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Haken proved that every resolution refutation of the pigeonhole formula has at least exponential size.
Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an
exponential size. Here we show that any arbitrary OBDD refutation of the pigeonhole formula has
an exponential size, too: we prove that the size of one of the intermediate OBDDs isΩ(1.025n).

1 Introduction

The pigeonhole principle, also known as Dirichlet’s box principle states thatn holes can hold at mostn
objects with one object to a hole. The propositional formulas describing this principle were introduced
by Cook and Reckhow in 1979 [5]. The formula is a CNF parameterized byn. It is unsatisfiable, but
after removing any single clause it becomes satisfiable, it is thus minimally unsatisfiable.

The formula has a very simple shape, a meta argument for unsatisfiability is easily given, but standard
techniques for proving unsatisfiability automatically runout of time for quite small values ofn. There-
fore, this formula is a good benchmark to test the efficiency of an approach for deciding (un)satisfiability.

Also, on the theoretical side, it is the basis of many interesting results. A landmark result is that of
Haken [7], who proved that the length of any resolution refutation of the pigeon hole formula is at least
exponential inn. Surprisingly, Cook proved that it admits a polynomial refutation based on extended
resolution [4].

An Ordered Binary Decision Diagram(OBDD), also referred as a reduced OBDD (ROBDD) or just
a BDD, is a data structure that is used to represent Boolean functions [2, 12].

OBDDs have some interesting properties: they provide compact and canonic representations of
Boolean functions, and there are efficient algorithms for performing logical operations on OBDDs. As a
result, OBDDs have been successfully applied to a wide variety of tasks, particularly in VLSI design and
CAD verification [9]. There are some less well-known applications as fault tree analysis [11], Bayesian
reasoning and product configuration.
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As a propositional proof system OBDDs were studied, e.g., byAtseriaset al. [1]. The authors
introduce a very general proof system based on constraint propagation. OBDDs are a special case of
this proof system. Their proof system has four rules:axiom, join, projection, andweakening. The first
two rules,axiomand join, correspond to an application of the OBDDapply operator. Projectionand
weakeningare introduced to reduce the size of intermediate OBDDs. It was shown that the OBDD proof
system containing all four rules is strictly stronger than resolution [1] but it is still exponential [8].

In our paper, by the OBDD proof of a formulaϕ we mean the computation of the corresponding
OBDD using theapply-operation, i.e. in terms of the above proof system from [1], we allow only
two rules, namelyaxiom and join. If the formula containsn Boolean connectives, then the OBDD
construction requires exactlyn calls of apply, and the exponential blow up of the size of the proof is
caused by the expansion of the size of the arguments.

In [6] it was proved that a particular OBDD computation of thepigeonhole formula is at least expo-
nential. On the other hand, it was proved in [3] that the pigeonhole formula admits a polynomial size
OBDD refutation in a setting including existential quantification (i.e. including theprojectionrule).

In this paper we prove that, based on the notion of OBDD refutation along the lines of [3] containing
the classical ingredients of OBDD computation, but excluding existential quantification, we have an
exponential lower bound for the size of OBDD refutations of the pigeonhole formula. This is much
stronger than the result from [6]: there, the only computation considered first computes the conjunction
of all positive clauses, then the conjunction of all negative clauses, and finally the conjunction of these
two. In our setting, the clauses of the pigeonhole formula may be processed in any arbitrary order. We
show that in any OBDD refutation proof some of the intermediate OBDDs has size at least exponential in
n. As a consequence we state that the gap between polynomial and exponential in the OBDD refutation
framework for pigeonhole formula is caused by the rule for existential quantification.

We start with preliminaries in Section 2. In Section 3 we prove an exponential lower bound on
OBDD refutations for the pigeonhole formula. Finally, Section 4 contains conclusions.

