An Exponential Lower Bound on OBDD Refutations for
Pigeonhole Formulas

Olga Tveretina Carsten Sinz
Institute for Theoretical Computer Science Institute for Theoretical Computer Science
Karlsruhe University Karlsruhe University
Am Fasanengarten 5, D-76131 Karlsruhe Am Fasanengarten 5, D-76131 Karlsruhe
Germany Germany
olga@ira.uka.de sinz@ira.uka.de

Hans Zantema

Department of Computer Science
TU Eindhoven, The Netherlands

Institute for Computing and Information Sciences
Radboud University, The Netherlands

h.zantema@tue.nl

Haken proved that every resolution refutation of the pidexd@formula has at least exponential size.
Groote and Zantema proved that a particular OBDD computatfdhe pigeonhole formula has an
exponential size. Here we show that any arbitrary OBDD egfoih of the pigeonhole formula has
an exponential size, too: we prove that the size of one ofrtteemediate OBDDs i9(1.025").

1 Introduction

The pigeonhole principle, also known as Dirichlet’'s boxnpiple states that holes can hold at most
objects with one object to a hole. The propositional forraulascribing this principle were introduced
by Cook and Reckhow in 1979][5]. The formula is a CNF paranedrbyn. It is unsatisfiable, but
after removing any single clause it becomes satisfiabls thtus minimally unsatisfiable.

The formula has a very simple shape, a meta argument forisfieslaility is easily given, but standard
techniques for proving unsatisfiability automatically murt of time for quite small values af. There-
fore, this formula is a good benchmark to test the efficierf@naapproach for deciding (un)satisfiability.

Also, on the theoretical side, it is the basis of many intimgsresults. A landmark result is that of
Haken [7], who proved that the length of any resolution r&ioh of the pigeon hole formula is at least
exponential inn. Surprisingly, Cook proved that it admits a polynomial tefion based on extended
resolution [4].

An Ordered Binary Decision DiagrarfOBDD), also referred as a reduced OBDD (ROBDD) or just
a BDD, is a data structure that is used to represent Boolewtiduns [2] 12].

OBDDs have some interesting properties: they provide cainpad canonic representations of
Boolean functions, and there are efficient algorithms fafquening logical operations on OBDDs. As a
result, OBDDs have been successfully applied to a wide tyapidasks, particularly in VLSI design and
CAD verification [9]. There are some less well-known applmas as fault tree analysis [11], Bayesian
reasoning and product configuration.
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As a propositional proof system OBDDs were studied, e.g.Atseriaset al. [1]. The authors
introduce a very general proof system based on constragpiagation. OBDDs are a special case of
this proof system. Their proof system has four rulasiom join, projection andweakening The first
two rules,axiomandjoin, correspond to an application of the OBAPply operator. Projectionand
weakeningare introduced to reduce the size of intermediate OBDDsa#t shown that the OBDD proof
system containing all four rules is strictly stronger thasalution [1] but it is still exponential [8].

In our paper, by the OBDD proof of a formulh we mean the computation of the corresponding
OBDD using theapply-operation, i.e. in terms of the above proof system from [1¢ allow only
two rules, namelyaxiom and join. If the formula containgy Boolean connectives, then the OBDD
construction requires exactly calls of apply, and the exponential blow up of the size of the proof is
caused by the expansion of the size of the arguments.

In [6] it was proved that a particular OBDD computation of fhigeonhole formula is at least expo-
nential. On the other hand, it was proved|in [3] that the pidpde formula admits a polynomial size
OBDD refutation in a setting including existential quamwtiion (i.e. including therojectionrule).

In this paper we prove that, based on the notion of OBDD réfutaalong the lines of [3] containing
the classical ingredients of OBDD computation, but exeigdexistential quantification, we have an
exponential lower bound for the size of OBDD refutations laf pigeonhole formula. This is much
stronger than the result from|[6]: there, the only compatationsidered first computes the conjunction
of all positive clauses, then the conjunction of all negatilauses, and finally the conjunction of these
two. In our setting, the clauses of the pigeonhole formulg beprocessed in any arbitrary order. We
show that in any OBDD refutation proof some of the intermed@BDDs has size at least exponential in
n. As a consequence we state that the gap between polynondigkaonential in the OBDD refutation
framework for pigeonhole formula is caused by the rule fastextial quantification.

