which rest upon psychological assumptions; namely, that formal
specifications are open to only one form of interpretation (Bowen, 1988; Liskov
and Berzins, 1986; Thomas, 1993), and that it is easier to reason about formal
expressions than their informal counterparts (Ince, 1992; Reichenbach, 1966;
Thomas, 1995; Wing, 1990).




5 Principles of Software Measurement

The term “measure”, in the software measurement literature, refers to a number
or symbol assigned to characterise an attribute of an entity (Fenton and Pflee-
ger, 1996; Kaposi and Myers, 1994; Kitchenham, 1991). Aside from its connota-
tions with decimalisation and mathematical functions, the term “metric” has,
in the context of software engineering, become synonymous with “measure”.
Although, the term “metric” might suggest both a measure and an underlying
model or theory, this is not a view that reflects the ways that metrics are nor-
mally perceived or applied (Sheppard and Ince, 1993). No such distinction is
maintained here and the terms are used interchangeably in this paper.

Numbers may be used to characterise the quality of products or processes,
and there exist two corresponding divisions of software metric (Fenton and
Pfleeger, 1996; Ince, 1989; Roche, 1994; Sheppard, 1988). “Product metrics”
are oriented towards the tangible outputs from development activities such as
requirements documents, system design or program code. Typical examples in-
clude the number of executable lines of code and the percentage of comments per
program module. “Process metrics” are oriented towards the development pro-
cesses themselves, such as program design, implementation and testing. Typical
examples include the predicted costs of a stage of development and the number
of defects found during a phase of program testing.

Software metrics can be applied as descriptors or predictors of quality, which
reflect the reactive and proactive ways in which they can be used respectively
(Ince, 1989; Kaposi, 1991; Kitchenham, 1991). “Descriptor metrics” are used
to describe existing products or processes. Typical examples include product
measures such as the number of possible routes that may be taken through a
program module, and process measures such as the total expenditure on testing.
“Predictor metrics” are used to estimate final characteristics of products yet to
be developed or to produce estimates of descriptor metrics. These might include
product metrics such as the estimated number of lines of source code that will
comprise the final system, and process metrics such as the projected costs of
an entire project based on the amount spent so far and the work yet to be
completed.

Software metrics can again be further categorised according to the type of
attribute to be measured; internal or external (Fenton and Pfleeger, 1996). The
“internal” attributes of a product or process are those which can be measured
purely in terms of the product or process itself. The length of source code,
for example, can be measured directly without reference to its behaviour. The
“external” attributes” of a product or process are those which are measured
in terms of how it interacts with its environment. The reliability of a system,
for example, can be measured in terms of the number of times it fails to fulfill
a valid service requested by its users. It is a common misconception that the
numeric value yielded by an external metric provides a definitive, all encom-
passing account of the quality of a product or process; the higher the value, the
more quality is assumed to exist. External metrics tend to be defined in terms
of only a small subset of attributes, however, which are weighted and combined
in just one of numerous possible ways.




The metrics to be developed during the course of this paper may be clas-
sified as predictive, external and product based. They are predictive because
they relate to possible future events; namely, the types of conclusion likely to
be drawn by human reasoners in response to formal specifications. They are
external because their values are not calculable from formal specifications alone,
but also from the ways in which people have reasoned about similar specifica-
tions in the past. The metrics are product based because they yield measures
oriented towards grammatical properties of specifications such as the presence
of specific logical operators, the degree of realistic or believable content, and
the types of logical statement that may be inferred from combinations of these.

5.1 Benefits of Early Software Measurement

Reliance upon source code metrics alone, such as those proposed by Halstead
(1977) and McCabe (1976), has proved unsatisfactory because they can only be
applied at a relatively late in the software development process, once code has
been implemented. By this time, effort and expense of producing the system
has already been incurred and it can be a costly exercise to backtrack through
specification, design, coding and testing to rectify even the slightest mistake
or omission (Sheppard and Ince, 1993). It would seem more beneficial to ap-
ply metrics earlier in the development process where they are likely to help
realise greater savings (Bainbridge et al., 1991; Fenton and Kaposi, 1989; Shep-
pard, 1988). What is needed, then, to complement existing reactive forms of
quality control metric, is a more proactive form of measurement which enables
developers to predict where errors are likely to stem from before the system
has been built. Earlier measures could, then, provide feedback to software de-
velopers and act as a basis for making more informed development decisions
before errors have had chance to propagate throughout subsequent development
work. It is in view of the low levels of tolerance for error in those areas to which
formal methods are applied that Wordsworth (1992, p.68) argues “in a formally
developed product the aim is defect prevention rather than defect detection”.

5.2 Measuring Specification Complexity

The software measurement literature tells us that complexity metrics are use-
ful indicators of many software quality attributes (Kitchenham, 1991; Sullivan,
1975). For instance, complexity is generally related to reliability because com-
plicated documents are more likely to contain residual errors, and to maintain-
ability because complicated documents require more time and effort to under-
stand before incorrect sections can be located and revised. There is a tendency
in the software industry, however, to perceive complexity metrics as accurate in-
dicators of the complete range of attributes that contribute towards the quality
of a product or process, such as readability, structural simplicity, maintainab-
ility and robustness, when in fact they are based on measures taken from only
a narrow subset of such attributes (Fenton, 1992). McCabe’s (1976) model,
for example, claims to provide indications of cognitive complexity, program de-
fects and maintenance costs. Given that its predictions are based only on the




number of logical decision branches in program code, however, it is debatable
as to whether or not these notions are actually within its descriptive power
(Evangelist, 1983; Fenton, 1991; Fenton and Kaposi, 1989; Sheppard, 1988).

“Rather than seeing failure and errors as things that exist, but can be
avoided with the right methodology, we can view them as things that the
designer brings about, and ask what behaviour causes this. If we under-
stood better why designers make mistakes we might be able to suggest
ways they can adjust their behaviour to minimise errors, or contain their
impact on the process as a whole” (Loomes et al., 1994, p.186).

Formal methods research has historically been directed at developing or
improving tools and notations, that is, it has been oriented towards the sup-
porting technology rather than its human users. But assuming that the human
potential for error will remain after formalisation of the specification process
and that inaccurate human reasoning about formal specifications will continue
to lead to the introduction of defects in software systems, it seems appropriate
that we strive to pre-empt errors in human judgement before these have chance
to cause erroneous behaviour. This view is supported by Senders and Moray’s
(1991, p.66) argument that “we need to know the probability of the mistaken
decision even more than the probability of the ‘incorrect’ actions stemming
from it”. One way of achieving this is by introducing a model for predicting
likely sources of cognitive complexity in formal specifications. Unlike those
models proposed by the software community which claim to yield generalisable
measures of complexity, our aims are much more modest. We aim only for a
tentative model to characterise very specific types of human reasoning, under
highly specialised conditions. The intention is not to formulate a general metric
with a wide scope for application, but rather to demonstrate the feasibility of
the approach,

In view of their central role in project documentation and communication,
it is important that the readability of formal specifications is not impaired. To
this end, complexity metrics can be used to indicate those parts of a specific-
ation which could potentially give rise to human comprehension or reasoning
difficulties. The model which we are working towards is concerned with quan-
tifying “inferential complexity”, that is, the ability of people to reason or draw
conclusions about formal specifications. It is not claimed that the model is
indicative of other attributes belonging to formal specifications, such as main-
tainability or reliability, although the model does incorporate the notions of
interpretability and representability. This claim is based on the assumption
that, in order to reason about any form of written text, a reader must interpret
its meaning and then maintain some internal representation of it whilst the
reasoning process is conducted. The proposed model is therefore psychological
in nature.




5.2.1 Psychological Versus Computational Complexity

A study of specification complexity could be approached from one of two pos-
sibly interrelated directions: computational or psychological. A model of the
computational complexity in a formal specification might aim to quantify the
efficiency of the algorithms used in its mathematical calculations or the struc-
ture of its modules. The main emphasis of such a model would be on achieving
maximum system efficiency. A model of psychological complexity, in contrast,
might aim to quantify the extent to which attributes of a specification give rise
to difficulties in its creation or comprehension. These attributes might include:
the symbology of the language, the meanings of its constructs, or the style of
writing employed by its designers. The main emphasis of such a model would be
on achieving a system that is easier for people to work with. The psychological
complexity of software products and processes has largely been overlooked in
favour of quantifying the computational attributes of the development process.

“Assessing the psychological complexity of software appears to require
more than a simple count of operators, operands, and basic control paths.
If the ability of complexity metrics to predict programmer performance
is to be improved, then metrics must also incorporate measures of phe-
nomena related by psychological principles to the memory, information
processing, and problem solving capacities of programmers” (Curtis et
al., 1979, p.103).

A distinguishing feature of psychological complexity is the interaction
between product characteristics and individual differences (Curtis et al., 1979),
such as notational constructs and language expertise. Unlike computational
complexity, modelling psychological complexity in a software product requires
a great deal more than counts of its internal product attributes. Models of
psychological complexity must accept as parameters measures relating to both
the product and the people who interact with it (Curtis, 1986; Melton et al.,
1990; Ory, 1993). All of the specification metrics published to date are cal-
culable purely in terms of grammatical properties of specifications (see for ex-
ample: Samson et al., 1987), such as dependencies between modules or decision
branches, and do not account for the human developers involved in the specific-
ation process. Despite claims to the contrary, the predictions of such models
are limited from a psychological perspective. It is presumably due to the in-
creasing complexity and criticality of software generally (MacKenzie, 1992) that
the emphasis is changing. In addition to the algorithmic efficiency of software,
the measurement community is becoming increasingly concerned with the hu-
man complexity of evolving systems (Fenton, 1991). This is reflected in recent
cognitive research aimed at identifying sources of psychological complexity in
formal software specifications (Finney, 1996).




5.3 Statistical Prediction of Human Error

“Errors result from the normal operation of the human information pro-
cessing system, along with effects arising from the environment, the various
pressures and biases influencing the actor, and the latter’s mental, emo-
tional, and attentional states (ignoring the possibility of traumatic events
that damage the functioning of the nervous system). In principle, if we
knew all these factors, we could predict errors precisely. In practice, since
we cannot know all the factors, we will always have to resort to statistical
prediction” (Senders and Moray, 1991, p.61).