2 Preliminaries

We consider propositional formulas inConjunctive Normal Form(CNFs). Basic blocks for building
CNFs are propositional variables that take the valuesfalse or true. The set of propositional variables is
denoted byVar. A literal is either a variablex or its negation¬x. A clause is a disjunction of literals,
and a CNF is a conjunction of clauses. In the following, for convenience, we consider clauses as sets of
variables, and a CNF as a set of clauses. ByCls(ϕ) we denote the set of clauses contained in a CNFϕ
and byVar(ϕ) we denote the set of variables contained in the CNFϕ .

2.1 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a a rooted, directed, acyclic graph, which consists of
decision nodes and two terminal nodes 0 and 1. Each decision node is labeled by a propositional variable
from Var and has two child nodes called low child and high child. The edge from a node to a low
(high) child represents an assignment of the variable to 0 (1). Such a structure is calledorderedbecause
different variables appear in the same order on all paths from the root. Therefore, OBDDs assume that
there is a total order≺ on the set of variablesVar.

A OBDD is said to bereducedif the following two rules have been applied to its graph: 1) merge
isomorphic subgraphs; 2) eliminate any node whose two children are isomorphic. In our paper we



O. Tveretina & C. Sinz & H. Zantema 15

consider only reduced OBDDs.
Given a propositional formulaϕ and an order on variables≺, we define the size of a OBDDB(ϕ ,≺)

representingϕ with respect to≺ as the number of its internal nodes and denote it bysize(B(ϕ ,≺)).
We give a definition of a OBDD refutation adapting the definition from [3].

Definition 2.1 (OBDD refutation) Given a total order on variables≺, a OBDD refutation of an un-
satisfiable CNFϕ is a sequence of OBDDsB1(ϕ1,≺), . . . ,Bn(ϕn,≺) such thatBn(ϕn,≺) is a OBDD
representing the constantfalse and for eachBi(ϕi,≺), 1≤ i ≤ n, exactly one of the following holds.

• (Axiom)Bi(ϕi ,≺) represents one of the clauses C∈ ϕ ;

• (Join) there are OBDDsBi′(ϕi′ ,≺) andBi′′(ϕi′′ ,≺) such that1≤ i′ < i′′ < i and ϕi = ϕi′ ∧ϕi′′.

We say that n is the length of the OBDD refutation. The size of the OBDD refutation is defined as
∑n

i=1 size(Bi(ϕi,≺)).

When it is convenient, instead ofB(ϕ ,≺) we writeB(ϕ) or justB. If a OBDD B represents a CNF
ϕ then byCls(B) we meanCls(ϕ) and byVar(B) we meanVar(ϕ).

The size of the minimal OBDD representing a propositional formulaϕ for a given order on variables
≺ is described by the following structure theorem [10, 6]. We useB = {0,1} to denote the set of Boolean
constants.

Theorem 2.2 Suppose for a given formulaϕ the following holds:

• |Var(ϕ)| = n;

• ≺ is a total order on the set of variablesVar(ϕ);

• x1, . . . ,xk are the smallest k elements with respect to≺ for some k< n;

• A⊆ {1, . . . ,k};

• z= (z1, . . . ,zk) ∈ B
k.

• For all distinct−→x 1,
−→x 2 ∈ B

k such that xi1 = xi
2 = zi for all i 6∈ A there exists a−→y ∈ B

n−k such that
ϕ(−→x 1,

−→y ) 6= ϕ(−→x 2,
−→y ).

Then the size of the OBDDB(ϕ ,≺) is at least2|A|.

The proof of the lower bound presented in Section 3.5 is basedon Theorem 2.2. However, in order
to obtain a lower bound we still have to solve some combinatorial problems.

2.2 The pigeonhole formula

The pigeonhole principle states thatn holes can hold at most n objects with one object in a hole. It can
be formulated as a set of clauses as follows.