We start with preliminaries in Sectidd 2. In Sectigh 3 we gr@an exponential lower bound on
OBDD refutations for the pigeonhole formula. Finally, Secfd contains conclusions.

2 Preliminaries

We consider propositional formulas @onjunctive Normal Forr{CNFs). Basic blocks for building
CNFs are propositional variables that take the vafais or true. The set of propositional variables is
denoted byar. A literal is either a variable or its negation—x. A clause is a disjunction of literals,
and a CNF is a conjunction of clauses. In the following, fom@nience, we consider clauses as sets of
variables, and a CNF as a set of clauses.(By¢) we denote the set of clauses contained in a @NF
and byVar(¢) we denote the set of variables contained in the @NF

2.1 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a a rooted, died, acyclic graph, which consists of
decision nodes and two terminal nodes 0 and 1. Each decistmin labeled by a propositional variable
from Var and has two child nodes called low child and high child. Thgeeffom a node to a low
(high) child represents an assignment of the variable t9.03dch a structure is callentderedbecause
different variables appear in the same order on all pathm tie root. Therefore, OBDDs assume that
there is a total ordek on the set of variable¥ar.
A OBDD is said to bereducedif the following two rules have been applied to its graph: Brge

isomorphic subgraphs; 2) eliminate any node whose two mrildire isomorphic. In our paper we
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consider only reduced OBDDs.
Given a propositional formulg and an order on variables, we define the size of a OBDB(¢, <)
representingd with respect to< as the number of its internal nodes and denote #ib(B(¢,<)).
We give a definition of a OBDD refutation adapting the defonitfrom [3].

Definition 2.1 (OBDD refutation) Given a total order on variables<, a OBDD refutation of an un-
satisfiable CNF¢ is a sequence of OBDDB1(¢1,<),...,Bn(¢n, <) such thatBn(¢n, <) is a OBDD
representing the constafdlse and for eachB;(¢;, <), 1 <i < n, exactly one of the following holds.

e (Axiom)B;(¢;, <) represents one of the clause<@®;

e (Join) there are OBDDS8; (¢, <) and Bj»(¢i, <) such thatl < i’ <i” < iand ¢; = ¢y A Pir.

We say that n is the length of the OBDD refutation. The sizédn@fQBDD refutation is defined as
YiLisize(Bi(¢i, <)).

When it is convenient, instead 8f(¢, <) we write B(¢) or justB. If a OBDD B represents a CNF
¢ then byCls(B) we mearCls(¢) and byVar(B) we meanVvar(¢).

The size of the minimal OBDD representing a propositionaifiala ¢ for a given order on variables
< is described by the following structure theorem/[10, 6]. Welbi= {0, 1} to denote the set of Boolean
constants.

Theorem 2.2 Suppose for a given formulf the following holds:

e |Var(¢)| =n;

e < is atotal order on the set of variablé&r(¢);

e Xi,...,X are the smallest k elements with respecktéor some k< n;

e AC{1,... k};

o z=(Z,..., 2 eBK

e For all distinct X1, X2 € B such that = X, = Z for all i ¢ A there exists & < B" such that

¢(7177) # ¢(?277)
Then the size of the OBDBY¢, <) is at least2/”,

The proof of the lower bound presented in Seclion 3.5 is basebtheoreni 2]2. However, in order
to obtain a lower bound we still have to solve some combimgtproblems.

2.2 The pigeonhole formula

The pigeonhole principle states thraholes can hold at most n objects with one object in a hole.rt ca
be formulated as a set of clauses as follows.

n+1 n
PCh= A(VPRj), NCh= A (-PxV-Py)
i=1 j=1 1<i<j<nt1

1<k<n

PHPn - PCn/\ NCn

Now we introduce notations that will be used in the rest ofghper. Let

PCGi= AV PRi) -

i=1 j=1
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Hence,PC}, contains the firsh clauses oPC,,. We represenPC;, as a matrix of variables with rows
andn columns (the cIausQ’TzlP.j corresponds to theth row). We denote this matrix by. For each
row in P there is a corresponding clauseRg;, and vice versa, therefore we will refer to a row as a
clause, and to a set of rows as a set of clauses.