The task of predicting errors of human judgement with a reasonable degree
of accuracy is complex because the reasoning processes which influence human
judgement involve numerous psychological issues, few of which are fully under-
stood by professional psychologists. These include the ways in which reasoning
is affected by: personality traits, prior beliefs, motivational states, task struc-
ture and presentation. Moreover, errors of judgement are frequently ascribable
to multiple causes and it is rare indeed that all of these causes are evident, even
to their perpetrators, which complicates the task of predicting when and where
similar errors might happen in future. Faced with the problem of predicting fu-
ture events, such as manifestations of human reasoning errors, our predictions
will, where possible, be based on full knowledge of the causal factors which
lead to the event occurring. “Full knowledge” is unlikely to be available or
accessible, however, for predicting the psychological causes of error in human
judgement. In the absence of such knowledge, our predictions might be based
on the frequencies with which the same, or similar, errors have occurred for
similar people in the past. A practical alternative available to us, then, is to
make predictions based on probability. There is, after all; always likely be an
element of unavoidable uncertainty associated with our predictions given that
we can never predict with absolute certainty what will happen in future possible
worlds (Springer et al., 1966).

“The rules which we employ in life-assurance, and in the other statistical
applications of the theory of probabilities, are altogether independent of
the mental phaenomena of expectation. They are founded upon the as-
sumption that the future will bear a resemblance to the past; that under
the same circumstances the same event will tend to recur with a definite
numerical frequency; not upon any attempt to submit to calculation the
strength of human hopes and fears” (Aristotle, in Ross, 1949, p.244).

The heuristic methods that people use to assess the probabilities of future
events are notoriously inadequate for making consistent and reliable predictions
(Kahneman et al., 1991). Human predictions, including those made by profes-
sionals with the relevant training or domain knowledge, are liable: to focus on
irrelevant factors or neglect relevant ones (Evans et al., 1993), to assign incor-
rect or inconsistent weightings to factors (Nisbett and Ross, 1980), or to be
affected by emotional beliefs and motivational states (Dawes, 1971). It is for
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these reasons that we cannot rely purely on humans to predict human errors
and, more specifically, that we cannot rely upon human software developers
alone to pre-empt the sources of their own, and their colleagues’, reasoning er-
rors in formal specifications. One possible solution, which will be explored in
this paper, would be to augment the predictions of human developers with an
independent, mathematical means for assessing the potential of given specific-
ations to admit human reasoning errors.

“Human judges are not merely worse than optimal regression equations;
they are worse than almost any regression equation. Even if the weights
in the equation are arbitrary, as long as they are nonzero, positive, and
linear, the equation generally will outperform human judges” (Nisbett
and Ross, 1980, p.141).

Although the psychological determinants of error are often less than clear,
this does not necessarily mean that explicit mathematical models cannot be
used to predict their propensity for admitting human error. This view is suppor-
ted by Meehl’s (1973) argument that the complexity of the human mind should
not preclude the use of mathematics in decision making. Moreover, it is ar-
gued that statistical methods, particularly regression based models, yield more
accurate predictions than the naive intuitions of so-called “experts” (Dawes,
1971; 1979; Dawes and Corrigan, 1974; Goldberg, 1970; Slovic and Lichten-
stein, 1971). This argument is based on the assumption that statistical meth-
ods abstract away from the processes they represent and are not influenced by
the kinds of cognitive state or heuristic which affect human prediction such as:
aptitude, fatigue, habit or bias. Regression based models consistently attach
the same weightings to causal factors, regardless of such extraneous variables,
and can generate quantifiably precise estimates of the extent to which each
contributes towards an event’s occurrence.

6 The Experiments

The fact that people currently err at all in the specification process is a reason
for concern, but the possibility that they will continue to do so even after having
adopted a formal approach is especially disconcerting given the business and
safety critical nature of the projects to which they are applied (Barroca and
McDermid, 1992; Bowen and Stavridou, 1993). If software developers assume
that the use of formal methods will promote error-free reasoning when in fact
this belief is inaccurate, then it is likely to instill a sense of security where none
is warranted. Despite obvious syntactic differences, however, most formal nota-
tions contain corresponding logical operators with roughly equivalent meanings
as those same natural language constructs which have been shown to evoke
incorrect decisions in cognitive studies: = (if), A (and), V (or), — (not), 3
(some) and V (all). The main empirical issue addressed during the experiments
was to test how far the same non-logical errors and biases that people exhibit
when reasoning about natural language also occur when software developers are
reasoning about the logically equivalent statements in formal specifications.
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6.1 Selecting a Formal Notation

In order to conduct the experiments and formulate metrics it was necessary to
use a notation with a single, concrete syntax. The range of formal notations
developed for the purpose of software specification has been steadily increasing
during the past decade, however, and the range of notations now available vary
widely in their mathematical foundations, purpose and popularity. In order
to identify a suitable grammatical framework which could meet the research
aims, a systematic review of twenty formal notations was conducted against
pre-determined criteria (Vinter, 1996). The reasons for specifically choosing
the Z notation (Spivey, 1992) were as follows.

1. The fact that Z is one of the most popular notations used in academia
and industry (Dean and Hinchey, 1996) eased the task of finding adequate
numbers of suitably skilled participants for the experiments.

2. The mathematical calculi underlying the Z notation, predicate logic (Lem-
mon, 1993) and set theory (Johnstone, 1987), provide the grammatical
basis for many other formal notations. It is therefore possible that the re-
search findings may generalise to those notations sharing the same logical
foundations: Gypsy (Ambler, 1977), Larch (Guttag et al., 1985), RAISE
(RAISE Language Group, 1992) and VDM (Jones, 1989).

3. Zisreputed to be one of the more easily readable formal notations (Bowen,
1988; Jack, 1992). The probabilities yielded by our model, for quantifying
the likely levels of correctness for Z users, are therefore likely to be among
the highest for any of the notations that the formal methods community
has to offer. :

4. Having been applied in industry for developing a diverse range of applic-
ations (Barden et al., 1992), Z is one of the more well established and
commercially viable formal methods. This has favourable implications
for the longevity and credibility of the model’s theoretical basis.

5. Perhaps owing to the current drive for a rigorous deductive proof system
and an international standard for Z (Brien and Nicholls, 1992), not to
mention its increasing acceptance in industry (Hall, 1996; Nix and Collins,
1988), the Z notation represents a highly active area of academic research
and one in which much still remains to be explored.

6.2 Tasks

In light of relevant findings from cognitive science, the main concerns of our
experiments were to determine how far human reasoning in formal contexts is
affected by: the meaningful content of problem material, the polarity of terms
in logical rules, the types of inference to be drawn, and the believability of
problem material. Participants were divided into two groups for each of the
experiments, abstract formal logic (AFL) and thematic formal logic (TFL),
with twenty different participants completing the tasks under each linguistic
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condition. The stimuli for each task comprised a prose description and several
Z statements, at least one of which contained a logical rule. These represented
the premisses necessary for the inference to be drawn. Participants were also
shown four Z statements representing possible conclusions, one of which was
indeterminate; “No valid conclusion” or “Nothing”.

6.3 Participants

A total of one hundred and twenty people took part in the experiments, all
of whom had the relevant knowledge of the Z formal notation and training in
logical deduction. These consisted of staff and students from academic institu-
tions, and computing professionals from industrial software companies. Parti-
cipants comprised 72 staff, 26 students, and 22 professionals. Their mean age
was 33.55 years (s = 9.83) and 110 had studied at least one system of formal
logic beforehand, such as the propositional or predicate calculi, Boolean algebra
or Higher Order Logic. Their mean level of Z experience was 4.63 years (s =
4.04). According to their personal ratings of expertise, participants comprised
31 novice, 54 proficient and 35 expert users of the Z notation. All were recruited
via personal invitation.

6.4 Procedure

Prior to completing the main tasks, participants were asked to provide the fol-
lowing biographical information: occupation, age, organisation, course, number
of years’ Z experience, a list of other formal notations known, a subjective rat-
ing of their Z expertise (novice, proficient or expert), and details of any system
of formal logic studied beforehand, such as the propositional or predicate calcu-
lus, Boolean algebra or Higher Order Logic. Experimental groups were counter
balanced, firstly, according to participants’ personal ratings of Z expertise and,
secondly, according to their lengths of Z experience. All task sheets were com-
puter generated. These were distributed to participants and completed an-
onymously then mailed back to the experimenter. All participants were tested
on an individual basis. For a more detailed description of the methodology used
in each study readers are referred to Vinter et al. (1997a; 1997b; 1997c).

6.4.1 Conditional Inferences

Cognitive science has generated a wealth of evidence to suggest that people are
prone to various forms of error and bias when reasoning about conditional state-
ments expressed in natural language. “Matching bias” is said to occur when an
individual selects, or evaluates as relevant, only those conclusions which contain
one or more of the terms mentioned explicitly in the given premisses (Evans,
1972a). “Negative conclusion bias” is said to occur where an individual is more
inclined to endorse an inference whose conclusion is negative rather than affirm-
ative, which often maximises the individual’s chances of making statements that
are unlikely to be disproved in everyday reasoning (Evans, 1993; Pollard and
Evans, 1980). “Affirmative premiss bias” is said to occur where an individual is
predisposed only to draw determinate conclusions from premisses that do not
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contain any negative components (Evans, 1993). The hypothesis of “facilita-
tion by realism” argues that realistic, as opposed to abstract symbolic, task
content can have strong facilitatory effects on conditional reasoning perform-
ance (Gilhooly and Falconer, 1974; Griggs and Cox, 1982; Johnson-Laird et al.,
1972; van Duyne, 1974). This hypothesis stems from the theory of “belief bias”,
whereby the individual is claimed to respond primarily according to his or her
prior beliefs towards the real world referents of a task’s meaningful content,
rather than its logical structure (Barston, 1986; Evans et al., 1993).