PCn =
n+1∧

i=1

(
n∨

j=1

Pi j ), NCn =
∧

1≤i< j≤n+1
1≤k≤n

(¬Pik ∨¬Pjk)

PHPn = PCn∧NCn

Now we introduce notations that will be used in the rest of thepaper. Let

PC
∗
n =

n∧

i=1

(
n∨

j=1

Pi j ) .
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Hence,PC
∗
n contains the firstn clauses ofPCn. We representPC

∗
n as a matrix of variables withn rows

andn columns (the clause
∨n

j=1Pi j corresponds to thei-th row). We denote this matrix byP. For each
row in P there is a corresponding clause inPC

∗
n and vice versa, therefore we will refer to a row as a

clause, and to a set of rows as a set of clauses.
For a given total order on variables≺, we defineS≺ as the set containing the⌊n2/2⌋ smallest elements

of Var(PC
∗
n) with respect to ordering≺, and letS� = Var(PC

∗
n)\S≺. Moreover, we define

S∗≺ = {Pi j ∈ Var(PHPn) | Pi j � maxS≺},

and
S∗� = Var(PHPn)\S∗≺.

Note thatS≺∪S� = Var(PC
∗
n) andS∗≺∪S∗� = Var(PHPn). The setsS≺ andS� are defined in such a

way that the difference between the sizes of these sets is at most one, but, in contrary, this does not hold
for the setsS∗≺ andS∗�.

For each OBDDBi in a OBDD refutation ofPHPn we define

Si
≺ = S∗≺∩Var(Bi) andSi

� = Var(Bi)\S∗�.

Moreover, we define

Cls
neg(Bi) = Cls(Bi)∩Cls(NCn) andCls

pos(Bi) = Cls(Bi)∩Cls(PCn).

3 The main result

The proof of our lower bound is inspired by the proof of a lowerbound of a particular OBDD refutation
given in [6].

Lemma 3.1 Consider a matrix M= {mi j }, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Let the matrix entries be colored
equally white and black, i.e. the difference between the number of white entries and the number of black
entries is at most one. Let m= ⌊cn⌋ for c = 1

2 − 1
4

√
2≈ 0.146. Then at least one of the following holds.

• One can choose m rows, and in every of these rows a white and a black entry, such that all these
2m entries are in different columns.

• One can choose m columns, and in every of these columns a whiteand a black entry, such that all
these2m entries are in different rows.

Proof Starting by the given matrix repeat the following process aslong as possible.
Choose a row in the matrix containing both a white and a black entry. Remove both the
column containing the white entry and the column containingthe black entry. Also remove
the chosen row.

Assume this repetition stops afterk steps. Ifk≥m the first property of the lemma holds and we are done.
In the remaining case the remaining matrix consists ofn−k rows withn−2k entries in each row, where
every row either only consists of white entries or only of black entries. Assume that at leastn−2m of
these rows are totally black. Usingk < mwe conclude that the number of black entries in this remaining
matrix is at least

(n−2m)(n−2k) > (n−2m)2 ≥ 1
2

n2,

contradicting the assumption that at most half of the entries are black (possibly up to one). So at least
n−k−(n−2m) = 2m−k > mof these rows are totally white. By symmetry also at leastmof these rows
are totally white. As the length of these rows aren−k > n−m> m, the second property of the lemma
is easily fulfilled.
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By fine-tuning the argument the constantc in Lemma 3.1 can be improved. We conjecture that it also
holds forc = 1− 1

2

√
2≈ 0.293. Choosing then×n matrix in which the left upperk×k-square is black

for k ≈ n√
2

and the rest is white, one observes that this value will be sharp. As our main result involves
an exponential lower bound, we do not focus on the precise optimal value ofc.

The pigeonhole formula is an unsatisfiable CNF and, hence, the OBDD representingPHPn is just
a terminal node 0. Therefore, we have to show that for an arbitrary order on variables and an arbitrary
way to combine clauses there is an intermediate OBDD of a sizeexponential inn. We start our proof by
the simple observations describing some properties of intermediate OBDDs. And the following lemma
generalizes a well-known fact about binary trees claiming the existence of subtrees with a weight lying
between a and 2a (for any definition of “weight” as a sum of the weights of its leaves).

