Model-Driven Design and Organic Computing — Combinable Strategies? *

Peter Puschner’ and Raimund Kirner
Vienna University of Technology, Austria
Email: peter@vmars.tuwien.ac.at

It is difficult to relate a design approach to a term that
stands for a class of computing systems that exhibit certain
behaviors, as they belong to different phenomenologic cat-
egories. We will, however, compare the assumptions that
the two approaches are based on, and draw our conclusions
about the situations in which each of the strategies is useful.

Model-driven design is an approach that aims at keeping
the complexity of the design and implementation process
of applications low, thus avoiding errors in application de-
velopment. Model-driven design technologies use domain-
specific modeling languages that provide means to describe
the objects, object semantics, constraints, relations and be-
haviors that are relevant to the problems in the domain. De-
velopers use these artifacts to build applications in the form
of declarations that describe their design intent. In addi-
tion, model-driven design environments include software
components to analyze models wrt. certain properties and
to synthesize different representations (e.g., source code)
and information about the model. The automatic generation
of source code that is “correct by construction” from high-
level models is considered one of the major advantages of
model-driven design and engineering over a the traditional,
error prone software development process that strongly re-
lies on manual coding [1].

Model driven design is applicable to application areas
that are well understood. The modeling mechanisms of a
design environment are expected to comprise all aspects
(objects, relations, behaviors) of the domain that are neces-
sary to build working applications. Together with the eval-
uation components they are the basis for constructing sys-
tems that are trusted to behave according to their intent.

Organic Computing characterizes a research area that
aims at building autonomous computing systems that dy-
namically adapt to changing environmental conditions.
Organic computing systems use self-X properties (e.g.,
self-explaining, context awareness, self-organisation, self-
healing) to assess environmental conditions and their own

*Position statement for panel: “Model Driven Design and Organic
Computing — Contradictory or Synergetic Approaches to Overcome the
Embedded Software Crisis.”

This work is supported by the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement no. 214373.

operational state and to re-organize themselves similarly as
living organisms do. Using these strategies they are ex-
pected to perform their tasks even under unforseen situa-
tions.

In organic computing the assumption is that the knowl-
edge about the application area is incomplete. Systems are
expected to cope with situations that have not been modeled
before. The hope is that these systems can deal with phe-
nomena that are not so well understood or even unknown,
or for which the analysis cost are considered as being too
high.

Exclusive Domains or Combinable Approaches? Hav-
ing described the characteristics of the application domains
in which the discussed strategies are used we could con-
clude that each of the strategies is exclusive to a certain do-
main. On the other hand, we can immediately think of sit-
uations in which a combination of the two strategies looks
promising:

Consider the case when a model-driven design fails to
cover a critical situation that has been unknown so far.
Could not organic computing provide a way to master this
otherwise disastrous case?

When we look at autonomous organic computing sys-
tems we realize that it is difficult to predict whether they
can handle certain situations or not. So could not we build
models of self-X properties and behaviors and use them in
model driven design, thus getting better control and more
detailed insights about organic computing systems?

If we were able to answer these questions positively, we
could indeed expect to construct more robust and adaptive
systems. We must not expect miracles, however, because
even the best modeling and evaluation tools have their limits
when the state space grows, and even the most sophisticated
self-X mechanisms cannot handle situations that are too far
off the anticipated problem classes.

References

[1] D. C. Schmidt. Model-driven engineering. IEEE Computer,
39(2):25-31, Feb. 2006.