In order to test whether trained users of formal methods are liable to suc-
cumb to the same non-logical tendencies when reasoning about conditional
statements expressed in the Z notation, our tasks required participants to draw
the same types of inference shown to elicit errors and biases in the natural
language domain: modus ponens (MP), modus tollens (MT), denial of the
antecedent (DA) and affirmation of the consequent (AC). It should be noted
that the MP and MT inferences lead to determinate conclusions, whereas AC
and DA are fallacious inferences in which nothing can be deduced logically. The
presence of affirmatives (A) and negatives (N) were systematically varied in the
conditional rules in order to test for possible polarity biases. This gave rise to
sixteen logical tasks whose forms are illustrated in Table 1.

TABLE 1
Logical forms of the conditional inference tasks

Polarity MP MT DA AC

AA P=4q,p p=q,q p=q,"p P=4q4q
.q Y/ sog Sop :

AN P=>"q¢,p p=q, q p=>-¢,"p = p=>-g g
R’) SoTp L. q P

NA -p = ¢, P =p = g, “p=>q,p ap=q,q
o q S D Ral’) LLoTp

NN Sp =g, P TP =g, g =P =g, p p = g, g
Soq /] S q S.Tp

Note: Conclusions shown for DA and AC are fallacious.

Two versions of each task were formulated in order to test for possible effects
of realistic material; one expressed in abstract terms and one in thematic terms.
All abstract tasks described relations between colours and shapes, whereas the
thematic tasks described realistic computing applications including: a library
database system, a flight reservation system, a missile guidance system, a video
lending system, and a vending machine operation. The materials for the con-
ditional reasoning tasks are exemplified in Figures 1 and 2 which show the
abstract and thematic versions of the AC-AN inference task respectively. An
asterisk indicates the logically correct conclusion in each case.
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If colour’ # blue after its execution, what can you say about the value of
shape before operation SetColour has executed?

__SetColour
AShapeAndColour

(shape = circle) = (colour’ # blue)
shape' = shape

(a) shape # rectangle (c) shape # circle
(b) shape = circle (d)* Nothing

Figure 1: Abstract conditional AC-AN inference

If —(reactor_status! = Ok) after its execution, what can you say about
coolertemp before operation ReactorTempCheck has executed?

__ ReactorTempCheck
2 NuclearPlantStatus
reactor_status! : Report

coolertemp > Maztemp = —(reactor_status! = Ok)

(a) coolertemp < Maztemp (¢c) coolertemp > Mintemyp
(b) coolertemp > Maztemp (d)* Nothing

Figure 2: Thematic conditional AC-AN inference

6.4.2 Disjunctive Inferences

Many of the errors that reasoners commit when reasoning about disjunctive
rules in laboratory based studies stem from the ambiguity of “or” in everyday
communication and people’s frequent uncertainty about whether to draw in-
clusive or exclusive interpretations (Braine and Rumain, 1981; Hurford, 1974).
In light of Newstead and Griggs’ (1983a) hypothesis that disjunctive reasoning
should be better in those languages where disjunctives are defined unambigu-
ously, one would not have expected our participants to experience this form of
uncertainty in the explicitly formal context of the Z notation, given that the
concept of exclusive disjunction is not defined as part of the standard notation?
(Brien and Nicholls, 1992). Evans et al. (1993) suggest that people’s inclination
to adopt inclusive interpretations of disjunctive rules, when exclusive interpret-
ations are appropriate, can lead them to draw determinate conclusions when
indeterminate ones are logically appropriate; participants thereby exhibit a bias
towards propositional conclusions. Once the correct form of interpretation has
been adopted, however, the cognitive literature reports that people generally
find it easier to reason with exclusive than inclusive disjunctives (Newstead
et al., 1984; Newstead and Griggs, 1983a; Roberge, 1977; 1978). As a pos-
sible explanation for this finding, it is argued that exclusive disjunctives lead

?Several texts on the Z notation compensate for this by introducing non-standard symbols.
Diller (1994), for example, introduces the “||” symbol to denote exclusive disjunction.
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to symmetrical inferences; that is, by knowing the truth value of one disjunct
the truth value of the other can be deduced.

In order to test whether our participants succumbed to the same non-logical
tendencies, our tasks tested participants’ abilities to draw the same forms of
“denial” and “affirmation” inference shown to elicit errors and biases in the
natural language domain. The disjunctive tasks involved either the denial of a
component or the affirmation of a component from the major premiss by the
minor premiss. The presence of negatives in the major premiss and the position
of the component affirmed or denied in the minor premiss were systematically
varied in order to test for possible polarity biases. Table 2 illustrates the logical
forms of these tasks. It should be noted that, whilst the denial inferences
are logically sanctionable, all of the affirmation inferences shown are fallacious
under a logical, inclusive interpretation of the Z “V” operator.

TABLE 2
Logical forms of the disjunctive denial and affirmation tasks

Term Denied

Polarity or Affirmed Denial Affirmation
AA 1 pVg p ¢ pvV¢g,p g
AA 2 pVg,—qg .p pVg, q ;.p
AN 1 pV-g,—p g pV-g,p . g
AN 2 pV=g, g . .p pV=g,—g c.p
NA 1 -pVg,p .. ¢ —pVyg,p . .g
NA 2 -pVg, g P -pVgqg,q ..Dp
NN 1 “pV=gp g “pV =g, p g
NN 2 “pV-og, g cTp =pV g, g P

Note: The following abbreviation refers to the disjunctive inferences:

<Major premiss polarity>-<Term denied or affirmed>.

In order to test for possible effects of realistic material, two versions of
each task were formulated; one expressed in abstract terms describing relations
between colours and shapes, and one expressed in thematic terms describing
realistic computing applications. The materials for the disjunctive tasks are
exemplified in Figures 3 and 4 which show the abstract denial AN-1 task and
thematic affirmation NN-1 task respectively.

If —(colour! = white) what can you say about shape! in operation
GetShapeColour?

— GetShapeColour
shape! : SHAPE
colour! : COLOUR

colour! = white V —(shape! = rectangle)
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(a) shape! = square (c)* —(shape! = rectangle)
(b) shape! = circle (d) Nothing

Figure 3: Abstract disjunctive denial AN-1 inference

If =(processor! = Pentium) after its execution, what can you say about display!
in operation ComputerHardware?

_ ComputerHardware
processor! : Chip
display! : Screen

~(processor! = Pentium) V —(display! = HighResolution)

(a) display! = LowResolution (c)* display! = HighResolution
(b) —(display! = HighResolution) (d) Nothing

Figure 4: Thematic disjunctive affirmation NN-1 inference

6.4.3 Conjunctive Inferences

The linguistic literature argues that the principles governing the use of disjunc-
tion and conjunction in English are similar because both require a common
topic between two terms, and this may be overtly present or derivable by pre-
supposition and deduction (Lakoff, 1971). Cognitive science has, in general,
been slow to address the question of whether people are prone to similar kinds
of systematic error and bias as those observed in studies of conditional and
disjunctive reasoning. A series of studies conducted by Tversky and Kahne-
man (1983), however, provide evidence of people’s fallibility when reasoning
with conjunctive statements. Probability theory states that the likelihood of a
conjunction, “p and ¢”, cannot exceed the likelihood of one of its constituent
outcomes, p or gq. The experimenters suggest, however, that people’s use of
intuitive heuristics, rather than the conjunctive laws of logic, led them them to
violate this principle in a range of realistic contexts.

Those systems of logic defined in terms of the principles underlying Gentzen’s
(in Szabo, 1969) deductive calculus include two types of inference rule for con-
necting logical chains of reasoning; those for introducing and those for elim-
inating propositional connectives. The conjunctive reasoning tasks presented
to participants involved either the introduction or the elimination of logical
components in a similar fashion. The polarity of components in the tasks’
premisses and the order of components introduced and eliminated were sys-
tematically varied. This design gave rise to the tasks whose logical forms are
shown in Table 3. It should be noted that, whilst the elimination inferences are
logically sanctionable, all of the introduction inferences shown are fallacious.
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TABLE 3
Logical forms of the conjunctive elimination and introduction tasks

. Term T . Term .
t
Polarity Eliminated Elimination Polarity Introduced Introduction
AA 2 PAG D A 1 ppAg
AN 1 PA-g g A 2 g .pAg
NA 2 SpAqg N 1 p s TP Ag
NN 1 ap A-g g N 2 g . pA-g
Note: The following abbreviation refers to the conjunctive inferences:

< Premiss polarity>-< Term Eliminated or Introduced>.

The materials for the conjunctive reasoning tasks are exemplified in Figures
5 and 6 which show the conjunctive elimination NA-2 and introduction A-1
tasks respectively.

What can you say about the effect of operation HireVideo on its after state
variables?

— HireVideo
A VideoShop

~(film' € FilmsOnShelf) A report’ = OnLoan

(a) film' € FilmsOnShelf A report’ = OnLoan (c)* =(film’ € FilmsOnShelf)
(b) —(report’ = OnLoan) (d) Nothing

Figure 5: Thematic NA-2 conjunctive elimination inference

What can you say about the effect of operation GuidedMissileCheck on its after
state variables?

— GuidedMissileCheck
A Bearings
target_loc? : COORDS

current_loc' = target_loc?

(a) —(current_loc' = target_loc?) A mission’' = Failure (c) —(current_loc' = target_loc?)
(b)* —(current_loc' = target_loc?) A mission’ = Failure (d) Nothing

Figure 6: Thematic conjunctive introduction A-1 inference

6.4.4 Quantified Inferences

It is argued that cognitive studies of syllogistic reasoning provide important
pointers to the cognitive processes which people employ in quantified reasoning
(Johnson-Laird and Bara, 1984) and in human reasoning generally (Dickstein,
1978b). A categorical syllogism is an argument consisting of three statements:
a major premiss, a minor premiss and a conclusion. Each of these statements
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describe relations between the various “terms” of the argument. The major
premiss describes the relation that holds between the predicate of the conclu-
sion (P) and a middle term (M). The minor premiss describes the relation that
holds between the subject of the conclusion (S) and the middle term. The aim
of the syllogistic task is to use the two premisses as the basis for deducing a
conclusion which describes a relation that exists between S and P, or, where
the premisses cannot lead to such a deduction, to state that no determinate
conclusion follows. Four types of quantifier may range over the assertions made
in a syllogism: “All”, “Some”, “Some ... not” and “No”. The quantifier which
ranges over a syllogistic predicate reflects that predicate’s “mood”, convention-
ally abbreviated as shown in Figure 7.