Lemma 3.2 Let C be a finite set, R⊆C with |R| ≥ 2, and B1, . . . ,Bl ⊆C a sequence with:

1. Bl = C

2. For each Bi (1 ≤ i ≤ l), either Bi = /0, Bi = {c} for c ∈ C, or Bi = B j ∪Bk for some j,k with
j < k < i.

Then, for each a with1
|R| < a≤ 1

2, there is a j< l such that

a|R| ≤ |B j ∩R|< 2a|R| .

Proof We give a proof by contradiction. Suppose, for eachB j , either

|B j ∩R|< a|R| or |B j ∩R| ≥ 2a|R| .

As Bl ∩R= C∩R= R, the inequality|Bl ∩R| ≥ 2a|R| holds for the final elementBl of the sequence.
On the other hand, for singletonsB j = {c}, we have|B j ∩R|= 0< a|R| for c /∈R, and|B j ∩R|= 1< a|R|
for c ∈ R, asa > 1/|R|. Moreover, forBi = /0, |Bi ∩R| < a|R| obviously holds. Following now the
predecessors ofBl (via the construction by set union) in the sequenceBi backwards, we finally arrive at
an indexk for which the following holds:

• |Bk∩R| ≥ 2a|R|, and

• Bk = Bk′ ∪Bk′′, where|Bk′ ∩R|< a|R| and|Bk′′ ∩R|< a|R|.
As Bk∩R= (Bk′ ∪Bk′′)∩R= (Bk′ ∩R)∪ (Bk′′ ∩R), and thus|Bk∩R| ≤ |Bk′ ∩R|+ |Bk′′ ∩R|< 2a|R|, we
arrive at a contradiction to|Bk∩R| ≥ 2a|R|.
Lemma 3.3 SupposeB1, . . . ,Bl is a BDD refutation ofPHPn and R⊆Cls(PCn) with |R|> 4. Then there
is an i< l such that

|R|/4≤ |Cls(Bi)∩R|< 2|R|/4 .

Proof Follows from Lemma 3.2.

Let B1, . . . ,Bl is a BDD refutation ofPHPn. For eachi ≤ l defineJi as the set of columns fromPc as
follows:

Ji = { j ∈ {1, . . . ,n} | ∃a,b : ¬Pa j ∨¬Pb j ∈ Cls(Bi), Pa j ∈ S≺, andPb j ∈ S�}.
Lemma 3.4 SupposeB1, . . . ,Bl is a BDD refutation ofPHPn for a total order on variables≺, and
P′ ⊆ {1, . . . ,n} with |P′| > 4. Then there is an i< l such that

|P′|/4≤ |Ji ∩P′| < |P′|/2.
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Proof Follows from Lemma 3.2, usingC = {1, . . . ,n}, R= P′, a = 1/4, andJ1, . . . ,Jl for the sequence
(Bi)1≤i≤l , for which the precondition of Lemma 3.2 holds, as is easily checked.

Theorem 3.5 For every order≺ on the set of variables, the size of each OBDD refutation ofPHPn is
Ω(1.025n).

Proof Let n > 34, andB1, . . . ,Bl be a OBDD refutation ofPHPn. We prove that for an arbitrary total
order on variables≺ there is ani ≤ l such thatsize(Bi) ≥ 2n( 1

2− 1
4

√
2)/4. Since 2(

1
2− 1

4

√
2)/4 > 1.025 we

havesize(Bi) > 1.025n and the theorem holds.
We apply Lemma 3.1 to the matrix representingPC

∗
n. Then one of the following holds.

• There is a set of⌊n(1
2 − 1

4

√
2)⌋ rows (we denote this set byR) and there is a set of 2⌊n(1

2 − 1
4

√
2)⌋

entries (we denote this set bySR) such that the following holds:

– For eachr ∈ R there arePra,Prb ∈ SR such thatPra ∈ S≺ andPrb ∈ S�.

– For distinctPab,Pcd ∈ SR, b 6= d.