For a given total order on variables we defineS. as the set containing the?/2| smallest elements
of Var(PC;,) with respect to ordering, and letS- = Var(PC})\S<. Moreover, we define

S, ={Rj € Var(PHP,) | Bj < maxS.},

and
S; = Var(PHP,)\S..

Note thatS; US. = Var(PCy) andS:, US. = Var(PHPy). The setsS. andS- are defined in such a
way that the difference between the sizes of these sets issttane, but, in contrary, this does not hold
for the setsS", andS..

For each OBDLB; in a OBDD refutation oPHP, we define

S, =S, NVar(Bj) andS. = Var(B;j)\S:.
Moreover, we define -
CIs"®9(B;) = Cls(Bj) N Cls(NCp) andClIsP°%(B;) = Cls(Bj) N Cls(PCy).

3 The main result

The proof of our lower bound is inspired by the proof of a loweund of a particular OBDD refutation
given in [6].
Lemma 3.1 Consider a matrix M= {mj}, 1 <i <n,1<j<n. Letthe matrix entries be colored
equally white and black, i.e. the difference between theburf white entries and the number of black
entries is at most one. Let# |cn| for c = % - %\/é ~ 0.146 Then at least one of the following holds.
e One can choose m rows, and in every of these rows a white arathk bhtry, such that all these
2m entries are in different columns.

e One can choose m columns, and in every of these columns aambdii black entry, such that all
these2m entries are in different rows.

Proof Starting by the given matrix repeat the following proceskag as possible.

Choose a row in the matrix containing both a white and a blaxtkye Remove both the

column containing the white entry and the column contairtirgblack entry. Also remove

the chosen row.
Assume this repetition stops aftesteps. Itk > mthe first property of the lemma holds and we are done.
In the remaining case the remaining matrix consists-ek rows withn— 2k entries in each row, where
every row either only consists of white entries or only ofdi@ntries. Assume that at least 2m of
these rows are totally black. Usifig< mwe conclude that the number of black entries in this remginin
matrix is at least

(n—2m)(n—2k) > (n—2m)? > %nz,

contradicting the assumption that at most half of the entaie black (possibly up to one). So at least
n—k—(n—2m) = 2m—k > mof these rows are totally white. By symmetry also at |easf these rows
are totally white. As the length of these rows are k > n—m > m, the second property of the lemma
is easily fulfilled.
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By fine-tuning the argument the constarih Lemmd 3.1 can be improved. We conjecture that it also
holds forc=1— %\/i ~ 0.293. Choosing tha x n matrix in which the left uppek x k-square is black
for k =~ 12 and the rest is white, one observes that this value will bepshiss our main result involves
an exponential lower bound, we do not focus on the precisenaptalue ofc.

The pigeonhole formula is an unsatisfiable CNF and, heneeQBDD representing?HP, is just
a terminal node 0. Therefore, we have to show that for anrarkibrder on variables and an arbitrary
way to combine clauses there is an intermediate OBDD of aesipenential im. We start our proof by
the simple observations describing some properties ofmediate OBDDs. And the following lemma
generalizes a well-known fact about binary trees claimigédxistence of subtrees with a weight lying
between a and 2a (for any definition of “weight” as a sum of tlegghts of its leaves).

Lemma 3.2 Let C be a finite set, R C with |R| > 2, and B,,...,B; C C a sequence with:

1. g=C

2. Foreach B(1 <i <), either B =0, B = {c} for c € C, or B = B; UBy for some jk with

j<k<l.
Then, for each awitlﬂ}{—‘ <a< 3, thereis a j< | such that
aR/ < |BjnR < 2aR| .
Proof We give a proof by contradiction. Suppose, for eBgheither
IBjNR < alR]| or IBiNR >2aR| .

As BiNR=CnNR=R, the inequality|B; " R| > 2a|R| holds for the final elemerR, of the sequence.
On the other hand, for singletoBs = {c}, we haveB;NR| =0< aR|forc¢ R, and|B;NR =1 < a|R|
for ce R, asa> 1/|R|. Moreover, forB; = 0, |BiNR| < a|R| obviously holds. Following now the
predecessors @ (via the construction by set union) in the sequeBcbackwards, we finally arrive at
an indexk for which the following holds:

e |BkNR| > 2aR|, and

e By =By UBy, where|By NR| < a|R| and|By NR| < aR|.
As ByNR= (By UBw)NR= (By NR) U (B NR), and thugBx N R| < |By "R|+ |Bw NR| < 2a|R
arrive at a contradiction tBy "R| > 2a|R)|.