(A) All A are B Vz : Type o A(z) = B(z)
@ Some A are B 3z : Type o A(z) A B(z)
(0) Some A are not B Jz : Type o A(z) A —~B(z)
(E) No A are B =3z : Type o A(z) A B(z)

Figure 7: Z translations of the four syllogistic moods

The ordering of terms in a syllogism’s premisses is significant. As there are
two possible orderings for each of the major and minor premisses, this gives rise
to four possible arrangements, or “figures”, as shown in Figure 8. Although the
order in which terms are presented within the two premisses might vary, the
ordering of terms in the conclusion always proceeds from S to P.

Figure 1 Figure 2 Figure 3 Figure 4
M-P P-M M-P P-M
S-M S-M M-S M-S
S-P S-P S-P S-P

Figure 8: The four figures of a syllogism

The cognitive literature has been keen to propound numerous explanations
for the possible causes of error in the syllogistic task. “Atmosphere theory”
predicts that, where the relationship between S and P is less than obvious, the
reasoner will draw a conclusion which shares the same qualifiers and quantifiers
as those contained in the premisses, with little or no regard for the underlying
logic of the syllogism (Begg and Denny, 1969; Woodworth and Sells, 1935). The
theory of “matching bias” argues that, where the reasoner is unsure of how to
reach a valid conclusion via logical deduction, he or she will simply choose a
conclusion whose quantitative form matches one of the two premisses (Evans,
1972a; Wetherick and Gilhooly, 1990). The theory of “implicit premiss con-
version” argues that reasoners often attempt to convert one or both premisses
to simpler forms which are more amenable to mental representation before at-
tempting a logical analysis. Illicitly converted premisses can therefore form a
false basis from which erroneous conclusions are drawn (Dickstein, 1981; News-
tead and Griggs, 1983b; Revlin and Leirer, 1980; Wilkins, 1928).
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It is argued that the ability of reasoners to differentiate between the prag-
matic laws of language and the laws of logic is a major determinant of reasoners’
performance in deductive tasks (Politzer, 1986). Several studies suggest that
reasoners are predisposed to apply Gricean (1975) conventions from everyday
discourse to the syllogistic task (Begg and Harris, 1982; Newstead, 1989; 1995).
The theory of the “Same M fallacy” predicts that, whenever the subject and
predicate of a speculative conclusion are related by a common middle term (i.e.
the same M), reasoners will tend to accept this conclusion at face value, ac-
cording to the Gricean maxim of relation, irrespective of its logical necessity
(Chapman and Chapman, 1959; Dickstein, 1975; 1976). The theory of “caution
bias” claims that reasoners are predisposed to accept “Some. .. are” conclusions
more readily than “All ... are” conclusions, and “Some ... are not” conclusions
more readily than “None ... are” conclusions, because reasoners are generally
conservative estimators (Woodworth and Sells, 1935). It is argued that reason-
ers generally exhibit a bias towards propositional conclusions which misleads
them into interpreting or combining premisses in ways that can only lead to de-
terminate conclusions, or into discounting hypothetical possibilities which lead
to indeterminate conclusions (Chapman and Chapman, 1959; Dickstein, 1975;
1976; 1978b; Revlis, 1975; Traub, 1977).

Reasoners succumb to “belief bias” in syllogistic studies by accepting at
face value arguments whose conclusions they believe, regardless of their logical
validity, and only scrutinising those arguments whose conclusions do not con-
form with their beliefs (Evans et al.,, 1983; Henle and Michael, 1956; Janis
and Frick, 1943; Morgan and Morton, 1944; Revlis, 1975; Wilkins, 1928). The
theory of “figural bias” claims that the figure of a syllogism determines the
order in which end terms are related during premiss integration (Johnson-Laird
and Steedman, 1978), and that a directional bias in our cognitive processes
makes it easier to scan represented premisses in certain directions (Johnson-
Laird and Bara, 1984). It is also argued that people reason about syllogisms
in ways analogous to those in which Venn Diagrams or Euler Circles are used
in mathematics, whereby interpretation of premiss information creates a com-
bined mental representation showing the set relations that may exist between
syllogistic terms (Ceraso and Provitera, 1971; Erickson, 1974; 1978; Traub,
1977). Errors then become explainable as a consequence of reasoners’ use of
inappropriate representations or their failure to consider all possible hypothet-
ical combinations of set relations that follow from a given premiss pair (Ceraso
and Provitera, 1971; Dickstein, 1978b; Erickson, 1974).

In order to test whether our participants were prone to the same forms of
error and bias when reasoning about quantified statements expressed in the Z
notation, we used logically equivalent tasks to those used in natural language
based syllogistic studies. The main aims of our study were to determine the
extent to which mood, figure, meaningful content and the believability of con-
clusions affected reasoning performance. In order to test for possible effects of
realistic material, meaningful identifiers were used for function names in the
thematic versions of the tasks. These names were chosen so as to refer to
concepts with which participants would be familiar including: social groups,
occupations, animals and foods. In contrast, arbitrary single letter identifiers
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were used for function names in the abstract tasks. For the practical purposes
of our study, we included only a cross-section of the possible mood and figure
combinations, as shown in Table 4. The abstract tasks comprised 30 syllogisms
(15 with determinate and 15 with indeterminate conclusions), whilst the them-
atic tasks comprised 40 syllogisms (15 with determinate believable conclusions,
15 with indeterminate believable conclusions, 5 with determinate unbelievable
conclusions, and 5 with indeterminate unbelievable conclusions).

TABLE 4
Logical forms of the quantified inference tasks

Prem. Conc. Prem. Conc. Prem. Conc. Prem. Conc. Prem. Conc.

AAT A() AA2 N AA3 N AA4 N AIl* I
AI3* I A02 O AO4 N AE2 E(O) AE4 E(0)
1IA3 I IA4 I Im¥* N 14 N IE* N
IE2* N IE4 N OAl* N OA3* O 003 N
004 N EAl E() EA2 E(O) EA3 N EA4 N
El O E2 O E3 O EM4 O EE4 N

Note: Two versions of those syllogisms marked with an asterisk were presented
to the TFL group; one with a believable conclusion, one with an unbelievable
conclusion. Weak conclusions are shown in parentheses.

The materials used for the quantified reasoning tasks are exemplified in
Figures 9, 10 and 11. These show the abstract AA1, thematic EA1 (believable)
and thematic IA4 (unbelievable) tasks respectively. A plus sign indicates a
weak conclusion where a stronger one was also possible.

Vz:X e B(z)= C(z)
Vz:X e A(z) = B(z)

(a) Jz:X e A(z) A C(2)
(b)* Vz:X e A(z) = C(z)
(c) =3z :X e A(z) A C(z)
(d) No valid conclusion

Figure 9: Abstract determinate AA1 syllogism
—~3dp : Person e millionaire(p) A poor(p)
V p : Person e rich(p) = millionaire(p)

(a)* =3 p: Person e rich(p) A poor(p)
(b)* Ip: Person e rich(p) A —poor(p)

(c) Vp: Person e millionaire(p) = rich(p)
(d) No valid conclusion

Figure 10: Thematic determinate EA1 syllogism with believable conclusion
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dp : Person e capitalist(p) A Russian(p)
Vp : Person e Russian(p) = communist(p)

(a)* dp: Person e communist(p) A capitalist(p)
(b) —3p: Person e communist(p) A capitalist(p)
(c) Ip: Person e Russian(p) A —capitalist(p)
(d) No valid conclusion

Figure 11: Thematic determinate IA4 syllogism with unbelievable conclusion

7 Formulating Inferential Complexity Metrics for Z

7.1 Results of the Conditional Reasoning Study

The frequencies of valid inferences for each combination of premiss polarity
endorsed by the abstract and thematic groups, during the study of conditional
reasoning, are shown in Figures 12 and 13. Participants’ levels of correctness
under each experimental condition revealed overall rank orders as follows: AFL
(79%) < TFL (90%) for group type, DA (73%) < MT (83%) < AC (85%)
< MP (98%) for inference type, and NA (81%) < NN (85%) = AA (85%) <
AN (88%) for polarity type. Analyses of variance revealed a significant main
effect of inference type (F(3’114) = 7.53,p < 0.01), and a significant interaction
between inference and group type (F(3114) = 2.64,p = 0.05). Analyses by
linear regression revealed significant correlations between participants’ lengths
of 7 experience and their levels of correctness (R = 0.41, F139) = 7.82,p <
0.01), and between their Z expertise ratings and levels of correctness (R =
0.45, F(1,39) = 9.40,p < 0.01).
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No. Correct
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MP MT DA AC MP MT DA AC
AFL Group TFL Group

Figure 12: Frequencies of valid conditional inferences endorsed

The frequencies of fallacious DA and AC inferences endorsed by the abstract
and thematic groups are shown in Figure 13.
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Figure 13: Frequencies of fallacious conditional inferences endorsed

The results suggest that few participants experienced any difficulty what-
soever in drawing the MP inference, with near ceiling levels observed for all
combinations of premiss polarity across both groups. This is supported by nat-
ural language based studies in which participants were rarely observed to err
when drawing MP inferences, irrespective of the term polarities (Evans, 1972a;
1977; Evans et al., 1995; Taplin, 1971) and the realistic content involved (Griggs
and Cox, 1982; Pollard and Evans, 1987). The lower rates of correct MT infer-
ences drawn in comparison to MP is also supported by natural language based
studies (Evans, 1977; Kern et al., 1983; Taplin, 1971). The results suggest that
participants experienced some difficulty in drawing DA inferences, where up
to 30% succumbed to the fallacy, and that participants experienced most diffi-
culty in drawing the AC inferences where up to 45% succumbed to the fallacy.
The high rates at which participants succumbed to these fallacies when reas-
oning about abstract material, in particular, is also supported in the cognitive
literature (Evans, 1972b; 1983; Evans et al.,, 1995; Taplin, 1971; Taplin and
Staudenmayer, 1973). A brief summary of the results in relation to cognitive
theories of conditional reasoning biases is given below - readers are referred to
Vinter et al. (1997a) for a detailed discussion.

e Signs of matching bias (Evans, 1972a) were evident for the fallacious DA
and AC inferences in the abstract group.

e Signs of negative conclusion bias (Evans, 1993) were evident for the MT,
DA and AC inferences in abstract group.

e Signs of facilitation by realism (Johnson-Laird et al., 1972) and belief bias
(Barston, 1986) were evident in the thematic group.

e No signs of affirmative premiss bias (Evans, 1993) were evident.