We define
Ri = Cls(Bi)∩R .

As n > 34, |R|= ⌊n(1
2 − 1

4

√
2)⌋ ≥ 5, and we can apply Lemma 3.3. Thus we know that there is an

i < l such that
|R|/4≤ |Ri| < 2|R|/4.

We get
2|Ri |+1≤ |R|.

For each rowr ∈ Ri we fix an entry that is in the setS≺. We collect these elements in the setA. For
each rowr ∈ Ri we also fix an entry that is inS� and collect these elements in the setY. Let

Rj = { j | ∃i : Pi j ∈ A∪Y}.

Taking into account that 2|Ri |+1≤ |R| we compute

|Cls
pos(Bi)| ≤ (n+1)− (|R|− |Ri|) ≤ (n+1)− ((2|Ri |+1)−|Ri|) = n−|Ri|.

We denoteRi = Cls
pos(Bi)\Ri . By definitionRi ⊆ Cls

pos(Bi). Hence, we obtain

|Ri | = |Cls
pos(Bi)|− |Ri| ≤ n−2|Ri |.

Let J = n−|Rj |. Since we have chosen the set of rowsRi as satisfying the conditions of Lemma
3.1, we get|Rj | = 2|Ri | and

J = n−2|Ri|
and

|Ri| ≤ |J|.

For eachC∈Ri we fix one variable and collect these variables in the setX that the following holds.
For distinctPab,Pcd ∈ X, b 6= d. This is possible because|Ri| ≤ |J|.
We defineX≺ = S∗≺∩X andX� = S∗�∩X.
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We apply Lemma 2.2 on
k = |Si

≺|.

For j = 1, . . . ,k we definezj = 1 if zj ∈ A or zj ∈ X≺, otherwise we definezj = 0.

Choose−→x ,−→x ′ satisfying−→x 6=−→x ′ andx j = x′j = zj for all zj 6∈A. Then there isj ′ such thatx j ′ 6= x′j ′ .

Let−→y = (yk+1, . . . ,yq), whereq = |Var(Bi)|, be the vector defined byy j = 1 if y j ∈ X� andy j = 0
for all y j ∈ Si

�\(Y∪X�). If y j ∈Y then we choosey j = 0 if it is in the same row asxi andy j = 1
otherwise.

Hence, the subset of clauses represented byBi evaluates tox j ′ for the assignment(−→x ,−→y ) and to
x′j ′ for the assignment(−→x ′,−→y ).

The size of the setA is at leastn(1
2 − 1

4

√
2)/4 by construction. Hence, by Lemma 2.2, we conclude

thatsize(Bi) ≥ 2|A| ≥ 2|R|/4 ≥ 2n( 1
2− 1

4

√
2)/4 for sufficiently largen.

• There is a set of⌊n(1
2 − 1

4

√
2)⌋ columns (we denote this set byQ) and there is a set containing

2⌊n(1
2 − 1

4

√
2)⌋ entries (we denote this set bySQ) such that the following holds:

– For eachq∈ Q there arePaq,Pbq ∈ SQ such thatPaq ∈ S≺ andPbq ∈ S�.

– For distinctPab,Pcd ∈ SQ, a 6= c.

Supposem= ⌊n(1
2 − 1

4

√
2)⌋.

Let
Qc = { j | ∃a,b : ¬Pa j ∨¬Pb j ∈ Cls(Bi) & Pa j ∈ S≺ & Pb j ∈ S�}.

Then, by Lemma 3.4, there isBi for i < l such that

m/4≤ |Qc| < m/2.

For each j ∈ Qc we choose¬Pa j ∨¬Pb j such that¬Pa j ∨¬Pb j ∈ Cls(Bi), wherePa j ∈ S≺ and
Pb j ∈ S�. We collectPa j in A andPb j in Y.

Let
Qr = {a | ∃ j : Pa j ∈ A∪Y}.

Let
Qc = Q\Qc.

Then
Qc > m/2.