Lemma 3.3 Supposey, ..., B, is a BDD refutation oPHP, and RC Cls(PCp) with |R| > 4. Then there
is an i< | such that

, we

IR|/4 < |CIs(B)NR| < 2|R|/4 .

Proof Follows from Lemma3J2.

LetBs,...,B, is a BDD refutation oPHP,,. For each <1 defineJ; as the set of columns froff as
follows:
J={je{1,...,n} | Ja,b: =Py v Ry € CIs(B;), Psj € S5, andR,; € S-}.

Lemma 3.4 SupposeBy,...,B is a BDD refutation ofPHP, for a total order on variables<, and
P’ C {1,...,n} with [P’| > 4. Then there is an« | such that

Pl/A<|5nP|<|P|/2
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Proof Follows from Lemma 312, usinG = {1,...,n}, R=P,a=1/4, andJ,,...,J for the sequence
(Bi)1<i<I, for which the precondition of Lemnia 3.2 holds, as is eadilyaked.

Theorem 3.5 For every order< on the set of variables, the size of each OBDD refutatioRIP, is
Q(1.029").

Proof Letn > 34, andB4,...,B; be a OBDD refutation oPHP,,. We prove that for an arbitrary total
order on variables< there is an < | such thatsize(B;) > 2"z-3V2/4. Since 32-1v2/4 > 1.025 we
havesize(B;j) > 1.028" and the theorem holds.

We apply Lemma_3]1 to the matrix represent@;,. Then one of the following holds.

e There is a set ofn(3 — v/2)| rows (we denote this set #§) and there is a set of B(3 — 11/2)
entries (we denote this set I§f) such that the following holds:
— For eaclr € Rthere areéP,,Pp € Stsuch thaP, € S, andPyp €S-
— For distinctPyp, Peg € ¥, b # d.

We define _
R =Cls(B)NR .
Asn>34,|R = Ln(% — %ﬁ)j > 5, and we can apply Lemnia8.3. Thus we know that there is an
i < such that _
IRI/4<|R|<2R/4.
We get

2IR|+1<R|.

For each row € R we fix an entry that is in the s&.. We collect these elements in the sefFor
each rowmr € R we also fix an entry that is i8- and collect these elements in the ¥eLet

R ={j|3i:Rj €AUY}.

Taking into account that/R'| + 1 < |R| we compute

|CIsP%(B))| < (n+1) = (IR = |R|) < (n+1) = (2R +1) - [R|) =n—|R|.
We denoteRl = ClsP°%(B;)\R'. By definitionR' C CIsP%(B;). Hence, we obtain
IR =|CIsP(B))| - |R| <n—2|R|.

LetJ=n— ]Rj\. Since we have chosen the set of ra¥ss satisfying the conditions of Lemma
3.1, we getR!'| = 2|R'| and

J=n-2|R|
and o
IR < [J].

For eactC € R we fix one variable and collect these variables in thexstbiat the following holds.
For distinctPap, Peg € X, b # d. This is possible becaus@| < |J|.
We defineX; = S; N X andX. = S. NX.
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We apply Lemm&a2]2 on _
k=|S.].
Forj=1,...,kwe definez; = 1if z; € Aor z; € X., otherwise we defing; = 0.
Choosex', X' satisfying X # X’ andx; = X = z; for all zj ¢ A. Then there i§’ such tha # X .
Let Y = (Yit1,---,Yq), Whereq= |Var(B;)|, be the vector defined by = 1 if y; € X- andy; =0

forally; € S.\(YUX.). If yj €Y then we choosg; = 0 if it is in the same row ag; andy; = 1
otherwise.

Hence, the subset of clauses representeB;mvaluates tc; for the assignmentX,y’) and to
x,, for the assignmen(x”’,y').
The size of the sékis at leasn(
thatsize(B;) > 2/Al > 2IRI/4 > 2n(
e There is a set ofn(3 — 3v/2)| columns (we denote this set I§§) and there is a set containing

2[n(3 — 3v/2)] entries (we denote this set 8¢) such that the following holds:

— For eachg € Q there arePyq, Phq € S? such thaPyq € S andPyg € S-.