7.1.1 A Model of Conditional Reasoning

A logistic regression analysis was used to model the data points generated
during our study of conditional reasoning. Table 5 shows that the greatest
variance in participants’ correctness was accounted for, firstly, by the reasoner’s
level of expertise then, secondly, by the type of inference to be drawn and, lastly,
by the degree of meaningful content in task material. The x? values may be
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interpreted as the improvements to the accuracy of the model’s predictions
each time a significant variable was added as a parameter to the model in a
forward stepwise manner. Although the accuracy of a logistic regression model’s
predictions generally increases along with the number of input parameters it
allows, there comes a point at which the inclusion of new parameters does not
improve the accuracy of the model significantly. This explains why polarity type
has been excluded as a parameter from the model and a “fit” to the observed
data has been achieved using only three parameters: expertise level, inference
type and material type.

TABLE 5
Improvements made to the conditional model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 53.64 2 0.00 Expertise Level
2 47.37 3 0.00 Inference Type
3 12.55 1 0.00 Material Type

A standard measure of how well a regression based model fits its data is to
classify the proportion of predictions given by the model which are consistent
with the observed data points from which the model was initially generated
(Norusis, 1996). The “Classification-fit” for our model of conditional reasoning
is 87.81%. Given that only 12.19% of our data points were misclassified, this
suggests that the model provides a reasonable fit to the data. Another standard
measure of how well a regression based model fits its observed data is called
the “Goodness-of-fit”. This statistic compares the observed probabilities with
those predicted by the model. The Goodness-of-fit for our model of conditional
reasoning is 640.225. This value is calculated as follows (adapted from Norusis,
1996, p.10).

Residual?
Pi(1-P;)

Goodness-of-fit = 3

. where Residual is the difference between the observed
value and the predicted value P;

A logistic regression analysis generated the results shown in Table 6. This
table shows: how our significant experimental variables became encoded as
input parameters to the model, their relative contributions to participants’
correctness (f), the standard error (SE), the degrees of freedom (DF), and
their significance. f; is the variable mean, calculated as the summation of the
[ values for each factor in the variable, divided by the number of factors in the
variable. The regression constant, Const, refers to the overall mean probability
of being correct independent of the influence from other variables.
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TABLE 6
Parameters in the model of conditional reasoning

Factor Parameter S SE DF Significance Bz
Material-Abstract M1 -0.8794  0.25 1 0.00 -0.4397
Inference-MP 11 2.9167 0.55 1 0.00
Inference-MT 12 0.7010 0.30 1 0.02 1.1197
Inference-DA I3 0.8610 0.31 1 0.01
Expertise-Novice E1 -1.7765 0.40 1 0.00 0.5991
Expertise-Proficient E2 -0.0207  0.45 1 0.96

Const  2.4588 0.20 1 0.00

The (3 estimates yielded by a logistic regression show the extent to which
each of their corresponding factors influence the dependent variable. In the
context of our reasoning studies, as J increases in value so does the participants’
likelihood of being correct under the corresponding experimental condition.
These values represent the parameters for our conditional model of inferential
complexity. According to Kleinbaum (1994), the “odds” of an event occurring
are calculated by the probability that it will occur divided by the probability
that it will not. The summation of the 8 estimates give the log of the odds, or
“logit” value, as shown in the following general formula.

logit( Material, Inference, Expertise) =
Const + By + Br1 + Brz + Brs + Br1 + Be2

The following examples demonstrate how the formula can be applied to
calculate the logit values for conditional inferences under a range of conditions.
They also illustrate how the calculations are always performed relative to the
regression constant.

logit(Abstract, MP, Novice) = (Const + By1+ B+ Be1) — (Buz + B + BEe)
logit( Abstract, DA, Ezpert) = (Const + Buy1 + B13) — (Bumz + Bz + BEx)
logit( Thematic, MT, Ezpert) = (Const + B12) — (Buz + Bz + Bes)

logit( Thematic, AC, Expert) = Const — (Byz + B + Brg)

7.2 Results of the Disjunctive Reasoning Study

The frequencies of valid and fallacious responses observed during the formal-
ised disjunctive study involving affirmation and denial inferences are shown
in Figures 14 and 15. Participants’ levels of correctness under each experi-
mental condition revealed overall rank orders as follows: TFL (88%) < AFL
(93%) for group type, Affirmation (89%) < Denial (92%) for inference type,
First (90%) < Second (91%) for term type, and NA (89%) < AN (90%) <
NN (91%) < AA (93%) for polarity type. Analyses of variance failed to re-
veal any significant effects of the manipulated variables on participants’ levels
of correctness. Analyses by linear regression revealed significant correlations
between participants’ years of Z experience and their levels of correctness (R
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= 0.28, F(1,39) = 3.11,p = 0.09), and between participants’ ratings of expertise
and their levels of correctness (R = 0.33, F(y 39y = 4.55,p = 0.04).
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Figure 14: Affirmation inferences Figure 15: Denial inferences

Given a disjunction, “p V ¢”, and the assertion of one of its disjuncts, “p”,
an exclusive interpretation allows us to deduce the falsity of the other, —gq.
Under an inclusive interpretation, however, one cannot logically infer anything
about the truth value of “¢” because both disjuncts might be true. Although
most participants responded correctly to the affirmation tasks, around one tenth
gave responses consistent with exclusive interpretations of the disjunctive rules,
despite the inclusively defined semantics of the Z disjunctive operator. Natural
language based studies report fallacious error rates of 36% (Evans et al., 1993)
and 20% (Roberge, 1976b; 1977; 1978) for the logically equivalent tasks. The
results of the formalised disjunctive study, in comparison, appear to support
Newstead and Griggs’ (1983a) hypothesis that disjunctive reasoning should be
better in those languages where disjunctives are defined unambiguously.

In a study of deductive reasoning in natural language (van Duyne, 1974),
strong correlations between realistic material and conditional reasoning per-
formance are reported, but no such correlations are found for disjunctive reas-
oning performance. Given that the abstract group consistently outperformed
the thematic group, our results suggest that a similar situation might exist in
the formal domain, whereby the expression of disjunctive tasks in meaningful
material does not facilitate performance in the same ways observed for condi-
tionals (Gilhooly and Falconer, 1974; Griggs and Cox, 1982; Johnson-Laird et
al., 1972). This finding is supported by Roberge (1977), who reports suppressive
effects of meaningful material on reasoning with inclusive disjunctives.

The results suggest that formalisation can lead to notable improvements in
logical reasoning for disjunctive based inferences, but that users are still liable
to err on occasion. A brief summary of the results in relation to cognitive
theories of disjunctive reasoning biases is given below - readers are referred to
Vinter et al. (1997b) for a detailed discussion.

e The exclusive interpretation of inclusive disjunctives (Hurford, 1974) ap-
pears to have accounted for around one tenth of participants’ errors.

e Rather than facilitate disjunctive reasoning, as has been reported in con-
ditional reasoning studies (Gilhooly and Falconer, 1974; Griggs and Cox,
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1982), the use of thematic material appeared to suppress it.

e Participants’ experienced more difficulty with disjunctive premisses con-
taining mixed, rather than matching, premiss polarities (Roberge, 1976a).

e No signs of reasoning difficulties caused by double negation (Roberge,
1976b) were evident.

7.2.1 A Model of Disjunctive Reasoning

A logistic regression analysis was used to model the data points generated
during our study of disjunctive reasoning. Table 7 shows that the greatest
variance in participants’ correctness was accounted for, firstly, by the reasoner’s
level of expertise then, secondly, by the degree of meaningful content in the
task material. A fit to the data (Classification-fit = 90.63%, Goodness-of-fit
= 641.615) was achieved by excluding the following parameters: the type of
inference to be drawn, the polarity of its premisses, and the position of the
term denied or affirmed.

TABLE 7
Improvements made to the disjunctive model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 33.272 2 0.00 Expertise Level
2 4.336 1 0.37 Material Type

The (3 estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during our study of disjunctive reasoning
are shown in Table 8.

TABLE 8
Parameters in the model of disjunctive reasoning

Factor Parameter [ SE DF Significance Be
Material-Abstract M1 0.5888 0.29 1 0.04 0.2944
Expertise-Novice E1l -2.4737 0.55 1 0.00 -1.4719
Expertise-Proficient E2 -1.9421  0.54 1 0.00 '

Const  2.5742 0.20 1 0.00

The general logit formula for predicting the level of inferential complexity
associated with a Z disjunctive expression is as follows.

logit(Material, Ezpertise) = Const + By + Br1 + BE2
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7.3 Results of the Conjunctive Reasoning Study

The frequencies of valid and fallacious responses observed during the formal-
ised study involving the conjunctive elimination and introduction inferences are
shown in Figures 16 and 17. Participants’ levels of correctness under each ex-
perimental condition revealed overall rank orders as follows: TFL (90%) < AFL
(94%) for group type, Elimination (91%) < Introduction (93%) for inference
type, Second (90%) < First (94%) for term type, AN (85%) < NN (90%) <
AA (95%) = NA (95%) for eliminated polarity type, and N (90%) < A (96%)
for introduced polarity type. An analysis of variance revealed a main effect of
group type on correctness approaching significance (F(1,38) = 3.85,p = 0.06).
An analysis by linear regression revealed a correlation between participants’
ratings of expertise and their levels of correctness approaching significance (R
= 03, F(1,39) = 376,p = 006).
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Figure 16: Elimination inferences Figure 17: Introduction inferences

According to the laws of probability, the likelihood of a propoSition “p” can-
not exceed the likelihood of a conjunction “p and ¢’ (Tversky and Kahneman,
1983). Inspection of participants’ responses to the conjunctive introduction
tasks suggests that most avoided committing this “conjunctive fallacy”. The
fact that a higher rate of participants committed the fallacy in the thematic
group, however, could be explained by the fact that a conjunction of realistic
terms sharing a plausibly valid relation is more likely to be endorsed than a con-
junction of abstract terms sharing an unmeaningful relation. Notably, the tend-
ency to commit this fallacy was strongest where a causal relationship seemed
to exist between the two conjuncts. In “current_loc’ = target_loc? A mission' =
Success” and “applicant? € banned N\ members’ = members U {applicant?}”,
for example, the presupposition of the truth of the first conjunct appears
to be necessary for an adequate understanding of the second. In the fal-
lacious conclusions “print_queue’ = () A —(printer_status’ = Online)” and
“—(#tregister’ > MazStudents) A —(student’ € register')”, however, there does
not appear to be such a degree of dependency which may account for their lower
rates of selection.