For eachj ∈ Qc we fix Paj j ,Pbj j ∈ SQ, wherePaj j ∈ S∗≺ andPbj j ∈ S∗�. We collectPaj j in X≺ and
we collectPbj j in X� for all j ∈ Qc.

We define
Qr = {a | ∃b : Pab ∈ X≺∪X�}.

By Lemma 3.1 all entries collected inQr are from different rows. Hence, we obtain

|Qr | = 2|Qc|.

Taking into account thatQc > m/2 we get

Qr > 2m/2 = m
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and sinceQr is a natural number we get

Qr ≥ m+1.

We denote
Q∗ = Cls

pos(Bi)\Qr .

The set of clausesCls
pos(Bi) can contain an arbitrary subset of clauses fromPC

n, i.e.

1≤ |Cls
pos(Bi)| ≤ n+1.

We take into account that|Qr | ≥ m+1 and compute

|Cls
pos| ≤ (n+1)−|Qr | ≤ (n+1)− (m+1) = n−m.

We defineJ = { j |∃a : Pa j ∈ Var(PHPn) & j 6∈ Q}. Then

|J| = n−|Q| = n−m.

Therefore,|Q∗| ≤ |J|.
For each rowr ∈ Q∗ we fix one entry and collect these entries in the setW. We require that the
entries collected inX satisfy the following properties.

– r contains at least one entry such that this entry is in one of the columns ofJ;

– each column isJ contains at most one fixed entry.

Since|Q∗| ≤ |J|, there is such a setW. We denoteXi
≺ = Si

≺ ∩X≺; Xi
� = Si

� ∩X�; W≺ = Si
≺ ∩W

andW� = Si
�∩W. We apply Lemma 2.2 on

k = |Si
≺|.

For j = 1, . . . ,k we definezj = 1 if zj ∈ A∪Xi
≺∪W≺, and we definezj = 0 in all other cases. We

choose−→x ,−→x ′ satisfying−→x 6=−→x ′ andx j = x′j = zj for all zj 6∈ A. Then there isj ′ 6∈ {1, . . . ,k} such
thatx j ′ 6= x′j ′ . Let

−→y = (yk+1, . . . ,yq),

whereq = |Var(Bi)|, be the vector defined byy j = 1 for all y j ∈ Xi
�, y j ∈ W�. For y j ∈ Y we

definey j = 1 if it is in the same column asx j ′ andy j = 0 otherwise. We choosey j = 0 in all
other cases. Therefore, for each row there is an entry that isassigned to 1 and for each column
except j ′ and columns from the setQc there is at most one entry assigned to 1. If a columnt is
contained in the setQc then two entries in this column can be assigned to 1. By construction, for
each columnt in the setQc there is a clause¬Ps′t ∨¬Ps′′t 6∈ Cls(Bi). Therefore, assigningPs′t and
¬Ps′′t simultaniously to 1 does not violate the satisfiability of the subformula represented byBi .

Hence, the subset of clauses represented byBi evaluates tox j ′ for the assignment(−→x ,−→y ) and to
x′j ′ for the assignment(−→x ′,−→y ).

The size of the setA is at leastn(1
2 − 1

4

√
2)/4 by construction. Hence, by Lemma 2.2, we conclude

thatsize(Bi) ≥ 2|A| ≥ 2|R|/4 ≥ 2n( 1
2− 1

4

√
2)/4 for sufficiently largen.
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4 Conclusions

This paper improved an earlier result in which the use of the OBDD proof system is restricted, in a way
that the proof must follow the structure of a given formula. We have shown that the OBDD proof system
containing two rules,axiomandjoin, has lower bounds exponential inn on refutations for the pigeonhole
formulas. On the other hand, it has been shown in [3] that OBDDrefutations of the same formulas can
be given of polynomial size if theprojectionrule is added to the above two rules. Therefore, the result
presented in this paper implies that theprojectionrule is responsible for the gap between polynomial and
exponential, just like the rule in extended resolution is responsible for a similar gap.
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