— For distinctPap, P.g € ¥, a# c.
Supposen= [n(3 —1v/2)].
Let

NIl

— %1 2)/4 by construction. Hence, by Lemmal?.2, we conclude
~1vV2/4 for sufficiently largen.

NI

Q°={j|Jab: =PV -RjeCls(Bj) & Pyj € Sc & Ry €S-}
Then, by Lemma&a_3l4, there & for i < | such that
m/4 < |Q°| < m/2.

For eachj € Q° we choose-P,; vV —Ryj such that-P,j Vv —F,j € Cls(B;), whereP;j € S, and
Pbj € S-. We collectP,j in AandRyjin'Y.

Let
Q" ={a]| 3j:PyjeAUY}.
Let o
Q*=Q\Q"
Then
Q€ >m/2.

For eachj € Q° we fix Py j, Py, j € S?, whereP, j € S, andP,j € S.. We collectP, j in X. and
we collectR,;j in X for all j € Q°.
We define

Q ={a|db:PpeX UX-}.

By Lemmé& 3.1 all entries collected @ are from different rows. Hence, we obtain
Q[ =2/QFl.
Taking into account tha®® > m/2 we get

Q >2m/2=m
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and sinceQ" is a natural number we get
Q >m+1

We denote

Q" = CIsP*%(B)\Q'.
The set of clause€IsP°%(B;) can contain an arbitrary subset of clauses ff@", i.e.
1< |CIsP%(Bj)| <n+1.
We take into account tha®'| > m+ 1 and compute
|CIsP < (n+1) - Q| < (n+1)— (Mm+1)=n—m.
We defined = {j |3a: Pyj € Var(PHPy) & | € Q}. Then
3l=n-Q=n-m

Therefore|Q*| < |J|.
For each rowr € Q* we fix one entry and collect these entries in theWetWe require that the
entries collected iX satisfy the following properties.

— r contains at least one entry such that this entry is in oneso€tttumns ofJ;

— each column ig contains at most one fixed entry.
Since|Q*| < |J|, there is such a s&. We denoteX!, = S, NX.; XL =S NX.; W, =S, NW
andW. =S NW. We apply Lemma2]2 on

k=1|S.|.

Forj =1,...,k we definez; = 1 if z; € AUX, UW., and we defing; = 0 in all other cases. We
chooseX, X' satisfyingX # X' andx; = x| = z; for all z; ¢ A. Then there i§’ & {1,...,k} such
thatx; # Xj,. Let

7 = (yk+17 s 7yQ)7

whereq = |Var(B;)|, be the vector defined by; = 1 for all y; € X!, y; € W.. Fory; €Y we
defineyj = 1 if it is in the same column ag; andy; = O otherwise. We choosg = 0 in all
other cases. Therefore, for each row there is an entry ttessigned to 1 and for each column
exceptj’ and columns from the s&° there is at most one entry assigned to 1. If a coluns
contained in the se° then two entries in this column can be assigned to 1. By coctsn, for
each columrt in the setQC there is a clausePy vV ~Pyy ¢ Cls(Bj). Therefore, assigninBsy and
=Py simultaniously to 1 does not violate the satisfiability of #ubformula represented By.

Hence, the subset of clauses representeB;valuates to for the assignmentx’,y’) and to
x,, for the assignmen(x”’,y').

The size of the sekis at leash(3 — 7v/2) /4 by construction. Hence, by Lemal2.2, we conclude
thatsize(B;) > 2/Al > 2IRI/4 > on(3-2v2)/4 for sufficiently largen.
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4 Conclusions

This paper improved an earlier result in which the use of tB®D proof system is restricted, in a way
that the proof must follow the structure of a given formulae Wéve shown that the OBDD proof system
containing two rulesaxiomandjoin, has lower bounds exponentialnron refutations for the pigeonhole
formulas. On the other hand, it has been shown in [3] that OB&fDtations of the same formulas can
be given of polynomial size if therojectionrule is added to the above two rules. Therefore, the result
presented in this paper implies that fhrejectionrule is responsible for the gap between polynomial and
exponential, just like the rule in extended resolution gpmnsible for a similar gap.
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