Given a conjunction, “p and ¢, application of the formal rule of inference
for conjunctive elimination allows us to conclude either one of the conjuncts,

“p” or “¢”, in isolation. Judging by the high rates of correctness observed
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for the elimination tasks, participants experienced little difficulty in drawing
this inference, despite the variation of premiss polarity and the order of terms
eliminated. This finding might be attributed to the expression of the tasks in
formal logic and participants’ prior experience with Gentzen style logical calculi.
A brief summary of the results in relation to cognitive theories of conjunctive
reasoning biases is given below - readers are referred to Vinter et al. (1997b)
for a detailed discussion.

e Meaningful material did not appear to improve conjunctive reasoning per-
formance in the same ways observed in previous studies of conditional
reasoning (Gilhooly and Falconer, 1974; Griggs and Cox, 1982).

e Signs of the conjunctive fallacy (Tversky and Kahneman, 1983) became
more apparent in thematic material, especially where there existed a
“causal” relationship between two conjuncts.

7.3.1 A Model of Conjunctive Reasoning

A logistic regression analysis was used to model the data points generated
during our study of conjunctive reasoning. Table 9 shows that the greatest
variance in participants’ correctness was accounted for, firstly, by the degree
of meaningful content in the task material then, secondly, by the reasoner’s
level of expertise. A fit to the data (Classification-fit = 93.75%, Goodness-of-fit
= 495.507) was achieved by excluding the following parameters: the type of
inference to be drawn, the polarity of its premisses, and the position of the
term denied or affirmed.

TABLE 9 ,
Improvements made to the conjunctive model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 8.190 1 0.00 Material Type
2 11.261 2 0.00 Expertise Level

The 3 estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during our study of conjunctive reasoning
are shown in Table 10.

TABLE 10
Parameters in the model of conjunctive reasoning

Factor Parameter f SE DF Significance Bz
Material-Abstract M1 1.5017 0.41 1 0.00 0.7508
Expertise-Novice El -2.4445 1.08 1 0.02 -1.6309
Expertise-Proficient E2 -2.4482  1.05 1 0.02 '

Const  3.3331 0.41 1 0.00
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The general logit formula for predicting the level of inferential complexity
associated with a Z conjunctive expression is as follows.

logit(Material, Expertise) = Const + Bur1 + Br1 + Bra

7.4 Results of the Quantified Reasoning Study

The frequencies of syllogisms solved correctly during the study of quantified
reasoning are shown in Figure 18. Participants’ levels of correctness under each
experimental condition revealed overall rank orders as follows: TFL (90%) <
AFL (93%) for group type, unmatching (91%) < matching (95%) for mood
type, mixed polarity (89%) < two affirmatives (95%) < two negatives (96%)
for mood polarity type, second (91%) = third (91%) = fourth (91%) < first
(93%) for syllogistic figure, indeterminate (91%) < determinate (92%) for syllo-
gistic determinacy, believable (90%) < unbelievable (92%) for conclusion type.
Analyses of variance revealed that participants’ levels of correctness were signi-
ficantly affected by: determinate syllogisms (F(14) = 2.79,p < 0.01), indeterm-
inate syllogisms (F(14) = 3.75,p < 0.01), matching moods (F(g) = 3.27,p <
0.01), unmatching moods (F(39y = 2.55,p < 0.01), two affirmative moods
(Floy = 2.86,p = 0.03), first figure (F(5 = 1.96,p = 0.09), second figure
(Fs) = 3.73,p < 0.01), third figure (F7y = 4.09,p < 0.01), fourth figure
(Fgy = 1.89,p = 0.05), and unbelievable conclusions (F(gy = 1.97,p = 0.05).
Analyses by linear regression failed to reveal any significant correlations between
participants’ levels of correctness and either their ratings of expertise or lengths
of Z experience.
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Figure 18: Syllogisms solved correctly by the two groups

The frequencies of thematic syllogisms with believable and unbelievable con-
clusions solved correctly are shown in Figure 19. The frequencies of strong and
weak conclusions endorsed by participants in those tasks where both options
were available are shown in Figure 20.
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Figure 19: Believable versus unbelievable Figure 20: Strong versus weak

Although overall differences in group performance were not significant, evid-
ence of improved reasoning performance under the abstract condition is evident
in its higher overall mean rate of correctness and the fact that the abstract group
achieved three times as many perfect scores for individual syllogisms. Wilkins
(1928, p.77) attributes improved performance under abstract conditions to the
“bad habits of everyday reasoning which are much in force in the familiar situ-
ation, but are not so influential when the material is symbolic or unfamiliar”.
The fact that more sporadic rates of correctness were observed in the thematic
group suggests that meaningful material affected performance in certain tasks
but not in others. This finding is supported by cognitive studies which suggest
that the effects of thematic material are normally specific to the content of the
individual task and the extent to which it relates to reasoners’ prior beliefs
(Barston, 1986; Traub, 1977). This is evident in the marked differences in cor-
rectness observed for the abstract and thematic versions of the following tasks:
AQ2, IE2, OA3 and EAL.

The theory of belief bias claims that people will tend to accept conclusions
which they believe, and reject conclusions which they disbelieve, with little re-
gard for their logical necessity (Barston, 1986; Begg and Harris, 1982; Janis
and Frick, 1943; Revlin and Leirer, 1980). Evans et al., (1983) report overall
rates of correctness as high as 97% when logic accords with belief and as low as
27% when logic conflicts with belief, while Revlin et al. (1980) report respect-
ive rates of 83% and 67%. Inspection of Figure 19 suggests that there were
no discernible differences in performance for the ten syllogisms with abstract
(93.5%), believable (91.5%) and unbelievable (91.5%) conclusions. This finding
is supported by cognitive studies which report no significant difference in group
performance under abstract and thematic conditions (Henle and Michael, 1956;
Newstead, 1995). Analysis at the individual task level, however, suggests indi-
vidual cases of performance facilitation or suppression caused by participants’
beliefs towards the real world referents of the syllogistic terms. Although perfect
scores were observed for the IA4 and OA3 tasks with unbelievable conclusions,
the fact that similarly high rates of correctness were not observed for the other
eight tasks leading to unbelievable conclusions lends some support to the belief
bias hypothesis. Further support is gained from the marked differences in par-
ticipants’ correctness for the following thematic tasks leading to believable and
unbelievable conclusions: IA4, IE2 and EI4.

The results of our study of quantified reasoning suggest that most of parti-

31




cipants’ errors were not attributable to single, independent causes, but rather
to the combination of several non-logical reasoning heuristics or biases. It is
postulated that the factors which evoked errors differed between participants,
and that the errors which participants committed on one task often did not
generalise to others. Most of the observed non-logical responses are, however,
consistent with cognitive theories of error in both syllogistic reasoning and
everyday communicative experience. A brief summary of the results in relation
to cognitive theories of syllogistic reasoning biases is given below - readers are
referred to Vinter et al. (1997c) for a detailed discussion.

Participants showed signs of improved reasoning under the abstract
condition (Wilkins, 1928).

Individual cases of reasoning facilitation and suppression under the them-
atic condition may have been caused by participants’ beliefs towards the
real world referents of the syllogistic terms (Evans et al., 1983; Revlin and
Leirer, 1980).

Some errors could be attributed to a failure to consider all possible rep-
resentations of the given premisses (Erickson, 1974; Evans et al., 1993),
especially since this may have involved more mental effort than many par-
ticipants were willing to exert (Johnson-Laird and Bara, 1984) and some
thematic premisses seemed to invite only one form of representation.

Many errors could be attributed to participants’ failure to consider A,
E, I or O interpretations of considered representations, especially where
this involved searching through numerous possible premiss combinations
(Erickson, 1974; Johnson-Laird and Bara, 1984).

Signs of atmosphere bias were limited in comparisoﬁ to natural language
based studies (Sells and Koob, 1937; Woodworth and Sells, 1935).

No signs of matching bias (Evans, 1972a; Wetherick and Gilhooly, 1990)
were evident, especially since most participants drew conclusions which
did not match the forms of the given premisses.

No signs of figural bias (Johnson-Laird and Steedman, 1978) were evid-
ent, although the finding that reasoning was most logical for first figure
syllogisms is well supported (Dickstein, 1978a).

Signs of illicit premiss conversion (Begg and Denny, 1969; Chapman and
Chapman, 1959) were frequently evident but most prominent, perhaps,
where participants appeared to convert the indeterminate premisses to
forms from which determinate conclusions could be logically drawn.

Adherence or non-adherence to Gricean conventions may have accounted
for reasoning performance in the following ways:

— Signs of the “Same M” fallacy (Chapman and Chapman, 1959; Dick-
stein, 1975; 1976) were evident in the large numbers of determinate
conclusions drawn in response to indeterminate tasks.
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~ No evidence of caution bias (Woodworth and Sells, 1935) was found
since nearly all participants gave strong categorical responses where
weaker particular responses were also possible.

— Signs of non-logical pragmatic interpretations of the I and O syllo-
gistic premisses (Begg and Harris, 1982; Newstead, 1995; Politzer,
1986) were evident in a series of background tasks given to parti-
cipants before completing the main tasks.

7.4.1 A Model of Quantified Reasoning

A logistic regression analysis was used to model the data points generated dur-
ing our study of quantified reasoning. Table 11 shows that the greatest vari-
ance in participants’ correctness was accounted for, firstly, by the reasoner’s
level of expertise then, secondly, by the first premiss mood type then, thirdly,
by the degree of meaningful content in the task material. A fit to the data
(Classification-fit = 91.57%, Goodness-of-fit = 1362.8) was achieved by ex-
cluding the following parameters: figure type, second premiss mood type, and
believability of the tasks’ logical conclusions.

TABLE 11
Improvements made to the quantified model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added

h 1 24.476 2 0.00 Expertise Level

2 10.305 3 0.02 First Mood Type
3 6.897 1 0.00 ~ Material Type

The (3 estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during our study of quantified reasoning
are shown in Table 12.

TABLE 12
Parameters in the model of quantified reasoning

Factor Parameter SE DF Significance Bz
Material-Abstract M1 05363 021 1 0.01 0.2682
Expertise-Novice E1l 0.6624 0.42 1 0.19 -0.0476
Expertise-Proficient E2 -0.805 0.24 1 0.00
First Mood-A F1 -1.87 0.34 1 0.58
First Mood-E F2 -0.7561  0.33 1 0.02 -0.23
First Mood-I F3 0.0233 0.36 1 0.95
Const  2.8894 0.16 1 0.00
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The general logit formula for predicting the level of inferential complexity
associated with a Z quantified expression is as follows.

logit(Material, Expertise, First Mood) =
Const + Bu1 + Be1 + Br2 + Br1 + Bra + Brs

7.5 Conversion to Absolute Probabilities

The model developed thus far provides a means by which the users of formal
methods can predict the likelihood that the reasoner of a given expertise will
draw an inference of a given type about a given type of logical statement ex-
pressed in a given degree of thematic material. At present the model yields logit
values which appear to have little meaning in isolation. What we are lacking
is a means for translating these values into absolute probabilities (0 < p < 1).
The following formula performs the necessary translation (Norusis, 1996).
o?
P=Tyer

... where z is the logit value, and e is the exponential function.

8 A Brief Demonstration

We can envisage Will Wise, a senior software developer working on a defence
based project, having been presented with the operational specification for
a guided missile system, as shown in Figure 21. Supposing Will is asked
by his team leader to determine the implications of the inclusion of schema
MissileStatus within MissileCheck.

[COORDS]
MESSAGE = Hit | Miss

— MissileStatus
current, target : COORDS
report : MESSAGE

report’ = Hit

_ MissileCheck
= MissileStatus

current # target = report = Miss

Figure 21: Thematic Z specification for a missile system

Given that the specification is expressed in realistic material, whose variable
identifiers refer to rather fast moving animate objects, we can safely classify
its material as being thematic in nature. Supposing Will had acquired a fair
amount of Z experience by formally verifying part of a previous project, had
studied several systems of logic at university and had even gone on expensive Z
training courses run by the company, we might be inclined to regard Will as an
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expert Z user. If we were to analyse the logic of the terms involved we would
see that the consequent of a conditional rule is being denied, which suggests
that Will is being invited to draw a modus tollens inference. We now have the
three parameters that we need to apply our model of conditional reasoning:
the material type (Thematic), the type of inference to be drawn (MT), and the
Z expertise of the reasoner (Expert). The question that we must ask is: how
likely is Will to infer the logically correct conclusion, current = target, under
these conditions? Application of the model predicts that Will is 95.6% likely
to draw this conclusion, which is calculated as follows.

To calculate logit( Thematic, AC, Expert):
z = Const — (Buz + Brz + BEx)

To translate into an absolute probability:
p=¢e*/(1+¢e?)

Now suppose that the same specification and instructions had been given
to Sam Slow, a new recruit and self-professed “novice” Z user. Suppose also
that the specification given to Sam was not expressed in thematic material at
all, but used single letters for variable names seemingly bearing little relation
to real world objects, as shown in Figure 22.

[C]
M = ml|m2

— MS

p,q:C
r: M

r' =ml

— MC
EMS

pFEqg=>r=m2

Figure 22: Abstract Z specification for the missile system

How would these changes affect Sam’s ability to infer the logical conclusion,
p = q7 In the absence of a suitable statistical method, most software engin-
eers would make an subjective, educated guess based on their intuitive feelings
towards the situation. The scope of the model is fortunately sufficient to ac-
count for such combinations of factor and can provide us with a much more
quantifiably precise estimate. The question arises, however, of whether Sam’s
team leader would be prepared to risk the 35% differential in probability that
Sam would not reach the same logical conclusion as Will, given the criticality of
the inference. Now consider the revised version of our missile system’s formal
specification shown in Figure 23.
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—_ MissileStatus
current, target : COORDS
report : MESSAGE

report’ = Hit

___ MissileCheck
B MissileStatus

report = Hit = current = target

Figure 23: Revised Z specification for the missile system

If we were now to analyse the logic of the terms following the schema inclu-
sion we would see that the antecedent of the conditional rule is being affirmed,
which suggests that a much simpler modus ponens inference is required. Sup-
posing Will and Sam are now asked to determine the implications of the schema,
inclusion, the model predicts that their potential for failing to draw the logical
conclusion, current = target, has decreased to just 0.5% and 2.9% respectively.
It is becoming evident that application of the model has strong implications
for the ways in which formal specifications are written and the for the levels of
expertise acquired by those people who work with them.

9 Model Evaluation

A popular methodology advocated for the procurement of software metrics be-
gins by identifying those attributes which influence the quality of a product or
process, formulating these in terms of a model, and then conducting empirical
research to validate the model (Curtis, 1979; Fenton and Pfleeger, 1996). It is
sometimes the case that the theoretical or empirical foundations for software
metrics, however, are improperly considered prior to their formulation or are
checked only as an afterthought. Roche (1994, p.80) claims that the “usual
method involves developing a metric and then searching for some data for a
validation study that often involves correlations between the metric values and
some attribute that can be found to be correlated with the data!” The meth-
odology used to develop our model differs from conventional approaches in that
an initial empirical study gave rise to our theories about which attributes of a
formal specification influence the development process (Vinter et al., 1996). It
was also empirical research that generated the data which populates our metrics
(Vinter et al., 1997a; 1997b; 1997c). So rather than construct a formal model
and then subject it to empirical validation, our methodology proceeded in the
converse direction by feeding data from empirical studies into a formal model.

It is argued in the software measurement literature that the evaluation of
software metrics must be performed at both a theoretical and an empirical
level (Sheppard and Ince, 1993). In simple terms, the former asks whether the
correct model has been built, whereas the latter asks whether the model has
been built correctly.
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9.1

Theoretical Validation

The criteria specified by Sheppard and Ince against which a theoretical valida-
tion of software metrics may be performed, along with the extent to which our
model satisfies these criteria, are described as follows.

1.

The model must conform to widely accepted theories of software develop-
ment and cognitive science. This criterion is satisfied insofar as the model
rests upon the well supported theory from software engineering that errors
in reasoning with software specifications are a potential source of software
defects or anomalies (Fenton and Pfleeger, 1996; Potter et al., 1996), and
the well supported theory from cognitive science that people are prone to
error and bias when reasoning about specific types of logical statement in
natural language (Braine, 1978; Evans et al., 1993).

The model must be as formal as possible. In other words, the relation-
ship between the input measurements and the output predictions must be
precise in all situations. Furthermore, the mapping from the real world
to the model must be made as formal as possible. The model meets this
criterion insofar as: it always generates the same output for a given com-
bination of inputs, every valid combination of input parameter yields a
deterministic output, and its predictions are always given in quantifiably
precise numeric form.

The model must use measurable inputs rather than estimates or subjective
Judgements. Failure to do so leads to inconsistencies between different
users of the metric and potentially anomalous results. The model meets
this criterion insofar as the task of determining which values to input to
the model is as intuitive as one could reasonably expect for a model of
psychological complexity. For example, the “material type” parameter
lends itself to whether the identifiers used in the logical terms involved in
the inference have real world referents, the “inference type” parameter to
the type of logical reasoning to be performed, and the “user expertise”
parameter to the length and type of Z experience acquired by the reasoner.
There is some room for inconsistency in users’ assessment of which values
to use as input parameters. Different users might not, for example, classify
a given individual at the same expertise level. This kind of inconsistency
might be overcome through adherence to simple guidelines.

. The ordering of model evaluations is intentional, since meaningful em-

pirical work is of questionable significance when based upon meaningless
models of software. Therefore, theoretical analysis of the properties of a
model ought to precede validation. The model meets this criterion insofar
as its central underlying hypothesis is well-founded. The possibility that
users of formal methods are liable to err in ways similar to those observed
for the users of natural language is a reasonable one in light of recent
cognitive findings. This hypothesis underlies the model whose worth is
evident from its capacity to highlight potential sources of erroneous de-
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velopment decisions, and its potential to provide empirical support for
several of the claims associated with formal methods.

9.2 Empirical Validation

In order to justify the way in which a software metric is defined it is often
necessary to seek independent and objective evidence which supports the cred-
ibility of its calculations. A common criticism of many systems is that the
proposed measures are either totally unsupported by empirical evidence or that
the methods used to validate them are flawed or inadequate (Card and Glass,
1990; Ory, 1993; Kitchenham, 1991). It is argued that several of the measures
proposed by Halstead (1977), for example, are unreliable because: they are
based on subjective personal belief or discredited psychological theories, there
are flaws in the mathematical derivation of the formulas, the metrics do not
scale up to larger programs, and design of the experiments used to validate the
metrics was flawed (Coulter, 1983; Ince, 1989).

The method used to formulate the model has been advantageous in the sense
that the research necessary for its empirical validation was performed during
the model’s formulation. In order to see this one only has to ask the question:
how might one approach the empirical validation of the model or its underlying
hypotheses? The answer is that one would run empirical experiments designed
to test the extent to which the trained users of formal methods are prone to
succumb to error and bias when reasoning about specific combinations of formal
operator. But this is clearly something which has already been done, indeed,
it is something we needed to do in order to generate the model. This is not
to suggest, however, that a replication of our empirical studies would not be of
value. Further empirical studies would help to refine the probability data which
populates the model because the greater and more representative the samples
which underly the model, the more accurate its predictions are likely to be.
A discussion of how far the model meets Sheppard and Ince’s criteria for an
empirical validation now follows.

1. The hypothesis under investigation. When the aim of a model has not
been clearly defined it can be unclear as to what is being validated, which
can lead to statistically significant results being derived from an unusable
model. The central hypothesis underlying our model is that the trained
users of formal methods are liable to reason in similar ways to those ob-
served for novice reasoners with logically equivalent expressions in natural
language. The first criterion is met insofar as, during the course of the
model’s validation, we sought to answer a series of well-founded ques-
tions stemming from this hypothesis, based on existing knowledge from
cognitive science.

2. The artificiality of the data used. Given that the data which populates the
model is based on actual, rather than theoretical, instances of human reas-
oning by relatively large numbers of staff, students and professional users
each with varying levels of expertise, it is representative of the complete
range of formal methods’ users. This provides for a degree of flexibility
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in the model’s predictions. The null hypothesis which we sought to test
during validation was whether the trained users of formal methods are
liable to succumb to similar non-logical errors as those observed for nat-
ural language based reasoners. Given that the results of our empirical
validation could have shown users not to reason in these ways by failing
to err, or by erring in different ways, the null hypothesis gave rise to a
fair test of the model.

3. The validity of the statistics employed. The statistical tests used in the
empirical validation of a model must be capable of refuting the hypothesis
under investigation. The decision to use analyses of variance was dictated
by the need to know which factors played a significant role in determin-
ing participants’ reasoning performance. The decision to use regression
based techniques was dictated by the need for quantifiably precise estim-
ates of how far each factor contributed towards participants’ reasoning
performance. The statistics employed were therefore valid and appropri-
ate for their purpose. Given that they could, and sometimes did, lead
to the refutation of hypotheses relating to the precise combinations of
formal operator prone to admit non-logical errors, these statistics were
also applied in an objective manner.

Having evaluated the model against Sheppard and Ince’s criteria at an em-
pirical level, we now scrutinise the relation between between its predictions and
the data generated during our empirical studies. We calculated earlier that the
probability of drawing an TFL-AC conditional inference for an expert reasoner
is 92% (p = 0.9151). If we were to calculate the inferential complexity for the
same inference type and the same material but for lesser experienced Z users,
we would expect to obtain lower probability values. These calculations yield p
values of 0.9135 for a proficient user and 0.6460 for a novice user. This shows
that there is an incremental effect on the model’s predictions for users with in-
creasing levels of expertise, and that the increment in p caused by an increment
in one of the model’s input parameters is far from being a uniform one, as one
would expect. The same incremental effect for expertise level is observable in
the conditional reasoning model’s predictions across all four inference types, and
both material types. This trend is consistent with the results of our conditional
reasoning study which revealed significant correlations between participants’
expertise levels and their levels of correctness. Intuitively, we would expect to
see increasing relations by maintaining the same material and expertise type
and changing inference type from MP to AC to MT to DA, or by maintaining
the same inference and expertise type and changing material type from TFL to
AFL. So according to the model, a user’s chances of drawing a logically correct
inference diminishes along with their level of expertise, the ease of the inference,
or the amount of realistic material. The real worth of the model, however, lies
in the fact that its predictions frequently do not suggest such rigidly defined
rank orders of difficulty. Not only are the differences in the model’s predictions
intuitively linear and relative but they are entirely consistent with the results
of our empirical studies.
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10 Conclusions

“Logic does not really contain the rules in accordance with which man
actually thinks but the rules for how man ought to think. For man
often uses his understanding and thinks otherwise than he ought to think
and use his understanding. Logic thus contains the objective laws of the
understanding and of reason” (Kant, in Young, 1992, p.13).

The experimental results suggest that, although the trained users of formal
methods are often logical in their reasoning about formal expressions, they
are liable, under certain conditions, to err in ways similar to those observed
for untrained reasoners with the logically equivalent statements expressed in
natural language. That the results point to the possible existence of non-logical
encoding, processing and response biases suggests that the psychological causes
of human error in formal contexts are deep-rooted. On the assumption that the
specification process will always involve a certain degree of human input, the
results suggest that the application of formal methods will always be vulnerable
to the fallibility of human reasoning, and “if it is impossible to guarantee the
elimination of errors, then we must discover more effective ways of mitigating
their consequences in unforgiving situations” (Reason, 1990, p.148).

It is disconcerting to think that software developers will exhibit similar,
or even increased, potentials for error in critical industrial projects, where al-
ternative conclusions are rarely offered explicitly in the form of multiple-choice
options, where formal expressions might contain more complicated combina-
tions of logical operators, and where the repercussions of erroneous reasoning
are much more serious than in laboratory based studies. The software com-
munity has been keen to emphasize the role of specification as a medium for
communication (Barroca and McDermid, 1992; Imperato, 1991). In light of
our research results, we would like to add the proviso that specifications are
given minimal potential for admitting erroneous development decisions. It is
only when we appreciate the negative repercussions that erroneous develop-
ment decisions can have on software projects and the quality of their delivered
products that we can begin to understand the need for capturing and verifying
the reasoning processes of software developers.

“A formal model of a system must be able to be represented in a manner
which both elucidates the inferences which may be drawn from it and,
where possible, captures the designers’ intended interpretation. We note
that such representations can provide invaluable support both to an expert,
by making aspects of the model more immediate, and also to a non-expert,
by providing a more tractable visualisation of it” (Gurr, 1995, p.395).

Although the cognitive processes involved in the creative process of writing
formal specifications were not a direct focus of concern for this research, exam-
ination of the ways in which people interpret and reason about existing specific-
ations has yielded implications for the ways in which specifications are written
because poorly written specifications are more likely to admit errors of human
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judgement. Owing to the logical nature of their underlying grammars, for each
of the statements expressed in a formal notation it is nearly always possible to
find an alternative expression which conveys the same meaning. The question
is whether each of these alternatives have the same propensity for admitting
human reasoning errors. It should be clear from the earlier demonstration that
the model can be used as means for choosing between the alternatives. That
is, the measures of inferential complexity yielded by it may be used as an in-
dependent form of justification for deciding which of the possible alternatives
would be the “safest” to use in a given situation. Application of the model is
likely to prove most beneficial, then, at the initial creative stage of the spe-
cification process when a designer frequently makes implicit discriminations of
this kind and “there exists a multiplicity of potential designs for even the most
trivial problem” (Sheppard and Ince, 1989, p.91).

By accepting as parameters the measures of attributes belonging to human
users of formal methods, the model recognises that the grammatical proper-
ties of a formal specification are not the only determinants of a specification’s
“complexity”. The validity of our decision to build a model of psychological,
rather than computational, complexity is supported by Curtis’ (1986, p.155)
argument that “two different programmers can experience completely different
levels of complexity in working with the same piece of software.” Application
of the model, then, has potential implications for the staff selected to work with
formal methods because it helps to identify those whose development decisions
are most likely to be influenced by intuitive heuristics and non-logical biases.
Where the model consistently predicts high probabilities of error for particular
staff, this might provide the justification for a management decision to select
more appropriate staff or to encourage staff to undergo training.

The increasing interest in formal methods being shown by the software com-
munity (Bowen and Hinchey, 1994; Oakley, 1990) may be partly attributable
to the belief that it is easier to reason about formal software specifications
than conventional natural language based specifications (Thomas, 1995). The
software community, however, has been slow to support this, and other claims
pertaining to the use of formal methods, with empirical evidence (Craigen et
al., 1995; Fenton, 1996). Although the model of inferential complexity de-
veloped in this paper is a tentative one and no claims are made regarding its
suitability for direct industrial application, the methodology used during its
formulation demonstrates an approach via which these claims can be subjected
to independent and objective examination. We have used this approach as an
empirical means for quantifying the extent to which the human potential for
error is liable to remain after formalisation of the software specification process.
Rather than being based on subjective personal belief, which might not accur-
ately reflect reality, the lines of inquiry pursued in the present research stem
from the well supported empirical findings of cognitive science. Rather than
using isolated case studies from which it can be difficult to extrapolate results,
we have borrowed standard experimental procedures from cognitive science in
order to subject our theories to empirical scrutiny. It is argued that software
measurement pursuits stand to benefit by taking on board correctly interpreted
findings from psychological studies in this manner (Coulter, 1983; Ott, 1996).
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This approach is advantageous over conventional approaches to software engin-
eering research in that it generates theories “grounded” in the observed data
(Glaser and Strauss, 1968) which can subsequently be used to refine initial hy-
potheses and to generate new theories in a fashion analogous to the Popperian
“underlying pattern of continuous development” (Magee, 1985). The finalised
theories and data that emerge from such a line of investigation, then, provide
an empirical basis via which the psychological claims of the software community
can be assessed.

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a mea-
gre and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science”
(Thomson, 1891, p.80).

Although our model is oriented towards identifying properties of formal Z
specifications which are likely to cause errors or biases in human reasoning,
there is no reason why similar models should be restricted to the Z notation,
to formal methods, to the specification process, nor even to predicting sources
of human reasoning difficulty. It is conceivable that similar models might be
formulated to predict other potential sources of cognitive difficulty in the other
products created by software engineering technologies, such as program code or
design. Besides helping to quantify the levels of quality associated with such
products, the formulation of similar psychological models might provide us with
a better understanding of the factors leading to human error in the software
engineering process, and provide a basis for taking corrective actions or refining
the technologies around their human users. :

The overall aim of the research reported here was to identify combinations
of grammatical construct which are particularly susceptible to elicit errors and
biases when people are reasoning with formal specifications. As compensatory
measures are introduced, it is believed that this will help to reduce the po-
tential for human error in the software development process. After all, if we
know when and where errors are most likely to occur then erroneous develop-
ment decisions can be pre-empted and the numbers of defects introduced into
“finished” software systems reduced. In order to help us achieve our aim, we
have borrowed from cognitive science the relevant theoretical knowledge and
experimental methodology in order to determine the precise conditions under
which trained users are particularly susceptible to error and bias when reason-
ing about formal Z specifications containing logical conditionals, disjunctives,
conjunctives and quantifiers. In so doing we have demonstrated the feasibil-
ity of a cognitive approach to evaluating formal specifications which, we are
convinced, is at least as important as the results themselves.
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